On commuting d-tuples of m-expansive operators

B.P. Duggal

Abstract

Given a commuting d-tuple \mathbb{A} in $B(\mathcal{H})^{d}$, if \mathbb{A} is $2 m$-expansive for some positive integer m, then \mathbb{A} is $(2 m-1)$-expansive; \mathbb{A} is $2 m$-expansive and n-expansive for some integer $n>2 m$ implies \mathbb{A} is t-expansive for all $2 m-1 \leq t \leq n$. Commuting products of commuting d-tuples of expansive operators are considered.

1. Introduction

Let $B(\mathcal{H})$ denote the algebra of operators, i.e. bounded linear transformations, on an infinite dimensional complex Hilbert space \mathcal{H} (with inner product $\langle.,$.$\rangle) into itself,$ and let $B(\mathcal{H})^{d}$ denote the product of d copies of $B(\mathcal{H})$ for some integer $d \geq 1$. For operators $A, B \in B(\mathcal{H})$, let L_{A} and $R_{B} \in B(B(\mathcal{H}))$ denote, respectively, the operators $L_{A}(X)=A X$ and $R_{B}(X)=X B$ of left multiplication by A and right multiplication by B. An operator $A \in B(\mathcal{H})$ is m-expansive for some positive integer m, A is m expansive, if

$$
\begin{aligned}
\triangle_{A^{*}, A}^{m}(I) & =\left(I-L_{A^{*}} R_{A}\right)^{m}(I) \\
& =\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} L_{A^{*}}^{j} R_{A}^{j}\right)(I) \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} A^{* j} A^{j} \\
& \leq 0
\end{aligned}
$$

$[8,9,4,10]$. Considered as a generalisation of m-isometric operators A

$$
\triangle_{A^{*}, A}^{m}(I)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} A^{* j} A^{j}=0
$$

$[1,5], m$-expansive operators share some (but by no means all) of the structural properties of m-isometric operators [4]. Following [6], see also [2, 10], a generalisation of m expansive operators to commuting d-tuples $\mathbb{A} \in B(\mathcal{H})^{d}$, i.e. d-tuples $\mathbb{A}=\left(A_{1}, \cdots, A_{d}\right)$ such that $\left[A_{i}, A_{j}\right]=A_{i} A_{j}-A_{j} A_{i}=0$ for all $1 \leq i, j \leq d$, is obtained as follows: a

[^0]commuting d-tuple $\mathbb{A}=\left(A_{1}, \cdots, A_{d}\right)$ is m-expansive if
\[

$$
\begin{aligned}
\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(I) & =\left(I-\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{m}(I) \\
& =\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{j}\right)(I) \\
& \leq 0
\end{aligned}
$$
\]

where

$$
\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{j}(X)=\left(\sum_{|\alpha|=j} \frac{j!}{\alpha!} \mathbb{L}_{\mathbb{A}^{*}}^{\alpha} \mathbb{R}_{\mathbb{A}}^{\alpha}\right)(X)=\left(\sum_{i=1}^{d} L_{A_{i}^{*}} R_{A_{i}}\right)^{j}(X)
$$

for all integers $j \geq 0$ and operators $X \in B(\mathcal{X})$, and

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{d}\right), \alpha_{i} \geq 0 \text { for all } 1 \leq i \leq d,|\alpha|=\sum_{i=1}^{d} \alpha_{i}, \text { and } \alpha!=\Pi_{i=1}^{d} \alpha_{i}!.
$$

Commuting d-tuples \mathbb{A} fail to satisfy many an m-isometric property satisfied by single linear operators [6]. Furthermore, even if a commuting m-tuple satisfies an m isometric property, the property may fail the m-expansive test. For example, $\mathbb{A} \in m$ isometric implies $\mathbb{A} \in t$-isometric for all integers $t \geq m$. This fails for m-expansive A:

$$
\begin{aligned}
\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m+1}(I) & =\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(I)-\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right) \triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(I) \\
& =\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(I)-\sum_{i=1}^{d}\left(A_{i}^{*}\left(\triangle_{\mathbb{A}^{8}, \mathbb{A}}^{m}(I)\right) A_{i}\right),
\end{aligned}
$$

