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UNIQUE MILD SOLUTION FOR FRACTIONAL PARTIAL AND NEUTRAL
EVOLUTION EQUATIONS WITH STATE-DEPENDENT DELAY

NARDJIS LACHACHI-MERAD, SELMA BAGHLI-BENDIMERAD, MOUFFAK BENCHOHRA,
AND DJILLALI AOUAD

ABSTRACT. In this paper, the uniqueness of mild solutions for two classes of partial functional and
neutral functional evolution equations with finite state-dependent delay where fractional Caputo deriva-
tives is investigated forα ∈ (0,1). The study is based on Banach’s contraction theorem combined with
semigroup theory in a real Banach space.

1. Introduction

In this paper, we establish the existence and the uniquenessof mild solutions for the two following
class of semilinear partial functional and neutral functional evolution equations with a finite state
dependent-delay involving Caputo’s fractional order derivative using the Banach contraction theorem
in the real Banach space(E, | · |) combined with semigroup theory.

The first considered problem, studied in Section 3, is as follows

(1) cDα
0 y(t) = A(t)y(t)+ f (t,yρ(t,yt )), a. e. t ∈ J := [0,b], 0< α < 1,

(2) y(t) = ϕ(t), t ∈ H := [−r,0],

whereb, r > 0 are given constants;f : J×C(H,E)−→E; ρ : J×C(H,E)−→ [−r,b] andϕ ∈C(H,E)
are given functions;cDα

0 is the standard Caputo’s fractional order derivative forα ∈ (0,1) and
{A(t)}t∈J is a family of linear closed operators (not necessarily bounded) fromE into E.

For any continuous functiony and anyt ∈ J, we denotes byyt the element ofC(H;E) defined by
yt(θ ) = y(t + θ ) for θ ∈ H. Hereyt(·) represents the history of the state from timet − r up to the
present timet.

Next, the second considered problem, studied in Section 4, is as follows

(3) cDα
0 [y(t)−g(t,yρ(t,yt ))] = A(t)y(t)+ f (t,yρ(t,yt )), a. e. t ∈ J,

(4) y(t) = ϕ(t), t ∈ H,
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whereA(·), f andϕ are as in problem(1)-(2) andg : J×C(H,E)−→ E is a given function. Finally,
two examples are given in Section 5 to clarified the obtained results.

Integer-order functional and neutral functional differential equations appear in many fields of ap-
plied mathematics, and these equations have attracted muchattention in recent years. The first occur-
rence of out-of-order derivations appears in 1695, the famous letter send by Leibniz to De l’Hopital.
Then the derivative of the disorder has evolved from Euler, Fourier, Liouville, and Riemann to the
present. The type of derivatives employed varies between the integer version and fractional order;
the former uses exponents with integers while the latter uses exponents with fractions. The exis-
tence results of differential equations are significantly influenced by the fractional order. It is possible
for fractional-order equations to have no solutions, numerous solutions, or singular solutions. The
asymptotic behavior of solutions is also influenced by fractional order and can result in power-law
decay, oscillatory decay, or algebraic growth. These variations result from fractional derivatives’
non-locality and memory dependence. Fractional-order differential equations demand specialized
methods for analysis and solution. Recently, many phenomena in various fields of science and en-
gineering can be modeled with fractional differential equations: in viscoelasticity, electrochemistry,
control, porous media, electromagnetic, etc... Fractional Caputo derivation has important biologi-
cal implications because it captures memory effects, nonlocal interactions, and anomalous transport
observed in biological systems. It is used to model memory- and history-related processes such as
biological diffusion, neuronal signalling, and growth. Itaccurately represents sub diffusion or super
diffusion behavior and can be used to analyze biological signals.

Overall, Caputo order derivation improves our understanding of biological phenomena and allows
for more accurate modeling and analysis in different biological domains: for details, including some
applications and recent results, see the work of Hilfer [14], Kilbas et al. [15], Lakshmikanthamet al.
[16], Podlubny [20] and the references contained therein. In recent years, significant developments
in fractional order ordinary differential equations and partial evolutionary differential equations are
obtained by for Benchohra and his collaborators in [3], El Borai in [8], El-Sayed in [9], Vijayakumar
et al. in [22]-[24] and Zhou and his team in [25, 26].

