On commuting d-tuples of m-expansive operators

B.P. Duggal

Abstract

Given a commuting d-tuple \mathbb{A} in $B(\mathcal{H})^d$, if \mathbb{A} is 2m-expansive for some positive integer m, then \mathbb{A} is (2m-1)-expansive; \mathbb{A} is 2m-expansive and n-expansive for some integer n>2m implies \mathbb{A} is t-expansive for all $2m-1\leq t\leq n$. Commuting products of commuting d-tuples of expansive operators are considered.

1. Introduction

Let $B(\mathcal{H})$ denote the algebra of operators, i.e. bounded linear transformations, on an infinite dimensional complex Hilbert space \mathcal{H} (with inner product $\langle .,. \rangle$) into itself, and let $B(\mathcal{H})^d$ denote the product of d copies of $B(\mathcal{H})$ for some integer $d \geq 1$. For operators $A, B \in B(\mathcal{H})$, let L_A and $R_B \in B(B(\mathcal{H}))$ denote, respectively, the operators $L_A(X) = AX$ and $R_B(X) = XB$ of left multiplication by A and right multiplication by B. An operator $A \in B(\mathcal{H})$ is m-expansive for some positive integer m, A is m-expansive, if

$$\Delta_{A^*,A}^m(I) = (I - L_{A^*}R_A)^m(I)$$

$$= \left(\sum_{j=0}^m (-1)^j \binom{m}{j} L_{A^*}^j R_A^j\right)(I)$$

$$= \sum_{j=0}^m (-1)^j \binom{m}{j} A^{*j} A^j$$

$$\leq 0$$

[8, 9, 4, 10]. Considered as a generalisation of m-isometric operators A

$$\triangle_{A^*,A}^m(I) = \sum_{j=0}^m (-1)^j \binom{m}{j} A^{*j} A^j = 0$$

[1, 5], m-expansive operators share some (but by no means all) of the structural properties of m-isometric operators [4]. Following [6], see also [2, 10], a generalisation of m-expansive operators to commuting d-tuples $\mathbb{A} \in B(\mathcal{H})^d$, i.e. d-tuples $\mathbb{A} = (A_1, \dots, A_d)$ such that $[A_i, A_j] = A_i A_j - A_j A_i = 0$ for all $1 \leq i, j \leq d$, is obtained as follows: a

AMS(MOS) subject classification (2010). Primary: 47A05, 47A55; Secondary47A11, 47B47.

Keywords: Banach space, left/right multiplication operator, m-isometric commuting d-tuples operators, products of operators.

commuting d-tuple $\mathbb{A} = (A_1, \dots, A_d)$ is m-expansive if

$$\Delta_{\mathbb{A}^*,\mathbb{A}}^m(I) = (I - \mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^m(I)
= \left(\sum_{j=0}^m (-1)^j \binom{m}{j} (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^j\right) (I)
\leq 0,$$

where

$$\left(\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}}\right)^{j}(X) = \left(\sum_{|\alpha|=j} \frac{j!}{\alpha!} \mathbb{L}_{\mathbb{A}^*}^{\alpha} \mathbb{R}_{\mathbb{A}}^{\alpha}\right)(X) = \left(\sum_{i=1}^{d} L_{A_i^*} R_{A_i}\right)^{j}(X),$$

for all integers $j \geq 0$ and operators $X \in B(\mathcal{X})$, and

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d), \ \alpha_i \ge 0 \text{ for all } 1 \le i \le d, \ |\alpha| = \sum_{i=1}^d \alpha_i, \text{ and } \alpha! = \prod_{i=1}^d \alpha_i!.$$

Commuting d-tuples \mathbb{A} fail to satisfy many an m-isometric property satisfied by single linear operators [6]. Furthermore, even if a commuting m-tuple satisfies an m-isometric property, the property may fail the m-expansive test. For example, $\mathbb{A} \in m$ -isometric implies $\mathbb{A} \in t$ -isometric for all integers $t \geq m$. This fails for m-expansive \mathbb{A} :

$$\begin{array}{lcl} \triangle^{m+1}_{\mathbb{A}^*,\mathbb{A}}(I) & = & \triangle^m_{\mathbb{A}^*,\mathbb{A}}(I) - (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}}) \triangle^m_{\mathbb{A}^*,\mathbb{A}}(I) \\ & = & \triangle^m_{\mathbb{A}^*,\mathbb{A}}(I) - \sum_{i=1}^d \left(A_i^* (\triangle^m_{\mathbb{A}^8,\mathbb{A}}(I)) A_i \right), \end{array}$$

and the hypothesis $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(I) \leq 0$ fails in general to guarantee $\triangle_{\mathbb{A}^*,\mathbb{A}}^{m+1}(I) \leq 0$, even for the case in which d=1 and $A \in B(\mathcal{H})$. For example, if $\mathcal{H}=\ell^2(\mathbb{N}_0)$ with an orthonormal basis $\{e_n\}_{n=0}^{\infty}$ and A_{α} is the weighted shift $A_{\alpha}e_n=\alpha e_{n+1}$ for some real $\alpha>1$, then $\triangle_{A_{\alpha}^*,A_{\alpha}}^m(I)=(1-\alpha^2)^m$ and A_{α} is m-expansive for m=2n+1, but not m-expansive for m=2n, for all positive integers n.