and the hypothesis $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(I) \leq 0$ fails in general to guarantee $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m+1}(I) \leq 0$, even for the case in which $d=1$ and $A \in B(\mathcal{H})$. For example, if $\mathcal{H}=\ell^{2}\left(\mathbb{N}_{0}\right)$ with an orthonormal basis $\left\{e_{n}\right\}_{n=0}^{\infty}$ and A_{α} is the weighted shift $A_{\alpha} e_{n}=\alpha e_{n+1}$ for some real $\alpha>1$, then $\triangle_{A_{\alpha}^{*}, A_{\alpha}}^{m}(I)=\left(1-\alpha^{2}\right)^{m}$ and A_{α} is m-expansive for $m=2 n+1$, but not m-expansive for $m=2 n$, for all positive integers n.

Recall that $\mathbb{A} \in B(\mathcal{H})^{d}$ is m-hyperexpansive if it is t-expansive for all $1 \leq t \leq m$ $[7,9]$. It is well known that 2-expansive operators are 2-hyperexpansive [10]; again, if an operator $A \in B(\mathcal{H})$ is both 2 -expansive and m-expansive for an integer $m>2$, then A is m-hyperexpansive [4]. This paper proves that commuting d-tuples share this property. It is seen that, just as for single linear operators, \mathbb{A} is $2 m$-expansive implies \mathbb{A} is $(2 m-1)$-expansive. Commuting products property A is m_{1}-isometric and B is m_{2}-isometric, where A and B commute, implies $A B$ is $\left(m_{1}+m_{2}-1\right)$-isometric $[3,5]$ does not extend to products of commuting expansive operators [6]: we prove a sufficient condition, in the spirit of results from [4], for the (suitably defined) product $\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}, \mathbb{A}$ is m_{1}-expansive and \mathbb{B} is m_{2}-expansive, to be $\left(m_{1}+m_{2}-1\right)$-expansive. The arguments we use to prove these results have their roots in the arguments used in papers of the ilk of $[4,5,6]$, and depend upon a juducious use of the algebraic properties of the left/right multiplication operators.

2. Results

Throughout the following, the d-tuple $\mathbb{A} \in B(\mathcal{H})^{d}$ will be defined by $\mathbb{A}=\left(A_{1}, \cdots, A_{d}\right)$; the d-tuple \mathbb{A} is said to be a commuting d-tuple if $\left[A_{i}, A_{j}\right]=A_{i} A_{j}-A_{j} A_{i}=0$ for all $1 \leq i, j \leq d$. The d-tuples $\mathbb{A}, \mathbb{B}=\left(B_{1}, \cdots, B_{d}\right)$ are said to commute, $[\mathbb{A}, \mathbb{B}]=0$, if $\left[A_{i}, B_{j}\right]=0$ for all $1 \leq i, j \leq d$. Observe that if $X \in B(\mathcal{H})$ is a positive operator, $X \geq 0$, then, for all $x \in \mathcal{H}$,

$$
\begin{aligned}
\left\langle\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)(X) x, x\right\rangle & =\left\langle\left(\sum_{i=1}^{d} L_{A_{i}^{*}} R_{A_{i}}\right)(X) x, x\right\rangle \\
& =\sum_{i=1}^{d}\left\langle A_{i}^{*} X A_{i} x, x\right\rangle \\
& =\sum_{i=1}^{d}\left\langle X A_{i} x, A_{i} x\right\rangle \\
& \geq 0
\end{aligned}
$$

i.e., if $X \in B(\mathcal{H})$ is a positive operator, then $\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)(X)$ is a positive operator. In particular:

Lemma 2.1 Given operators $B, C \in B(\mathcal{H})$ and an operator $\mathbb{A} \in B(\mathcal{H})^{d}$, if $B \leq C$, then $\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)(B) \leq\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)(C)$.

