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Abstract

In this paper we study some solution techniques of differential-difference equation

y′(x) = y(x + 1/2) − y(x− 1/2),

first without an initial condition and then with some initial function h defined on the unit interval

[−1/2, 1/2]. We show some sufficient conditions that an initial function h is admissible, i.e., it yields a

unique continuous solution on some symmetric interval about 0.
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1 Introduction

In this paper we study some type of differential-difference equations. We make use of the following definition

of differential-difference equations.

Definition 1.1. A differential-difference equation is an equation in an unknown function and certain of its

derivatives, evaluated at arguments which differ by any of a fixed number of values. See, for example, [4].

In other texts, for example, in [10] a differential-difference equation is defined as a functional differential

equation, or a differential equation with deviating arguments, in which the argument values are discrete.

The general form of differential-difference equation is given by

ym(x) = f(x, ym1(x− µ1(x))), ym2(x− µ2(x))), ..., ymk(x− µk(x))), (1.1)

where y(x) ∈ Rn, m1,m2, ...,mk ≥ 0, and µ1(x), µ2(x), ..., µk(x) ≥ 0.
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Remark 1.2. In most textbooks, in place of the scalar variable x that we use here, the scalar variable t which

commonly signify time in time-varying process is used. We use x as an independent scalar variable and y as

unknown scalar variable that depends on x and its shifts in this paper.

Definition 1.3. A differential-difference equation (1.1) is said to be retarded, neutral, or advanced according

to the quantity of max{m1,m2....,mk} is less than, is equal to, or is greater than m. See [10], [4].

Here are some examples of retarded, neutral, and advanced differential-difference equations.

� y′(x) = y(x− 1) + y(x− 2), is a retarded differential-difference equation.

� y′(x) = y′(x− 1) + y(x− 2), is a neutral differential-difference equation.

� y′(x) = y′′(x+ 2)− y(x− 1), is an advanced differential difference equation.

As listed in the research paper by E. Yu. Romanenco and A. N. Sharkovisky (see [12],[13]) [14], one of the

three key areas of applications of difference equations with continuous time is in the study of differential-

difference equation theory. It is pointed out there that the theory of differential-difference equations, es-

pecially differential-difference equations of neutral type, should contain, at least formally, the theory of

continuous-time difference equations. In the physical sciences, the differential-difference equations play a

vital role in the modeling of complex physical phenomena. The differential-difference models are used in

the vibration of particles in lattices, the flow of current in a network, and the pulses in biological chains.

For example, see [2],[16], and the references therein. For abstract theory functional differential equations,

solvability and related topics see [1]. For Symbolic computation of hyperbolic tangent solutions for nonlinear

differential–difference equations see [2]. The analysis of some specific differential-difference equations are

discussed in some earlier works. For example, see [8].

In this paper, we study the linear differential-difference equation defined on continuous space

y(x+ 1/2)− y(x− 1/2)− y′(x) = 0. (1.2)

As a motivational introduction to the current problem, we discuss the classical mixing problem appearing

in several textbooks of ordinary differential equations. We may regard the current problem as a specific

condition of the classical problem. In the classical mixing problem, the amount y(t) of a solvent in Kg

dissolved in a tanker of solution at a time instant t when the solution of a concentration Cin inflows at a

volume flow rate Rin in units m3/sec and the well-stirred mixture of concentration Cout leaves the tanker at

an outflow rate of Rout is calculated. The essential equation of the mixing model is given by

dy

dt
(t) = Cin(t)Rin(t)− Cout(t)Rout(t), (1.3)

where Rin and Rout are the volume flow rates of the inflowing and the outflowing fluids expressed in units

of m3/s, whereas Cin and Cout are the concentrations of the inflowing fluid and the outflowing fluids given

in units of Kg/m3. So that the quantity dy/dt is given in the units of Kg/s. In most cases and practical

examples, the expression Cin(t)Rin(t)−Cout(t)Rout(t) is dependent on the current time instant t only, and not

some previous time t−h, or some future time t+h for some positive number h. Therefore, the mathematical

model given by the equation (1.3) yields an ordinary differential equation. That is

Cin(t)Rin(t)− Cout(t)Rout(t) = a(t)y(t) + b(t),
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for some functions a and b. See, for example, [7], [6]. Another possible model is the nonlinear model given

in the form
dy

dt
(t) = Q(t, y(t))

where the net mass flow rate Q is given in units of Kg/s.This model is a nonlinear differential equation.

For the current problem, assume that the rate of change of the dissolved solvent in the tank, dy
dt , at a time

instant t, is determined by the difference between the total amount of solvent available in the tank at some

future time t + 1/2 and the total amount of solvent dissolved in the tank at a previous time t − 1/2. As a

result, the model equation in this case becomes y′(t) = y(t + 1/2) − y(t − 1/2). This model differers from

both the classical mixing problem where the problem is linear and the nonlinear model where the mass flow

rate depends on the current instant t the quantity y(t) at the instant. It is not a differential equation model

but a differential-difference equation model with two shifts t+ 1/2 and t− 1/2 in the independent variable.

