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Abstract. In this paper we are concerned with weighted conditional type(WCT)

operators on Orlicz spaces. We prove that all WCT operators have finite as-

cent. Also, we provide some sufficient conditions for WCT operators to have

finite descent. As a consequence we find some decompositions for Orlicz space

LΦ(µ). In the sequel we discuss power bounded WCT operators and some

results on their Cesaro boundedness.

1. Introduction and Preliminaries

Let X be a linear space and T : X −→ X be a linear operator with domain

D(T ) and range R(T ) in X. The null space of the iterates of T , Tn, is denoted

by N (Tn), and we know that the null spaces of Tn’s form an increasing chain of

subspaces {0} = N (T 0) ⊂ N (T ) ⊂ N (T 2) ⊂ . . .. Also the ranges of iterates of

T form a nested chain of subspaces X = R(T 0) ⊃ R(T ) ⊃ R(T 2) ⊃ . . .. Note

that if N (T k) coincides with N (T k+1) for some k, it coincides with all N (Tn) for

n > k. The smallest non-negative integer k such that N (T k) = N (T k+1) is called

the ascent of T and denotes by α(T ). If there is no such k, then we set α(T ) =∞.

Also if R(T k) = R(T k+1), for some non-negative integer k, then R(Tn) = R(T k)

for all n > k. The smallest non-negative integer k such that R(T k) = R(T k+1)

is called descent of T and denotes by δ(T ). We set δ(T ) = ∞ when there is no

such k. When ascent and descent of an operator are finite, then they are equal and

the linear space X can be decomposed into the direct sum of the null and range

spaces of a suitable iterates of T . The ascent and descent of an operator can be

used to characterize when an operator can be broken into a nilpotent piece and an

invertible one; see, for example, [1, 18]. For some results on ascent and descent of

bounded operators in general setting see, for example, [19, 20].

The operator T is called power bounded if the norms of T k, k ≥ 0, are uniformly

bounded (supk ‖T k‖ < ∞), and Cesaro bounded if the Cesaro means An(T ) =

n−1
∑n−1

i=0 T
i are uniformly bounded.

Here we recall the concepts on Orlicz spaces. A function Φ : R→ [0,∞] is called a
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Young function if Φ is convex, even, and Φ(0) = 0; we will also assume that Φ is

neither identically zero nor identically infinite on (0,∞). The fact that Φ(0) = 0,

along with the convexity of Φ, implies that limx→0+ Φ(x) = 0; while Φ 6= 0, again

along with the convexity of Φ, implies that limx→∞ Φ(x) = ∞. We set aΦ :=

sup{x ≥ 0 : Φ(x) = 0} and bΦ := sup{x > 0 : Φ(x) < ∞}. Then it can be checked

that Φ is continuous and nondecreasing on [0, bΦ) and strictly increasing on [aΦ, bΦ).

We also assume the left-continuity of the function Φ at bΦ, i.e. limx→b−Φ
Φ(x) =

Φ(bΦ).

To each Young function Φ is associated another convex function Ψ : R→ [0,∞)

with similar properties, defined by

Ψ(y) = sup{x|y| − Φ(x) : x ≥ 0} (y ∈ R).

The function Ψ is called the function complementary to Φ in the sense of Young.

Also, for any measurable function f on the measure space (X,Σ, µ) we set IΦ(f) =∫
X

Φ(f)dµ. Any pair of complementary functions (Φ,Ψ) satisfies Young’s inequality

xy ≤ Φ(x) + Ψ(y) (x, y ≥ 0).

The generalized inverse of the Young function Φ is defined by

Φ−1(y) = inf{x ≥ 0 : Φ(x) > y} (y ∈ [0,∞)).

Notice that if x ≥ 0, then Φ
(
Φ−1(x)

)
≤ x, and if Φ(x) < ∞, we also have x ≤

Φ−1
(
Φ(x)

)
. There are equalities in either case when Φ is a Young function vanishing

only at zero and taking only finite values. Also, if (Φ,Ψ) is a pair of complementary

Young functions, then

(1.1) x < Φ−1(x)Ψ−1(x) ≤ 2x

for all x ≥ 0 (Proposition 2.1.1(ii) [17]).

