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STABLE CLOSE-TO-CONVEXITY AND RADIUS OF FULL CONVEXITY FOR
SENSE-PRESERVING HARMONIC MAPPINGS

ANKUR RAJ AND SUMIT NAGPAL

ABSTRACT. Given a sense-preserving harmonic function defined in the open unit disk with its analytic
part restricted to the class of starlike functions, several techniques are developed to construct stable
close-to-convex harmonic mappings. Each technique is demonstrated through illustrations. Moreover,
the radii of full convexity are computed for sense-preserving harmonic functions with the analytic part
belonging to certain subclasses of univalent functions. The obtained bounds are sharp.

1. Introduction

A complex-valued harmonic function f defined in an open unit disk D := {z ∈ C : |z| < 1} can be
represented as f = h+ ḡ, where the functions h and g are analytic in D. Let H denotes the collection
of such harmonic functions with the normalization h(0) = h′(0)−1 = g(0) = 0 and H 0 ⊆H consists
of harmonic functions which are further normalized by g′(0) = 0. We say that a harmonic function
f = h+ ḡ is sense-preserving in D if the Jacobian J f (z) = |h′(z)|2−|g′(z)|2 > 0 for all z ∈ D which
is equivalent to saying that the analytic function w f : D→ C defined as w f (z) = g′(z)/h′(z) satisfies
|w f (z)| < 1 for all z ∈ D. The function w f is known as the dilatation of f . The subclass of H 0

consisting of sense-preserving univalent harmonic functions is denoted by S 0
H and it reduces to the

classical family S of normalized univalent analytic functions in D if the co-analytic part of each
harmonic function in S 0

H is zero. In 1984, Clunie and Sheil-Small [4] initiated the investigation of
the class S 0

H and its geometric subclasses C 0
H , S ∗0

H and K 0
H consisting of functions mapping D onto

a close-to-convex, starlike and convex domain respectively. The corresponding subclasses of S are
denoted by C , S ∗ and K respectively.

Several authors [2, 4, 9–13, 15–17, 30] have investigated the properties of sense-preserving harmonic
functions by restricting their analytic part. If analytic part of a sense-preserving harmonic function f
is convex, then f must be univalent in D by [4, Theorem 5.17]. However, if we restrict the analytic
part of a sense-preserving harmonic function f to the family of starlike functions, then f need not
be univalent in D (see [20, Example 1, p. 203]). Hotta and Michalski [9] studied the properties of a
univalent harmonic function f with starlike analytic part and obtained the coefficient, distortion and
growth estimates of the co-analytic part; and growth and Jacobian estimates of f . Klimek-Smęt and
Michalski [12] carried out the similar analysis by considering the harmonic functions with convex
analytic part. Zhu and Huang [30] extended these results by investigating the harmonic functions with
analytic part as a univalent convex or starlike function of order β ∈ [0,1).
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Hernández and Martín [8] introduced the notion of stable harmonic mappings. A sense-preserving
harmonic function f = h+ ḡ is said to be stable univalent (resp. stable close-to-convex and stable
convex) if all the mappings fε = h+ ε ḡ with |ε|= 1 are univalent (resp. close-to-convex and convex)
in D. They proved that a sense-preserving harmonic mapping f = h+ ḡ is stable univalent (resp. stable
close-to-convex and stable convex) if and only if the analytic functions Fε = h+ εg are univalent (resp.
close-to-convex and convex) in D for each |ε|= 1. Let S S 0

H , S C 0
H and S K 0

H be the subclasses
of S 0

H consisting of stable univalent, stable close-to-convex and stable convex harmonic mappings
respectively. In Section 2, different techniques of constructing stable close-to-convex harmonic
mappings are investigated from sense-preserving harmonic functions with their analytic part belonging
to the class S ∗. In addition, concrete examples are provided to demonstrate the obtained results.