Recently, state-dependent delay equations in modeling have been proposed. Existence results are
obtained from functional differential equations, where the hysteresis depends on the solution under
study. Existing results have been derived for functional differential equations when, among other
things, the solution depends on delays on bounded intervals. We refer the reader to the work of
Benchohraet al. [1] on the bounded intervalJ. Mesri and Benchohra use non-compactness measures
to study fractional-order nonautonomous evolution equations in Fréchet spaces in [18].

After a study of several first-order evolution problems withindependent and state-dependent delays
by Baghliet al. in [2], [4]-[7] and [17], we seek in this article to extend our research to consider these
evolution equations with state-dependent delay when the derivative is fractional in the sense of Caputo
in this time. Therefore, this work studies the existence anduniqueness of mild solutions for Caputo
fractional partial functional and neutral functional evolution equations with state-dependent delay
using the Banach’s contraction theorem combined with semigroup theory.
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2. Preliminaries

We introduce notations, definitions, propositions, lemmas, and theorems which are used throughout
this paper.

Let C(J;E) be the space of continuous functions fromJ into E with the norm| · | andB(E) be the
space of all bounded linear operators fromE into E, with the usual supremos norm

‖N‖B(E) = sup{ |N(y)| : |y|= 1 }.

Let L1(J,E) denotes the Banach space of measurable functionsy : J → E which are Bochner-
integrable normed by

‖y‖L1 =
∫ b

0
|y(t)| dt.

A measurable functiony : J → E is Bochner-integrable if and only if|y| is Lebesgue-integrable.

Definition 2.1. A function f : J×E → E is said to be an L1-Carath́eodory function if it satisfies :

(i) for each t∈ J, the function f(t, ·) : E → E is continuous ;
(ii) for each y∈ E, the function f(·,y) : J → E is measurable ;
(iii) for every positive integer k, there exists hk ∈ L1(J;R+) such that

| f (t,y)| ≤ hk(t) for all |y| ≤ k and almost every t∈ J.

We give some state-dependent delay properties.
Assume thatρ : J×C(H;E) → [−r,b] is continuous. Additionally, we introduce the following hy-
pothesis:

R(ρ−) = {ρ(s,ϕ) : (s,ϕ) ∈ J×C(H;E), ρ(s,ϕ)≤ 0}.

(Hϕ) The functiont → ϕt is continuous fromR(ρ−) into C(H;E) and there exists a bounded and
continuous functionL ϕ : R(ρ−)→ (0,∞) such that

‖ϕt‖ ≤ L
ϕ(t)‖ϕ‖ for everyt ∈ R(ρ−).

Remark 2.1. The condition(Hϕ), is frequently verified by functions that are continuous andbounded.
For more details, see for instance[1, 12].

Lemma 2.1. ([12], Lemma 2.4) If y: [−r,b]→ E is a function such that y0 = ϕ , then

‖ys‖ ≤ L
ϕ‖ϕ‖+ sup

0≤θ≤ŝ
{|y(θ )| s∈ R(ρ−)∪J}, ŝ := max(0;s),

whereL ϕ = sup
t∈R(ρ−)

L
ϕ(t).

Proposition 2.1. [2] The function y in above lemma satisfy for every t∈ J andρ the inequality

‖yρ(t,yt)‖ ≤ |y(t)|+L
ϕ‖ϕ‖.

We give here fractional order derivative definitions.
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Definition 2.2. [20] The Riemann-Liouville fractional integral operator of order α > 0 of a function
f : R+ −→R is defined as

Iα
0 f (t) =

1
Γ(α)

∫ t

0
(t −s)α−1 f (s)ds

provided the right hand side whenΓ(·) is the Euler gamma function.

For instance,Iα f exists for allα > 0 when f ∈C(R+)∩L1
loc(R

+). Note also that whenf ∈C(R+)
thenIα f ∈C(R+) and moreoverIα f (0) = 0.