By an N -function we mean a Young function vanishing only at zero, taking only

finite values, and such that limx→∞Φ(x)/x = ∞ and limx→0+ Φ(x)/x = 0. Note

that then aΦ = 0, bΦ = ∞, and, as we said above, Φ is continuous and strictly

increasing on [0,∞). Moreover, a function complementary to an N -function is

again an N -function.

A Young function Φ is said to satisfy the ∆2-condition at∞ if Φ(2x) ≤ KΦ(x) (x ≥
x0) for some constants K > 0 and x0 > 0. A Young function Φ satisfies the ∆2-

condition globally if Φ(2x) ≤ KΦ(x) (x ≥ 0) for some K > 0.

A Young function Φ is said to satisfy the ∆′-condition (respectively, the ∇′-
condition) at ∞, if there exist c > 0 (respectively, b > 0) and x0 > 0 such that

Φ(xy) ≤ cΦ(x)Φ(y) (x, y ≥ x0)

(respectively, Φ(bxy) ≥ Φ(x)Φ(y) (x, y ≥ x0)).
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If x0 = 0, these conditions are said to hold globally. Notice that if Φ ∈ ∆′, then

Φ ∈ ∆2 (both at ∞ and globally).

Let Φ,Ψ be Young functions. Then Φ is called stronger than Ψ at ∞, which is

denoted by Φ
`
� Ψ [or Ψ

`
≺ Φ], if

Ψ(x) ≤ Φ(ax) (x ≥ x0)

for some a ≥ 0 and x0 > 0; if x0 = 0, this condition is said to hold globally and is

then denoted by Φ
a
� Ψ [or Ψ

a
≺ Φ].

For a given complete σ-finite measure space (X,Σ, µ), let L0(Σ) be the linear

space of equivalence classes of Σ-measurable real-valued functions on X, that is,

we identify functions equal µ-almost everywhere on X. The support S(f) of a

measurable function f is defined by S(f) := {x ∈ X : f(x) 6= 0}. For a given

Young function Φ, the space

LΦ(µ) =

{
f ∈ L0(Σ) : ∃k > 0,

∫
X

Φ(kf)dµ <∞
}

is called an Orlicz space. Define the functional

NΦ(f) = inf{k > 0 :

∫
X

Φ(
f

k
)dµ ≤ 1}.

(LΦ(µ), NΦ(.)) is a normed linear space. If a.e. equal functions are identified, then

(LΦ(µ), NΦ(.)) is a Banach space, the basic measure space (X,Σ, µ) is unrestricted.

‖f‖Φ = inf

{
k > 0 :

∫
X

Φ(f/k)dµ ≤ 1

}
.

The couple (LΦ(Σ), ‖·‖Φ) is called the Orlicz space generated by a Young function Φ.

Let Φ(x) = |x|p/p with 1 < p <∞; Φ is then a Young function and Ψ(x) = |x|p′/p′,
with 1/p + 1/p′ = 1, is the Young function complementary to Φ. Thus, with this

function Φ we retrieve the classical Lebesgue space Lp(Σ), i.e. LΦ(Σ) = Lp(Σ).

Recall that an atom of the measure space (X,Σ, µ) is a set A ∈ Σ with µ(A) > 0

such that if F ∈ Σ and F ⊂ A, then either µ(F ) = 0 or µ(F ) = µ(A). A measure

space (X,Σ, µ) with no atoms is called a non-atomic measure space. It is well-known

that if (X,Σ, µ) is a σ-finite measure space, then for every measurable real-valued

function f on X and every atom A, there is a unique scalar, denoted by f(A), such

that f = f(A) µ-a.e. on A. Also, if (X,Σ, µ) is a σ-finite measure space that fails

to be non-atomic, there is a non-empty countable set of pairwise disjoint atoms

{An}n∈N with the property that B := X \
⋃

n∈NAn contains no atoms [21].