It is well-known that the hereditary property of convex analytic mappings does not generalize to
harmonic functions. Chuaqui, Duren and Osgood [3] introduced the notion of fully convex functions
that do inherit the property of convexity. A harmonic mapping of the unit disk is said to be fully
convex if it maps every circle |z|= r < 1 in a one-to-one manner onto a convex curve. A fully convex
harmonic function is necessarily univalent in D by Radó-Kneser-Choquet theorem [6, Section 3.1].
The radius of full convexity of the class K 0

H is
√

2−1 [25], while the radius of full convexity of the
classes S ∗0

H and C 0
H is 3−

√
8 [22, 29]. However, the exact radius of full convexity of the class S 0

H is
still unsettled. In the last section of the paper, the sharp radius of full convexity has been determined
for sense-preserving harmonic functions with certain constraints on their analytic part.

2. Construction of stable close-to-convex harmonic mappings

Recall that an analytic function f in D with f (0) = 0 = f ′(0)−1 is close-to-convex in D if either of
the following conditions are satisfied:

• Re( f ′(z)/g′(z))> 0 for all z ∈ D for some g ∈K ; or
• Re(z f ′(z)/g(z))> 0 for all z ∈ D for some g ∈S ∗.

These two conditions will be termed as close-to-convexity criteria and have been extensively used
throughout this section.

Let f = h+ ḡ ∈H 0 and φε = h+ εg where ε ∈ C with |ε| = 1. It is easy to verify that if f is
sense-preserving in D, then

(2.1)
∣∣∣∣φ ′ε(z)h′(z)

−1
∣∣∣∣< 1

for all z ∈ D. This, in turn, gives

(2.2) Re
φ ′ε(z)
h′(z)

> 0 for all z ∈ D.

Thus if f = h+ ḡ∈H 0 is sense-preserving and the analytic function h∈K , then by (2.2) and close-to-
convexity criteria, φε is close-to-convex in D for each |ε|= 1. Consequently, f ∈S C 0

H . The following
theorem gives another method of constructing stable close-to-convex harmonic mappings associated
with the positive harmonic Alexander operator defined by Nagpal and Ravichandran [19, Definition
4.1, p. 582]. The following lemma due to Sakaguchi [27] will be used in our investigation.
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Lemma 2.1. [27, Lemma, p. 74] Let D ∈S ∗ and N be analytic in D with N(0) = N′(0)−1 = 0. If
Re(N′(z)/D′(z))> 0 for z ∈ D, then Re(N(z)/D(z))> 0 for z ∈ D.

Theorem 2.2. Let f = h+ ḡ ∈H 0 be sense-preserving harmonic function and h ∈S ∗. If the analytic
function ψ ∈K , then the harmonic function F = H +G is stable close-to-convex in D, where H and
G are given by

(2.3) H(z) =
∫ z

0

(ψ ∗h)(ξ )
ξ

dξ and G(z) =
∫ z

0

(ψ ∗g)(ξ )
ξ

dξ .

Here ∗ denotes the convolution or the Hadamard product of analytic functions.

Proof. Let φε = h+ εg where ε ∈ C with |ε|= 1. Then (2.2) is satisfied so that Lemma 2.1 gives

(2.4) Re
φε(z)
h(z)

> 0

for all z ∈ D, since h ∈S ∗. Also, as ψ ∈K , by invoking a result of Ruscheweyh [24, Theorem 2.4, p.
54], it follows that

Re
(ψ ∗h(φε/h))(z)

(ψ ∗h)(z)
= Re

(ψ ∗φε)(z)
(ψ ∗h)(z)

> 0

for all z ∈ D. Moreover, it is known that the analytic function ψ ∗ h ∈ S ∗ by [26]. Hence by
close-to-convexity criteria, the analytic function∫ z

0

(ψ ∗φε)(ξ )

ξ
dξ =

∫ z

0

(ψ ∗h)(ξ )
ξ

dξ + ε

∫ z

0

(ψ ∗g)(ξ )
ξ

dξ

is close-to-convex for all |ε|= 1. This shows that F ∈S C 0
H . �

Remark 2.3. Under the hypothesis of Theorem 2.2, it can be shown that |g(z)|< |h(z)| for all z∈D\{0}.
To see this, let 0 6= z ∈ D. As h is univalent and h(0) = 0, h(z0) 6= 0. If g(z0) = 0, then the inequality
|g(z0)|< |h(z0)| is automatically satisfied. If g(z0) 6= 0, then (2.4) gives Re(1+εg(z0)/h(z0))> 0 and
by choosing ε =−e−iarg(g(z0)/h(z0)), we conclude that the required inequality is satisfied.

