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NEW CONGRUENCES AND DENSITY RESULTS FOR t-REGULAR PARTITIONS
WITH DISTINCT EVEN PARTS

AJIT SINGH

ABSTRACT. Let t ≥ 2 be a fixed positive integer. Let pedt(n) denote the number of t-regular partitions
of n wherein the even parts are distinct and the odd parts are unrestricted. In this article, we establish
infinite families of congruences for pedt(n) modulo certain positive integers M, for specific values of t.
We next study the distribution of pedt(n) for t = 3,5,7,9. We prove that the series ∑

∞
n=0 pedt(2n+1)qn is

lacunary modulo arbitrary powers of 2 for t = 3,5,9. We also prove that the series ∑
∞
n=0 ped7(2n+1)qn

is lacunary modulo 2. We use arithmetic properties of modular forms and Hecke eigenforms to prove our
results.

1. Introduction and statement of results

A partition of a nonnegative integer n is a nonincreasing sequence of positive integers whose sum is
n. Let t ≥ 2 be a fixed positive integer. A t-regular partition of a positive integer n is a partition of n
such that none of its parts is divisible by t. Let bt(n) be the number of t-regular partitions of n. In a
recent paper [5], Hemanthkumar, Bharadwaj, and Naika studied the partition function pedt(n) which
counts the number of t-regular partitions of n wherein the even parts are distinct and the odd parts
are unrestricted. For example, b3(7) = 9 with the relevant partitions being 7,5+2,5+1+1,4+2+
1,4+ 1+ 1+ 1,2+ 2+ 2+ 1,2+ 2+ 1+ 1+ 1,2+ 1+ 1+ 1+ 1+ 1,1+ 1+ 1+ 1+ 1+ 1+ 1; and
ped3(7) = 7 with the relevant partitions being 7,5+2,5+1+1,4+2+1,4+1+1+1,2+1+1+
1+1+1,1+1+1+1+1+1+1. The generating function of pedt(n) is given by [5]

∞

∑
n=0

pedt(n)qn =
f4 ft
f1 f4t

, (1.1)

where fk := (qk;qk)∞ = ∏
∞
j=1(1−q jk) and k is a positive integer.

In a recent paper [3], Drema and Saikia studied arithmetic properties of the partition function pedt(n)
for certain values of t. Using q-series manipulations they proved several infinite families of congruences
modulo small powers of 2 and 3. The objective of this paper is to study divisibility properties of pedt(n)
for t = 3,5,7,9. To be specific, we use the theory of Hecke eigenforms to establish the following
infinite families of congruences for pedt(n) modulo 2, 12, 8, and 18, respectively.

Theorem 1.1. Let k,n be nonnegative integers. For each i with 1≤ i≤ k+1, if pi ≥ 3 is prime such
that pi ≡ 3 (mod 4), then for any integer j 6≡ 0 (mod pk+1)

ped5

(
2p2

1 · · · p2
k+1n+

p2
1 · · · p2

k pk+1(4 j+ pk+1)+1
2

)
≡ 0 (mod 2).
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 2

Let p≥ 3 be a prime such that p≡ 3 (mod 4). By taking p1 = p2 = · · ·= pk+1 = p in Theorem
1.1, we obtain the following infinite family of congruences for ped5(n): For k ≥ 0 and n≥ 0,

ped5

(
2p2(k+1)n+2p2k+1 j+

p2(k+1)+1
2

)
≡ 0 (mod 2),

where j 6≡ 0 (mod p).

Theorem 1.2. Let k,n be nonnegative integers. For each i with 1≤ i≤ k+1, if pi is prime such that
pi ≡ 3 (mod 4), then for any integer j 6≡ 0 (mod pk+1)

ped9
(
8p2

1 · · · p2
k+1n+2p2

1 · · · p2
k pk+1(4 j+ pk+1)+1

)
≡ 0 (mod 12).

Let p≥ 3 be a prime such that p≡ 3 (mod 4). By taking p1 = p2 = · · ·= pk+1 = p in Theorem
1.2, we obtain the following infinite family of congruences for ped9(n): For k,n≥ 0,

ped9

(
8p2(k+1)n+8p2k+1 j+2p2(k+1)+1

)
≡ 0 (mod 12),

where j 6≡ 0 (mod p).

Theorem 1.3. Let k,n be nonnegative integers. For each i with 1≤ i≤ k+1, if pi ≥ 3 is prime such
that pi 6≡ 1 (mod 6), then for any integer j 6≡ 0 (mod pk+1)

ped9
(
6p2

1 · · · p2
k+1n+ p2

1 · · · p2
k pk+1(6 j+ pk+1)+1

)
≡ 0 (mod 8).

Let p be a prime such that p 6≡ 1 (mod 6). By taking p1 = p2 = · · ·= pk+1 = p in Theorem 1.3,
we obtain the following infinite family of congruences for ped9(n): For k,n≥ 0,

ped9

(
6p2(k+1)n+6p2k+1 j+ p2(k+1)+1

)
≡ 0 (mod 8),

where j 6≡ 0 (mod p).