We say in the following that an operator $\mathbb{A} \in B(\mathcal{H})^{d}$ is (m, X)-expansive for some operator $X \in B(\mathcal{H})$ if $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \leq 0$. Let $\nabla_{\mathbb{A}^{*}, \mathbb{A}}$ be the operator

$$
\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)=\left(\mathbb{L}_{\mathbb{A}^{*}} R_{\mathbb{A}}-I\right)(X)=-\triangle_{\mathbb{A}^{*}, \mathbb{A}}(X), X \in B(\mathcal{H})
$$

The following theorem says that if an $\mathbb{A} \in B(\mathcal{H})^{d}$ is both 2-expansive and m-expansive for an integer $m>2$, then it is t-expansive for all $1 \leq t \leq m$.

Theorem 2.2 If $\mathbb{A} \in B(\mathcal{H})^{d}$ is both $(2, X)$-expansive and (m, X) - expansive for some operator $X \in B(\mathcal{H})$ and an integer $m>2$, then \mathbb{A} is (m, X)-hyperexpansive.

Proof. The proof proceeds in three steps, stated below as claims.

Claim I: $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{2}(X) \leq 0$ implies $\triangle_{\mathbb{A}^{*}, \mathbb{A}}(X) \leq 0$.
If \mathbb{A} is $(2, X)$-expansive, then

$$
\begin{aligned}
& \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{2}(X)=\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{2}(X)=\left(\sum_{j=0}^{2}(-1)^{j}\binom{2}{j}\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{B}}\right)^{j}\right)(X) \\
= & \left(\sum_{j=0}^{2}(-1)^{j}\binom{2}{j}\left(\sum_{i=1}^{d} L_{A_{i}^{*}} R_{A_{i}}\right)^{j}\right)(X) \leq 0 \\
\Longleftrightarrow & X-2\left(\sum_{i=1}^{d} L_{A_{i}^{*}} R_{A_{i}}\right)(X)+\left(\sum_{i=1}^{d} L_{A_{i}^{*}} R_{A_{i}}\right)^{2}(X) \leq 0 \\
\Longleftrightarrow & \left(\sum_{i=1}^{d} L_{A_{i}^{*}} R_{A_{i}}\right)^{2}(X)-2 \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)-X \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftrightarrow\left(\sum_{i=1}^{d} L_{A_{i}^{*}} R_{A_{i}}\right)^{2}(X) \leq 2 \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)+X \\
& \Longleftrightarrow\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{2}(X) \leq 2 \nabla_{\mathbb{A}^{*}, \mathbb{A}^{(}}(X)+X \\
& \Longrightarrow\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}^{\prime}}\right)^{3}(X) \leq 2\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right) \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)+\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)(X)=3 \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)+X
\end{aligned}
$$

(see Lemma 2.1). Repeating the argument, we have

$$
\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n}(X) \leq n \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)+X,
$$

equivalently,

$$
\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) \geq \frac{1}{n}\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n}(X)-\frac{1}{n} X .
$$

Letting $n \longrightarrow \infty$, this implies

$$
\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) \geq 0, \text { equivalently } \triangle_{\mathbb{A}^{*}, \mathbb{A}}(X) \leq 0
$$

(Thus, \mathbb{A} is $(2, X)$-expansive if and only if it is $(2, X)$-hyperexpansive.)
Claim II: the sequence $\left\{\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n} \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right\}$ converges to an operator $Q \geq 0$.
The hypothesis \mathbb{A} is $(2, X)$-expansive implies also that

$$
\begin{aligned}
& 0 \geq \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{2}(X)=\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}-I\right)^{2}(X)=\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)\left(\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right)-\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) \\
& \Longleftrightarrow\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)\left(\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right) \leq \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) \\
& \Longrightarrow\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{2}\left(\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right) \leq\left(\mathbb{L}_{A^{*}} * \mathbb{R}_{\mathbb{A}}\right)\left(\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right) \leq \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) \\
& \Longrightarrow\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n}\left(\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right) \leq\left(\mathbb{L}_{A^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n-1}\left(\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right) \leq \cdots \leq \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)
\end{aligned}
$$

for all positive integers n. Thus $\left\{\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n}\left(\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right)\right\}$ is a bounded below decreasing sequence of non-negative operators. (Recall from the proof of Claim I that $\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) \geq$ 0.) Consequently, the sequence converges to a positive operator $Q \geq 0$.