For a sub-σ-finite algebra A ⊆ Σ, the conditional expectation operator associated

with A is the mapping f → EAf , defined for all non-negative, measurable function
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f as well as for all f ∈ L1(Σ) and f ∈ L∞(Σ), where EAf , by the Radon-Nikodym

theorem, is the unique A-measurable function satisfying∫
A

fdµ =

∫
A

EAfdµ, ∀A ∈ A.

As an operator on L1(Σ) and L∞(Σ), EA is idempotent and EA(L∞(Σ)) = L∞(A)

and EA(L1(Σ)) = L1(A). Thus it can be defined on all interpolation spaces of L1

and L∞ such as, Orlicz spaces [2]. If there is no possibility of confusion, we write

E(f) in place of EA(f). This operator will play a major role in our work and we

list here some of its useful properties:

• If g is A-measurable, then E(fg) = E(f)g.

• ϕ(E(f)) ≤ E(ϕ(f)), where ϕ is a convex function.

• If f ≥ 0, then E(f) ≥ 0; if f > 0, then E(f) > 0.

• For each f ≥ 0, S(f) ⊆ S(E(f)), where S(f) = {x ∈ X; f(x) 6= 0}.
A detailed discussion and verification of most of these properties may be found in

[16].

Let f ∈ LΦ(Σ). It is not difficult to see that Φ(E(f)) ≤ E(Φ(f)) and so by

some elementary computations we get that ‖E(f)‖ ≤ ‖f‖ i.e, E is a contraction

on the Orlicz spaces. As we defined in [6], we say that the pair (E,Φ) satisfies the

generalized conditional-type Hölder-inequality (or briefly GCH-inequality) if there

exists some positive constant C such that for all f ∈ LΦ(µ) and g ∈ LΨ(µ) we have

E(|fg|) ≤ CΦ−1(E(Φ(|f |)))Ψ−1(E(Ψ(|g|))),

where Ψ is the complementary Young function of Φ. There are many examples of

pairs (E,Φ) that satisfy GCH-inequality in [6].

Finally in the following we give another key lemma that is important in our

investigation. The proof is an easy exercise.

Lemma 1.1. If Φ is a Young function and f is a Σ-measurable function such that

E(f) and E(Φ(f)) are defined, then S(E(f)) = S(E(Φ(f))).

We keep the above notations throughout the paper.

Weighted conditional type operators have been studied by many mathematicians

in recent years [5, 6, 7, 8, 10]. For the importance of WCT operators we refer the

interested readers to [4, 3, 15, 12]. In this paper we are going to investigate ascent

and descent of weighted conditional type (WCT) operators on Orlicz spaces. To

this end, first we show that all WCT operators have finite ascent. Also, we provide

some sufficient conditions for them to have finite descent. As a consequence, we

find some decompositions for Orlicz space LΦ(µ). Finally we find some results on
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power bounded WCT operators and Cesaro bounded WCT operators.

2. Main Results

In this section we determine which hypothesis let us get that WCT operator

T = MwEMu is a bounded operator on the Orlicz space LΦ(µ). After that we will

discuss the conditions under which the bounded operator T has finite ascent and

descent. Also, we will find some sufficient condition for T to have closed range.

Some other results will be obtained. Here we define weighted conditional type

operators on Orlicz spaces.

Definition 2.1. Let Φ be a Young function and u,w : X → C be a measurable

function on the measure space (X,Σ, µ). The weighted conditional type operator

(WCT operator) from LΦ(Σ) into LΦ(Σ) is defined by wEMu(f) = wE(uf) for

every f ∈ LΦ(Σ) such that wE(uf) ∈ LΦ(A).

In the next theorem we give a condition under which the WCT operator T =

MwEMu is bounded on the Orlicz space LΦ(µ).

Theorem 2.2. Let (Φ,Ψ) be a pair of complementary Young’s functions such that

satisfies GCH-inequality and T = MwEMu be WCT operator. If wΨ−1(E(Ψ(u))) ∈
L∞(Σ), then T is a bounded operator on LΦ(µ).