Assume that for some change in the quantities Rin(t), Rout(t), Cin(t), and Cout(t), the simultaneous

equation y′(t) = Cin(t)Rin(t)− Cout(t)Rout(t)

y(t+ 1/2)− y(t− 1/2) = Cin(t)Rin(t)− Cout(t)Rout(t),
(1.4)

has a solution. This is exactly the solution of the differential-difference equation (1.2). The first of these

equations has solutions that can be found easily as a linear differential equation, and the second one is a

linear difference equation with continuous argument. What is important is that the two equations in (1.4)

should have coinciding solutions, which is also a solution to the differential-difference equation.

We show that the solution to the equation (1.2) consists of an infinite number of solutions. Among

the possible sets of solutions is the set of all polynomials of degree less than or equal to 2, {y(x) = ax2 +

bx + c, a, b, c ∈ R}. We find some class of solutions to the equation, including analytic solutions that can

be represented in Taylor’s series. The initial value problem for equation 1.2) has a unique solution for

appropriate initial function y0, where an initial function y0 is given and set to be defined on the unit interval

[−1/2, 1/2]. We shall also show that the interval of existence of the solution and the smoothness of the

solution depend on the smoothness of the initial function y0.

Another use of this differential-difference equation (1.2) is to find a curve y(x) = f(x) defined on R, with

the property that the slope of the chord connecting the two points (x−1/2, y(x−1/2)) and (x+1/2, y(x+1/2))

on the curve is equal to the slope of the tangent line at the point (x, y(x)). So, the slope of the secant over

any unit interval in the domain is equal to the slope of the tangent line at the midpoint of the unit interval.
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2 The Differential-Difference Equation y(x+1/2)−y(x−1/2) = y′(x)

2.1 Definitions of some Operators and their Relations

For each h ∈ R, we define the shift operator Eh, and the identity operator I as

Ehy(x) := y(x+ h), Iy(x) := y(x).

We write Eh as E rather than E1 when h = 1. We define E0 as I. We define the forward difference operator

∆ and the backward difference operator ∇ as follows:

∆y(x) := (E − I)y(x) = y(x+ 1)− y(x), ∇y(x) = (I − E−1)y(x) = y(x)− y(x− 1).

For h > 0, the central difference operator δh is defined as

δhy(x) :=
y(x+ h)− y(x− h)

2h
.

Finally, we denote the central difference operator by L, which is a special case of δh, where h = 1/2, and the

differential operator by D, as follows:

Ly(x) := y(x+ 1/2)− y(x− 1/2), Dy(x) :=
d

dx
y(x) = y′(x). (2.1)
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Remark 2.1. We observe the following relations among difference operators:

E−1/2L = ∇, E1/2L = 4, L2 = ∇4.

Therefore, the operator L is the geometric mean of the forward operator 4 and the backward operator ∇.

Also observe that

L2 = E − 2I + E−1 = (E − I)− (I − E−1) = 4−∇.

For detailed discussion of difference operators and their calculus see, for example, [11], [15],[3].

Theorem 2.2. The operators L and D are parity-changing operators. That is, under these operators the

image of even(odd)function is odd (even) function.

Proof. If f is an even function, i.e, f(−x) = f(x). Then

Lf(−x) = f(−x+ 1/2)− f(−x− 1/2)

= f(x− 1/2)− f(x+ 1/2)

− Lf(x).

Therefore Lf is an odd function. If g is odd function, i.e., g(−x) = −g(x), then

Lg(−x) = g(−x+ 1/2)− g(−x− 1/2)

= −g(x− 1/2) + g(x+ 1/2)

= Lg(x).

Therefore, Lg is an even function.

Corollary 2.3. Let n ∈ N. Define

Sn(x) := Lxn = (x+ 1/2)n − (x− 1/2)n. (2.2)

If n is odd, then the function Sn is even; if n is even, then Sn is odd.

Proof. If n is even integer, then y(x) = xn is even function; if n is odd integer, then y(x) = xn is odd

function. As the result of Theorem 2.2, the corollary follows.