Claim III: $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{2}(X) \leq 0$ and $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \leq 0$ for some integer $m>2$ implies $\triangle_{\mathbb{A}^{*}, \mathbb{A}^{2}}^{m-1}(X) \leq 0$.

If $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \leq 0$ for some integer $m>2$, then

$$
\begin{aligned}
& \triangle_{\mathbb{A}^{*}, \mathbb{A}^{(}}^{m}(X) \leq 0 \Longleftrightarrow \triangle_{\mathbb{A}^{*}, \mathbb{A}^{(}}^{m-1}(X) \leq\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}^{A}}\right) \triangle_{\mathbb{A}^{*}, \mathbb{A}^{(}}^{m-1}(X) \\
& \Longrightarrow \triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \leq\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right) \triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \leq\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{2} \triangle_{\mathbb{A}^{*}, \mathbb{A}^{\prime}}^{m-1}(X) \\
& \Longrightarrow \quad \triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \leq\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right) \triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \leq \cdots \leq\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n} \triangle_{\mathbb{A}^{*}, \mathbb{A}^{(}}^{m-1}(X)
\end{aligned}
$$

for all positive integers n. Since

$$
\begin{aligned}
& \left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n} \triangle_{\mathbb{A}^{*}, \mathbb{A}^{m}}^{m-1}(X)=\triangle_{\mathbb{A}^{*}, \mathbb{A}^{2}}^{m-2}\left(\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}^{\prime}}\right)^{n} \triangle_{\mathbb{A}^{*}, \mathbb{A}}(X)\right) \\
& =-\triangle_{\mathbb{A}^{*}, \mathbb{A}^{*}}^{m-2}\left(\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n} \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right) \\
& =-\sum_{j=0}^{m-2}(-1)^{j}\binom{m-2}{j}\left(\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n+j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right)
\end{aligned}
$$

implies

$$
\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \leq-\sum_{j=0}^{m-2}(-1)^{j}\binom{m-2}{j}\left(\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n+j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right)
$$

we have

$$
\begin{aligned}
\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) & \leq \lim _{n \rightarrow \infty}\left(-\sum_{j=0}^{m-2}(-1)^{j}\binom{m-2}{j}\left(\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n+j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right)\right) \\
& =-\sum_{j=0}^{m-2}(-1)^{j}\binom{m-2}{j} \lim _{n \rightarrow \infty}\left(\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n+j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}(X)\right) \\
& =\sum_{j=0}^{m-2}(-1)^{j+1}\binom{m-2}{j} Q=0 .
\end{aligned}
$$

Thus

$$
\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \leq 0
$$

Repeating the argument we eventually have that $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{t}(X) \leq 0$ for all $2 \leq t \leq m$. Hence \mathbb{A} is (t, X)-expansive for all $1 \leq t \leq m$.

It is known, see [6], that if an operator $A \in B(\mathcal{H})$ is m-expansive for an even positive integer m, then it is $(m-1)$-expansive. This extends to commuting operator tuples \mathbb{A}. (Observe that the argument of the proof of Theorem 2.2, Claim III, which says that \mathbb{A} is (m, X)-expansive implies \mathbb{A} is $(m-1, X))$-expansive for all positive integers m depends in an essential way upon our hypothesis that \mathbb{A} is ($2, X$)-expansive.)

Theorem 2.3 (i) If $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \leq 0$ for some operator $X \in B(\mathcal{H})$ and an even positive integer m, then $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \leq 0$.
(ii) If $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \geq 0$ for some operator $X \in B(\mathcal{H})$ and an odd positive integer m, then $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \geq 0$.