Hotta and Michalski [9] proved a result which is a special case of Theorem 2.2. We present this
result in the form of a corollary and it can be deduced by taking ψ(z) = z/(1− z) in Theorem 2.2.

Corollary 2.4. Let f = h+ ḡ ∈H 0 be sense-preserving harmonic function and h ∈S ∗. Then the
positive harmonic Alexander operator Λ

+
H : H →H defined by

Λ
+
H [ f ] = Λ[h]+Λ[g], f = h+ ḡ ∈H

is stable close-to-convex in D, where Λ is the Alexander integral operator defined as

Λ[p](z) =
∫ z

0

p(ξ )
ξ

dξ

for an analytic function p in D with p(0) = p′(0)−1 = 0.

Let us illustrate Theorem 2.2 and Corollary 2.4 with an example.
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Example 2.5. If f1 = h1 + ḡ1 ∈H 0 where h1 and g1 are given by

h1(z) =
z

(1− z)2 ∈S ∗ and g1(z) =
−z+2z2

(1− z)2 − log(1− z),

then f1 is sense-preserving in D with dilatation w f1(z) = z. By Corollary 2.4, the harmonic function
F1 = H1 +G1 is in S C 0

H , where H1 and G1 are given by

H1(z) =
z

1− z
and G1(z) =

z
1− z

+2log(1− z)+Li2(z) =
∞

∑
n=2

(
n−1

n

)2

zn.

Here, Li2 is the polylogarithm function of order 2 [14] defined by the power series

Li2(z) =
∞

∑
n=1

zn

n2 = z+
z2

4
+

z3

9
+ · · · .

If we take

ψ0(z) =
1
2

log
(

1+ z
1− z

)
∈K ,

and make use of the fact that (ψ0 ∗φ)(z) = (Λ[φ ](z)−Λ[φ ](−z))/2 for an analytic function φ in D
with φ(0) = φ ′(0)−1 = 0, where Λ is the Alexander integral operator, then

(ψ0 ∗h1)(z) =
z

1− z2 and (ψ0 ∗g1)(z) =
∞

∑
n=1

4n2

(2n+1)2 z2n+1.

By Theorem 2.2, it follows that the harmonic function F2 = H2 +G2 is stable close-to-convex in D,
where H2 = ψ0 and

G2(z) = tanh−1(z)− z− 1
2

z3
Φ

(
z2,2,

3
2

)
+

1
8

z3
Φ

(
z2,3,

3
2

)
=

∞

∑
n=1

4n2

(2n+1)3 z2n+1.

Note that Φ(z,s,a) is the Lerch transcendental function defined by the power series

Φ(z,s,a) =
∞

∑
n=0

zn

(n+a)s

provided a 6= 0,−1,−2, . . .. This series is convergent in D for all values of s (see [7]).
Similarly, if we take f2(z) = z+ z2/2+ z̄2/2+ z̄3/3, then f2 is sense-preserving in D with dilatation

w f2(z) = z. Since the analytic part of f2 is starlike in D, therefore the harmonic function F3(z) =
z+ z2/4+ z̄2/4+ z̄3/9 is stable close-to-convex in D by Corollary 2.4. With ψ0 ∈K as defined above,
Theorem 2.2 yields the harmonic function F4(z) = z+ z̄3/27 ∈ S C 0

H . The image domains of the
constructed functions Fi (i = 1,2,3,4) are illustrated in Figure 1.

It is important to point out that Theorem 2.2 does not hold if we weaken the condition that ψ ∈K .
To see this, consider the function f (z) = z+z2/2− z̄2/2− z̄3/3. Its analytic part is starlike in D and the
resulting harmonic function obtained from (2.3) by taking the non-convex function ψ(z) = z/(1− z)2

is f itself which is not even univalent in D as f (7eit/8) = f (7e−it/8) for t = 2tan−1(3
√

3). In the next
theorem, stable close-to-convex harmonic functions are generated under the hypothesis of Theorem
2.2 with ψ ∈S ∗.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

9 Jun 2022 09:49:06 PDT
220609-Nagpal Version 1 - Submitted to Rocky Mountain J. Math.



STABLE CLOSE-TO-CONVEXITY AND RADIUS OF FULL CONVEXITY 5

-1.0 -0.5 0.0 0.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(a) F1(D)
-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

(b) F2(D)

-0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

(c) F3(D)
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(d) F4(D)

FIGURE 1.

