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UNIQUE MILD SOLUTION FOR FRACTIONAL PARTIAL AND NEUTRAL
EVOLUTION EQUATIONS WITH STATE-DEPENDENT DELAY

NARDJIS LACHACHI-MERAD, SELMA BAGHLI-BENDIMERAD, MOUFFAK BENCHOHRA,
AND DJILLALI AOUAD

ABSTRACT. In this paper, the uniqueness of mild solutions for two sasof partial functional and
neutral functional evolution equations with finite statpdndent delay where fractional Caputo deriva-
tives is investigated foer € (0,1). The study is based on Banach’s contraction theorem cormlviith
semigroup theory in a real Banach space.
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% 1. Introduction

17 In this paper, we establish the existence and the uniquenesiéd solutions for the two following
18 class of semilinear partial functional and neutral funeébevolution equations with a finite state
9 dependent-delay involving Caputo’s fractional ordereiive using the Banach contraction theorem

20 in the real Banach spacg, | - |) combined with semigroup theory.

21
by The first considered problem, studied in Section 3, is asvid|

% (1) DGY(L) = ADY() + f(t,Ypy)) @ eted:=[0,b],0<a<],

2 (2) y(t) = (1), teH:=[-r0]|

2% whereb,r > 0 are given constant$;: JxC(H,E) — E; p:JxC(H,E) — [-r,b] and¢ € C(H,E)
~.— are given functions;D{ is the standard Caputo’s fractional order derivative doe (0,1) and
e {A(t) }teg is a family of linear closed operators (not necessarily loea) fromE into E.

30 For any continuous functiopand anyt € J, we denotes by, the element o€(H;E) defined by
31 Y(0) = y(t+ 8) for 8 € H. Herey;(-) represents the history of the state from titner up to the
32 present time.

33

=~ Next, the second considered problem, studied in Sectioas follows
34

5 (3) Do [Y(t) — 9(t, Vo) = ALY + F(t,Ypiy)): @ eted,

36

a7 (4) y(t) =9 (t), teH,

38 ———

39 This paper was been supported by General Directorate f@n®fic Research and Technological Development
— (DGRSDT), University-Training Research Projects: CO0UBR220120210002 PRFU 2021 project.

40 2020Mathematics Subject ClassificatioB4G20; 34K37; 34K40; 37L05.

41 Key words and phrasedzunctional evolution equations; neutral problems; Capttactional derivative; mild solution;

42 existence; unigueness; state-dependent delay; fixed geimigroup theory.
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1 WhereA(-), f and¢ are as in problenil)-(2) andg:J x C(H,E) — E is a given function. Finally,
> two examples are given in Section 5 to clarified the obtaiesdits.

3 Integer-order functional and neutral functional diffesiahequations appear in many fields of ap-

“ plied mathematics, and these equations have attracted atiecition in recent years. The first occur-
> _rence of out-of-order derivations appears in 1695, the tsmetter send by Leibniz to De I'Hopital.
5 Then the derivative of the disorder has evolved from Eulegrfer, Liouville, and Riemann to the
" present. The type of derivatives employed varies betweerinteger version and fractional order;
8 the former uses exponents with integers while the lattes @s@onents with fractions. The exis-
2 tence results of differential equations are significamfiuenced by the fractional order. It is possible
9 for fractional-order equations to have no solutions, nwmsrsolutions, or singular solutions. The
1 asymptotic behavior of solutions is also influenced by foaztl order and can result in power-law
2 decay, oscillatory decay, or algebraic growth. These tiaria result from fractional derivatives’
3 non-locality and memory dependence. Fractional-orddemiftial equations demand specialized
4 methods for analysis and solution. Recently, many phenanmerarious fields of science and en-
1> gineering can be modeled with fractional differential eprgs: in viscoelasticity, electrochemistry,
8 control, porous media, electromagnetic, etc... Fracti@sputo derivation has important biologi-
17 cal implications because it captures memory effects, matlimteractions, and anomalous transport
18 observed in biological systems. It is used to model memang- fastory-related processes such as
19 piological diffusion, neuronal signalling, and growth.altcurately represents sub diffusion or super
20 diffusion behavior and can be used to analyze biologicalagy

2L Qverall, Caputo order derivation improves our understagdif biological phenomena and allows
2_for more accurate modeling and analysis in different bimalgdomains: for details, including some
2 applications and recent results, see the work of Hiltd,[Kilbas et al. [15], Lakshmikanthanet al.