Recall that $A \in B(\mathcal{H})^d$ is m-hyperexpansive if it is t-expansive for all $1 \leq t \leq m$ [7, 9]. It is well known that 2-expansive operators are 2-hyperexpansive [10]; again, if an operator $A \in B(\mathcal{H})$ is both 2-expansive and m-expansive for an integer m > 2, then A is m-hyperexpansive [4]. This paper proves that commuting d-tuples share this property. It is seen that, just as for single linear operators, A is 2m-expansive implies A is (2m-1)-expansive. Commuting products property A is m_1 -isometric and B is m_2 -isometric, where A and B commute, implies AB is $(m_1 + m_2 - 1)$ -isometric [3, 5] does not extend to products of commuting expansive operators [6]: we prove a sufficient condition, in the spirit of results from [4], for the (suitably defined) product AB = BA, A is m_1 -expansive and B is m_2 -expansive, to be $(m_1 + m_2 - 1)$ -expansive. The arguments we use to prove these results have their roots in the arguments used in papers of the ilk of [4, 5, 6], and depend upon a juducious use of the algebraic properties of the left/right multiplication operators.

2. Results

Throughout the following, the *d*-tuple $\mathbb{A} \in B(\mathcal{H})^d$ will be defined by $\mathbb{A} = (A_1, \dots, A_d)$; the *d*-tuple \mathbb{A} is said to be a commuting *d*-tuple if $[A_i, A_j] = A_i A_j - A_j A_i = 0$ for all $1 \leq i, j \leq d$. The *d*-tuples $\mathbb{A}, \mathbb{B} = (B_1, \dots, B_d)$ are said to commute, $[\mathbb{A}, \mathbb{B}] = 0$, if $[A_i, B_j] = 0$ for all $1 \leq i, j \leq d$. Observe that if $X \in B(\mathcal{H})$ is a positive operator, $X \geq 0$, then, for all $x \in \mathcal{H}$,

$$\langle (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})(X)x, x \rangle = \left\langle \left(\sum_{i=1}^{d} L_{A_i^*} R_{A_i} \right)(X)x, x \right\rangle$$

$$= \sum_{i=1}^{d} \left\langle A_i^* X A_i x, x \right\rangle$$

$$= \sum_{i=1}^{d} \left\langle X A_i x, A_i x \right\rangle$$

$$\geq 0,$$

i.e., if $X \in B(\mathcal{H})$ is a positive operator, then $(\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})(X)$ is a positive operator. In particular:

Lemma 2.1 Given operators $B, C \in B(\mathcal{H})$ and an operator $A \in B(\mathcal{H})^d$, if $B \leq C$, then $(\mathbb{L}_{A^*} * \mathbb{R}_A)(B) \leq (\mathbb{L}_{A^*} * \mathbb{R}_A)(C)$.

We say in the following that an operator $\mathbb{A} \in B(\mathcal{H})^d$ is (m, X)-expansive for some operator $X \in B(\mathcal{H})$ if $\triangle^m_{\mathbb{A}^*, \mathbb{A}}(X) \leq 0$. Let $\nabla_{\mathbb{A}^*, \mathbb{A}}$ be the operator

$$\nabla_{\mathbb{A}^*,\mathbb{A}}(X) = (\mathbb{L}_{\mathbb{A}^*}R_{\mathbb{A}} - I)(X) = -\triangle_{\mathbb{A}^*,\mathbb{A}}(X), \ X \in B(\mathcal{H}).$$

The following theorem says that if an $\mathbb{A} \in B(\mathcal{H})^d$ is both 2-expansive and m-expansive for an integer m > 2, then it is t-expansive for all $1 \le t \le m$.

Theorem 2.2 If $\mathbb{A} \in B(\mathcal{H})^d$ is both (2, X)- expansive and (m, X)- expansive for some operator $X \in B(\mathcal{H})$ and an integer m > 2, then \mathbb{A} is (m, X)-hyperexpansive.

Proof. The proof proceeds in three steps, stated below as claims.

Claim I: $\triangle^2_{\mathbb{A}^*,\mathbb{A}}(X) \leq 0$ implies $\triangle_{\mathbb{A}^*,\mathbb{A}}(X) \leq 0$.