Proof. Since (Φ,Ψ) satisfies GCH-inequality, then there exists C > 0 such that for

all f ∈ LΦ(µ) and g ∈ LΨ(µ) we have

E(|fg|) ≤ CΦ−1(E(Φ(|f |)))Ψ−1(E(Ψ(|g|))).

Let M = ‖wΨ−1(E(Ψ(u)))‖∞. For each f ∈ LΦ(µ) we have∫
X

Φ(
wE(uf)

CMNΦ(f)
dµ ≤

∫
X

Φ(
wCΦ−1(E(Φ( |f |

NΦ(f) )))Ψ−1(E(Ψ(|u|)))
CM

dµ

≤
∫
X

Φ(Φ−1(E(Φ(
|f |

NΦ(f)
)))dµ

=

∫
X

Φ(
|f |

NΦ(f)
)dµ

≤ 1.

By these observations we get that NΦ(wE(uf)) ≤ CMNΦ(f), so T is bounded. �

Now in the next Lemma we see that for every n ∈ N, Tn is again a WCT

operator.
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Lemma 2.3. Let n ∈ N and T = MwEMu be a bounded operator on LΦ(Σ). Then

we have

Tn = M(E(uw))n−1MwEMu.

Proof. By induction and straight forward calculations one can get the proof. �

In the sequel we find that every bounded WCT operator has finite ascent.

Proposition 2.4. Let the WCT operator T = MwEMu be bounded on the Orlicz

space LΦ(Σ). The for every n ∈ N, N (T 2) = N (Tn+2). As a result α(T ) ≤ 2.

Proof. Let n ∈ N \ {1}, then by Lemma 2.3 we have

Tn(f) = (E(uw))n−1wE(uf)

and specially for n = 2, T 2(f) = (E(uw))wE(uf), for f ∈ LΦ(µ). It is clear that

T 2(f) = 0 if and only if Tn(f) = 0, for all n ≥ 2. So N (T 2) = N (Tn).

�

For our main results we need to find some sufficient conditions for closedness of

range of WCT operator T = MwEMu. So in the next proposition we provide some

conditions under which T has closed range.

Proposition 2.5. Let (Φ,Ψ) a pair of complementary Young’s functions that sat-

isfies GCH-inequality, WCT operator T be bounded on LΦ(Σ), µ(B) = 0 and the

set

H = {n ∈ N : w(An)Ψ−1(E(Ψ(u)))(An) 6= 0}

be finite. Then T has closed range.

Proof. Since (Φ,Ψ) satisfies GCH-inequality, then there exists C > 0 such that for

every f ∈ LΦ(µ),

wE(uf) ≤ wCΦ−1(E(Φ(|f |)))Ψ−1(E(Ψ(|u|))),

so

S(wE(uf)) ⊂ S(w) ∩ S(Ψ−1(E(Ψ(|u|)))) = S(wΨ−1(E(Ψ(|u|)))).

Moreover, by our assumptions we have

S0 := S(wΨ−1(E(Ψ(|u|)))) = ∪{An : n ∈ H}.

Hence we get that R(T ) ⊂ LΦ(S0,ΣS0
, µS0

). Since H is finite and Σ-atoms are

disjoint, then we get that LΦ(S0,ΣS0
, µS0

) is finite dimensional and therefore R(T )

is finite dimensional. Consequently, R(T ) is closed. �

Here we obtain a condition under which Tn has closed range for all n ∈ N.
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Theorem 2.6. Let (Φ,Ψ) a pair of complementary Young’s functions that satisfies

GCH-inequality, WCT operator T be bounded on LΦ(Σ), µ(B) = 0 and the set

Hk = {n ∈ N : E(wu)k(An).w(An)Ψ−1(E(Ψ(u)))(An) 6= 0}

be finite, for some k ∈ N. Then Tn has closed range, for all n ∈ N \ {1}. Conse-

quently, if

H = H0 = {n ∈ N : E(wu)k(An).w(An)Ψ−1(E(Ψ(u)))(An) 6= 0}

is finite, then Tn has closed range, for all n ∈ N.