Definition 2.3. [20] The fractional derivative of orderα > 0 of a function
f : R+ −→R in the Caputo sense is given by

dα f (t)
dtα

=
1

Γ(m−α)

d
dt

∫ t

0
(t −s)m−α−1 f (s)ds=

d
dt

I1−α
0 f (t).

Remark 2.2. Caputo fractional derivative is often applicable to control theory.

Let us talk about evolution operator. In what follows, we assume that{A(t)}t∈J is a family of
closed densely defined linear operators not necessarily bounded on the Banach spaceE with domain
D(A(t)) independent oft. Additionally, throughout this paper, we assume that the linear operatorA(t)
satisfies the following conditions [8]

(A1): For anyλ with Re(λ ) ≥ 0, the operatorλ I −A(t) exists a bounded inverse operator
(λ I −A(t))−1 in B(E) and

∥

∥

∥
(λ I −A(t))−1

∥

∥

∥
≤

C
|λ |+1

whereC is a positive constant independent of botht andλ .
(A2): For anyt,τ ,s∈ I , there exists a constantγ ∈ (0,1] such that

∥

∥[A(t)−A(τ)]A−1(s)
∥

∥ ≤C|t − τ |γ

where the constantsγ andC> 0 are independent of botht,τ ands.

Remark. From Henry [13], Pazy [19] and Temam [21], we know that the assumption(A1) means
that for eachs∈ I , the operatorA(s) generates an analytic semigroupe−tA(s) (t > 0), and there exists
a positive constantC independent of botht ands such that

∥

∥

∥

∥

−A(s)etA(s)

∥

∥

∥

∥

≤
C
t

wheret > 0 ands∈ J.

Definition 2.4. [11] Define the operatorsΨ(t,s), φ (t,s) and U(t) by

Ψ(t,s) = α
∫ +∞

0
θ tα−1ξα(θ )etα θA(s)dθ ,

φ (t,s) =
+∞

∑
k=1

φk(t,s)
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and

U(t) = A(t)A−1(0)−
∫ t

0
φ (t,s)A(s)A−1(0)ds,

whereξα is a probability density function defined on[0,+∞) such that its Laplace transform is given
by

∫ +∞

0
ξα(θ )eθxdθ =

+∞

∑
i=1

(−x)i

Γ(1+α i)
0< α ≤ 1, x> 0,

φ1(t,s) = [−A(t)+A(s)]Ψ(t −s,s),

and

φk+1(t,s) =
∫ t

s
φk(t,τ)φ1(τ ,s)dτ , k= 1,2, . . . .

For more details about the definition and property of the probability density function, one can see
the paper [11].

A recall of contraction definition:

Definition 2.5. [10] A function f: X → X is said to be a contraction if there exists k∈ [0,1) such that

‖ f (x)− f (y)‖ ≤ k ‖x−y‖ f or all x,y∈ X.

The used fixed point theorem is as follows:

Theorem 2.1. (Banach contraction principle[10])
Let C be a non-empty closed subset of a Banach space X, then anycontraction mapping T of C into
itself has a unique fixed point.

3. Semilinear evolution equations

We give now from [8] the definition of mild solution for fractional partial evolution problem with
finite state-dependent delay(1)− (2).

Definition 3.1. We say that the function y(t) : [−r,b]→ E is a mild solution of(1)− (2) if y(t) = ϕ(t)
for t ∈ H and y satisfies the integral equation

(5)

y(t) = U(t)ϕ(0)−
∫ t

0
Ψ(t −s,s)U(s)A(0)ϕ(0)ds

+
∫ t

0
Ψ(t −s,s) f

(

s,yρ(s,ys)

)

ds

+
∫ t

0

∫ s

0
Ψ(t −s,s)φ (s,τ) f

(

τ ,yρ(τ,yτ )

)

dτds.

The following properties about the operatorsΨ, φ andU will be needed in our argument.