If \mathbb{A} is (2, X)-expansive, then

$$\nabla_{\mathbb{A}^*,\mathbb{A}}^2(X) = \Delta_{\mathbb{A}^*,\mathbb{A}}^2(X) = \left(\sum_{j=0}^2 (-1)^j \binom{2}{j} (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{B}})^j\right) (X)$$

$$= \left(\sum_{j=0}^2 (-1)^j \binom{2}{j} (\sum_{i=1}^d L_{A_i^*} R_{A_i})^j\right) (X) \le 0$$

$$\iff X - 2(\sum_{i=1}^d L_{A_i^*} R_{A_i}) (X) + (\sum_{i=1}^d L_{A_i^*} R_{A_i})^2 (X) \le 0$$

$$\iff (\sum_{i=1}^d L_{A_i^*} R_{A_i})^2 (X) - 2\nabla_{\mathbb{A}^*,\mathbb{A}}(X) - X \le 0$$

$$\iff (\sum_{i=1}^{d} L_{A_{i}^{*}} R_{A_{i}})^{2}(X) \leq 2\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) + X$$

$$\iff (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}})^{2}(X) \leq 2\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) + X$$

$$\iff (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}})^{3}(X) \leq 2(\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}})\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) + (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}})(X) = 3\nabla_{\mathbb{A}^{*}, \mathbb{A}}(X) + X$$

(see Lemma 2.1). Repeating the argument, we have

$$(\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^n(X) \le n \nabla_{\mathbb{A}^*,\mathbb{A}}(X) + X,$$

equivalently,

$$\nabla_{\mathbb{A}^*,\mathbb{A}}(X) \ge \frac{1}{n} (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^n (X) - \frac{1}{n} X.$$

Letting $n \longrightarrow \infty$, this implies

$$\nabla_{\mathbb{A}^*,\mathbb{A}}(X) \geq 0$$
, equivalently $\triangle_{\mathbb{A}^*,\mathbb{A}}(X) \leq 0$.

(Thus, \mathbb{A} is (2, X)-expansive if and only if it is (2, X)-hyperexpansive.)

Claim II: the sequence $\{(\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^n \nabla_{\mathbb{A}^*,\mathbb{A}}(X)\}$ converges to an operator $Q \geq 0$.

The hypothesis A is (2, X)-expansive implies also that

$$0 \geq \nabla_{\mathbb{A}^{*},\mathbb{A}}^{2}(X) = (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}} - I)^{2}(X) = (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}) (\nabla_{\mathbb{A}^{*},\mathbb{A}}(X)) - \nabla_{\mathbb{A}^{*},\mathbb{A}}(X)$$

$$\iff (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}) (\nabla_{\mathbb{A}^{*},\mathbb{A}}(X)) \leq \nabla_{\mathbb{A}^{*},\mathbb{A}}(X)$$

$$\iff (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}})^{2} (\nabla_{\mathbb{A}^{*},\mathbb{A}}(X)) \leq (\mathbb{L}_{A^{*}} * \mathbb{R}_{\mathbb{A}}) (\nabla_{\mathbb{A}^{*},\mathbb{A}}(X)) \leq \nabla_{\mathbb{A}^{*},\mathbb{A}}(X)$$

$$\cdots$$

$$\iff (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}})^{n} (\nabla_{\mathbb{A}^{*},\mathbb{A}}(X)) \leq (\mathbb{L}_{A^{*}} * \mathbb{R}_{\mathbb{A}})^{n-1} (\nabla_{\mathbb{A}^{*},\mathbb{A}}(X)) \leq \cdots \leq \nabla_{\mathbb{A}^{*},\mathbb{A}}(X)$$

for all positive integers n. Thus $\{(\mathbb{L}_{\mathbb{A}^*}*\mathbb{R}_{\mathbb{A}})^n (\nabla_{\mathbb{A}^*,\mathbb{A}}(X))\}$ is a bounded below decreasing sequence of non-negative operators. (Recall from the proof of **Claim I** that $\nabla_{\mathbb{A}^*,\mathbb{A}}(X) \geq 0$.) Consequently, the sequence converges to a positive operator $Q \geq 0$.

Claim III: $\triangle^2_{\mathbb{A}^*,\mathbb{A}}(X) \leq 0$ and $\triangle^m_{\mathbb{A}^*,\mathbb{A}}(X) \leq 0$ for some integer m>2 implies $\triangle^{m-1}_{\mathbb{A}^*,\mathbb{A}}(X) \leq 0$.