Proof. As we had in the Proposition 2.4 for each n ∈ N, Tn = Mwn
EMu, in which

wn = wE(uw)n−1, so Tn is also a WCT operator. Moreover, by our assumptions,

for every m,n ∈ N, with m 6= n we have Hn = Hm. Hence if Hk is finite for some

k ∈ N, then by Proposition 2.5 we get that Tn has closed range for all n ∈ N. In

addition if H is finite then Tn has closed range for all n ∈ N, because Hk ⊆ H, for

every k ∈ N. �

In the following we have some consequences on closedness of range of T and some

decompositions for LΦ(µ).

Remark 2.7. Let WCT operator T = MwEMu be bounded on LΦ(Σ). IfR(ME(wu)n−1T )

is closed for some n > 2 or R(ME(wu)jT ) +N (ME(wu)kT ) is closed for some pos-

itive integers with j + k = n, then for R(Tn) = R(ME(wu)n−1T ) is closed for all

n ≥ 2 and R(ME(wu)jT ) + N (ME(wu)kT ) is closed for all j + k ≥ 2. Moreover,

LΦ(Σ) = R(ME(wu)T ) +N (ME(wu)T ).

Proof. As we proved in Proposition 2.4, α(T ) ≤ 2. Therefore by Theorem 2.1 of [9]

we get the proof. �

Now by mixing Theorem 2.6 and Remark 2.7 we get the next corollary.

Corollary 2.8. Let (Φ,Ψ) a pair of complementary Young’s functions that satisfies

GCH-inequality, WCT operator T be bounded on LΦ(Σ), µ(B) = 0 and the set

Hk = {n ∈ N : E(wu)k(An).w(An)Ψ−1(E(Ψ(u)))(An) 6= 0}

be finite, for some k ∈ N. Then R(ME(wu)jT ) + N (ME(wu)kT ) is closed for all

j + k ≥ 2. Moreover, LΦ(Σ) = R(ME(wu)T ) +N (ME(wu)T ).

Proposition 2.9. If wΨ−1(E(Ψ(u))) ∈ L∞(Σ), then the following hold:

a) The sequence {‖E(wu)‖∞}n is uniformly bounded if and only if ‖E(wu)‖∞ ≤
1.
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b) The WCT operator T is power bounded on the Orlicz space LΦ(Σ) if and only

if |E(wu)| < 1 on S(Φ−1(E(Φ(w)))) ∩ S(Ψ−1(E(Ψ(u)))).

Proof. a) For the proof of this part one can see Theorem 2.5, part (a), [5].

b) Let T be power bounded. Then there exists D > 0 such that

‖Tn‖ = ‖ME(wu)n−1T‖ ≤ D, ∀n ∈ N.

As we discussed before, since (Φ,Ψ) satisfies GCH-inequality, then for every f ∈
LΦ(µ),

T (f) = wE(uf) ≤ wCΦ−1(E(Φ(|f |)))Ψ−1(E(Ψ(|u|))),

for some C > 0. Hence

S(wE(uf)) ⊂ S(w) ∩ S(Ψ−1(E(Ψ(|u|))))

= S(wΨ−1(E(Ψ(|u|))))

⊆ S(Ψ−1(E(Ψ(|w|))))S(Ψ−1(E(Ψ(|u|)))).

Also, by GCH-inequality we have

S(E(wu) ⊆ S(Ψ−1(E(Ψ(|w|))))S(Ψ−1(E(Ψ(|u|)))).

Moreover, S(Tn(f)) = S(E(wu)n−1) ∩ S(Tf). By these observations we get that

if ‖E(wu)‖ > 1 on a set of positive measure, then the non-zero WCT operator T

can’t be power bounded.

Conversely, let

|E(wu)| < 1 on S(Φ−1(E(Φ(w)))) ∩ S(Ψ−1(E(Ψ(u)))).