The values of the polynomials Sm(x) for 1 ≤ x ≤ 10are shown in Table 1.
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Table 1: Table for Sm(x) for 1 ≤ m ≤ 10.
m Sm(x) := Lxm =

∑m
k=0

(
m
k

)
xk
[
( 1

2 )m−k − (− 1
2 )m−k

]
m=1 1
m=2 2x
m=3 1

4 + 3x2

m=4 x+ 4x3

m=5 1
16 + 5

2x
2 + 5x4

m=6 3
8x+ 5x3 + 6x5

m=7 1
64 + 21

16x
2 + 35

4 x
4 + +7x6

m=8 1
8x+ 7

2x
3 + 14x5 + 8x7

m=9 1
128 + 9

16x
2 + 63

8 x
4 + 21

2 x
6 + 9x8

m=10 10
256x+ 15

8 x
3 + 63

2 x
5 + 30x7 + 10x9

Theorem 2.4. Let n ∈ N. Then

S2n(x) =

n∑
k=1

22k−2n

(
2n

2k − 1

)
x2k−1, (2.3)

S2n−1(x) =

n∑
k=0

22k−2n

(
2n− 1

2k

)
x2k. (2.4)

Proof. We prove only (2.3), and the proof of (2.4) is similar to that of (2.3).

s2n(x) =

(
x+

1

2

)2n

−
(
x− 1

2

)2n

=

2n∑
r=0

(
1

2

)2n−r (
2n

r

)
xr −

2n∑
r=0

(
2n

r

)(
−1

2

)2n−r

xr

=

2n∑
r=0

[(
1

2

)2n−r

−
(
−1

2

)2n−r
](

2n

r

)
xr

=

n∑
k=1

22k−2n

(
2n

2k − 1

)
x2k−1.

This is due to the fact that the power xr vanishes for even r. Re-indexing sum r = 0 to 2n as a sum k = 1

to n yields ( 2.3).

Corollary 2.5. Sn(x) is a polynomial of degree n− 1 for each n ∈ N. Furthermore, if we write Sn(x) in the

expanded form, we get

Sn(x) =

n−1∑
i=0

Sn,kx
k,

with the numerical coefficients Sn,k ≥ 0.

In the subsections that follow, we study the techniques and properties of solutions of the scalar differential-

difference equation given in (1.2). That can also be written in operator form as

(L−D)y(x) = 0.
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2.2 Solutions by Taylor Series Method

In this and subsequent subsections, we look some methods for solving the differential-difference equation

(1.2), first without an initial value and then with some initial function h defined on the symmetric unit

interval [−1/2, 1/2]. The Taylor series expansion of the solution y is ne method of solving (1.2). This

method is helpful for finding an analytic solution to the differential-difference equation.As we can see, the

method necessitates an infinite number of numerical coefficients in the power series of the analytic solution

y(x). However, here we find only some analytic solutions, while the complete task is equivalent to solving

a system of infinite linear equations with an infinite number of unknowns. Let us assume a solution of the

differential-difference equation (1.2) that may be written in an infinite power series of the form

y(x) =

∞∑
n=0

anx
n. (2.5)

Then

Dy(x) = y′(x) =

∞∑
n=0

an+1(n+ 1)xn, (2.6)

and

Ly(x) =

∞∑
n=0

anSn(x), (2.7)

where Sn(x) is as defined in (2.2).

Theorem 2.6. Assume that y, whose Taylor series is given by (2.5), is an analytic solution of the differential-

difference equation (2.1). Then we have the following two homogeneous systems of infinite linear equations

in infinite unknowns a3, a4, a5, ...

∞∑
n=2+k

22k−2n

(
2n− 1

2k

)
a2n−1 = 0, k = 0, 1, 2, ... (2.8)

∞∑
n=1+k

22k−2n

(
2n− 1

2k

)
a2n = 0, k = 1, 2, ... (2.9)

Proof.

Dy(x) = D(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + ...) = Ly(x) = L(a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + ...)

⇔ 0 + a1 + 2a2x+ 3a3x
2 + 4a4x

3 + ... = 0 + a1 + 2a2x+ a3S3(x) + a4S4(x) + ...

⇔ 3a3x
2 + 4a4x

3 + ... = a3S3(x) + a4S4(x) + ...

⇔ 0 = a3S
′
3(x) + a4S

′
4(x) + ...

where S′2n(x) = S2n(x)− 2nx2n−1, n ∈ N and S′2n−1(x) = S2n(x)− 2nx2n−2, n ≥ 2, n ∈ N.

∞∑
n=2

a2n−1S
′
2n−1(x) =

∞∑
n=2

a2n−1

(
n−1∑
k=0

22k−2n

(
2n− 1

2k

)
x2k

)
= 0 (2.10)

∞∑
n=2

a2nS
′
2n(x) =

∞∑
n=2

a2n

(
n−1∑
k=1

22k−2n

(
2n

2k − 1

)
x2k−1

)
= 0 (2.11)
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From (2.10), equating the sum of all coefficients of the even power x2k for each k = 0, 1, 2, 3, ..., we get an

infinite triangular system of homogeneous equations ( 2.8).

The second triangular system of infinite homogeneous equations (2.9) is obtained from (2.11), by equating

the sum of all coefficients of the odd power x2k−1 for each k = 1, 2, 3, .... This completes the proof.