24 116], Podlubny RQ] and the references contained therein. In recent yeansifisant developments
% _in fractional order ordinary differential equations andtja evolutionary differential equations are
% obtained by for Benchohra and his collaborators3jp El Borai in [8], EI-Sayed in P], Vijayakumar

27 etal.in [22]-[24] and Zhou and his team i2§, 26].
28

oo Recently, state-dependent delay equations in modeling been proposed. Existence results are
2o obtained from functional differential equations, where tiysteresis depends on the solution under
5 Study. Existing results have been derived for functionéfedential equations when, among other
5 things, the solution depends on delays on bounded intervids refer the reader to the work of

2 Benchohraet al. [1] on the bounded interval. Mesri and Benchohra use non-compactness measures
2 to study fractional-order nonautonomous evolution equistin Fréchet spaces ihd].

35 After a study of several first-order evolution problems viittiependent and state-dependent delays
36 by Baghlietal.in [2], [4]-[7] and [17], we seek in this article to extend our research to consliesd

37 evolution equations with state-dependent delay when theade is fractional in the sense of Caputo
38 in this time. Therefore, this work studies the existence amidqueness of mild solutions for Caputo
39 fractional partial functional and neutral functional evabn equations with state-dependent delay

40 using the Banach'’s contraction theorem combined with seyajgtheory.
41

42
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2. Preliminaries

We introduce notations, definitions, propositions, lemmaas theorems which are used throughout
this paper.

LetC(J; E) be the space of continuous functions frdrimto E with the norm|- | andB(E) be the
space of all bounded linear operators fr&nmto E, with the usual supremos norm

INflgE) = sup{ IN(y)| : |y|=1}.

°  Let L}(J,E) denotes the Banach space of measurable funcgionk— E which are Bochner-

10 integrable normed by
11

il b
E ¥l = [y ot

of|w|~|o|a|s]w|n|r

% A measurable functiog : J — E is Bochner-integrable if and only j§| is Lebesgue-integrable.

1E Definition 2.1. A function f:Jx E — E is said to be an ’r_-Carathéodory function if it satisfies :

© (i) for eachte J, the function ft,-) : E — E is continuous ;
o (i) for each ye E, the function §.,y) : J — E is measurable ;

i% (iii) for every positive integer k, there exisischL*(J;R*) such that

20 |f(t,y)| <hg(t) forall |yl <k andalmostevery & J.

21

,,  We give some state-dependent delay properties.

,; Assume thap : J x C(H;E) — [—r,b] is continuous. Additionally, we introduce the following-hy
— pothesis:
24

25 Z(p~)={p(s¢):(s¢) € IxC(H;E), p(s ¢) <0}

%6 (Hg) The functiont — ¢; is continuous fron¥(p~) into C(H;E) and there exists a bounded and
2 continuous function?? : Z(p~) — (0,) such that

28

29 Igel <2?@®)]1¢]|  for everyt € Z(p").

% Remark 2.1. The conditionHy ), is frequently verified by functions that are continuous badnded.

3L For more details, see for instan, 17].
32

;E Lemma 2.1. ([12], Lemma 2.4) If y [-r,b] — E is a function such thatpyy= ¢, then

3 _ A
— lysll <-2?i¢]+ sup {ly(6)| s€ Z(p~)UJ}, §:=max0;s),
0<6<s

36

L, Wherez? = sup 2°(t).
— tez(p™)

38

39 Proposition 2.1. [2] The function y in above lemma satisfy for eveeyd andp the inequality
40

o oyl < VO] +2? 9]

42 \We give here fractional order derivative definitions.
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1 Definition 2.2. [20] The Riemann-Liouville fractional integral operator of e > 0 of a function
, f:RY — Ris defined as

1 t
18 f(t :—/ t—s) % 1f(s)ds
o f(t) @) =97 ()
provided the right hand side whér-) is the Euler gamma function.