Proof. The identity

$$
(a-1)^{m}=a^{m}-\sum_{j=0}^{m}\binom{m}{j}(a-1)^{j}
$$

implies

$$
\begin{aligned}
\nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) & =\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}-I\right)^{m}(X)=\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{m}(X)-\left(\sum_{j=0}^{m}\binom{m}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j}\right)(X) \\
& =(-1)^{m} \triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X)
\end{aligned}
$$

Let $\nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \leq 0$. Since

$$
\nabla_{\mathbb{A}^{*}, \mathbb{A}^{1}}^{j}(Z)=\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)\left(\nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j-1}(Z)\right)-\nabla_{\mathbb{A}^{*}, \mathbb{A}^{2}}^{j-1}(Z)
$$

for all $Z \in B(\mathcal{H})$ and integers $j \geq 1$,

$$
\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right) \sum_{j=0}^{m-1}\binom{m}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{m-1}\binom{m}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j+1}+\sum_{j=0}^{m-1}\binom{m}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j} \\
& =\binom{m}{m-1} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m}+\left(\sum_{j=0}^{m-2}\binom{m}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j+1}+\sum_{j=0}^{m-1}\binom{m}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j}\right) \\
& =\binom{m}{m-1} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m}+\sum_{j=0}^{m-1}\binom{m+1}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{m+1}(X) & \leq\binom{ m}{m-1} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X)+\sum_{j=0}^{m-1}\binom{m+1}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X) \\
& \leq \sum_{j=0}^{m-1}\binom{m+1}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X) \\
& =\binom{m+1}{m-1} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X)+\sum_{j=0}^{m-2}\binom{m+1}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X) .
\end{aligned}
$$

An induction argument now proves that

$$
\begin{equation*}
\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n}(X) \leq\binom{ n}{m-1} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X)+\sum_{j=0}^{m-2}\binom{n}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X) \tag{1}
\end{equation*}
$$

for all $n \geq m$.
(i). If m is even, then $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X)=\nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X)$ and inequality (1) implies

$$
\frac{1}{\binom{n}{m-1}}\left[\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{n}(X)-\sum_{j=0}^{m-2}\binom{n}{j} \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X)\right] \leq \nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X)
$$

Letting $n \longrightarrow \infty$, and observing that $\lim _{n \rightarrow \infty} \frac{\binom{n}{j}}{\binom{n}{m-1}}=0$ for all $0 \leq j \leq m-2$, we have

$$
\nabla_{\mathbb{A}^{*}, \mathbb{A}^{2}}^{m-1}(X) \geq 0
$$

This implies $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \leq 0$.
(ii). If m is odd, then $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \geq 0$ is equivalent to $\nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \leq 0$, the argument above applies and we conclude that $\nabla_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \geq 0$. Since $m-1$ is even, the proof is complete.

Products of commuting d-tuples. The product $\mathbb{A B}$ of d-tuples $\mathbb{A}=\left(A_{1}, \cdots, A_{d}\right)$ and $\mathbb{B}=\left(B_{1}, \cdots, B_{d}\right)$ is the d^{2}-tuple

$$
\mathbb{A B}=\left(A_{1} B_{1}, \cdots, A_{1} B_{d}, A_{2} B_{1}, \cdots, A_{2} B_{d}, \cdots, A_{d} B_{1}, \cdots, A_{d} B_{d}\right)
$$

Given commuting operators $S, T \in B(\mathcal{H}), \triangle_{S^{*}, S}^{m}(I)=\triangle_{T^{*}, T}^{n}(I)=0$ implies $\triangle_{S^{*} T^{*}, S T}^{m+n-1}(I)=$ $0[3,5]$. This does not extend to expansive operators $S, T \in B(\mathcal{H})$ (i.e., $[S, T]=0$, $\triangle_{S^{*}, S}^{m}(I) \leq 0$ and $\triangle_{T^{*}, T}^{n}(I) \leq 0$ does not imply $\triangle_{S^{*} T^{*}, S T}^{m+n-1}(I) \leq 0$ - see for example [4, Example 2.5(ii)]). Additional hypothses are required. Taking a cue from [4, Page 164], we say in the following that:
a sequence $\left\{X_{j}\right\}_{j=r_{1}}^{r_{2}}$ is a partial expansive sequence for $\mathbb{B} \in B(\mathcal{H})^{d}$ if $\triangle_{\mathbb{B}^{*}, \mathbb{B}}^{r_{2}-j}\left(X_{j}\right) \leq 0$ for all $r_{1} \leq j \leq r_{2}$.