Theorem 1.4. Let k,n be nonnegative integers. For each i with 1≤ i≤ k+1, if pi ≥ 5 is prime such
that pi 6≡ 1 (mod 3), then for any integer j 6≡ 0 (mod pk+1)

ped9
(
12p2

1 · · · p2
k+1n+4p2

1 · · · p2
k pk+1(3 j+ pk+1)+1

)
≡ 0 (mod 18).

Let p≥ 5 be a prime such that p 6≡ 1 (mod 3). By taking p1 = p2 = · · ·= pk+1 = p in Theorem
1.4, we obtain the following infinite family of congruences for ped9(n): For k,n≥ 0,

ped9

(
12p2(k+1)n+12p2k+1 j+4p2(k+1)+1

)
≡ 0 (mod 18),

where j 6≡ 0 (mod p).
In addition to the study of Ramanujan-type congruences, it is an interesting problem to study the

distribution of the partition function modulo positive integers M. To be precise, given an integral power
series F(q) := ∑

∞
n=0 a(n)qn and 0≤ r < M, we define

δr(F,M;X) :=
#{n≤ X : a(n)≡ r (mod M)}

X
.

An integral power series F is called lacunary modulo M if

lim
X→∞

δ0(F,M;X) = 1,
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 3

that is, almost all of the coefficients of F are divisible by M. For any fixed positive integer k, Gordon
and Ono [4] proved that the partition function bt(n) is divisible by 2k for almost all n. Similar studies
are done for some other partition functions, for example see [11, 13, 14, 15]. In a recent paper [2],
Cotron et al. proved lacunarity of certain eta-quotients modulo arbitrary powers of primes. We phrase
their theorem as follows:

Theorem 1.5. [2, Theorem 1.1] Let G(z)=
∏

u
i=1 f

ri
αi

∏
t
i=1 f

si
βi

, and p is a prime such that pa divides gcd(α1,α2, . . . ,αu)

and

pa ≥
√

∑
t
i=1 βisi

∑
u
i=1

ri
αi

,

then G(z) is lacunary modulo p j for any positive integer j.

In this article, we study the arithmetic densities of pedt(2n+1) modulo arbitrary powers of 2 when
t = 3,5,9. We also prove that ped7(2n+1) is almost always even. Also, the generating functions of
these do not satisfy the conditions in the result of Cotron et al. In the following theorems, we prove that
the partition functions ped3(2n+1), ped5(2n+1), and ped9(2n+1) are almost always divisible by
arbitrary powers of 2 and ped7(2n+1) is lacunary modulo 2. To be specific, we prove the following
results.

Theorem 1.6. Let k be a positive integer and t ∈ {3,5,9}. Then the series ∑
∞
n=0 pedt(2n+ 1)qn is

lacunary modulo 2k, namely,

lim
X→∞

#
{

0≤ n≤ X : pedt(2n+1)≡ 0 (mod 2k)
}

X
= 1.

Theorem 1.7. The series ∑
∞
n=0 ped7(2n+1)qn is lacunary modulo 2, namely,

lim
X→∞

#{0≤ n≤ X : ped7(2n+1)≡ 0 (mod 2)}
X

= 1.

We prove Theorem 1.7 using the approach of Landau [8]. However, we couldn’t find a similar proof
for Theorem 1.6. We use a density result of Serre [12] to prove Theorem 1.6.

2. Preliminaries

We recall some definitions and basic facts on modular forms. For more details, see for example [10, 7].
We first define the matrix groups

SL2(Z) :=
{[

a b
c d

]
: a,b,c,d ∈ Z,ad−bc = 1

}
,

Γ0(N) :=
{[

a b
c d

]
∈ SL2(Z) : c≡ 0 (mod N)

}
,

Γ1(N) :=
{[

a b
c d

]
∈ Γ0(N) : a≡ d ≡ 1 (mod N)

}
,
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 4

and

Γ(N) :=
{[

a b
c d

]
∈ SL2(Z) : a≡ d ≡ 1 (mod N), and b≡ c≡ 0 (mod N)

}
,

where N is a positive integer. A subgroup Γ of SL2(Z) is called a congruence subgroup if Γ(N)⊆ Γ

for some N. The smallest N such that Γ(N)⊆ Γ is called the level of Γ. For example, Γ0(N) and Γ1(N)
are congruence subgroups of level N.

Let H := {z ∈ C : Im(z)> 0} be the upper half of the complex plane. The group

GL+
2 (R) =

{[
a b
c d

]
: a,b,c,d ∈ R and ad−bc > 0

}
acts on H by

[
a b
c d

]
z =

az+b
cz+d

. We identify ∞ with
1
0

and define
[

a b
c d

]
r
s
=

ar+bs
cr+ds

, where
r
s
∈

Q∪{∞}. This gives an action of GL+
2 (R) on the extended upper half-plane H∗=H∪Q∪{∞}. Suppose

that Γ is a congruence subgroup of SL2(Z). A cusp of Γ is an equivalence class in P1 =Q∪{∞} under
the action of Γ.

The group GL+
2 (R) also acts on functions f : H→ C. In particular, suppose that γ =

[
a b
c d

]
∈

GL+
2 (R). If f (z) is a meromorphic function on H and ` is an integer, then define the slash operator |`

by
( f |`γ)(z) := (det γ)`/2(cz+d)−` f (γz).