Theorem 2.6. Let f = h+ ḡ ∈H 0 be sense-preserving and h ∈S ∗. If the analytic function ψ ∈S ∗,
then the harmonic function F = H +G is stable close-to-convex in D, where H and G are given by

H(z) =
∫ z

0

ψ(ξ )

ξ
dξ and G(z) =

∫ z

0

ψ(ξ )g(ξ )
ξ h(ξ )

dξ .
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Proof. Let φε = h+ εg for |ε| = 1. Since h ∈S ∗, therefore in view of (2.2) and Lemma 2.1, the
condition (2.4) is satisfied, which may be rewritten as

(2.5) Re
(ψ(z)φε(z)/h(z))

ψ(z)
= Re

φε(z)
h(z)

> 0

for all z ∈ D. As ψ ∈S ∗, the close-to-convexity criteria implies that the analytic function∫ z

0

ψ(ξ )φε(ξ )

ξ h(ξ )
dξ =

∫ z

0

ψ(ξ )

ξ
dξ + ε

∫ z

0

ψ(ξ )g(ξ )
ξ h(ξ )

dξ

is close-to-convex in D for each |ε|= 1. Hence F is stable close-to-convex in D. �

Theorem 2.6 reduces to Corollary 2.4 by choosing h = ψ . Let us demonstrate Theorem 2.6 for the
starlike functions ψ(z) = z/(1− z) and ψ(z) = z in the next example.

Example 2.7. Under the hypothesis of Theorem 2.6, if we take ψ(z) = z/(1− z) ∈ S ∗, then the
harmonic function

F(z) =− log(1− z)+
∫ z

0

g(ξ )
(1−ξ )h(ξ )

dξ

is stable close-to-convex in D. Therefore the harmonic functions f1 and f2 defined in Example 2.5 lead
to the functions

P1(z) =− log(1− z)+Li2(z)−3z−2log(1− z)+ z log(1− z)

and

P2(z) =− log(1− z)+
1
9
(−6z−5log(1− z)+2log(2+ z)−2log2)

respectively in the class S C 0
H .

Similarly, if we consider ψ(z) = z, then Theorem 2.6 generates the stable close-to-convex harmonic
function

F(z) = z+
∫ z

0

g(ξ )
h(ξ )

dξ .

As a consequence, the following harmonic functions

P3(z) = z+Li2(z)−
5
4

z(2− z)− 1
2
(3− z)(1− z) log(1− z)

and

P4(z) = z+
1
3
(2log(2+ z)− (1− z)z− log4)

lie in the class S C 0
H which are formed by considering the functions f1 and f2 respectively defined in

Example 2.5. The image domains Pi(D) are depicted in Figure 2 for i = 1,2,3,4.

For particular choices of ψ , the conclusion of Theorem 2.6 can be further strengthened as seen
by the following corollary. The proof makes use of the fact that an analytic function f in D with
f (0) = 0 and f ′(0) 6= 0 maps the unit disk univalently onto a domain (i) convex in the direction of
real axis if Re((1− z)2 f ′(z))> 0 for all z ∈ D [5]; and (ii) convex in the direction of imaginary axis if
Re((1− z2) f ′(z))> 0 for all z ∈ D [23].
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FIGURE 2.

Corollary 2.8. Let f = h+ ḡ ∈H 0 be sense-preserving in D and h ∈S ∗.

(i) The harmonic function F1 = H1 +G1, where H1 and G1 are given by

H1(z) =
z

1− z
and G1(z) =

∫ z

0

g(ξ )
(1−ξ )2h(ξ )

dξ

is stable close-to-convex in D and its range is convex in the direction of the real axis.
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(ii) The harmonic function F2 = H2 +G2, where H2 and G2 are given by

H2(z) =
1
2

log
1+ z
1− z

and G2(z) =
∫ z

0

g(ξ )
(1−ξ 2)h(ξ )

dξ

is stable close-to-convex in D and its range is convex in the direction of the imaginary axis.