In Theorem 2.6, the two systems of infinite linear equations (2.8) and (2.9) in infinite unknowns a3, a4, a5...

induced by the Taylors series method, the coefficients a0, a1, a2 appearing in the solution y(x) =
∑∞
i=0 aix

i

are free and arbitrary (are not involved in the systems of infinite linear equations). The infinite systems

being homogeneous, setting all the coefficients a3, a4, a5... equal to zero, we shall obtain the set of solutions

that comprise any polynomial in x of second degree or less. Hence the following theorem arises.

Theorem 2.7. Any polynomial of degree less than or equal to 2, i.e., y(x) = a0 + a1x+ a2x
2, a0, a1, a2 ∈ R

is a solution of (2.1).

Proof. Direct substitution yields the desired result.

Remark 2.8. Observe that L1 = D1 = 0, Lx = Dx = 1, Lx2 = Dx2 = 2x, whereas 4x2 = 2x + 1 6= 2x =

Dx2, and ∇x2 = 2x − 1 6= 2x = Dx2. The space P2 of all polynomials of degree less than or equal to 2 is

contained in the null space of the operator L−D.

2.3 Complex Solutions

For the differential-difference equation (1.2), applying the Fourier transform both sides we get

iξŷ(ξ) = (ei
ξ
2 − e−i

ξ
2 )ŷ(ξ) = 2i sin(ξ/2)ŷ(ξ), (2.12)

where ŷ(ξ) =
∫∞
−∞ e−ixξy(x)dx. From (2.12) we need to find the solutions in C of the transcendental equation

ξ/2 = sin(ξ/2). (2.13)

Theorem 2.9. If z = a+ bi, a, b ∈ R is a solution of the equation(2.13), then

y(x) = eizx (2.14)

is a complex solution of the differential-difference equation (1.2).

Proof. Let y(x) = eizx, where z is solution of (2.13). Then

Ly = y(x+ 1/2)− y(x− 1/2) = eiz(x+1/2) − eiz(x−1/2)

= eizx(eiz/2 − e−iz/2) = eizx2i sin(z/2)

= eizx2i(z/2) = izeizx = Dy(x).

Theorem 2.10. z = a + bi, a, b ∈ R, is the solution of the transcendental equation (2.13) if and only if
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(x, y) = (a, b) is the solution to the system of equations x/2 = sin(x/2) cosh(y/2),

y/2 = cos(x/2) sinh(y/2).
(2.15)

Proof. A complex number z = a+ bi is a solution of (2.13)

⇔ a/2 + ib/2 = sin(a/2 + ib/2)

= sin(a/2) cos(ib/2) + cos(a/2) sin(ib/2)

= sin(a/2) cosh(b/2) + i cos(a/2) sinh(b/2)

⇔ a/2 = sin(a/2) cosh(b/2) and b/2 = cos(a/2) sinh(b/2).

So (x, y) = (a, b) satisfies the system of equations (2.15).

Theorem 2.11. Let z = a+ bi, a, b ∈ R is any solution of the transcendental equation (2.13). Then the real

part y(x) = <(eizx) = e−bx cos(ax) and the imaginary y(x) = =(eizx) = e−bx sin(ax) are then solutions to

the differential-difference equation (2.1).

Proof. Let y(x) = e−bx cos ax. Then Dy(x) = −be−bx cos ax− ae−bx sin ax.

Ly(x) =y(x+ 1/2)− y(x− 1/2)

= e−b(x+ 1
2 ) cos a(x+ 1/2)− e−b(x− 1

2 ) cos a(x− 1/2)

= e−bx
[
e−

b
2 (cos ax cos(a/2)− sin ax sin(a/2))− e b2 (cos ax cos(a/2) + sin ax sin(a/2))

]
= e−bx [−2 cos ax cos(a/2) sinh(b/2)− sin ax sin(a/2) cosh(b/2)]

= −be−bx cos ax− ae−bx sin ax

= Dy(x).

The verification for y(x) = e−bx sin ax is similar.

As to the existence of a solution (x, y) = (a, b) of the system of equations (2.15), we have the following

solutions of (2.15) calculated by WOLFRAM ALPHA ©,

a = −3.75626× 10−8 and b = 2.25842× 10−9,

a = 0 and b = −4.79706× 10−8,

a = 0 and b = 0,

a = 0 and b = 4.00874× 10−8,

a = 2.10292× 10−8 and b = 4.04457× 10−9.

Thus, using Theorem 2.11 we have additional solutions to the differential-difference equation (1.2) other

than the ones that we have discussed in the previous section.
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2.4 Integral Equation form of the Differential-Difference Equation

Theorem 2.12. The differential-difference equation (1.2) can be written as an integral equation

y(x) = y(0)−
∫ 1

2

− 1
2

y(s)ds+

∫ ∞
−∞

α(x− s)y(s)ds,

where α(x) = χ[−1/2,1/2](x) is the characteristic function of the unit interval [−1/2, 1/2].