Definition 2.1. Let Γ be a congruence subgroup of level N. A holomorphic function f : H→ C is
called a modular form with integer weight ` on Γ if the following hold:

(1) We have

f
(

az+b
cz+d

)
= (cz+d)` f (z)

for all z ∈H and all
[

a b
c d

]
∈ Γ.

(2) If γ ∈ SL2(Z), then ( f |`γ)(z) has a Fourier expansion of the form

( f |`γ)(z) = ∑
n≥0

aγ(n)qn
N ,

where qN := e2πiz/N .

For a positive integer `, the complex vector space of modular forms of weight ` with respect to a
congruence subgroup Γ is denoted by M`(Γ).

Definition 2.2. [10, Definition 1.15] If χ is a Dirichlet character modulo N, then we say that a modular
form f ∈M`(Γ1(N)) has Nebentypus character χ if

f
(

az+b
cz+d

)
= χ(d)(cz+d)` f (z)

for all z ∈H and all
[

a b
c d

]
∈ Γ0(N). The space of such modular forms is denoted by M`(Γ0(N),χ).
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 5

In this paper, the relevant modular forms are those that arise from eta-quotients. Recall that the
Dedekind eta-function η(z) is defined by

η(z) := q1/24(q;q)∞ = q1/24
∞

∏
n=1

(1−qn),

where q := e2πiz and z ∈H. A function f (z) is called an eta-quotient if it is of the form

f (z) = ∏
δ |N

η(δ z)rδ ,

where N is a positive integer and rδ is an integer. We now recall two theorems from [10, p. 18] which
will be used to prove our results.

Theorem 2.3. [10, Theorem 1.64] If f (z) = ∏δ |N η(δ z)rδ is an eta-quotient such that `= 1
2 ∑δ |N rδ ∈

Z,

∑
δ |N

δ rδ ≡ 0 (mod 24)

and

∑
δ |N

N
δ

rδ ≡ 0 (mod 24),

then f (z) satisfies

f
(

az+b
cz+d

)
= χ(d)(cz+d)` f (z)

for every
[

a b
c d

]
∈ Γ0(N). Here the character χ is defined by χ(d) :=

(
(−1)`s

d

)
, where s := ∏δ |N δ rδ .

Suppose that f is an eta-quotient satisfying the conditions of Theorem 2.3 and that the associated
weight ` is a positive integer. If f (z) is holomorphic at all of the cusps of Γ0(N), then f (z) ∈
M`(Γ0(N),χ). The following theorem gives the necessary criterion for determining orders of an
eta-quotient at cusps.

Theorem 2.4. [10, Theorem 1.65] Let c,d and N be positive integers with d | N and gcd(c,d) = 1. If
f is an eta-quotient satisfying the conditions of Theorem 2.3 for N, then the order of vanishing of f (z)
at the cusp c

d is
N
24 ∑

δ |N

gcd(d,δ )2rδ

gcd(d, N
d )dδ

.

We now recall a density result of Serre [12] about the divisibility of Fourier coefficients of modular
forms.

Theorem 2.5 (Serre). Let f (z) be a modular form of positive integer weight k on some congruence
subgroup of SL2(Z) with Fourier expansion

f (z) =
∞

∑
n=0

a(n)qn,
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 6

where a(n) are algebraic integers in some number field. If m is a positive integer, then there exists a
constant c > 0 such that there are O

(
X

(logX)c

)
integers n≤ X such that a(n) is not divisible by m.

We finally recall the definition of Hecke operators. Let m be a positive integer and f (z) =
∑

∞
n=0 a(n)qn ∈M`(Γ0(N),χ). Then the action of Hecke operator Tm on f (z) is defined by

f (z)|Tm :=
∞

∑
n=0

(
∑

d|gcd(n,m)

χ(d)d`−1a
(nm

d2

))
qn.

In particular, if m = p is prime, we have

f (z)|Tp :=
∞

∑
n=0

(
a(pn)+χ(p)p`−1a

(
n
p

))
qn. (2.1)

We note that a(n) = 0 unless n is a nonnegative integer.

Definition 2.6. A modular form f (z) = ∑
∞
n=0 a(n)qn ∈M`(Γ0(N),χ) is called a Hecke eigenform if

for every m≥ 2 there exists a complex number λ (m) for which

f (z)|Tm = λ (m) f (z). (2.2)

3. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Setting t = 5 in (1.1), we obtain
∞

∑
n=0

ped5(n)qn =
f4 f5

f1 f20
. (3.1)

We now recall the following identity from [6]:

f5

f1
=

f8 f 2
20

f 2
2 f40

+q
f 3
4 f10 f40

f 3
2 f8 f20

. (3.2)

Employing (3.2) in (3.1), we obtain
∞

∑
n=0

ped5(n)qn =
f4 f8 f20

f 2
2 f40

+q
f 4
4 f10 f40

f 3
2 f8 f 2

20
. (3.3)

Extracting the terms involving odd powers of q on both sides of (3.3), we get
∞

∑
n=0

ped5(2n+1)qn =
f 4
2 f5 f20

f 3
1 f4 f 2

10
. (3.4)

This gives
∞

∑
n=0

ped5(2n+1)q4n+1 ≡ η(4z)η(20z) (mod 2).