We are, in the following, interested in sequences of type $X_{j}=X_{j}\left(X, \mathbb{A}^{*}, \mathbb{A}\right)=\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X) \leq$ 0 . Such partial expansive sequences occur naturally, especially for expansive operators \mathbb{A} for which $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X)=0$ (such operators have been called (m, X)-isometric in the literature); see [4, Page 164] for examples involving operators $A \in B(\mathcal{H})$, and, also, Remark 4.6(II) infra.

Theorem 2.4 Given commuting d-tuples $\mathbb{A}, \mathbb{B} \in B(\mathcal{H})^{d}$ such that

$$
[\mathbb{A}, \mathbb{B}]=0, \triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \leq 0 \text { and } \triangle_{\mathbb{B}^{*}, \mathbb{B}}^{n}(X) \leq 0
$$

for some operator $X \in B(\mathcal{H})$, if the sequence $\left\{\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{k}(X)\right\}_{k=m}^{m+n-1}$ is a partial expansive sequence for \mathbb{B} and the sequence $\left\{\triangle_{\mathbb{B}^{*}, \mathbb{B}}^{k}(X)\right\}_{k=0}^{m-1}$ is a partial expansive sequence for \mathbb{A}, then $\triangle_{\mathbb{A}^{*} \mathbb{B}^{*}, \mathbb{A} \mathbb{B}}^{m+n-1}(X) \leq 0$.
Proof. By definition

$$
\begin{aligned}
\triangle_{\mathbb{A}^{*} \mathbb{B}^{*}, \mathbb{A} \mathbb{B}}^{t}(X) & =\left(I-\mathbb{L}_{\mathbb{A}^{*} \mathbb{B}^{*}} * \mathbb{R}_{\mathbb{A} B}\right)^{t}(X)=\left(I-\mathbb{L}_{\mathbb{A}^{*}} \mathbb{L}_{\mathbb{B}^{*}} * \mathbb{R}_{\mathbb{A}} \mathbb{R}_{\mathbb{B}}\right)^{t}(X) \\
& =\left[I-\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)\left(\mathbb{L}_{\mathbb{B}^{*}} * \mathbb{R}_{\mathbb{B}}\right)\right]^{t}(X), \text { since }[\mathbb{A}, \mathbb{B}]=0 \\
& =\left[\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)\left(I-\mathbb{L}_{\mathbb{B}^{*}} * \mathbb{R}_{\mathbb{B}}\right)+\left(I-\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)\right]^{t}(X) \\
& =\sum_{j=0}^{t}\binom{t}{j}\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{t-j} \triangle_{\mathbb{B}^{*}, \mathbb{B}}^{t-j}\left(\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X)\right) \\
& =\sum_{j=0}^{t}\binom{t}{j}\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{t-j} \triangle_{\mathbb{A}^{*}, \mathbb{A}}\left(\triangle_{\mathbb{B}^{*}, \mathbb{B}}^{t-j}(X)\right)
\end{aligned}
$$

By Lemma 2.1, if $Z \leq 0$ for an operator $Z \in B(\mathcal{H})$, then

$$
\left(\mathbb{L}_{A^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{j}(Z)=\left(\sum_{i=1}^{d} L_{A_{i}^{*}} R_{A_{i}}\right)^{j}(Z) \leq 0
$$

for all integers $j \geq 0$. Let $t=m+n-1$. The hypothesis $\left\{\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X)\right\}_{j=m}^{m+n-1}$ is a partial expansive sequence for \mathbb{B} then implies

$$
\triangle_{\mathbb{B}^{*}, \mathbb{B}}^{m+n-1-j}\left(\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X)\right) \leq 0, m \leq j \leq m+n-1
$$

Hence

$$
\begin{aligned}
\triangle_{\mathbb{A}^{*} \mathbb{B}^{*}, \mathbb{A} \mathbb{B}}^{m+n-1}(X) & =\sum_{j=0}^{m+n-1}\binom{m+n-1}{j}\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{m+n-1-j} \triangle_{\mathbb{B}^{*}, \mathbb{B}}^{m+n-j}\left(\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X)\right) \\
& \leq \sum_{j=0}^{m-1}\binom{m+n-1}{j}\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{m+n-1-j} \triangle_{\mathbb{A}^{*}, \mathbb{A}}^{j}\left(\triangle_{\mathbb{B}^{*}, \mathbb{B}}^{m+n-1-j}(X)\right)
\end{aligned}
$$