Proof. Clearly, F1, F2 ∈S C 0
H by Theorem 2.6 with ψ as z/(1− z)2 and z/(1− z2) respectively. The

function φε = h+ εg satisfies (2.4) so that

Re
(
(1− z)2 φε(z)

(1− z)2h(z)

)
= Re

(
(1− z)2

(
1

(1− z)2 +
εg(z)

(1− z)2h(z)

))
> 0

for all ε ∈ C with |ε|= 1 and for all z ∈ D. This proves that the analytic functions∫ z

0

dξ

(1−ξ )2 + ε

∫ z

0

g(ξ )
(1−ξ )2h(ξ )

dξ

are univalent and their images are convex in the direction of the real axis for all ε ∈ C with |ε|= 1. By
a theorem of Clunie and Sheil-Small [4, Theorem 5.3, p. 14], it follows that the harmonic function F1
is stable close-to-convex and its range is convex in the direction of the real axis. This proves part (i).
The proof of other part can be deduced by simply replacing the term (1− z)2 by (1− z2). �

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

FIGURE 3. Image domain F2(D)

With the function f1 defined in Example 2.5, Corollary 2.8(i) yields the harmonic function F1 which
has the same expression as stated in Example 2.5. It is clearly evident from Figure 1(a) that image
domain F1(D) is convex in the direction of the real axis. Also, Corollary 2.8(ii) provides a stable
close-to-convex harmonic function F2(z) = (1/2) log((1+ z)/(1− z))+G2(z) whose range is convex
in the direction of the imaginary axis (see Figure 3), where G2 is given by

G2(z) =
1
6
(
π

2−6(log2)2−3log(1− z)+3(log(16)−3) log(1+ z)

+6Li2(z)−12Li2

(
1+ z

2

))
.
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FIGURE 4.

Another illustration is provided in the following example.

Example 2.9. If we consider the harmonic function f2 as defined in Example 2.5, then Corollary 2.8
give rise to the stable close-to-convex harmonic functions

W1(z) =
z

1− z
+

1
27

(
15z

1− z
− log4+16log(1− z)+2log(2+ z)

)
and

W2(z) =
1
2

log
1+ z
1− z

+
1

18
(log16−5log(1− z)−3log(1+ z)−4log(2+ z))

whose ranges are convex in the direction of the real axis and imaginary axis respectively. (see Figure
4).

The last result of this section generates harmonic functions in S C 0
H by dropping the condition on h

as stated in Theorem 2.6.

Theorem 2.10. Let f = h+ ḡ ∈H 0 be sense-preserving in D with dilatation w f . If ψ ∈S ∗, then the
harmonic function F = H +G is stable close-to-convex in D, where H and G are given by

H(z) =
∫ z

0

ψ(ξ )

ξ
dξ and G(z) =

∫ z

0

w f (ξ )ψ(ξ )

ξ
dξ .
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In particular, the following harmonic functions belong to the class S C 0
H:

Q1(z) =
z

1− z
+
∫ z

0

w f (ξ )

(1−ξ )2 dξ , Q2(z) =
1
2

log
1+ z
1− z

+
∫ z

0

w f (ξ )

1−ξ 2 dξ

Q3(z) =− log(1− z)+
∫ z

0

w f (ξ )

1−ξ
dξ , Q4(z) = z+

∫ z

0
w f (ξ )dξ .

Moreover, the image domains Q1(D) and Q2(D) are convex in the direction of the real axis and
imaginary axis respectively.