Let η(4z)η(20z) := ∑
∞
n=1 a(n)qn. Then a(n) = 0 if n 6≡ 1 (mod 4) and for all n≥ 0,

ped5(2n+1)≡ a(4n+1) (mod 2). (3.5)
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 7

By Theorem 2.3, we have η(4z)η(20z) ∈ S1(Γ0(80),χ0), where χ0 is a Nebentypus character and is
given by χ0(•) = (−5

• ). Since η(4z)η(20z) is a Hecke eigenform (see, for example [9]), (2.1) and
(2.2) yield

η(4z)η(20z)|Tp =
∞

∑
n=1

(
a(pn)+χ0(p)a

(
n
p

))
qn = λ (p)

∞

∑
n=1

a(n)qn,

which implies

a(pn)+χ0(p)a
(

n
p

)
= λ (p)a(n). (3.6)

Putting n = 1 and noting that a(1) = 1, we readily obtain a(p) = λ (p). Since a(p) = 0 for all p 6≡ 1
(mod 4), we have λ (p) = 0. From (3.6), we obtain

a(pn)+χ0(p)a
(

n
p

)
= 0. (3.7)

From (3.7), we derive that for all n≥ 0 and p - r,

a(p2n+ pr) = 0 (3.8)

and

a(p2n) =−χ0(p)a(n)≡ a(n) (mod 2). (3.9)

Substituting n by 4n− pr+1 in (3.8) and together with (3.5), we find that

ped5

(
2p2n+

p2−1
2

+ pr
1− p2

2
+1
)
≡ 0 (mod 2). (3.10)

Substituting n by 4n+1 in (3.9) and using (3.5), we obtain

ped5

(
2p2n+

p2−1
2

+1
)
≡ ped5(2n+1) (mod 2). (3.11)

Since p≥ 3 is prime, so 2 | (1− p2) and gcd
(

1−p2

2 , p
)
= 1. Hence when r runs over a residue system

excluding the multiple of p, so does 1−p2

2 r. Thus (3.10) can be rewritten as

ped5

(
p2n+

p2−1
2

+ p j+1
)
≡ 0 (mod 2), (3.12)

where p - j.
Now, pi ≥ 3 are primes such that pi 6≡ 1 (mod 4). Since

p2
1 . . . p2

kn+
p2

1 . . . p2
k−1

2
= p2

1

(
p2

2 . . . p2
kn+

p2
2 . . . p2

k−1
2

)
+

p2
1−1
2

,

using (3.11) repeatedly, we obtain that

ped5

(
2p2

1 . . . p2
kn+

p2
1 . . . p2

k−1
2

+1
)
≡ ped5(2n+1) (mod 2). (3.13)
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 8

Let j 6≡ 0 (mod pk+1). Then (3.12) and (3.13) yield

ped5

(
2p2

1 . . . p2
k+1n+

p2
1 . . . p2

k pk+1(4 j+ pk+1)+1
2

)
≡ 0 (mod 2).

This completes the proof of the theorem. �

Proof of Theorem 1.2. Putting t = 9 in (1.1), we obtain
∞

∑
n=0

ped9(n)qn =
f4 f9

f1 f36
. (3.14)

We now recall the following identity from [16]:

f9

f1
=

f 3
12 f18

f 2
2 f6 f36

+q
f 2
4 f6 f36

f 3
2 f12

. (3.15)

Employing (3.15) in (3.14), we obtain
∞

∑
n=0

ped9(n)qn =
f4 f 3

12 f18

f 2
2 f6 f 2

36
+q

f 3
4 f6

f 3
2 f12

. (3.16)

Extracting the terms involving odd powers of q on both sides of (3.16), we get
∞

∑
n=0

ped9(2n+1)qn =
f 3
2 f3

f 3
1 f6

. (3.17)

Again we recall the following identity from [5]:

f3

f 3
1
=

f 6
4 f 3

6

f 9
2 f 2

12
+3q

f 2
4 f6 f 2

12

f 7
2

. (3.18)

Employing (3.18) in (3.17), we obtain
∞

∑
n=0

ped9(2n+1)qn =
f 6
4 f 2

6

f 7
2 f 2

12
+3q

f 2
4 f 2

12

f 4
2

. (3.19)

Extracting the terms involving odd powers of q on both sides of (3.19), we get
∞

∑
n=0

ped9(4n+3)qn = 3
f 2
2 f 2

6

f 4
1
≡ 3 f 2

6 (mod 12). (3.20)

Again extracting the terms involving even powers of q on both sides of (3.20), we obtain
∞

∑
n=0

ped9(8n+3)qn ≡ 3 f 2
3 (mod 12).

This gives
∞

∑
n=0

ped9(8n+3)q4n+1 ≡ 3η
2(12z) (mod 12).