If $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(X) \leq 0$ for some integer m > 2, then

$$\triangle^{m}_{\mathbb{A}^{*},\mathbb{A}}(X) \leq 0 \Longleftrightarrow \triangle^{m-1}_{\mathbb{A}^{*},\mathbb{A}}(X) \leq (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}) \triangle^{m-1}_{\mathbb{A}^{*},\mathbb{A}}(X)$$

$$\Longrightarrow \ \triangle^{m-1}_{\mathbb{A}^{*},\mathbb{A}}(X) \leq (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}) \triangle^{m-1}_{\mathbb{A}^{*},\mathbb{A}}(X) \leq (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}})^{2} \triangle^{m-1}_{\mathbb{A}^{*},\mathbb{A}}(X)$$

$$\cdots$$

$$\Longrightarrow \ \triangle^{m-1}_{\mathbb{A}^{*},\mathbb{A}}(X) \leq (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}}) \triangle^{m-1}_{\mathbb{A}^{*},\mathbb{A}}(X) \leq \cdots \leq (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}})^{n} \triangle^{m-1}_{\mathbb{A}^{*},\mathbb{A}}(X)$$

for all positive integers n. Since

$$\begin{split} (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^n \triangle_{\mathbb{A}^*, \mathbb{A}}^{m-1}(X) &= \Delta_{\mathbb{A}^*, \mathbb{A}}^{m-2} \left((\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^n \triangle_{\mathbb{A}^*, \mathbb{A}}(X) \right) \\ &= -\Delta_{\mathbb{A}^*, \mathbb{A}}^{m-2} \left((\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^n \nabla_{\mathbb{A}^*, \mathbb{A}}(X) \right) \\ &= -\sum_{j=0}^{m-2} (-1)^j \binom{m-2}{j} \left((\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^{n+j} \nabla_{\mathbb{A}^*, \mathbb{A}}(X) \right) \end{aligned}$$

implies

$$\triangle_{\mathbb{A}^*,\mathbb{A}}^{m-1}(X) \le -\sum_{j=0}^{m-2} (-1)^j \binom{m-2}{j} \left((\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^{n+j} \nabla_{\mathbb{A}^*,\mathbb{A}}(X) \right),$$

we have

$$\begin{split} \triangle_{\mathbb{A}^*,\mathbb{A}}^{m-1}(X) & \leq & \lim_{n \to \infty} \left(-\sum_{j=0}^{m-2} (-1)^j \left(\begin{array}{c} m-2 \\ j \end{array} \right) \left((\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^{n+j} \nabla_{\mathbb{A}^*,\mathbb{A}}(X) \right) \right) \\ & = & -\sum_{j=0}^{m-2} (-1)^j \left(\begin{array}{c} m-2 \\ j \end{array} \right) \lim_{n \to \infty} \left((\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^{n+j} \nabla_{\mathbb{A}^*,\mathbb{A}}(X) \right) \\ & = & \sum_{j=0}^{m-2} (-1)^{j+1} \left(\begin{array}{c} m-2 \\ j \end{array} \right) Q = 0. \end{split}$$

Thus

$$\triangle^{m-1}_{\mathbb{A}^*,\mathbb{A}}(X) \le 0,$$

Repeating the argument we eventually have that $\triangle_{\mathbb{A}^*,\mathbb{A}}^t(X) \leq 0$ for all $2 \leq t \leq m$. Hence \mathbb{A} is (t,X)-expansive for all $1 \leq t \leq m$. \square

It is known, see [6], that if an operator $A \in B(\mathcal{H})$ is m-expansive for an even positive integer m, then it is (m-1)-expansive. This extends to commuting operator tuples \mathbb{A} . (Observe that the argument of the proof of Theorem 2.2, **Claim III**, which says that \mathbb{A} is (m, X)-expansive implies \mathbb{A} is (m-1, X))-expansive for all positive integers m depends in an essential way upon our hypothesis that \mathbb{A} is (2, X)-expansive.)

Theorem 2.3 (i) If $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(X) \leq 0$ for some operator $X \in B(\mathcal{H})$ and an even positive integer m, then $\triangle_{\mathbb{A}^*,\mathbb{A}}^{m-1}(X) \leq 0$.

(ii) If $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(X) \geq 0$ for some operator $X \in B(\mathcal{H})$ and an odd positive integer m, then $\triangle_{\mathbb{A}^*,\mathbb{A}}^{m-1}(X) \geq 0$.