Considering now the hypothesis that the sequence $\left\{\triangle_{\mathbb{B}^{*}, \mathbb{B}}^{j}(X)\right\}_{j=0}^{m-1}$ is a partial expansive sequence for \mathbb{A}, we have

$$
\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{j}\left(\triangle_{\mathbb{B}^{*}, \mathbb{B}}^{m+n-1-j}(X)\right) \leq 0,0 \leq j \leq m-1
$$

and hence

$$
\triangle_{\mathbb{A}^{*} \mathbb{B}^{*}, \mathbb{A B B}^{m}}^{m+n-1}(X) \leq 0
$$

The hypotheses $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m+n-1}(X) \leq 0$ and $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \leq 0$, as also the hypotheses $\triangle_{\mathbb{B}^{*}, \mathbb{B}}^{m+n-1}(X) \leq$ 0 and $\triangle_{\mathbb{B}^{*}, \mathbb{B}}^{n}(X) \leq 0$, are an integral part of the argument of the proof of Theorem 2.4. We remark that the hypotheses \mathbb{A} is both m and $m+n-1$ expansive does not in general imply \mathbb{A} is r-expansive for all $m \leq r \leq m+n-1$. (Similarly, the hypothesis that \mathbb{B} is both $m+n-1$ and n expansive does not imply \mathbb{B} is r-expansive for all $n \leq r \leq m+n-1$.) Thus, if m is odd, $\mathbb{A}=(a I, \cdots, a I)$ for some positive real number a such that $d a^{2}>1$, then

$$
\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(I)=\sum_{j=0}^{m}\binom{m}{j} d^{j} a^{2 j}=\left(1-d a^{2}\right)^{m} \leq 0
$$

However, \mathbb{A} is not r-expansive for any positive even integer r. The situation for even m, as one might suspect, is very different.

Theorem 2.5 If $\mathbb{A} \in B(\mathcal{H})^{d}$ is (r, X)-expansive for $r=m$ and $r=m+n-1$ for an operator $X \in B(\mathcal{H})$, even positive integer m and an integer $n>1$, then \mathbb{A} is (r, X)-expansive for all $m-1 \leq r \leq m+n-1$.

Proof. A proof of the theorem may be obtained from an argument similar to that used to prove Theorem 2.2: in the following we prove the theorem using a slightly different argument (which makes clear that the essence of the argument of the proof of Theorem 2.2 lies in proving the hyperexpansivity of ($2, X$)-expansive operators).

Define $Y \in B(\mathcal{H})$ by $\triangle_{\mathbb{A} *, \mathbb{A}}^{m-2}(X)=Y$. Then $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{2}(Y)=\nabla_{\mathbb{A}^{*}, \mathbb{A}}^{2}(Y) \leq 0$, and an argument similar to that used to prove inequality (1) (of the proof of Theorem 2.3) shows that

$$
\left(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}\right)^{t}(Y)-t \nabla_{\mathbb{A}^{*}, \mathbb{A}}(Y)-Y \leq 0
$$

for all integers $t \geq 2$. Hence $\nabla_{\mathbb{A}^{*}, \mathbb{A}}(Y) \geq 0$ (equivalently, $\triangle_{\mathbb{A}^{*}, \mathbb{A}}(Y)=\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m-1}(X) \leq 0$). Now if n is even then set $\Delta^{m-1}(X)=Z$ and if n is odd then set $\Delta^{m}(X)=Z$. We have $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{n-1}(Z) \leq 0$ if n is even and $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{n-2}(Z) \leq 0$ if n is odd. In either case $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m+n-2}(X) \leq 0$. Repeating the argument a finite number of times, the result follows