Let η2(12z) := ∑
∞
n=1 a(n)qn. Then a(n) = 0 if n 6≡ 1 (mod 4) and for all n≥ 0,

ped9(8n+3)≡ 3a(4n+1) (mod 12). (3.21)
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 9

By Theorem 2.3, we have η2(12z) ∈ S1(Γ0(144),χ2), where χ2 is a Nebentypus character given by
χ2(•) = (−1

• ). Since η2(12z) is a Hecke eigenform (see, for example [9]), (2.1) and (2.2) yield

η
2(12z)|Tp =

∞

∑
n=1

(
a(pn)+χ2(p)a

(
n
p

))
qn = λ (p)

∞

∑
n=1

a(n)qn,

which implies

a(pn)+χ2(p)a
(

n
p

)
= λ (p)a(n). (3.22)

Putting n = 1 and noting that a(1) = 1, we readily obtain a(p) = λ (p). Since a(p) = 0 for all p 6≡ 1
(mod 4), we have λ (p) = 0. From (3.22), we obtain

a(pn)+χ2(p)a
(

n
p

)
= 0. (3.23)

From (3.23), we derive that for all n≥ 0 and p - r,

a(p2n+ pr) = 0 (3.24)

and noting that χ2(p) =−1 for the primes p≡ 3 (mod 4), we have

a(p2n) =−χ2(p)a(n)≡ a(n) (mod 4). (3.25)

Substituting n by 4n− pr+1 in (3.24) and together with (3.21), we find that

ped9
(
8p2n+2(p2−1)+2pr(1− p2)+3

)
≡ 0 (mod 12). (3.26)

Substituting n by 4n+1 in (3.25) and using (3.21), we obtain

ped9
(
8p2n+2(p2−1)+3

)
≡ ped9(8n+3) (mod 12). (3.27)

Since p≥ 3 is prime, so gcd
(
(1− p2), p

)
= 1. Hence when r runs over a residue system excluding the

multiple of p, so does (1− p2)r. Thus (3.26) can be rewritten as

ped9
(
8p2n+2(p2−1)+2p j+3

)
≡ 0 (mod 12), (3.28)

where p - j.
Now, pi ≥ 3 are primes such that pi 6≡ 1 (mod 4). Since

p2
1 . . . p2

kn+ p2
1 . . . p2

k−1 = p2
1
(

p2
2 . . . p2

kn+ p2
2 . . . p2

k−1
)
+ p2

1−1,

using (3.27) repeatedly, we obtain that

ped9
(
8p2

1 . . . p2
kn+2(p2

1 . . . p2
k−1)+3

)
≡ ped9(8n+3) (mod 12). (3.29)

Let j 6≡ 0 (mod pk+1). Then (3.28) and (3.29) yield

ped9
(
8p2

1 . . . p2
k+1n+2p2

1 . . . p2
k pk+1(4 j+ pk+1)+1

)
≡ 0 (mod 12).

This completes the proof of the theorem. �
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 10

4. Proof of Theorem 1.3 and Theorem 1.4

Proof of Theorem 1.3. First we recall the following identity from [3, (8.4)]:
∞

∑
n=0

ped9(6n+2)qn ≡ 2 f 2
2 (mod 8).

This gives
∞

∑
n=0

ped9(6n+2)q6n+1 ≡ 2η
2(12z) (mod 8).

Let η2(12z) := ∑
∞
n=1 a(n)qn. Then a(n) = 0 if n 6≡ 1 (mod 6) and for all n≥ 0,

ped9(6n+2)≡ 2a(6n+1) (mod 8). (4.1)

By Theorem 2.3, we have η2(12z) ∈ S1(Γ0(144),χ2), where χ2 is a Nebentypus character and is given
by χ2(•) = (−1

• ). Since η2(12z) is a Hecke eigenform (see, for example [9]), (2.1) and (2.2) yield

η
2(12z)|Tp =

∞

∑
n=1

(
a(pn)+χ2(p)a

(
n
p

))
qn = λ (p)

∞

∑
n=1

a(n)qn,

which implies

a(pn)+χ2(p)a
(

n
p

)
= λ (p)a(n). (4.2)

Putting n = 1 and noting that a(1) = 1, we readily obtain a(p) = λ (p). Since a(p) = 0 for all p 6≡ 1
(mod 6), we have λ (p) = 0. From (4.2), we obtain

a(pn)+χ2(p)a
(

n
p

)
= 0. (4.3)

From (4.3), we derive that for all n≥ 0 and p - r,

a(p2n+ pr) = 0 (4.4)

and

a(p2n)≡−χ2(p)a(n) (mod 4). (4.5)

Let A(n) := a(6n+1). Let p be a prime such that p≡ 5 (mod 6). Now, replacing n by 6n− pr+1 in
(4.4), we find that

A
(

p2n+
p2−1

6
+ pr

1− p2

6

)
= 0. (4.6)

Substituting n by 6n+1 in (4.5), we obtain

A
(

p2n+
p2−1

6

)
≡−χ2(p)A(n) (mod 4). (4.7)
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 11

Since p≥ 5 is prime, so 6 | (1− p2) and gcd
(

1−p2

6 , p
)
= 1. Hence when r runs over a residue system

excluding the multiple of p, so does 1−p2

6 r. Thus (4.6) can be rewritten as

A
(

p2n+
p2−1

6
+ p j

)
≡ 0 (mod 4), (4.8)

where p - j.
Now, pi ≥ 5 are primes such that pi 6≡ 1 (mod 6). Since

p2
1 . . . p2

kn+
p2

1 . . . p2
k−1

6
= p2

1

(
p2

2 . . . p2
kn+

p2
2 . . . p2

k−1
6

)
+

p2
1−1
6

,

using (4.7) repeatedly, we obtain that

A
(

p2
1 . . . p2

kn+
p2

1 . . . p2
k−1

6

)
≡ (−χ2(p))kA(n) (mod 4). (4.9)

Let j 6≡ 0 (mod pk+1). Then (4.8) and (4.9) yield

A

(
p2

1 . . . p2
k+1n+

p2
1 . . . p2

k p2
k+1−1

6
+ p2

1 . . . p2
k pk+1 j

)
≡ 0 (mod 4).