Proof. The identity

$$(a-1)^m = a^m - \sum_{j=0}^m \binom{m}{j} (a-1)^j$$

implies

$$\nabla^{m}_{\mathbb{A}^{*},\mathbb{A}}(X) = (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}} - I)^{m}(X) = (\mathbb{L}_{\mathbb{A}^{*}} * \mathbb{R}_{\mathbb{A}})^{m}(X) - \left(\sum_{j=0}^{m} {m \choose j} \nabla^{j}_{\mathbb{A}^{*},\mathbb{A}}\right)(X)$$
$$= (-1)^{m} \triangle^{m}_{\mathbb{A}^{*},\mathbb{A}}(X).$$

Let $\nabla^m_{\mathbb{A}^*,\mathbb{A}}(X) \leq 0$. Since

$$\nabla^j_{\mathbb{A}^*,\mathbb{A}}(Z) = (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})(\nabla^{j-1}_{\mathbb{A}^*,\mathbb{A}}(Z)) - \nabla^{j-1}_{\mathbb{A}^*,\mathbb{A}}(Z),$$

for all $Z \in B(\mathcal{H})$ and integers $j \geq 1$,

$$\left(\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}}\right) \sum_{j=0}^{m-1} \binom{m}{j} \nabla^{j}_{\mathbb{A}^*, \mathbb{A}}$$

11 Jul 2023 06:21:43 PDT 221120-Duggal Version 3 - Submitted to Rocky Mountain J. Math.

$$\begin{split} &= \sum_{j=0}^{m-1} \left(\begin{array}{c} m \\ j \end{array} \right) \nabla_{\mathbb{A}^*,\mathbb{A}}^{j+1} + \sum_{j=0}^{m-1} \left(\begin{array}{c} m \\ j \end{array} \right) \nabla_{\mathbb{A}^*,\mathbb{A}}^{j} \\ &= \left(\begin{array}{c} m \\ m-1 \end{array} \right) \nabla_{\mathbb{A}^*,\mathbb{A}}^{m} + \left(\sum_{j=0}^{m-2} \left(\begin{array}{c} m \\ j \end{array} \right) \nabla_{\mathbb{A}^*,\mathbb{A}}^{j+1} + \sum_{j=0}^{m-1} \left(\begin{array}{c} m \\ j \end{array} \right) \nabla_{\mathbb{A}^*,\mathbb{A}}^{j} \\ &= \left(\begin{array}{c} m \\ m-1 \end{array} \right) \nabla_{\mathbb{A}^*,\mathbb{A}}^{m} + \sum_{j=0}^{m-1} \left(\begin{array}{c} m+1 \\ j \end{array} \right) \nabla_{\mathbb{A}^*,\mathbb{A}}^{j}, \end{split}$$

and hence

$$(\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^{m+1}(X) \leq \binom{m}{m-1} \nabla^m_{\mathbb{A}^*,\mathbb{A}}(X) + \sum_{j=0}^{m-1} \binom{m+1}{j} \nabla^j_{\mathbb{A}^*,\mathbb{A}}(X)$$

$$\leq \sum_{j=0}^{m-1} \binom{m+1}{j} \nabla^j_{\mathbb{A}^*,\mathbb{A}}(X)$$

$$= \binom{m+1}{m-1} \nabla^{m-1}_{\mathbb{A}^*,\mathbb{A}}(X) + \sum_{j=0}^{m-2} \binom{m+1}{j} \nabla^j_{\mathbb{A}^*,\mathbb{A}}(X).$$

An induction argument now proves that

$$(1) \qquad (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^n(X) \le \binom{n}{m-1} \nabla_{\mathbb{A}^*,\mathbb{A}}^{m-1}(X) + \sum_{j=0}^{m-2} \binom{n}{j} \nabla_{\mathbb{A}^*,\mathbb{A}}^{j}(X)$$

for all $n \geq m$.

(i). If m is even, then $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(X) = \nabla_{\mathbb{A}^*,\mathbb{A}}^m(X)$ and inequality (1) implies

$$\frac{1}{\binom{n}{m-1}} \left[(\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^n(X) - \sum_{j=0}^{m-2} \binom{n}{j} \nabla^j_{\mathbb{A}^*,\mathbb{A}}(X) \right] \leq \nabla^{m-1}_{\mathbb{A}^*,\mathbb{A}}(X).$$

Letting $n \longrightarrow \infty$, and observing that $\lim_{n \to \infty} \frac{\binom{n}{j}}{\binom{n}{m-1}} = 0$ for all $0 \le j \le m-2$,

we have

$$\nabla^{m-1}_{\mathbb{A}^*,\mathbb{A}}(X) \ge 0.$$

This implies $\triangle^{m-1}_{\mathbb{A}^*,\mathbb{A}}(X) \leq 0$.