Remark 2.6 (I) In closing. we start with a remark on commuting d-tuples \mathbb{A} such that $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \geq 0$ for some odd positive integer m. (Operators $A \in B(\mathcal{H})$ such that $\triangle_{A^{*}, A}^{m}(I) \geq 0$ have been called m-contractive in the literature [9].) If we let $\nabla_{\mathbb{A}^{*}, \mathbb{A}^{\prime}}^{m-2}(X)=Y$, then $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X) \geq 0$ if and only if $\nabla_{A^{*}, A}^{m}(X)=\nabla_{\mathbb{A}^{*}, \mathbb{A}^{2}}^{2}(Y) \leq 0$. Arguing as in the proof above, this imples $\triangle_{\mathbb{A}^{*}, \mathbb{A}}(Y)=\triangle_{\mathbb{A}^{*}, \mathbb{A}^{2}}^{m-1}(X) \geq 0$. Assume now that $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{n}(X) \geq 0$ for an integer $n>m$. Set $\triangle_{\mathbb{A}, \mathbb{A}}^{m-1}(X)=Z$ if n is odd and $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{m}(X)=Z$ if n is even. Then the preceding argument implies that $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{n-1}(X) \geq 0$. Repeating the argument, we have $\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{t}(X) \geq 0$ for all $m-1 \leq t \leq n$.
(II) If \mathbb{A} is both m-expansive and $(m+n-1)$-expansive for some even positive integer m and integer $n>1$, then the conclusion of Theorem 2.5 implies (trivially) that
$\left\{X_{j}\right\}_{j=m-1}^{m+n-1}=\left\{\triangle_{\mathbb{A}^{*}, \mathbb{A}}^{j}(X)\right\}_{j=m-1}^{m+n-1}$ is a partial expansive sequence for \mathbb{A}. Again, if we let \mathbb{I} denote the identity of $B(\mathcal{H})^{d}$, then $\triangle_{\frac{1}{d} \mathbb{I}^{*}, \frac{1}{d} \mathbb{I}}^{t}\left(X_{j}\right)=\left(1-\frac{1}{d}\right)^{t} X_{j} \leq 0$ for all $m_{1} \leq j \leq m+n-1$ and positive integers t; hence $\left\{X_{j}\right\}_{j=m-1}^{m+n-1}$ is a partial expansive sequence for $\frac{1}{d} \mathbb{I}$.

The author thanks a referee for his very extensive remarks on the original version of the manuscript. His remarks have added a great deal to the clarity of the presentation.

The author reports no conflict of interest.

References

[1] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space I, Integr. Equat. Oper. Theory 21(1995), 383-420.
[2] O.A.M. Sid Ahmed, M.Cho and J.E. Lee, On (m, C)-isometric commuting tuples of operators on a Hilbert space, Res. Math. (2018) 73:51. (doi:10.1007/s00025-018-0810-0)
[3] T. Bermúdez, A. Martinón and J.N. Noda, Products of m-isometries, Linear Alg. Appl. 408(2013) 80-86.
[4] B. P. Duggal and I.H. Kim, On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility, Concr. Oper. 2021; 8: 158-175.
[5] B.P. Duggal and I.H. Kim, Structure of elementary operators defining m-left invertible, m-selfadjoint and related classes of operators, J. Math. Anal. Appl. 495(2021), 124718.
[6] B.P. Duggal and I.H. Kim, Isometric, symmetric and isosymmetric commuting d-tuples of Banach space operators, Results in Mathematics(2023)78:85,25pp(DOI: 10.1007/s00025-023-01855-0). arXiv 2209.13368.
[7] G. Exner, I.B. Jung and C. Li, On k-hyperexpansive operators, J. Math. Anal. Appl. 323(2006), 569-582.
[8] J. Gleason and S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Integr. Equat. Oper. Th. 56(2) (2006), 181-196.
[9] C. Gu, On (m, p)-expansive and (m, p)-contractive operators on Hilbert and Banach spaces, J. Math. Anal. Appl. 426(2015), 893-916.
[10] S. Richter, Invariant subspaces of the Dirichlet shift, J. Reine Agnew. Math. 386(1988), 205-220.
B.P. Duggal,University of Niš, Faculty of Sciences and Mathematics, P.O. Box 224, 18000 Niš, Serbia.
e-mail: bpduggal@yahoo.co.uk

[^0]: AMS(MOS) subject classification (2010). Primary: 47A05, 47A55; Secondary47A11, 47B47.
 Keywords: Banach space, left/right multiplication operator, m-isometric commuting d-tuples operators, products of operators.