Lemma 3.1. [8] The operator-valued functionsΨ(t −s,s) and A(t)Ψ(t −s,s) are continuous in uni-
form topology about the variables t and s, where t∈ J, 0≤ s≤ t − ε for anyε > 0, and

(6) ‖Ψ(t −s,s)‖ ≤C(t −s)α−1
,
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where C is a positive constant independent of both t and s. Furthermore,

(7) ‖φ (t,s)‖ ≤C(t −s)γ−1

and

(8) ‖U(t)‖ ≤C(1+ tγ) .

We will need to introduce the following hypotheses which areassumed thereafter :

(H1) The functionf is Carathéodory.
(H2) For allR> 0, there existslR ∈ L∞(J;R+) such that

| f (t,u)− f (t,v)| ≤ lR(t) ‖u−v‖

for all u,v∈C(H,E) with ‖u‖ ≤ R and‖v‖ ≤ R.
Setl∗R := esssup

t∈J
lR(t).

Denote byβ (α ,γ) =
∫ 1

0 tα−1(1− t)γ−1dt theβ Euler’s function. Then we can give now our main
result.

Theorem 3.1. Assume that(Hϕ), (H1) and(H2) are satisfied, and moreover if

(9) Cl∗Rbα [

α−1+Cγ−1bγβ (α ,γ +1)
]

< 1,

then the problem(1)− (2) has a unique mild solution on[−r,b].

Proof. Transform the problem(1)− (2) into a fixed-point problem.
ConsiderΩ :=C([−r,b];E) and let the operatorN : Ω → Ω is defined by :

N(y)(t) =







































ϕ(t), if t ∈ H;

U(t)ϕ(0)−
∫ t

0
Ψ(t −s,s)U(s)A(0)ϕ(0)ds

+

∫ t

0
Ψ(t −s,s) f

(

s,yρ(s,ys)

)

ds

+

∫ t

0

∫ s

0
Ψ(t −s,s)φ (s,τ) f

(

τ ,yρ(τ,yτ )

)

dτds, if t ∈ J.

Clearly, fixed points of the operatorN are mild solutions of the problem(1)− (2).

We proof that the operatorN is a contraction. Fory, ȳ∈ J we have

|(Ny)(t)− (Nȳ)(t)| ≤
∫ t

0

∣

∣Ψ(t −s,s)
[

f
(

s,yρ(s,ys)

)

− f
(

s, ȳρ(s,ȳs)

)]
∣

∣ds

+
∫ t

0

∫ s

0

∣

∣Ψ(t −s,s)φ (s,τ)
[

f
(

τ ,yρ(τ,yτ )

)

− f
(

τ , ȳρ(τ,ȳτ )

)]
∣

∣dτds.
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FRACTIONAL PARTIAL AND NEUTRAL EVOLUTION EQUATIONS WITH STATE-DEPENDENT DELAY 7

By the hypothesis(H2) and Lemma3.1, we have

|(Ny)(t)− (Nȳ)(t)| ≤C
∫ t

0
(t −s)α−1lR(s)

∥

∥yρ(s,ys)− ȳρ(s,ȳs)

∥

∥ds

+C2
∫ t

0
(t −s)α−1

∫ s

0
(s− τ)γ−1lR(τ)

∥

∥yρ(τ,yτ )− ȳρ(τ,ȳτ )

∥

∥dτds

By Proposition2.1, we get

|(Ny)(t)− (Nȳ)(t)| ≤ Cl∗R

∫ t

0
(t −s)α−1 [|y(s)|− |ȳ(s)|]ds

+ C2l∗R

∫ t

0
(t −s)α−1

∫ s

0
(s− τ)γ−1 [|y(τ)|− |ȳ(τ)|]dτds

≤ Cl∗R

∫ t

0
(t −s)α−1ds‖y− ȳ‖

+ C2l∗R

∫ t

0
(t −s)α−1

∫ s

0
(s− τ)γ−1dτds‖y− ȳ‖

≤ Cl∗R

[

∫ t

0
(t −s)α−1

[

1+C
∫ s

0
(s− τ)γ−1dτ

]

ds

]

‖y− ȳ‖.