For instancel® f exists for alla > 0 whenf € C(R*)NL{.(R"). Note also that whefi € C(R™)
thenl?f € C(R*) and moreovel? f(0) = 0.

@|~|o|a]s]|w

E Definition 2.3. [20] The fractional derivative of ordesr > 0 of a function
10 f:R" — Rinthe Caputo sense is given by
o dof(t) 1 d t med—1 d
= — [ (t—gm oS = — 15791 ().
2 dte ~ F(m—a) dt/o (t-s) (s)ds=Gilo 1)

13
12 Remark 2.2. Caputo fractional derivative is often applicable to contiweory.

L Let us talk about evolution operator. In what follows, welsse that{A(t) }tcj is a family of

' closed densely defined linear operators not necessarilydeslion the Banach spaEewith domain
" D(A(t)) independent of. Additionally, throughout this paper, we assume that thedr operato(t)

'8 satisfies the following condition$]
;% (A1): For anyA with RgA) > 0, the operatod| — A(t) exists a bounded inverse operator
o (Al —A(t))tin B(E) and

2 C

22 -1

22 A=At H <

. om0 <

24 whereC is a positive constant independent of bbndA .

25 (A2): Foranyt,1,s€ |, there exists a constapte (0, 1] such that
26

- [IAM) —A(T)]A(s)]| <Clt — 1]

ZE where the constanisandC > 0 are independent of bothr ands.

29

30 Remark. From Henry 3], Pazy [L9] and Temam 21], we know that the assumptioi#;) means
21 that for eacts € |, the operatoA(s) generates an analytic semigroe™(® (t > 0), and there exists
32 a positive constar@ independent of bothands such that

3 C

o <

34 —T

‘ —A(s)eA

z% wheret > 0 ands € J.

SZ Definition 2.4. [11] Define the operator®(t,s), ¢(t,s) and U(t) by
38

oo "
" W(t,s) = a / ot 18, (6)d" A9 g,
AF 0
a t,s) = < t

E (p( 73)_kzqu(( 73)
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1 and

B V() =ADA X0~ [ otIADA [(0)ds

3

~, Whereé, is a probability density function defined ¢ +oo) such that its Laplace transform is given
5 by _

© /wé (6)e">‘d6:+mi 0<a<1 x>0
- Jo ¢ i;r(1+ai) -7 ’
8 @(t,s) = [-Alt) +A(9I¥(t —s,9),

2 and

10 t

. Aalts) = [ 0@, k=12....

12

For more details about the definition and property of the gbility density function, one can see
Y the paper1].
14

> Arecall of contraction definition:
16

12 Definition 2.5. [10] A function f: X — X is said to be a contraction if there exist&K0, 1) such that
18 1 f(x)— f(y)|| <k|x—y| forallx,yecX.

19
20 The used fixed point theorem is as follows:

Y Theorem 2.1. (Banach contraction principl&lQ])
*’ LetChbea non-empty closed subset of a Banach space X, theroatrgction mapping T of C into

2 _itself has a unique fixed point.
24

= 3. Semilinear evolution equations
26
27 We give now from §] the definition of mild solution for fractional partial ewgion problem with

z? finite state-dependent del&y) — (2).

— Definition 3.1. We say that the function(ty : [—r,b] — E is a mild solution of1) — (2) if y(t) = ¢ (t)
3T fort € H and y satisfies the integral equation

o YO = VIO~ [ wit-s9U(SA0)9(0)ds
31 (5) + / W(t—s,9)f (S Yp(sys ) dS
z% + / / (t—59)(sT)f (T,Yp(ry,))dTds

37
SE The following properties about the operat8ts ¢ andU will be needed in our argument.

39
.o Lemma 3.1.[8] The operator-valued function8(t —s,s) and At)W(t —s,s) are continuous in uni-
.. form topology about the variables t and s, whered, 0 < s<t —¢ for anye > 0, and

22_(6) |W(t—-s9)| <Clt-9° Y,
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1 where C is a positive constant independent of both t and shEtmore,

o(t,s)|| <C(t—s)¥?