Proof. Note that

Ly(x) = y(x+ 1/2)− y(x− 1/2) =
d

dx

∫ x+ 1
2

x− 1
2

y(s)ds

provided that y ∈ C[x− 1/2, x+ 1/2] for every x ∈ R. Therefore,

Dy(x)− Ly(x) = 0⇔ d

dx

(
y(x)−

∫ x+ 1
2

x− 1
2

y(s)ds

)
= 0.

Thus, the expression y(x) −
∫ x+ 1

2

x− 1
2

y(s)ds = c, x ∈ R, where c is some constant. Setting x = 0 yields the

constant c = y(0) −
∫ 1

2

− 1
2

y(s)ds. Hence, the equivalent integral equation representation for the differential-

difference equation is

y(x) = y(0)−
∫ 1

2

− 1
2

y(s)ds+

∫ x+ 1
2

x− 1
2

y(s)ds.

We further note that∫ x+ 1
2

x− 1
2

y(s)ds =

∫ ∞
−∞

α(x− s)y(s) =

∫ ∞
−∞

α(s)y(x− s)ds := (α ∗ y)(x),

where ∗ is the convolution. So, we write the differential-difference equation (1.2) as an integral equation

y(x) = y(0)−
∫ 1

2

− 1
2

y(s)ds+

∫ ∞
−∞

α(x− s)y(s)ds.

This completes the proof of the theorem.

2.5 The Initial Value Problem for the Differential-Difference Equation

Definition 2.13. Let I be some open interval in R. For integers k ≥ 0, we denote by Ck(I) the space of

functions which are k times continuously differentiable in I. In particular, by C0(I) or just C(I), the space

of all continuous functions defined in I. Also C∞(I) :=
⋂
k≥0

Ck(I). However, if I is a closed interval like

[−1/2, 1/2], by h ∈ Ck(I) we mean that h ∈ Ck(J), where I ⊂ J and J is some open interval in R.

Theorem 2.14. Let k ∈ N. Consider the differential-difference equation 1.2 with additional conditions y(x) = h(x), x ∈ [−1/2, 1/2], h ∈ Ck[−1/2, 1/2],

h(i)(0) = h(i−1)(1/2)− h(i−1)(−1/2), i = 1, 2...., k.
(2.16)

where h(i) is the i-th order derivative and h(0) is considered as h. Then there exist a unique solution
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y ∈ C[−k/2, k/2] that satisfies the differential-difference equation (1.2) whenever −k/2 ≤ x − 1/2 < x <

x+ 1/2 ≤ k/2.

Proof. We use induction over k. If k = 1, the only point x such that −k/2 ≤ x− 1/2 < x < x+ 1/2 ≤ k/2

exists is x = 0. The differential-difference equation (1.2) is satisfied at this point by the given initial condition.

y(x) = h(x), x ∈ [−1/2, 1/2] is the solution is. Now we consider the case where k = 2. Let x ∈ (1/2, 1].

Then x− 1/2 ∈ (0, 1/2] and x− 1 ∈ (−1/2, 0]. Hence

y(x) = y′(x− 1/2) + y(x− 1) = h′(x− 1/2) + h(x− 1), x ∈ (1/2, 1]. (2.17)

The left hand limit of y at x = 1/2 is calculated as follows from the given initial function h:

lim
x→ 1

2−
y(x) = lim

x→ 1
2−
h(x) = h(1/2). (2.18)

By (2.17), We have

lim
x→ 1

2 +
y(x) = lim

x→ 1
2 +
h′(x− 1/2) + h(x− 1) = h′(0) + h(−1/2). (2.19)

By using (2.18) and (2.19), using the condition given in (2.16) as a bridge, we get

lim
x→ 1

2−
y(x) = h(1/2) = h′(0) + h(−1/2) = lim

x→ 1
2 +
y(x). (2.20)

Equation (2.20) establishes continuity of y at x = 1/2. Using the given condition on h, we calculate the right

derivative at x = 1/2 as

lim
x→ 1

2 +

y(x)− y(1/2)

x− 1/2
= lim
x→ 1

2 +

h′(x− 1/2) + h(x− 1)− h(1/2)

x− 1/2

= lim
x→ 1

2 +
h′′(x− 1/2) + h′(x− 1)

= h′′(0) + h′(−1/2) = h′(1/2). (2.21)

The left hand derivative at x = 1/2 is

lim
x→ 1

2−

y(x)− y(1/2)

x− 1/2
= lim
x→ 1

2−

h(x)− h(1/2)

x− 1/2
= h′(1/2). (2.22)