Since
∫ t

0
(t −s)α−1ds=

tα

α
and

∫ t

0
(t −s)α−1

∫ s

0
(s− τ)γ−1dτds=

tα+γ

γ
β (α ,γ +1),

we obtain fort ∈ J

|(Ny)(t)− (Nȳ)(t)| ≤ Cl∗R

[

tα

α
+C

tα+γ

γ
β (α ,γ +1)

]

‖y− ȳ‖

≤ Cl∗Rbα
[

1
α
+C

bγ

γ
β (α ,γ +1)

]

‖y− ȳ‖.

Consequently,

‖N(y)−N(ȳ)‖ ≤Cl∗Rbα
[

1
α
+C

bγ

γ
β (α ,γ +1)

]

‖y− ȳ‖.

So by the condition(9), we deduce that the operatorN is a contraction. By the Banach contraction
principle, the operatorN has a unique fixed point which is the unique mild solution of the partial
fractional evolution system with state-dependent delay(1)− (2) on [−r,b].

4. Semilinear neutral evolution equations

In this section, we give our second main result for a unique mild solution of the neutral fractional
evolution equation with state-dependent delay(3)− (4) by the Banach contraction principle [10].
Firstly, we define such a mild solution.
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Definition 4.1. We say that the function y(t) : [−r,b]→ E is a mild solution of(3)− (4) if y(t) = ϕ(t)
for t ∈ H and y satisfies the following integral equation

(10)

y(t) = U(t) [ϕ(0)−g(0,ϕ)]+g(t,yρ(t,yt ))

−
∫ t

0
Ψ(t −s,s)U(s)A(0) [ϕ(0)−g(0,ϕ)]ds

−
∫ t

0
Ψ(t −s,s)A(0)g

(

s,yρ(s,ys)

)

ds+
∫ t

0
Ψ(t −s,s) f

(

s,yρ(s,ys)

)

ds

+
∫ t

0

∫ s

0
Ψ(t −s,s)φ (s,τ) f

(

τ ,yρ(τ,yτ )

)

dτds. for each t∈ J.

We will need the following hypothesis ong

(H3) For allR> 0, there existsχ(s) ∈ L+∞ (J;R+) such that

|g(t,u)−g(t,v)| ≤ χ(t) ‖u−v‖

for all u,v∈C(H,E) with ‖u‖ ≤ R and‖v‖ ≤ R.
Setχ∗ := esssup

t∈J
χ(t).

Theorem 4.1. Assume that(Hϕ), (H1)− (H3) hold. Then, if we have

(11) χ∗
(

1+C2|A(0)|bα Θγ
)

+Cl∗Rbαϒ < 1

whereΘγ = α−1+bγβ (α ,γ +1) andϒ = α−1+Cγ−1bγβ (α ,γ +1), then the neutral problem(3)−
(4) has a unique mild solution on[−r,b].

Proof. Transform the problem(3)− (4) into a fixed-point problem.
Consider the operator̃N : Ω → Ω defined by :

Ñ(y)(t) =















































ϕ(t), if t ∈ H;

U(t) [ϕ(0)−g(0,ϕ)]+g(t,yρ(t,yt ))

−
∫ t

0
Ψ(t −s,s)U(s)A(0) [ϕ(0)−g(0,ϕ)]ds

−

∫ t

0
Ψ(t −s,s)A(0)g

(

s,yρ(s,ys)

)

ds+
∫ t

0
Ψ(t −s,s) f

(

s,yρ(s,ys)

)

ds

+

∫ t

0

∫ s

0
Ψ(t −s,s)φ (s,τ) f

(

τ ,yρ(τ,yτ )

)

dτds, if t ∈ J.

Clearly, fixed points of the operatorÑ are mild solutions of the problem(3)− (4).