~—~~
~
N—r

Q
>
o

VO <Ca+t").

—~
06}
~

We will need to introduce the following hypotheses which @aseumed thereafter :

(H1) The functionf is Carathéodory.
(H2) ForallR> 0, there existé$g € L*(J;R.) such that

B R R e
G IN|R|S|o|e|~]|o|a]s]w|n

[f(t,u) = F(t V)] <Ir(t) [Ju—V]|

14 for all u,v € C(H,E) with ||u]| <Rand|v| <R

15 Setl} := essuplg(t).
16 ted

—  Denote byB(a,y) = [ot71(1

18 |
19 result.

ZE Theorem 3.1. Assume thatHy ), (H1) and (H2) are satisfied, and moreover if
21
22 (9)

Clgb? [a~1+Cy "B (a,y+1)] < 1,

3
5. then the problengl) —

% Proof. Transform the problerfil) — (2) into a fixed-point problem.

% ConsiderQ := C([—r,b];E) and let the operatdd : Q — Q is defined by :

27

(2) has a unique mild solution oa-r, bJ.

28 ( (1), if t € H;
0 e [ wit-ssu(9A0)9(0)ds

% W)= +/tl+'(t—ss)f (s yp(sys))ds

z% +// (t—s,90(s,T)f (T,Yp(ry,)dTds if t €.

z% Clearly, fixed points of the operatdt are mild solutions of the problefi) — (2).

37

. We proof that the operatdt is a contraction. Foy,y € J we have

39

> Ny (- O] < [ W(E—5.9) [ (8 Ypiay) — F (S Ypiass)]|ds

41

t rs
E +/0 /0 ‘LIJ(t —S,S)(p(S,T) [f (Tyyp(r,yr)) —f (T yp (T.yr) )] ‘ drds

6

—t)¥~1dt the B Euler’s function. Then we can give now our main
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By the hypothesigH?2) and Lemma3.1, we have

1
2 L _
3 (NY) O~ () O <C [ (€97 H8(5) [ypiage ~Totssn 05
Z 2 1 1 Y3
% +C /O(t—s)"‘ /0(5_ DY R [[Yo(rye) — Yo(ryn || dTds
z By Proposition2.1, we get
t
- Ny O (NGO < Cli [ =9 y(s)| - (sl s
gi 20 t _ o1 S _ -1 Rty
- + G (=97 [(s= )Y y(m)| - ¥n) [ drds
12 * t a-1
) < Ol [ (=9 *dsly-y]

t S
5 + O [ (t-97 [ (s~ 1) tdrdsly—y]
0 0

t S
o < cl [/ (t—g)a1 {1+c/ (s—r)VldT] ds] ly—v.
— 0 0
18
19 Since
_ t o
= /(t—s)“‘lds:—
21 0
22 and
— 1 S tGH-V
28 /(t—s)"*l/ (s— 1) ldrds= B(a,y+1),
24 0 0 y
25 we obtain fort € J
2i ta ta+y
. ) O- M) < |+t play+ )| Iy-71

28

29

IN

R
Clb | 5 +C Bla.y+ ) Iy 3.

30

31 Consequently,
32

* 1 by
2 INGY) ~N ()] < Clb [—+C—B<a,v+1>] ly—.

3i So by the conditior{9), we deduce that the operatdiis a contraction. By the Banach contraction

— pr|n0|ple the operatoN has a unique fixed point which is the unique mild solution @& gartial
27 fractional evolution system with state-dependent délay- (2) on[—r,b].

z% 4. Semilinear neutral evolution equations
‘E In this section, we give our second main result for a uniqud solution of the neutral fractional
41 evolution equation with state-dependent de{@8y— (4) by the Banach contraction principlé(].