(ii). If m is odd, then $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(X) \geq 0$ is equivalent to $\nabla_{\mathbb{A}^*,\mathbb{A}}^m(X) \leq 0$, the argument above applies and we conclude that $\nabla_{\mathbb{A}^*,\mathbb{A}}^{m-1}(X) \geq 0$. Since m-1 is even, the proof is complete. \square

Products of commuting d-tuples. The product \mathbb{AB} of d-tuples $\mathbb{A} = (A_1, \dots, A_d)$ and $\mathbb{B} = (B_1, \dots, B_d)$ is the d^2 -tuple

$$\mathbb{AB} = (A_1B_1, \cdots, A_1B_d, A_2B_1, \cdots, A_2B_d, \cdots, A_dB_1, \cdots, A_dB_d)$$

Given commuting operators $S,T\in B(\mathcal{H}),$ $\triangle^m_{S^*,S}(I)=\triangle^n_{T^*,T}(I)=0$ implies $\triangle^{m+n-1}_{S^*T^*,ST}(I)=0$ [3, 5]. This does not extend to expansive operators $S,T\in B(\mathcal{H})$ (i.e., [S,T]=0, $\triangle^m_{S^*,S}(I)\leq 0$ and $\triangle^n_{T^*,T}(I)\leq 0$ does not imply $\triangle^{m+n-1}_{S^*T^*,ST}(I)\leq 0$ - see for example [4, Example 2.5(ii)]). Additional hypothses are required. Taking a cue from [4, Page 164], we say in the following that:

a sequence $\{X_j\}_{j=r_1}^{r_2}$ is a partial expansive sequence for $\mathbb{B} \in B(\mathcal{H})^d$ if $\triangle_{\mathbb{B}^*,\mathbb{B}}^{r_2-j}(X_j) \leq 0$ for all $r_1 \leq j \leq r_2$.

We are, in the following, interested in sequences of type $X_j = X_j(X, \mathbb{A}^*, \mathbb{A}) = \triangle_{\mathbb{A}^*, \mathbb{A}}^j(X) \leq 0$. Such partial expansive sequences occur naturally, especially for expansive operators \mathbb{A} for which $\triangle_{\mathbb{A}^*, \mathbb{A}}^m(X) = 0$ (such operators have been called (m, X)-isometric in the literature); see [4, Page 164] for examples involving operators $A \in B(\mathcal{H})$, and, also, Remark 4.6(II) infra.

Theorem 2.4 Given commuting d-tuples $\mathbb{A}, \mathbb{B} \in B(\mathcal{H})^d$ such that

$$[\mathbb{A}, \mathbb{B}] = 0, \ \triangle^m_{\mathbb{A}^*, \mathbb{A}}(X) \leq 0 \text{ and } \triangle^n_{\mathbb{B}^*, \mathbb{B}}(X) \leq 0$$

for some operator $X \in B(\mathcal{H})$, if the sequence $\{\triangle_{\mathbb{A}^*,\mathbb{A}}^k(X)\}_{k=m}^{m+n-1}$ is a partial expansive sequence for \mathbb{B} and the sequence $\{\triangle_{\mathbb{B}^*,\mathbb{B}}^k(X)\}_{k=0}^{m-1}$ is a partial expansive sequence for \mathbb{A} , then $\triangle_{\mathbb{A}^*\mathbb{B}^*,\mathbb{A}\mathbb{B}}^{m+n-1}(X) \leq 0$.

Proof. By definition

$$\Delta_{\mathbb{A}^*\mathbb{B}^*,\mathbb{A}\mathbb{B}}^t(X) = (I - \mathbb{L}_{\mathbb{A}^*\mathbb{B}^*} * \mathbb{R}_{\mathbb{A}\mathbb{B}})^t(X) = (I - \mathbb{L}_{\mathbb{A}^*}\mathbb{L}_{\mathbb{B}^*} * \mathbb{R}_{\mathbb{A}}\mathbb{R}_{\mathbb{B}})^t(X)
= [I - (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})(\mathbb{L}_{\mathbb{B}^*} * \mathbb{R}_{\mathbb{B}})]^t(X), \text{ since } [\mathbb{A}, \mathbb{B}] = 0
= [(\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})(I - \mathbb{L}_{\mathbb{B}^*} * \mathbb{R}_{\mathbb{B}}) + (I - \mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})]^t(X)
= \sum_{j=0}^t \binom{t}{j} (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^{t-j} \Delta_{\mathbb{B}^*,\mathbb{B}}^{t-j} \left(\Delta_{\mathbb{A}^*,\mathbb{A}}^j(X)\right)
= \sum_{j=0}^t \binom{t}{j} (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^{t-j} \Delta_{\mathbb{A}^*,\mathbb{A}}^j \left(\Delta_{\mathbb{B}^*,\mathbb{B}}^{t-j}(X)\right).$$

By Lemma 2.1, if $Z \leq 0$ for an operator $Z \in B(\mathcal{H})$, then

$$(\mathbb{L}_{A^*} * \mathbb{R}_{\mathbb{A}})^j(Z) = \left(\sum_{i=1}^d L_{A_i^*} R_{A_i}\right)^j(Z) \le 0$$

for all integers $j \geq 0$. Let t = m + n - 1. The hypothesis $\{\triangle_{\mathbb{A}^*,\mathbb{A}}^j(X)\}_{j=m}^{m+n-1}$ is a partial expansive sequence for \mathbb{B} then implies

$$\triangle^{m+n-1-j}_{\mathbb{B}^*,\mathbb{B}}\left(\triangle^{j}_{\mathbb{A}^*,\mathbb{A}}(X)\right) \leq 0, \ m \leq j \leq m+n-1.$$