We will proof that the operator̃N is a contraction.
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FRACTIONAL PARTIAL AND NEUTRAL EVOLUTION EQUATIONS WITH STATE-DEPENDENT DELAY 9

For t ∈ J, we have fory, ȳ∈ Ω
∣

∣

(

Ñy
)

(t)−
(

Ñȳ
)

(t)
∣

∣≤ |g
(

t,yρ(t,yt )

)

−g
(

t, ȳρ(t,ȳt)

)

|

+
∫ t

0

∣

∣Ψ(t −s,s)U(s)A(0)[g
(

s,yρ(s,ys)

)

−g
(

s, ȳρ(s,ȳs)

)

]
∣

∣ds

+
∫ t

0

∣

∣Ψ(t −s,s)
[

f
(

s,yρ(s,ys)

)

− f
(

s, ȳρ(s,ȳs)

)]
∣

∣ds

+

∫ t

0

∫ s

0

∣

∣Ψ(t −s,s)φ (s,τ)
[

f
(

τ ,yρ(τ,yτ )

)

− f
(

τ , ȳρ(τ,ȳτ )

)]∣

∣dτds.

By Proposition2.1, Lemma3.1 and the hypotheses(H2) and(H3), we have
∣

∣

(

Ñy
)

(t)−
(

Ñȳ
)

(t)
∣

∣ ≤ χ(t) [|y(t)|− |ȳ(t)|]

+ C2|A(0)|
∫ t

0
(t −s)α−1 (1+sγ)χ(s) [|y(s)|− |ȳ(s)|]ds

+ C
∫ t

0
(t −s)α−1lR(s) [|y(s)|− |ȳ(s)|]ds

+ C2
∫ t

0
(t −s)α−1

∫ s

0
(s− τ)γ−1lR(τ) [|y(τ)|− |ȳ(τ)|]dτds.

Hence
∣

∣

(

Ñy
)

(t)−
(

Ñȳ
)

(t)
∣

∣≤ χ∗

[

1+C2|A(0)|
∫ t

0
(t −s)α−1 (1+sγ)ds

]

‖y− ȳ‖

+Cl∗R

[

∫ t

0
(t −s)α−1ds+C

∫ t

0
(t −s)α−1

∫ s

0
(s− τ)γ−1dτds

]

‖y− ȳ‖ .

Since
∫ t

0
(t −s)α−1(1+sγ)ds= tα

(

1
α
+ tγβ (α ,γ +1)

)

,

hence we have
∣

∣

(

Ñy
)

(t)−
(

Ñȳ
)

(t)
∣

∣ ≤ χ∗

[

1+C2|A(0)|tα
(

1
α
+ tγ β (α ,γ +1)

)]

‖y− ȳ‖

+ Cl∗R

[

tα

α
+C

tα+γ

γ
β (α ,γ +1)

]

‖y− ȳ‖ .

SetΘη :=
1
α
+bηβ (α ,γ +1) andϒ :=

1
α
+C

bγ

γ
β (α ,γ +1) to get fort ∈ J

∣

∣

(

Ñy
)

(t)−
(

Ñȳ
)

(t)
∣

∣≤
[

χ∗
(

1+C2|A(0)|bαΘγ
)

+Cl∗Rbαϒ
]

‖y− ȳ‖ .

Then,
∥

∥Ñ(y)− Ñ (ȳ)
∥

∥≤
[

χ∗
(

1+C2|A(0)|bα Θγ
)

+Cl∗Rbαϒ
]

‖y− ȳ‖ .

By (11), Ñ is a contraction operator and by the Banach contraction principle, Ñ has a unique fixed
point which is the unique mild solution of neutral fractional evolution equation with state dependent-
delay(3)-(4).
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5. Examples

To illustrate the previous results, we give in this section two examples.

Example 5.1. Consider the partial functional differential equation of the form :

(12)























































cDα
0 u(t,ξ ) = a0(t,ξ )

∂ 2u(t,ξ )
∂ξ 2

+

∫ 0

−r
a1(s− t)u

[

s−ρ1(t)ρ2

(

∫ π

0
a2(θ )|u(t,θ )|2dθ

)

,ξ
]

ds,

0≤ t ≤ b, ξ ∈ [0,π ],

u(t,0) = u(t,π) = 0, 0≤ t ≤ b,

u(θ ,ξ ) = u0(θ ,ξ ), −r < θ ≤ 0, ξ ∈ [0,π ],

where0 < α < 1, a0(ξ , ·) is a continuous function forξ ∈ [0,π ] and a0(·, t) is uniformly Ḧolder
continuous in t∈ [0,b]; a1 : [−r,0]→R; a2 : [0,π ]→R; ρ1 : [0,b]→ R; ρ2 : R→R and
u0 : [−r,0]× [0,π ]→ R are given continuous functions.