We complete the proof by using the fact that ped9(6n+2)≡ 2A(n) (mod 8). �

Proof of Theorem 1.4. First we recall the following identity from [3, (10.3)]:
∞

∑
n=0

ped9(12n+5)qn ≡ 6 f 2
1 f 2

3 (mod 18).

This gives
∞

∑
n=0

ped9(12n+5)q3n+1 ≡ 6η
2(3z)η2(9z) (mod 18).

Let η2(3z)η2(9z) := ∑
∞
n=1 c(n)qn. Then c(n) = 0 if n 6≡ 1 (mod 3) and for all n≥ 0,

ped9(12n+5)≡ 6c(3n+1) (mod 18). (4.10)

By Theorem 2.3, we have η2(3z)η2(9z) ∈ S2(Γ0(27)). Since η2(3z)η2(9z) is a Hecke eigenform (see,
for example [9]), (2.1) and (2.2) yield

η
2(3z)η2(9z)|Tp =

∞

∑
n=1

(
c(pn)+ pc

(
n
p

))
qn = λ (p)

∞

∑
n=1

c(n)qn,

which implies

c(pn)+ pc
(

n
p

)
= λ (p)c(n). (4.11)

Putting n = 1 and noting that c(1) = 1, we readily obtain c(p) = λ (p). Since c(p) = 0 for all p 6≡ 1
(mod 3), we have λ (p) = 0. From (4.11), we obtain

c(pn)+ pc
(

n
p

)
= 0. (4.12)
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 12

From (4.12), we derive that for all n≥ 0 and p - r,

c(p2n+ pr) = 0 (4.13)

and

c(p2n) =−pc(n)≡ c(n) (mod 3). (4.14)

Let B(n) := c(3n+1). Let p be a prime such that p≡ 2 (mod 3). Now, replacing n by 3n− pr+1 in
(4.13), we find that

B
(

p2n+
p2−1

3
+ pr

1− p2

3

)
= 0. (4.15)

Substituting n by 3n+1 in (4.14), we obtain

B
(

p2n+
p2−1

3

)
≡ B(n) (mod 3). (4.16)

Since p≥ 5 is prime, so 3 | (1− p2) and gcd
(

1−p2

3 , p
)
= 1. Hence when r runs over a residue system

excluding the multiple of p, so does 1−p2

3 r. Thus (4.15) can be rewritten as

B
(

p2n+
p2−1

3
+ p j

)
≡ 0 (mod 3), (4.17)

where p - j.
Now, pi ≥ 5 are primes such that pi 6≡ 1 (mod 3). Since

p2
1 . . . p2

kn+
p2

1 . . . p2
k−1

3
= p2

1

(
p2

2 . . . p2
kn+

p2
2 . . . p2

k−1
3

)
+

p2
1−1
3

,

using (4.16) repeatedly, we obtain that

B
(

p2
1 . . . p2

kn+
p2

1 . . . p2
k−1

3

)
≡ B(n) (mod 3). (4.18)

Let j 6≡ 0 (mod pk+1). Then (4.17) and (4.18) yield

B

(
p2

1 . . . p2
k+1n+

p2
1 . . . p2

k p2
k+1−1

3
+ p2

1 . . . p2
k pk+1 j

)
≡ 0 (mod 3).

We complete the proof by using the fact that ped9(12n+5)≡ 6B(n) (mod 18). �

5. Proof of Theorems 1.6 and 1.7

Proof of Theorem 1.6. Putting t = 3 in (1.1), we obtain
∞

∑
n=0

ped3(n)qn =
f4 f3

f1 f12
. (5.1)

We now recall the following identity from [3, (2.22)]:

f3

f1
=

f4 f6 f16 f 2
24

f 2
2 f8 f12 f48

+q
f6 f 2

8 f48

f 2
2 f16 f24

. (5.2)
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 13

Employing (5.2) in (5.1) and extracting the terms involving odd powers of q, we obtain
∞

∑
n=0

ped3(2n+1)qn =
f2 f3 f 2

4 f24

f 2
1 f6 f8 f12

. (5.3)

Let

A(z) :=
∞

∏
n=1

(1−q96n)2

(1−q192n)
=

η2(96z)
η(192z)

.

Then using the binomial theorem we have

A2k
(z) =

η2k+1
(96z)

η2k
(192z)

≡ 1 (mod 2k+1).

Define Bk(z) by

Bk(z) :=
(

η(16z)η(24z)η2(32z)η(192z)
η2(8z)η(48z)η(64z)η(96z)

)
A2k

(z)

=
η(16z)η(24z)η2(32z)η2k+1−1(96z)
η2(8z)η(48z)η(64z)η2k−1(192z)

.