Proof. Since f is sense-preserving in D, therefore the analytic functions φε = h+ εg satisfy condition
(2.2) which can be reformulated as

Re
(ψ(z)φ ′ε(z)/h′(z))

ψ(z)
= Re

φ ′ε(z)
h′(z)

> 0

for all z ∈ D and for all ε ∈ C with |ε|= 1. As ψ ∈S ∗, therefore by close-to-convexity criteria, the
analytic function∫ z

0

ψ(ξ )φ ′ε(ξ )

ξ h′(ξ )
dξ =

∫ z

0

ψ(ξ )

ξ
dξ + ε

∫ z

0

ψ(ξ )g′(ξ )
ξ h′(ξ )

dξ =
∫ z

0

ψ(ξ )

ξ
dξ + ε

∫ z

0

w f (ξ )ψ(ξ )

ξ
dξ

is close-to-convex in D. Hence F ∈S C 0
H . By choosing ψ as z/(1− z)2, z/(1− z2), z/(1− z) and

z, it is easy to deduce that the harmonic functions Qi (i = 1,2,3,4) are stable close-to-convex in D
respectively. The convexity in one direction of the functions Q1 and Q2 is similar to the proof of
Corollary 2.7 and therefore its details are omitted. �

The main key point of Theorem 2.10 relies on the observation that the analytic part of the sense-
preserving harmonic function is not even required to be univalent in D. Let us illustrate it with the help
of following example.

Example 2.11. Let f = h+ ḡ ∈H 0, where h and g are given by

h(z) = z+ z2 and g(z) =
1
2

z̄2 +
2
3

z̄3.

Then f is sense-preserving in D with dilatation w f (z) = z. Note that h is not univalent in D. By
Theorem 2.10, the following functions are in the class S C 0

H :

Q1(z) =
z

1− z
+

z
1− z

+ log(1− z), Q2(z) =
1
2

log
1+ z
1− z

− 1
2

log(1− z2)

Q3(z) =− log(1− z)− z̄− log(1− z), Q4(z) = z+
1
2

z̄2.

The image domains Qi(D) are illustrated in Figure 5. Clearly, Q1(D) is convex in the direction of the
real axis and Q2(D) is convex in the direction of imaginary axis.
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FIGURE 5.
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3. Radius of full convexity

In this section, we will determine the radius of fully convexity of the harmonic functions whose
analytic part belong to various subclasses of univalent functions. Hernández and Martín [8, Corollary
4.1, p. 350] proved that a sense-preserving stable convex harmonic function is fully convex (see
also [18, Theorem 2.3, p. 89]). The proof of the main result of this section makes use of this fact
along with the results by Ratti [21] which evaluates the radius of convexity of the analytic functions f
satisfying ∣∣∣∣ f ′(z)

g′(z)
−1
∣∣∣∣< 1 for all z ∈ D

and g being a univalent, starlike, convex or a close-to-convex analytic function with the derivative
having positive real part in D.

Theorem 3.1. Let f = h+ ḡ ∈H 0 be a sense-preserving harmonic function.

(i) If h ∈S or S ∗, then f is fully convex in |z|< 1/5.
(ii) If h is convex of order α , that is, Re(1+ zh′′(z)/h′(z)) > α for all z ∈ D, 0 < α ≤ 1, then

f is fully convex in |z| < r∗, where r∗ = r∗(α) is the smallest positive root of the equation
1− (3−2α)r−2αr2 = 0. In particular, if h ∈K , then f is fully convex in |z|< 1/3.

(iii) If Reh′(z)> 0 for all z ∈ D, then f is fully convex in |z|< (
√

17−3)/4.
(iv) If Reh′(z)> 1/2 for all z ∈D, then f is fully convex in |z|< r0 where r0 is the smallest positive

root of the equation r4 +2r3 +13r2 +4r−4 = 0.

All the bounds are sharp.

Proof. Let φε = h+ εg where ε ∈ C with |ε| = 1. Since f is sense-preserving in D, therefore the
inequality (2.1) is satisfied.