To study this system, we consider the space E= L2([0,π ];R).
And we define the operator A: D(A)⊂ E → E given by A(t)w= a0(t,w)w′′ with domain

D(A) := { w∈ E : w′′ ∈ E, w(0) = w(π) = 0 }.

Then A(s) generates an analytic infinitesimal generator of semigroupetA(s) on E which satisfies the
assumptions(A1) and(A2).

Then we can use the theoretical study below and enounce the following theorem:

Theorem 5.1. Let ϕ ∈ C(H;E) be continuous and bounded. Assume that the condition(Hϕ) holds
and the functions a1 : [−r,0]→R, a2 : [0,π ]→R

+, ρ1 : [0,b]→ R, ρ2 : R+ →R and
u0 : [−r,0]× [0,π ]→ R are continuous. Then there exists a unique mild solution of(12).

Proof. From the assumptions, we have that

y(t)(ξ ) = u(t,ξ ),

f (t,ψ)(ξ ) =
∫ 0

−r
a1(s)ψ(s,ξ )ds,

ρ(s,ψ) = s−ρ1(s)ρ2

(

∫ π

0
a2(θ )|ψ(0,ξ )|2dθ

)

and

ϕ(t)(ξ ) = u0(t,ξ )

are well defined functions, which permit to transform system(12) into the abstract system(1)− (2).
Now, the existence of mild solutions can be deduced from a direct application of Theorem3.1.
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Example 5.2. Consider the neutral functional differential equation of the form :

(13)







































































cDα
0

[

u(t,ξ )−
∫ 0

−r
a3(s− t)u

[

s−ρ1(t)ρ2

(

∫ π

0
a2(θ )|u(t,θ )|2dθ

)

,ξ
]

ds

]

=
∂ 2u(t,ξ )

∂ξ 2 +a0(t,ξ )u(t,ξ )

+
∫ 0

−r
a1(s− t)u

[

s−ρ1(t)ρ2

(

∫ π

0
a2(θ )|u(t,θ )|2dθ

)

,ξ
]

ds,

0≤ t ≤ b, ξ ∈ [0,π ],

u(t,0) = u(t,π) = 0, 0≤ t ≤ b,

u(θ ,ξ ) = u0(θ ,ξ ), −r < θ ≤ 0, ξ ∈ [0,π ],
where a3 : [−r,0]→ R is a given continuous function.

Theorem 5.2. Let ϕ ∈ C(H;E) be continuous and bounded. Assume that the condition(Hϕ) holds
and the functions a1,a3 : [−r,0]→R, a2 : [0,π ]→ R

+, ρ1 : [0,b]→R, ρ2 : R+ →R and
u0 : [−r,0]× [0,π ]⇒ R are continuous. Then there exists a unique mild solution of(13).

Proof. From the assumptions, we have that

y(t)(ξ ) = u(t,ξ ),

f (t,ψ)(ξ ) =
∫ 0

−r
a1(s)ψ(s,ξ )ds,

g(t,ψ)(ξ ) =
∫ 0

−r
a3(s)ψ(s,ξ )ds,

ρ(s,ψ) = s−ρ1(s)ρ2

(

∫ π

0
a2(θ )|ψ(0,ξ )|2dθ

)

and
ϕ(t)(ξ ) = u0(t,ξ )

are well defined functions, which permit to transform system(13) into the abstract system(3)− (4).
Now, the existence of mild solutions can be deduced from a direct application of Theorem4.1.

6. Conclusion

In this study, we prove the existence and uniqueness of mild solutions for Caputo fractional par-
tial functional and neutral functional evolution equations with state dependent delay using Banach’s
contraction theorem with semigroup theory. We will look also to research mild solutions for other
fractional problems.
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