Then ‖E(wu)n‖ ≤ C or some C > 0 and so for every n ∈ N, ‖Tn‖ ≤ C‖T‖. Thus

T is power bounded. �

In the sequel we provide some conditions under which WCT operators have finite

descent.

Theorem 2.10. If wΨ−1(E(Ψ(u))) ∈ L∞(Σ), and E(uw) is bounded away from

zero, then for each n ∈ N, R(Tn+2) = R(T 2) and so T has finite descent.

Proof. It is clear that for any n ∈ N, R(Tn+2) ⊆ R(T 2). For the converse, let

g ∈ R(T 2). Then there exists f ∈ LΦ(µ) such that T 2(f) = E(wu)T (f). Also,

since E(uw) is bounded away from zero, then 1
E(wu)χS(E(wu)) ∈ L∞(µ). Hence

12 May 2023 13:12:18 PDT
230512-Shamsigamchi Version 1 - Submitted to Rocky Mountain J. Math.



9

1
E(wu)nχS(E(wu))f ∈ LΦ(µ).

g = E(wu)T (f)

=
1

E(wu)n
χS(E(wu))E(wu)n+1T (f)

= E(wu)n+1T (
1

E(wu)n
χS(E(wu))f)

= Tn+2(
1

E(wu)n
χS(E(wu))f).

This implies that g ∈ R(Tn+2). Consequently we have R(Tn+2) = R(T 2). �

Corollary 2.11. Let wΨ−1(E(Ψ(u))) ∈ L∞(Σ), E(wu) be bounded away from zero

and T = MwEMu be WCT operator on the Orlicz spaces LΦ(Σ). Then δ(T ) ≤ 2.

Till now we have obtained that bounded WCT operators T = MwEMu have

finite ascent with α(T ) ≤ 2 and also under a weak conditions have finite descent

with δ(T ) ≤ 2. In the next Proposition some more results affected by finite ascent

and descent.

Proposition 2.12. Let T = MwEMu be bounded WCT operator on the Orlicz

spaces LΦ(Σ). Then R(T 2) ∩ N (Tm) = {0}, for every m ≥ 1. Also, if E(wu) be

bounded away from zero, then LΦ(µ) = R(Tn) + N (T 2), for some (equivalently,

all) n ≥ 1.

Proof. As it is known

T 2(N (T 2+n)) = R(T 2) ∩N (Tn).

This implies that R(T 2) ∩N (Tn) = {0}, because N (T 2) = N (Tn+2).

Moreover, we know that T−2(R(T 2+n) = R(Tn) +N (T 2) and this equation gives

us LΦ(µ) = R(Tn) +N (T 2), for some (equivalently, all) n ≥ 1. This completes the

proof. �

For a bounded linear operator T on an arbitrary Banach space the Cesaro means

is defined as

An(T ) =
I + T + T 2 + ...+ Tn−1

n
n ∈ N.

Ergodic theory is concerned with the existence of the limit of the sequence {An(T )}n∈N
in various operator topologies. For investigation the convergence of this sequence

one can use the following simple formulas([11], [13] and [14])

(2.1)
Tn

n
=
n+ 1

n
An+1(T )−An(T ),

(2.2) (I − T )An(T ) =
I − Tn

n
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(2.3) I −An(T ) = (I − T )
Tn−2 + 2Tn−3 + ...+ (n− 2)T + (n− 1)I

n
.

If we apply it for the bounded WCT operators T = MwEMu on the Banach space

LΦ(µ), then we have

An(T ) = n−1(I +MvnT ), ∀n ∈ N \ {1},

and A1(T ) = I, in which vn =
∑n−2

i=0 E(uw)i.

Proposition 2.13. Let |E(wu)| < 1 on S(Φ−1(E(Φ(w))))∩S(Ψ−1(E(Ψ(u)))), T =

MwEMu be bounded WCT operator on the Orlicz spaces LΦ(Σ). Then α(I−T ) ≤ 1

and α(I − T ∗) ≤ 1.