Therefore, 2.21 and 2.22 imply that y is differentiable at x = 1/2. Because h ∈ c2[−1/2, 1/2] and by

(2.17), y is left continuous at x = 1. Let x ∈ (−1,−1/2]. Then x+ 1/2 ∈ (−1/2, 0] and x+ 1 ∈ (0, 1/2]. We

have

y(x) = y(x+ 1)− y′(x+ 1/2) = h′(x− 1/2) + h(x− 1), x ∈ (−1,−1/2]. (2.23)

We can show that y is differentiable at x = −1/2 and right continuous at x = −1 by using (2.23) and

arguments that are similar to those of x = 1/2 and x = 1. This proves that for the initial function h that

meets the conditions in (2.16) for k = 2, we have a unique solution y ∈ C[−1, 1] that solves the differential-

difference equation (1.2). Assume that the hypothesis holds true for any arbitrary value of k ∈ N. Then we

have to prove that the hypothesis works for k+ 1 as well. Consider the differential-difference equation (1.2)
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with the additional conditions y(x) = h(x), x ∈ [−1/2, 1/2], h ∈ Ck+1[−1/2, 1/2],

h(i)(0) = h(i−1)(1/2)− h(i−1)(−1/2), i = 1, 2...., k, k + 1.
(2.24)

Let us denote h′(x) := g(x), −1 ≤ x ≤ 1/2. Now let us take k of the k + 1 conditions on h

h(i)(0) = h(i−1)(1/2)− h(i−1)(−1/2), i = 2..., k, k + 1,

that is equivalent to

g(i)(0) = g(i−1)(1/2)− g(i−1)(−1/2), i = 1, ..., k.

With these k conditions let us denote by ỹ that satisfy the following conditions
ỹ′(x) = ỹ(x+ 1/2)− ỹ(x− 1/2),

ỹ(x) = g(x), x ∈ [−1/2, 1/2], g ∈ Ck[−1/2, 1/2],

g(i)(0) = g(i−1)(1/2)− g(i−1)(−1/2), i = 1, 2...., k.

(2.25)

Then by the induction assumption, there exists a unique solution ỹk ∈ C(−k/2, k/2) of the differential-

difference equation (1.2). However the solution ỹk is a linear combination of shifts of g, g′, ..., gk−1. Since

g ∈ Ck[−1/2, 1/2], ỹk ∈ C1[−1/2, 1/2]. Therefore by left and right extension

yk+1(x) =


ỹ′k(x+ 1/2) + yk(x+ 1), [−(k + 1)/2,−k/2)

ỹk(x), −k/2 ≤ x ≤ k/2

ỹ′k(x− 1/2) + yk(x− 1) (k/2, (k + 1)/2].

(2.26)

Now we have to prove that yk+1 is differentiable at x = ±k/2 and left continuous at x = (k+ 1)/2 and right

continuous at x = −(k + 1)/2 . For continuity at x = k/2

lim
x→ k

2−
yk+1(x) = lim

x→ 1
2−
yk(x) = yk(k/2). (2.27)

lim
x→ k

2 +
yk+1(x) = lim

x→ k
2 +
y′k(x− 1/2) + yk(x− 1) = y′k(k/2− 1/2) + yk(k/2− 1)

= yk(k/2)− yk(k/2− 1) + yk(k/2− 1) = yk(k/2) (2.28)

Hence, by(2.27) and(2.28), continuity at x = k/2 is proved. That of x = −k/2 is proved similarly. since

yk ∈ C1[−k/2, k/2] the left hand side derivative of y[k + 1] at x = k/2 is y′k(k/2).

lim
x→ k

2 +

yk+1(x)− yk+1(k/2)

x− k/2
= lim
x→ k

2 +

y′k(x− 1/2) + yk(x− 1)− yk(k/2)

x− k/2

= lim
x→ 1

2 +
y′′k (x− 1/2) + y′k(x− 1)

= y′k(k/2)− y′k(k/2− 1) + y′k(k/2− 1 = y′k(k/2). (2.29)

Since yk ∈ C1 is yk+1 is continuous on [−(k + 1)/2, (k + 1)/2].
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Theorem 2.15. Consider the differential-difference equation (1.2) with additional conditions y(x) = h(x), x ∈ [−1/2, 1/2], h ∈ C∞[−1/2, 1/2],

h(i)(0) = h(i−1)(1/2)− h(i−1)(−1/2), i ∈ N.
(2.30)

Then there exist a unique solution y ∈ C∞(R) of the differential-difference equation.