(i) If h ∈S or S ∗, then by using [21, Theorems 1 and 2], φε maps |z|< 1/5 onto a convex domain
for each |ε| = 1. Therefore f is stable convex and hence fully convex in |z| < 1/5. For sharpness,
consider the harmonic function f1 = h1 + ḡ1 as given in the Example 2.5. A calculation shows that

∂

∂θ

(
arg
{

∂

∂θ
f1(reiθ )

})∣∣∣∣
θ=π

=
h′1(−r)+g′1(−r)− r(h′′1(−r)+g′′1(−r))

h′1(−r)−g′1(−r)

=
1−5r
(1+ r)2

which vanishes at r = 1/5. Hence the obtained radius is sharp (see Figure 6(a)).
(ii) If h is convex of order α , then φε satisfies

(3.1) Re
(

1+
zφ ′′ε (z)
φ ′ε(z)

)
> Re

(
1+

zh′′(z)
h′(z)

)
− |z|

1−|z|
, |z|= r

by using an estimate in [21, Equation (3.1), p. 485]. Also, Re(1+zh′′(z)/h′(z))> (1+(2α−1)r)/(1+
r) (see [28, Lemma 3, p. 240]) so that (3.1) gives

Re
(

1+
zφ ′′ε (z)
φ ′ε(z)

)
>

1+(2α−1)r
1+ r

− r
1− r

=
1− (3−2α)r−2αr2

1− r2 > 0
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whenever r < r∗, where r∗ is the smallest positive root of the equation 2αr2 +(3−2α)r−1 = 0. For
sharpness, consider the function f2 = h2 + ḡ2, where h2 and g2 are given by

h2(z) =
∫ z

0

dξ

(1+ξ )2−2α
and g2(z) =−

∫ z

0

ξ

(1+ξ )2−2α
dξ .

It is easy to see that h2 is convex of order α and dilatation of f2 is w f2(z) =−z. A calculation shows
that

∂

∂θ

(
arg
{

∂

∂θ
f2(reiθ )

})∣∣∣∣
θ=0

=
h′2(r)+g′2(r)+ r(h′′2(r)+g′′2(r))

h′2(r)−g′2(r)

=
1− (3−2α)r−2αr2

(1+ r)2 = 0

if r = r∗. In particular, for α = 0, the function f2 takes the form

f2(z) =
z

1+ z
+

z
1+ z

− log(1− z)

which maps the sub-disk |z|< 1/3 onto a convex domain (see Figure 6(b)).
(iii) If Reh′(z)> 0 for all z ∈D, then [21, Theorem 4, p. 486] shows that φε maps |z|< (

√
17−3)/4

onto a convex domain. Consequently f is fully convex in |z|< (
√

17−3)/4. To check the sharpness
of the bound, we consider the harmonic function f3 = h3 + ḡ3 given by

h3(z) =−z−2log(1− z) and g3(z) =−2z− z2

2
−2log(1− z), z ∈ D.

Observe that f3 is sense-preserving in D with dilatation w f3(z) = z and

∂

∂θ

(
arg
{

∂

∂θ
f3(reiθ )

})∣∣∣∣
θ=π

=
h′3(−r)+g′3(−r)− r(h′′3(−r)+g′′3(−r))

h′3(−r)−g′3(−r)

=
1−3r−2r2

(1+ r)2 = 0

when r = (
√

17−3)/4 (see Figure 6(c)).
(iv) If Reh′(z)> 1/2 for all z ∈ D, then by [21, Theorem 5, p. 587], it is easy to deduce that φε is

convex and hence f is fully convex in |z|< r0, where r0 is the smallest positive root of the equation
r4 +2r3 +13r2 +4r−4 = 0. To check the sharpness of this result, consider the harmonic function
f4 = h4 + ḡ4, where h4 and g4 are defined as

h′4(z) =
1

1+ zφ(z)
and g′4(z) =−zh′4(z)

with

φ(z) =
z+b

1+bz
, b =

1
2+ r0

.
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Clearly f4 ∈H 0 is sense-preserving in D with dilatation w f4(z) =−z and Reh′4(z)> 1/2 for all z ∈D.
Since

∂

∂θ

(
arg
{

∂

∂θ
f4(r0eiθ )

})∣∣∣∣
θ=0

=
h′4(r0)+g′4(r0)+ r(h′′4(r0)+g′′4(r0))

h′4(r0)−g′4(r0)

=
4−4r0−13r2

0−2r3
0− r4

0

2(1+ r0)2(2+ r0 + r2
0)