Modulo 2k+1, we have

Bk(z)≡
η(16z)η(24z)η2(32z)η(192z)
η2(8z)η(48z)η(64z)η(96z)

= q3
(

f16 f24 f 2
32 f192

f 2
8 f48 f64 f96

)
. (5.4)

Combining (5.3) and (5.4), we obtain

Bk(z)≡
∞

∑
n=0

ped3(2n+1)q8n+3 (mod 2k+1). (5.5)

Now, Bk(z) is an eta-quotient with N = 192. We next prove that Bk(z) is a modular form for all k ≥ 5.
We know that the cusps of Γ0(192) are represented by fractions c

d , where d | 192 and gcd(c,d) = 1.
By Theorem 2.4, we find that Bk(z) is holomorphic at a cusp c

d if and only if(
2k+1−1

) gcd(d,96)2

96
+

gcd(d,16)2

16
+

gcd(d,24)2

24
+2

gcd(d,32)2

32
−3

gcd(d,8)2

8

− gcd(d,48)2

48
− gcd(d,64)2

64
− (2k−1)

gcd(d,192)2

192
≥ 0.

Equivalently, if and only if

L := (2k+2−2)G1 +12G2 +8G3 +12G4−48G5−4F6−3G7−2k +1≥ 0,

where G1 =
gcd(d,96)2

gcd(d,192)2 , G2 =
gcd(d,16)2

gcd(d,192)2 , G3 =
gcd(d,24)2

gcd(d,192)2 , G4 =
gcd(d,32)2

gcd(d,192)2 ,

G5 =
gcd(d,8)2

gcd(d,192)2 , G6 =
gcd(d,48)2

gcd(d,192)2 , and G7 =
gcd(d,64)2

gcd(d,192)2 respectively.

We now consider the following two cases according to the divisors of 192 and find the values of Gi
for i = 1,2, . . . ,7. Let d be a divisor of N = 192.
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 14

Case (i). For d|192 and d 6= 192, we find that G1 = 1, 1/144≤G2 ≤ 1,1/64≤G3 ≤ 1, 1/36≤G4 ≤ 1,
1/576≤ G5 ≤ 1, 1/16≤ G6 ≤ 1, and 1/9≤ G7 ≤ 1. Hence,

L≥ 2k+2−2+1/12+1/8+1/3−48−4−3−2k +1 = 3 ·2k +13/24−56.

Since k ≥ 5, we have L≥ 0.
Case (ii). For d = 192, we find that G1 = 1/4, G2 = 1/144, G3 = 1/64, G4 = 1/36, G5 = 1/576,
G6 = 1/16, and G7 = 1/9. Hence, L = 3/8.
Hence, Bk(z) is holomorphic at every cusp c

d for all k ≥ 5. Using Theorem 2.3, we find that the weight

of Bk(z) is equal to 2k−1. Also, the associated character for Bk(z) is given by χ1(•) = (4·33·2k+2

• ). This
proves that Bk(z) ∈M2k−1 (Γ0(192),χ1) for all k ≥ 5. Also, the Fourier coefficients of Bk(z) are all
integers. Hence by Theorem 2.5, the Fourier coefficients of Bk(z) are almost always divisible by
m = 2k, for any positive integer k. Due to (5.5), the same holds for ped3(2n+1) and the theorem is
established for t = 3.
We now prove Theorem 1.6 for the case t = 5. By (3.4), we have

∞

∑
n=0

ped5(2n+1)qn =
f 4
2 f5 f20

f 3
1 f4 f 2

10
. (5.6)

Let

E(z) :=
∞

∏
n=1

(1−q40n)2

(1−q80n)
=

η2(40z)
η(80z)

.

Then using binomial theorem we have

E2k
(z) =

η2k+1
(40z)

η2k
(80z)

≡ 1 (mod 2k+1).

Define Fk(z) by

Fk(z) :=
(

η4(8z)η(20z)η(80z)
η3(4z)η(16z)η2(40z)

)
E2k

(z) =
η4(8z)η(20z)η2k+1−2(40z)
η3(4z)η(16z)η2k−1(80z)

. (5.7)

Modulo 2k+1, we have

Fk(z)≡
η4(8z)η(20z)η(80z)
η3(4z)η(16z)η2(40z)

= q
f 4
8 f20 f80

f 3
4 f16 f 2

40
. (5.8)

Combining (5.6) and (5.8), we obtain

Fk(z)≡
∞

∑
n=0

ped5(2n+1)q4n+1 (mod 2k+1). (5.9)

Now, Fk(z) is an eta-quotient with N = 80. We next prove that Fk(z) is a modular form for all k ≥ 5.
We know that the cusps of Γ0(80) are represented by fractions c

d , where d | 80 and gcd(c,d) = 1. By
Theorem 2.4, we find that Fk(z) is holomorphic at a cusp c

d if and only if

R :=
(

2k+1−2
) gcd(d,40)2

40
+4

gcd(d,8)2

8
+

gcd(d,20)2

20
−3

gcd(d,4)2

4
− gcd(d,16)2

16
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ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 15

− (2k−1)
gcd(d,80)2

80
≥ 0.