Proof. For mathematical necessity let us consider the restrictions the initial function h ash(x)|(−1/2,0] := y−1(x)

h(x)|(0,1/2] := y0(x).
(2.31)

By applying the operator E−1/2 to the differential-difference equation in 1.2 and rearranging, we get

y(x) = y(x− 1) + y′(x− 1/2), x ∈ R. (2.32)

Let x ∈ (1/2, 1]. Then x− 1 ∈ (−1/2, 0], and x− 1/2 ∈ (0, 1/2]. Accordingly, by (2.31) and (2.32)

y(x) = y−1(x− 1) + y′0(x− 1/2) := y1(x), x ∈ (1/2, 1]. (2.33)

Thus we have calculated the value y on a new interval (1/2, 1]. Let us denote by yn the value of y obtained

on the interval (n/2, (n+ 1)/2], n ∈ N. Then we have the recurrence relation

yn(x) = y′n−1(x− 1/2) + yn−2(x− 1) = E−1/2Dyn−1(x) + E−1yn−2(x),

which yields a difference equation on continuous space and with operator coefficients

yn(x)− E−1/2Dyn−1(x) + E−1yn−2(x) = 0. (2.34)

The characteristic equation of the difference equation (2.34) is given by

λ2 − λE−1/2D + E−1 = 0, (2.35)

and the roots of the characteristic equation are given by

λ = λ1 = E−1/2Φ(D), λ = λ2 = E−1/2Ψ(D),

where

Φ(D) =
D +

√
D2 + 4

2
, Ψ(D) =

D −
√
D2 + 4

2
. (2.36)

For arbitrary function A and B, the general solution of (2.34) takes the form

yn(x) = E−n/2Φn(D)A(x) + E−n/2Ψn(D)B(x). (2.37)

The specific values of A and B for the current initial value problem are determined by the given initial
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functions y−1 and y0 as

A(x) =
E1/2Ψ−1y0(x)− y−1(x)√

D2 + 4
, B(x) =

y−1(x)− E1/2Φ−1y0(x)√
D2 + 4

. (2.38)

Replacing the values of A(x) and B(x) written in (2.38) into (2.37) and then rearranging yields

yn(x) =
E−(n+1)/2

√
D2 + 4

[Φn(D)−Ψn(D)]y−1(x)− E−n/2√
D2 + 4

[Φn+1(D)−Ψn+1(D)]y0(x). (2.39)

By applying the operator E1/2 to the differential-difference equation in 1.2 and rearranging, we get

y(x) = y(x+ 1)− y′(x+ 1/2), x ∈ R. (2.40)

Let x ∈ (−1,−1/2]. Then x+ 1 ∈ (0, 1/2], and x+ 1/2 ∈ (−1/2, 0]. Accordingly, by (2.31) and (2.40)

y(x) = y0(x+ 1)− y′−1(x+ 1/2) := y−2(x), x ∈ (−1,−1/2]. (2.41)

Thus we could calculate y on a new interval (−1,−1/2]. Let y−n be the calculated value of y defined on the

interval (−n/2, (1− n)/2], n ∈ N. We get the general recurrence relation

y−n(x) = y2−n(x+ 1)− y′1−n(x+ 1/2) = Ey2−n(x)−DE1/2y1−n(x),

which yields a second order difference equation on continuous space and with operator coefficients

Ey2−n(x)− E1/2Dy1−n(x)− y−n(x) = 0. (2.42)

The characteristic equation for (2.42) is given by

Eλ2 − E1/2Dλ− 1 = 0. (2.43)

The roots of the characteristic equation (2.43) are given by

λ = λ1 = E1/2Φ(D), λ = λ2 = E1/2Ψ(D),

where Φ(D) and Ψ(D) are as defined in (2.36). In a similar procedure that led us to (2.39), we obtain

y−n(x) =
E(n−1)/2

√
D2 + 4

[Φn(D)−Ψn(D)]y−1(x) +
En/2√
D2 + 4

[Φn−1(D)−Ψn−1(D)]y0(x). (2.44)

Combining (2.39) and (2.44), we get the solution

y(x) =

∞∑
n=−∞

yn(x)χ(n/2,(1+n)/2](x). (2.45)

Now we proceed to the proof of uniqueness of the solution given in (2.45). Suppose that y, ỹ are solutions

of initial value problem for differential-difference equation. From the given initial condition, y(x) = ỹ(x)

on the interval [−1/2, 1/2]. Consequently, yi = ỹi, i = −1, 0 by (2.31). We follow by induction to prove

yi = ỹi, i ∈ {−1, 0} ∪ N. Suppose that yi = ỹi for some i = k, k + 1, k = −1, 0, 1, ..., where yi is the part of
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the solution defined on the interval (i/2, (i+ 1)/2], i = −1, 0, .... Then by forward extension relation (2.32),

we get yk+2 = ỹk+2. A similar argument follows for the backward extension. So yi(x) = ỹi(x) on R. This

completes the proof of the theorem.