= 0,

therefore the radius r0 is best possible (see Figure 6(d)).
The shaded region in Figure 6 depicts the image of the sub-disks |z| < 1/5, |z| < 1/3, |z| <

(
√

17−3)/4 and |z|< r0 under the mappings f1, f2, f3 and f4 respectively. �
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Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 63 (2013), no. 1, 79–83.
[14] M. H. Lee, Polylogarithms and Riemann’s ζ function, Phys. Rev. E (3) 56 (1997), no. 4, 3909–3912.
[15] S. Li, Ma Li-Na, A. En, T. Huo, Some classes of harmonic mappings with analytic part defined by subordination,

Turkish J. Math. 43 (2019), no. 1, 172–185.
[16] L. Ma, S. Li and X. Niu, Some Classes of Harmonic Mapping with a Symmetric Conjecture Point Defined by

Subordination, Mathematics, 7 (2019), no. 6, 548.
[17] S. Maharana and S. K. Sahoo, Planar harmonic mappings in a family of functions convex in one direction, Filomat 35

(2021), no. 2, 431–445.
[18] S. Nagpal and V. Ravichandran, Fully starlike and fully convex harmonic mappings of order α , Ann. Polon. Math. 108

(2013), no. 1, 85–107.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

9 Jun 2022 09:49:06 PDT
220609-Nagpal Version 1 - Submitted to Rocky Mountain J. Math.



STABLE CLOSE-TO-CONVEXITY AND RADIUS OF FULL CONVEXITY 15

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(a) Image of f1 for |z|< 1/5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(b) Image of f2 for |z|< 1/3

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(c) Image of f3 for |z|< (
√

17−3)/4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(d) Image of f4 for |z|< r0

FIGURE 6.

[19] S. Nagpal and V. Ravichandran, Construction of subclasses of univalent harmonic mappings, J. Korean Math. Soc. 51
(2014), no. 3, 567–592.

[20] S. Nagpal and V. Ravichandran, Starlikeness, convexity and close-to-convexity of harmonic mappings, in Current
topics in pure and computational complex analysis, 201–214, Trends Math, Birkhäuser/Springer, New Delhi.

[21] J. S. Ratti, The radius of convexity of certain analytic functions. II, Internat. J. Math. Math. Sci. 3 (1980), no. 3,
483–489.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

9 Jun 2022 09:49:06 PDT
220609-Nagpal Version 1 - Submitted to Rocky Mountain J. Math.



STABLE CLOSE-TO-CONVEXITY AND RADIUS OF FULL CONVEXITY 16

[22] F. Rønning, Radius results for harmonic functions, in Analysis and its applications (Chennai, 2000), 151–161, Allied
Publ., New Delhi.

[23] W. C. Royster and M. Ziegler, Univalent functions convex in one direction, Publ. Math. Debrecen 23 (1976), no. 3-4,
339–345.

[24] S. Ruscheweyh, Convolutions in geometric function theory, Séminaire de Mathématiques Supérieures, 83, Presses de
l’Université de Montréal, Montreal, QC, 1982.

[25] S. Ruscheweyh and L. C. Salinas, On the preservation of direction-convexity and the Goodman-Saff conjecture, Ann.
Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 63–73.

[26] St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture,
Comment. Math. Helv. 48 (1973), 119–135.

[27] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75.
[28] G. M. Shah, On the univalence of some analytic functions, Pacific J. Math. 43 (1972), 239–250.
[29] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. (2) 42 (1990), no. 2, 237–248.
[30] M. Zhu and X. Huang, The distortion theorems for harmonic mappings with analytic parts convex or starlike functions

of order β , J. Math. 2015, Art. ID 460191, 6 pp.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI, DELHI–110 007, INDIA

E-mail address: ankuraj78@hotmail.com

DEPARTMENT OF MATHEMATICS, RAMANUJAN COLLEGE, UNIVERSITY OF DELHI, DELHI–110 019, INDIA

E-mail address: sumitnagpal.du@gmail.com

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

9 Jun 2022 09:49:06 PDT
220609-Nagpal Version 1 - Submitted to Rocky Mountain J. Math.


	1. Introduction
	2. Construction of stable close-to-convex harmonic mappings
	3. Radius of full convexity
	References