42_Firstly, we define such a mild solution.



=
Flo|e|o|~]o|o|s|w|n]|r

=R
@ |

19

21

27

28
29

30

31

32

33

34

35

36

37

38

41

42

- where®, =
° (4) has a unique mild solution oja-r,bJ.

°_ Clearly, fixed points of the operatt are mild solutions of the problel3) —
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Definition 4.1. We say that the function(ty : [—r,b] — E is a mild solution of3) — (4) if y(t) = ¢(t)

fort € H and y satisfies the following integral equation

y(t) () [¢(0) —9(0,¢)]+9(t, Yo(ty))
)

/wt—ssu(s)A( [6(0)—g(0.¢)]ds
J, -S9O (s pia0) 85+ [ U591 (s3pies) 05
// W(t—s9)0(sT)f (T,Yp(ry,))dTds foreachteJ.

—~~
=
o

~—

_|_

We will need the following hypothesis an
(H3) ForallR> 0, there existx(s) € L™ (J;R.) such that

g(t,u) —g(t,v)| < x(t) [Ju—V|

for all u,v e C(H,E) with ||u]| < Rand|v| <R
Setx* := essupx (t).
ted

° Theorem 4.1. Assume thatHy ), (H1) — (H3) hold. Then, if we have

’ (11) X" (1+C?A(0)[b?®,) +Clzb7Y < 1

at+b¥B(a,y+1) andY=a~1+Cy B (a,y+ 1), then the neutral probler(8) —

Proof. Transform the probleni3) — (4) into a fixed-point problem.

26 Consider the operatdt : Q — Q defined by :

ifteH;

& Yo(ty))
W(t—s,5U(s)A(0)[¢(0) —9(0,¢)]ds

V-5 IAO (Ypiaya) 85+ [ W~ 59T (Ypiayy) s
+// (t—s9@(s,T)f (T,Yp(ry,)) dTds ifted.

t
N(y)(t) = /o

\

(4)-

We will proof that the operatdX is a contraction.
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Fort € J, we have fory,y € Q

: |(Ny) (t) = (NY) O] <19t Yo(ep)) — 9 Ypesm) |

0 + /0 |W(t -5 9)U(SAO)G(SYp(sye)) — 9(STp(syz)]|ds

5 +/ot‘q’(t—35)[f(Sva(&,ys))_f(s Yo(sy)]|ds

B + t L1 =s 90 T [ (T.Yp(0y0) — f (1. 5p0050)] | drds
1E By Proposition2.1, Lemma3.1 and the hypothesd$12) and(H3), we have

L @) o- o] < xolyo - o)

5 + O [ (-9 11+ )X 9] - 719 ds
0 + ¢ [ -9 M) y(s)] - ¥s))ds

_ t S

2 + 2 /0 (t—ga-t /0 (s— 1) Mr(0) [Iy(1)| — [y(7)[]drds
19 Hence

()0~ () (0] < x° |14+ C2A0) [ -9 2+ ds] Iy -]
) LClg [/0 (t—s)“‘lds+C/o(t—s)""l/o (s—r)V‘ldes] ly—9i.
-5 Since

27

/Ot(t _ 99 L(1+8)ds—tC (g LtB(a,y+ 1)) ,

-5 hence we have

29

30

31

32

33

35

36

38

39
40

(@) O~ ([ 0] < X [1+C7A01 (5 +B@y+D) Iy

CH-Y

. B(a,v+1>] ly—1.

tC{
¥ uR[ c!

— 1 1
¥ Set®, = o +b1B(a,y+1) andY:= = +C7[3(a,y+ 1) to get fort € J

[(Ny) ©) = (Ry) (©)] < [x" (1+C?|A0)[6°©y) +ClrbY] [ly -] .