Remark 2.16. In the proof of Theorem 2.15, we are not interested in the operational definition of the operators

Φ and Ψ which involve some square roots. However, for every n ∈ N, Φn−Ψn√
D2+4

is a polynomial (radical free)

in D which has a usual definition, whereas Φ0 = Ψ0 = I is the identity operator so that Φ0 −Ψ0 is the zero

map. Indeed,

Φn(D)−Ψn(D) =

(
D +

√
D2 + 4

2

)n
−

(
D −

√
D2 + 4

2

)n

=
1

2n

n∑
s=0

(
n

s

)
Dn−s(D2 + 4)s/2 − 1

2n

n∑
s=0

(−1)s
(
n

s

)
Dn−s(D2 + 4)s/2

=
1

2n

n∑
s=0

(1 + (−1)s)

(
n

s

)
Dn−s(D2 + 4)s/2

=
1

2n−1

bn−1
2 c∑

k=0

(
n

2k + 1

)
Dn−2k−1(D2 + 4)k

√
D2 + 4

The terms with even index s vanish. Because in that case 1 + (−1)1+s = 0. Therefore,

Φn(D)−Ψn(D)√
D2 + 4

=
1

2n−1

bn−1
2 c∑

k=0

(
n

2k + 1

)
Dn−2k−1(D2 + 4)k. (2.46)

Remark 2.17. The condition that the initial function h ∈ C∞[−1/2, 1/2] alone does not guarantee the

existence solution y. That is why we include additional condition hi(0) = hi−1(1/2) − hi−1(−1/2), i =

1, 2, ..., k. We may define initial function h satisfying this additional condition as admissible initial data. For

example, if h(x) = ex, x ∈ [−1/2, 1/2], then y(x) := y1(x) = ex(e−1 + e−1/2), x ∈ (1/2, 1], showing that the

solution is discontinuous at x = 1/2. Hence h(x) = ex is not admissible initial data. On the other hand, if

we select the initial function h(x) = x2, x ∈ [−1/2, 1/2], then y = (x) := y1(x) = x2, x ∈ [−1/2, 1/2]. In

fact, in this case y(x) = x2, x ∈ R, which is a smooth function is an admissible initial data as well.

3 Discussions of the results

This paper discusses the differential-difference equations (1.2) as an alternative mathematical model of the

classical mixing problem of fluid flow. Because the classical model is usually linear differential equation, the

solution techniques are more obvious. Here, we established the existence of solutions for the differential-

difference equation using different methods. In this model, we assumed that y(x) to be the amount of a

solute dissolved in the unit volume at an instant x. It is customary to use t for time, and x for spatial

variable, for physical interpretation. Thus we may think x to be time. In the subsection where we applied

Fourier transform method, we assumed x as a spacial variable on R = (−∞∞).

Furthermore, the current problem is interpreted as finding all plane curves y = f(x) where the slope of

the chord connecting two points (x− 1/2, y(x− 1/2) and (x+ 1/2, y(x+ 1/2) on the curve is always equal

to the slope of the tangent line at the point with mid-point abscissa. Because the [x− 1/2, x+ 1/2] is a unit

interval, the difference y(x+ 2/2)− y(x− 1/2) is just the chord’s slope.
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As regards the solutions of the differential-difference equation (1.2), by inspection and consideration of the

properties of centred difference and the derivative, we may observe that constant functions, linear functions,

and quadratic functions are solutions of the differential-difference equation (1.2). These solutions fall into

the class of analytic functions. Considering Taylor’s series expansion, we could reach this conclusion. As the

first few terms, including the constant term, are removed from the equation, the terms involving x, and x2

can have arbitrary coefficients.

However, there may exist further solutions that are the outcome of the infinite system of linear equations

that are established by Taylor’s series method. We have shown, by Fourier transform methods, the existence

of some other solutions.

However it remains a question whether the solutions that were obtained by Fourier transform methods

are the possible solutions that would be obtained from Taylor’s series. The other component of the current

paper is the initial value problem for the differential-difference equation (1.2). The interval of existence of

solutions for the initial value problem for the differential difference equation 1.2 depends on the order of

smoothness of the initial data. In general, we get a unique solution on the existence interval, [−k/2, k/2] for

the initial data y0 ∈ Ck[−1/2, 1/2). The continuation of this solution requires a set of k additional conditions

given in (2.24) are satisfied by y0. Therefore smoothness of the initial function y0 alone does not guarantee

the continuity of the solution.

4 Conclusions and Possible Future Works

In this paper we have discussed some kind of linear differential-difference equation on continuous space, its

solution techniques, including its initial value problem. The explicit closed form solution of the initial value

problem is formulated. There may be a wider class of differential-difference equation,Dy(x) = g(y, Ly) which

we may name differential-difference equation nonlinear in the difference part, and Ly(x) = f(y,Dy(x)) which

we may name differential-difference equation nonlinear in the differential part. This types of problems may

be studied without or with some given initial conditions. Some real life application in science and engineering

may be incorporated.
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