Proof. Under our assumptions and by the Proposition 2.9 we get that T is power

bounded. So by the above observations we get that the sequence {T
n

n (f)} tends to

zero for every f ∈ N ((I − T )2). Hence by the Lemma 1.3 and Theorem 3.2 of [9]

we get the result. �

Here, in the next theorem, we provide a dense subset of LΦ(µ) by means of the

finite ascent and descent of bounded WCT operators.

Theorem 2.14. Let T = MwEMu be bounded WCT operator on the Orlicz spaces

LΦ(Σ) such that R(T 2) is closed. Then R(T 2)∩N (T 2) = {0} and R(T 2) +N (T 2)

is dense in LΦ(µ).

Proof. For bounded WCT operator T = MwEMu(equivalently for T ∗) we have

obtained that its ascent is finite and specially α(T ) = α(T ∗) ≤ 2. Hence by the

Proposition 2.12 we get that R(T 2) ∩ N (T 2) = {0} and R(T ∗
2

) ∩ N (T ∗
2

) = {0}.
Since R(T 2)⊥ = N (T ∗

2

), then we get that

(R(T 2) +N (T 2))⊥ = R(T 2)⊥ ∩N (T 2)⊥ = R(T ∗
2

) ∩N (T ∗
2

) = {0}.

This implies that R(T 2) +N (T 2) is dense in LΦ(µ). �

In the sequel we obtain that LΦ(µ) can be written as direct sum of its two closed

sub-spaces.

Proposition 2.15. Let T = MwEMu be bounded WCT operator on the Orlicz

spaces LΦ(Σ) such that |E(wu)| < 1 on S(Φ−1(E(Φ(w))))∩S(Ψ−1(E(Ψ(u)))) and

R(I − T ) is closed. Then LΦ(µ) = R(I − T )⊕N (I − T ).

Proof. Since |E(wu)| < 1 on S(Φ−1(E(Φ(w))))∩S(Ψ−1(E(Ψ(u)))), then by Propo-

sition 2.9 we get that T is power bounded. So {T
n

n } is convergent in weak operator

topology on LΦ(µ). So by Theorem 4.4 of [9] we have the result. �
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Finally we have the following result.

Theorem 2.16. Let |E(wu)| < 1 on S(Φ−1(E(Φ(w)))) ∩ S(Ψ−1(E(Ψ(u)))) and

T = MwEMu . Then R(I − T ) = Lp(F) and equivalently we have the followings:

(i) R(I − T ) = LΦ(µ);

(ii) I − T is invertible;

(iii) {‖(I−T )−1(
(n−1)I−MvnT

n )‖}n∈N = {‖n−1(MwnT +(n−1)I)‖}n∈N is bounded;

(iv) {(I − T )−1(
(n−1)I−MvnT

n )(f)}n∈N = {n−1(MwnTf + (n − 1)f)}n∈N converges

for all f ∈ LΦ(µ). In which wn =
∑n−2

i=1 (n− i− 1)E(uw)i−1.

In this case, n−1(Mwn
Tf + (n− 1)f)→ (I − T )−1(f) for all f ∈ LΦ(µ).

(v) An(T )(f) converges to a T -invariant limit for all f ∈ LΦ(µ).

Proof. By our assumptions we get that T is power bounded and so for every f ∈
LΦ(µ) we have An(T )(f)→ 0. As is defined in [9]

Bn(T ) = n−1(Tn−2 + 2Tn−3 + ....+ (n− 2)T + (n− 1)I).

Hence for T = MwEMu we have:

Bn(T ) = n−1(MwnT + (n− 1)I),

in which wn =
∑n−2

i=1 (n − i − 1)E(uw)i−1. Therefore by Proposition 4.5 of [9]

we have the proof of (i)-(iv). Since {‖E(uw)n‖∞}n∈N is uniformly bounded, then

T = MwEMu is power bounded. Also the closure of a norm bounded subset of

LΦ(µ) is weakly compact. Hence it’s weakly sequentially compact. Then we get

(v). �
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