Hence

$$\Delta_{\mathbb{A}^*\mathbb{B}^*,\mathbb{A}\mathbb{B}}^{m+n-1}(X) = \sum_{j=0}^{m+n-1} {m+n-1 \choose j} (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^{m+n-1-j} \Delta_{\mathbb{B}^*,\mathbb{B}}^{m+n-1-j} \left(\Delta_{\mathbb{A}^*,\mathbb{A}}^{j}(X)\right) \\
\leq \sum_{j=0}^{m-1} {m+n-1 \choose j} (\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^{m+n-1-j} \Delta_{\mathbb{A}^*,\mathbb{A}}^{j} \left(\Delta_{\mathbb{B}^*,\mathbb{B}}^{m+n-1-j}(X)\right).$$

Considering now the hypothesis that the sequence $\{\triangle_{\mathbb{B}^*,\mathbb{B}}^j(X)\}_{j=0}^{m-1}$ is a partial expansive sequence for \mathbb{A} , we have

$$\triangle_{\mathbb{A}^*,\mathbb{A}}^j \left(\triangle_{\mathbb{B}^*,\mathbb{B}}^{m+n-1-j}(X) \right) \le 0, \ 0 \le j \le m-1,$$

and hence

$$\triangle_{\mathbb{A}*\mathbb{R}*\mathbb{A}\mathbb{R}}^{m+n-1}(X) \le 0.$$

The hypotheses $\triangle_{\mathbb{A}^*,\mathbb{A}}^{m+n-1}(X) \leq 0$ and $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(X) \leq 0$, as also the hypotheses $\triangle_{\mathbb{B}^*,\mathbb{B}}^{m+n-1}(X) \leq 0$ and $\triangle_{\mathbb{B}^*,\mathbb{B}}^n(X) \leq 0$, are an integral part of the argument of the proof of Theorem 2.4. We remark that the hypotheses \mathbb{A} is both m and m+n-1 expansive does not in general imply \mathbb{A} is r-expansive for all $m \leq r \leq m+n-1$. (Similarly, the hypothesis that \mathbb{B} is both m+n-1 and n expansive does not imply \mathbb{B} is r-expansive for all $n \leq r \leq m+n-1$.) Thus, if m is odd, $\mathbb{A} = (aI, \dots, aI)$ for some positive real number a such that $da^2 > 1$, then

$$\triangle_{\mathbb{A}^*,\mathbb{A}}^m(I) = \sum_{i=0}^m \binom{m}{j} d^j a^{2j} = (1 - da^2)^m \le 0.$$

However, \mathbb{A} is not r-expansive for any positive even integer r. The situation for even m, as one might suspect, is very different.

Theorem 2.5 If $A \in B(\mathcal{H})^d$ is (r, X)-expansive for r = m and r = m + n - 1 for an operator $X \in B(\mathcal{H})$, even positive integer m and an integer n > 1, then A is (r, X)-expansive for all $m - 1 \le r \le m + n - 1$.

Proof. A proof of the theorem may be obtained from an argument similar to that used to prove Theorem 2.2: in the following we prove the theorem using a slightly different argument (which makes clear that the essence of the argument of the proof of Theorem 2.2 lies in proving the hyperexpansivity of (2, X)-expansive operators).

Define $Y \in B(\mathcal{H})$ by $\triangle_{\mathbb{A}^*,\mathbb{A}}^{m-2}(X) = Y$. Then $\triangle_{\mathbb{A}^*,\mathbb{A}}^2(Y) = \nabla_{\mathbb{A}^*,\mathbb{A}}^2(Y) \leq 0$, and an argument similar to that used to prove inequality (1) (of the proof of Theorem 2.3) shows that

$$(\mathbb{L}_{\mathbb{A}^*} * \mathbb{R}_{\mathbb{A}})^t (Y) - t \nabla_{\mathbb{A}^*, \mathbb{A}} (Y) - Y \le 0$$

for all integers $t \geq 2$. Hence $\nabla_{\mathbb{A}^*,\mathbb{A}}(Y) \geq 0$ (equivalently, $\triangle_{\mathbb{A}^*,\mathbb{A}}(Y) = \triangle_{\mathbb{A}^*,\mathbb{A}}^{m-1}(X) \leq 0$). Now if n is even then set $\triangle^{m-1}(X) = Z$ and if n is odd then set $\triangle^m(X) = Z$. We have $\triangle_{\mathbb{A}^*,\mathbb{A}}^{n-1}(Z) \leq 0$ if n is even and $\triangle_{\mathbb{A}^*,\mathbb{A}}^{n-2}(Z) \leq 0$ if n is odd. In either case $\triangle_{\mathbb{A}^*,\mathbb{A}}^{m+n-2}(X) \leq 0$. Repeating the argument a finite number of times, the result follows \square