Then,

INW) =N )| < [x* (1+C*A(0)[b*®y) +Clgb®Y] |y~
By (11), N is a contraction operator and by the Banach contractiorcipiia N has a unique fixed

41 point which is the unique mild solution of neutral fractibeaolution equation with state dependent-
42 delay(3)-(4).
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5. Examples

1
% To illustrate the previous results, we give in this sectiwa examples.
Z Example 5.1. Consider the partial functional differential equation betform :
i ( dzu(t E)
i CDgu(t»f):aO(t»f)ié
7 o€
- 0 m 2
0 +/ ay(s—t)u [s—pl(t)pg (/O ax(6)|ut, 0)| dG) ,s] ds
—r
% u(t,0) = u(t,m) =0, 0<t<b,
]i \ U(G,E): u0(67€)7 _r<9§07 66[077-[]7

1E where0 < a < 1, a(¢&,-) is a continuous function fo€ < [0, 7] and &(-,t) is uniformly Holder
16 continuous inte [0,b]; a3 : [-1,0] = R; az: [0,11] — R; p1:[0,b] = R; po: R — R and

17 Up : [-r,0] x [0, 1 — R are given continuous functions.

18

1E To study this system, we consider the spaeelE([0, 71];R).

20 And we define the operator:®(A) C E — E given by At)w = ag(t,w)w’ with domain

21

2 D(A):={weE :w €E, w0) =w(m) =0}

23 Then As) generates an analytic infinitesimal generator of semigrét§ on E which satisfies the
24 assumptiongA;) and (Az).
25 Then we can use the theoretical study below and enounceltheifay theorem:

26
>, Theorem 5.1. Let ¢ € C(H;E) be continuous and bounded. Assume that the conditiign holds

s andthe functions g [-r,0] - R, a: [0, — R*, p1: [0,b] - R, po: R* — R and
59 Uo:[—r,0] x [0, 1 — R are continuous. Then there exists a unique mild solutiofi .

39 Proof. From the assumptions, we have that

31

2 y(t)(§) = u(t, ),

33

0
= fLy)@ =/ a(sp(s )ds

35

36

. p(s.v) =5 pu(sipz [ "aa(6)lw(0.6)%0)

¥ and

39

pr ¢ (t)(&) = wo(t, &)

41 are well defined functions, which permit to transform sys{@f) into the abstract systeifi) — (2).

42 Now, the existence of mild solutions can be deduced fromeatdapplication of Theorer®.1
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Example 5.2. Consider the neutral functional differential equation leétform :

: CDSZ[ua &) [ aas—tu[s—pupz [ "aa(6)lutt.0)%6 ) ] as
B TUE bt Eut 8)

%(13) +/ au(s— tu[ ( I 2(9)|u(t,e)12d9),z]ds

8 0<t<hb, £€]0,m,
1% u(t,0) = u(t,m =0, 0<t<hb,
E [ u(6,&) = uo(8,¢), —r<6<0, &c0,m,

" where a: [-r,0] — R is a given continuous function.
14

1i Theorem 5.2. Let ¢ € C(H;E) be continuous and bounded. Assume that the conditiigr) holds
— and the functionsgag : [-r,0) = R, a: [0, — R", p1:[0,b] > R, po : RT -+ R and

— Up: [—r,0] x [0, 1] = R are continuous. Then there exists a unique mild solutiofi 8.

18

19 Proof. From the assumptions, we have that

0 YO(E) = ult ©),
= (Lw)(©) = [ aewisds

= ;

2] 9t ¥)(§) = [ au(p(s E)ds

o plsw) = s-puspa [ 2a(0)w(0.6)c0)
- and

5 POE) = w(t &)

30 are well defined functions, which permit to transform syst&®) into the abstract systeri8) — (4).
31 Now, the existence of mild solutions can be deduced fromeatdapplication of Theorem.1
32

33 6. Conclusion

¥ In this study, we prove the existence and uniqueness of rollttisns for Caputo fractional par-

®_tial functional and neutral functional evolution equasomith state dependent delay using Banach'’s
36 . . . . . .

— contraction theorem with semigroup theory. We will lookaats research mild solutions for other
*"_fractional problems.

38
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