As shown in the case of t = 3, we verify that R ≥ 0 for all d|80 and for all k ≥ 5. Hence, Fk(z) ∈
M2k−1(Γ0(80)) for all k≥ 5. Now, using Serre’s Theorem 2.5 as shown in the proof for t = 3, we arrive
at the desired result due to (5.9).
We next prove Theorem 1.6 for t = 9. By (3.17), we have

∞

∑
n=0

ped9(2n+1)qn =
f 3
2 f3

f 3
1 f6

. (5.10)

As in the proof for t = 3, let

G(z) :=
∞

∏
n=1

(1−q3n)2

(1−q6n)
=

η2(3z)
η(6z)

.

Then using binomial theorem we have

G2k
(z) =

η2k+1
(3z)

η2k
(6z)

≡ 1 (mod 2k+1).

Define Hk(z) by

Hk(z) :=
(

η3(2z)η(3z)
η3(z)η(6z)

)
G2k

(z) =
η3(2z)η2k+1+1(3z)

η3(z)η2k+1(6z)
. (5.11)

Modulo 2k+1, we have

Hk(z)≡
η3(2z)η(3z)
η3(z)η(6z)

=
f 3
2 f3

f 3
1 f6

. (5.12)

Combining (5.10) and (5.12), we obtain

Hk(z)≡
∞

∑
n=0

ped9(2n+1)qn+1 (mod 2k+1). (5.13)

Now, Hk(z) is an eta-quotient with N = 18. We next prove that Hk(z) is a modular form for all k ≥ 3.
We know that the cusps of Γ0(18) are represented by fractions c

d , where d | 18 and gcd(c,d) = 1. By
Theorem 2.4, we find that Hk(z) is holomorphic at a cusp c

d if and only if

S :=
(

2k+1 +1
) gcd(d,3)2

3
+3

gcd(d,2)2

2
−3

gcd(d,1)2

1
− (2k +1)

gcd(d,6)2

6
≥ 0.

As shown in the case of t = 3, we verify that S ≥ 0 for all d|18 and for all k ≥ 3. Hence, Hk(z) ∈
M2k−1(Γ0(18)) for all k≥ 3. Now, using Serre’s Theorem 2.5 as shown in the proof for t = 3, we arrive
at the desired result due to (5.13). This completes the proof of the theorem. �

We now prove Theorem 1.7. We recall the following classical result due to Landau [8].
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Lemma 5.1. Let r(n) and s(n) be quadratic polynomials. Then(
∑
n∈Z

qr(n)

)(
∑
n∈Z

qs(n)

)
is lacunary modulo 2.

Proof of Theorem 1.7. We first recall the following identity [3, (7.2)]:
∞

∑
n=0

ped7(2n+1)qn ≡ f1 f2 (mod 2). (5.14)

We now recall Euler’s pentagonal number theorem [1, Corollary 1.3.5]. For |q|< 1,

f1 =
∞

∑
n=−∞

(−1)nqn(3n+1)/2 ≡
∞

∑
n=−∞

qn(3n+1)/2 (mod 2). (5.15)

Now, magnifying (5.15) by q→ q2, we have

f2 ≡
∞

∑
n=−∞

qn(3n+1) (mod 2). (5.16)

Finally combining (5.14), (5.15), and (5.16), and then applying Lemma 5.1 we complete the proof of
the theorem. �

6. Acknowledgements

The author is extremely grateful to Prof. Rupam Barman for previewing a preliminary version of this
paper and for his helpful comments. The author also gratefully acknowledge the Department of Science
and Technology, Government of India for the Core Research Grant (Project No. CRG/2021/00314) of
SERB.

References

[1] B. C. Berndt, Number theory in the spirit of Ramanujan, volume 34 of Student Mathematical Library. American
Mathematical Society, Providence, RI, 2006.

[2] T. Cotron, A. Michaelsen, E. Stamm and W. Zhu, Lacunary eta-quotients modulo powers of primes, Ramanujan J. 53
(2020), 269–284.

[3] R. Drema and N. Saikia, Arithmetic properties for `-regular partition functions with distinct even parts, Bol. Soc. Mat.
Mex. 10 (2022), https://doi.org/10.1007/s40590-021-00402-7.

[4] B. Gordon and K. Ono, Divisibility of certain partition functions by powers of primes, Ramanujan J. 1 (1997), 25–34.
[5] B. Hemanthkumar, H. S. S. Bharadwaj, and M. S. M. Naika, Arithmetic Properties of 9-Regular Partitions with

Distinct Odd Parts, Acta Math Vietnam 44 (2019), 797–811.
[6] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust. Math. Soc.

81 (2010), 58–63.
[7] N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, New York (1991).
[8] E. Landau, Uber die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer

additiven Zusammensetzun erforderlichen Quadrate, Arch. Math. Phys., 13 (3) (1908), 305–312.
[9] Y. Martin, Multiplicative η-quotients, Trans. Amer. Math. Soc. 348 (12) (1996), 4825–4856.

[10] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional
Conference Series in Mathematics, 102, Amer. Math. Soc., Providence, RI, 2004.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

24 Apr 2023 22:03:12 PDT
230424-Singh Version 1 - Submitted to Rocky Mountain J. Math.



ON t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS 17

[11] C. Ray and R. Barman, On Andrews’ integer partitions with even parts below odd parts, Journal of Number Theory
215 (2020), 321–338.
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