Remark 2.6 (I) In closing, we start with a remark on commuting d-tuples \mathbb{A} such that $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(X) \geq 0$ for some odd positive integer m. (Operators $A \in B(\mathcal{H})$ such that $\triangle_{A^*,A}^m(I) \geq 0$ have been called m-contractive in the literature [9].) If we let $\nabla_{\mathbb{A}^*,\mathbb{A}}^{m-2}(X) = Y$, then $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(X) \geq 0$ if and only if $\nabla_{A^*,A}^m(X) = \nabla_{\mathbb{A}^*,\mathbb{A}}^2(Y) \leq 0$. Arguing as in the proof above, this imples $\triangle_{\mathbb{A}^*,\mathbb{A}}(Y) = \triangle_{\mathbb{A}^*,\mathbb{A}}^{m-1}(X) \geq 0$. Assume now that $\triangle_{\mathbb{A}^*,\mathbb{A}}^n(X) \geq 0$ for an integer n > m. Set $\triangle_{\mathbb{A},\mathbb{A}}^{m-1}(X) = Z$ if n is odd and $\triangle_{\mathbb{A}^*,\mathbb{A}}^m(X) = Z$ if n is even. Then the preceding argument implies that $\triangle_{\mathbb{A}^*,\mathbb{A}}^{n-1}(X) \geq 0$. Repeating the argument, we have $\triangle_{\mathbb{A}^*,\mathbb{A}}^t(X) \geq 0$ for all $m-1 \leq t \leq n$.

(II) If \mathbb{A} is both m-expansive and (m+n-1)-expansive for some even positive integer m and integer n > 1, then the conclusion of Theorem 2.5 implies (trivially) that

 $\{X_j\}_{j=m-1}^{m+n-1}=\{\triangle_{\mathbb{A}^*,\mathbb{A}}^j(X)\}_{j=m-1}^{m+n-1}$ is a partial expansive sequence for \mathbb{A} . Again, if we let \mathbb{I} denote the identity of $B(\mathcal{H})^d$, then $\triangle_{\frac{1}{d}\mathbb{I}^*,\frac{1}{d}\mathbb{I}}^t(X_j)=(1-\frac{1}{d})^tX_j\leq 0$ for all $m_1\leq j\leq m+n-1$ and positive integers t; hence $\{X_j\}_{j=m-1}^{m+n-1}$ is a partial expansive sequence for $\frac{1}{d}\mathbb{I}$.

The author thanks a referee for his very extensive remarks on the original version of the manuscript. His remarks have added a great deal to the clarity of the presentation.

The author reports no conflict of interest.

References

- [1] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space I, Integr. Equat. Oper. Theory 21(1995), 383-420.
- [2] O.A.M. Sid Ahmed, M.Cho and J.E. Lee, On(m, C)-isometric commuting tuples of operators on a Hilbert space, Res. Math. (2018) 73:51. (doi:10.1007/s00025-018-0810-0)
- [3] T. Bermúdez, A. Martinón and J.N. Noda, *Products of m-isometries*, Linear Alg. Appl. **408**(2013) 80-86.
- [4] B. P. Duggal and I.H. Kim, On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility, Concr. Oper. 2021; 8: 158-175.
- [5] B.P. Duggal and I.H. Kim, Structure of elementary operators defining m-left invertible, m-selfadjoint and related classes of operators, J. Math. Anal. Appl. 495(2021), 124718.
- B.P. Duggal and I.H. Kim, Isometric, symmetric and isosymmetric commuting d-tuples of Banach space operators, Results in Mathematics(2023)78:85,25pp(DOI: 10.1007/s00025-023-01855-0). arXiv 2209.13368.
- [7] G. Exner, I.B. Jung and C. Li, On k-hyperexpansive operators, J. Math. Anal. Appl. 323(2006), 569-582.
- [8] J. Gleason and S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Integr. Equat. Oper. Th. 56(2) (2006), 181-196.
- [9] C. Gu, On (m, p)-expansive and (m, p)-contractive operators on Hilbert and Banach spaces,
 J. Math. Anal. Appl. 426(2015), 893-916.
- [10] S. Richter, *Invariant subspaces of the Dirichlet shift*, J. Reine Agnew. Math. **386**(1988), 205-220.
- B.P. Duggal, University of Niš, Faculty of Sciences and Mathematics, P.O. Box 224, 18000 Niš, Serbia.

e-mail: bpduggal@yahoo.co.uk