Classical and adelic Eisenstein series

Manami Roy, Ralf Schmidt, and Shaoyun Yi

Abstract

We carry out “Hecke summation” for the classical Eisenstein series Ej in an adelic setting.
The connection between classical and adelic functions is made by explicit calculations of local
and global intertwining operators and Whittaker functions. In the process we determine the au-
tomorphic representations generated by the Fy, in particular for kK = 2, where the representation
is neither a pure tensor nor has finite length. We also consider Eisenstein series of weight 2 with
level, and Eisenstein series with character.
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1 Introduction

Let F' € Sk(I'o(N)) be a cusp form of weight k& and level N, assumed to be an eigenform for almost
all Hecke operators. By strong approximation, there exists a unique function ® on G(A), where
G = GL(2) and A is the ring of adeles of Q, such that & is left invariant under G(Q), right invariant
under G(Z,) for all primes p { N and under the local congruence subgroups I'g (prr(N )Zp) forp| N,
and such that

F(z) =y 2o 3)Y ), z—a+iy. (1)

We say that ® is the automorphic form corresponding to F. The group G(A), or more precisely
the global Hecke algebra H, acts on ® by right translation, generating a representation w. This
7 turns out to be irreducible, resulting in a factorization m = @ m, over the places of Q, with
representations , of the local Hecke algebras H,. Since F' is holomorphic, the archimedean 7, is
the discrete series representation Dz’ﬂll with lowest weight k. For finite primes p { N, the m, are
spherical with Satake parameters related to the Hecke eigenvalues of F'.

The standard proof that 7 is irreducible goes as follows (see [6, Thm. 5.19], [1, Thm. 3.6.1}).
Since ® is a cuspidal automorphic form, it lies in L?(G(Q)Z(A)\G(A)), where Z denotes the center
of G. As a consequence, ™ decomposes into a direct sum @ 7;, actually finite, with irreducible ;.
The 7; are all near-equivalent, meaning if we factor m; = ) 7; ,,, then for any pair of indices (i, j) we
have m; , = 7, , for almost all p. Now one invokes the strong multiplicity one theorem to conclude
that m; and 7; are identical. In other words, 7 must be irreducible.

Clearly, this proof does not work for non-cusp forms. For one, the corresponding automorphic
form ® may no longer be square-integrable. Also, the strong multiplicity one theorem is a result
for cusp forms only (or for isobaric non-cusp forms [12, § 2], but the representations involved here
are not isobaric). Hence, even for the full-level holomorphic Eisenstein series

1 1
PO 2w 2, vy @

(¢,d)#(0,0)

where k£ > 4 is an even integer, it is not obvious that the corresponding automorphic form ®y
generates an irreducible representation.
One strategy to prove irreducibility starts with the global parabolically induced representation

Vs :=1]-|® x|-|7%, where s is a complex parameter. Assuming that Re(s) > 1/2 to assure absolute
convergence, one can construct the adelic Eisenstein series
E(g,/)= Y., [f(ng), geG(®A), (3)
1EBQ\G(Q)
2
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where B denotes the upper triangular subgroup of G. Evidently, the map f — E(-, f) is an in-
tertwining operator from V; to the space of automorphic forms. Now for an appropriately chosen
weight-k function fy € V(i_1)/9 it turns out that ®, = E(., fx) is the automorphic form corre-
sponding to Fj; see Theorem 5.4. Since fj generates an irreducible representation, which is easily
identified, the intertwining property implies that ®; generates the same representation. In this
manner one has proved irreducibility for £ > 4. See Corollary 5.7 for the precise identification of
the global representation generated by ®.

Certainly, this approach via adelic Eisenstein series is well known. A less familiar situation
occurs for weight £ = 2, and indeed it is this case which provided the original motivation for this
work. Recall that E5 is a non-holomorphic modular form of weight 2, given by the conditionally
convergent series

3 1 1
E2 (Z) = —— 4+ —— -— 5 4
Ty 2¢(2) ; (% (cz+d)? )
(c,d)#(0,0)
(See [3, Sect. 1.2].) What representation is generated by the corresponding automorphic form &y ?
Imitating the above approach, we would start with an appropriate weight-2 vector fo € Vj /5. The
first difficulty we run into is that the Eisenstein series (3) is no longer absolutely convergent for
s = 1/2. This difficulty can be overcome by the familiar process of analytic continuation (also known
as “Hecke summation”, pioneered in the work [8]) : One embeds f2 into a “flat section”, considers
the summation (3) in the region of absolute convergence, writes down the Fourier expansion of
the Eisenstein series, and observes that each piece admits analytic continuation to a meromorphic
function on all of C. A subtlety here is that, for some f € Vj 5, the Eisenstein series has a pole at
s = 1/2. However, for f = fo there is no pole, so that ®3 := E(-, f2) is well-defined via analytic
continuation.

The second difficulty we encounter is whether the map f +— E(-, f) is still H-intertwining. First
we have to clarify what this means, since, as mentioned, the map is not defined on all of V} 5. In
Proposition 3.6 we will identify a 1-codimensional subspace V/ /2 for which E(-, f) can be defined.
It turns out that the map f — E(:, f) is not H-intertwining when restricted to V/ /2° We therefore

"
1/2
is still not quite H-intertwining, but almost; see Lemma 5.3.

identify an even smaller subspace by excluding all weight-0 functions. The map f — E(-, f),

restricted to Vl’;2,

The third difficulty in imitating the proof of the k£ > 4 case is that the space Vl’;2 is not an
irreducible H-module, but in fact highly reducible. Therefore the injectivity of the map f — E(-, f)
restricted to V]’ has to be proven in a different way. Our main argument here is contained in

Lemma 5.9. Eventually we arrive at the following result on the structure of H®s.

Theorem 1.1 (Theorem 5.11). The global representation H®o admits a filtration 0 C C C HPo,
where C is the space of constant automorphic forms, and

HD2/C =D @ Q) Vijay

p<oo
as H-modules. Here, D! is the lowest discrete series representation (lowest weight 2) of PGL(2,R).

Observe that the quotient H®4 /C factors into local representations analogous to the cases k > 4
(one difference however being that the local representations at finite places are all reducible). This
result has been independently obtained by Horinaga, who took the broader point of view of nearly
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holomorphic modular forms; see [9, Thm. 3.8]. We stress that our methods remain elementary and
do not require the general theory of Eisenstein series or the theory of nearly holomorphic modular
forms.

We note that the Maass lowering operator L defined in Sect. 2.1 annihilates fo, but not its
image ®3 = E(-, f2). In fact, it sends ®3 to a non-zero constant automorphic form. Hence the
presence of the invariant subspace C is a reflection of the fact that the map f — E(-, f) fails to be
‘H-intertwining at the archimedean place.

It is tempting to eliminate the %—term in (4) by forming the function Ey n(2) = Fa(z)—NEy(N2)
for a positive integer N > 1. Then indeed EZN € My(T'o(N)). In Sect. 5.3 we consider the adelic
origin of these modular forms with level. Since EQ’MN(Z) = MEZN(Mz) + EZM(Z), it suffices
to consider square-free N. In this case the functions fo v € Vj/y defined in (118) are the natural
candidates for an “fy with level”. It turns out that the adelic Eisenstein series ®3 n := E(-, fa,n)
does not correspond to Fs y, but to a different modular form Ey x € Ma(To(N)), which we identify
in Theorem 5.5. The E5 y have a somewhat more natural Fourier expansion than the E~'2, N. In
Proposition 5.6 we clarify the relationship between these two types of functions. The following
result identifies the global representation H®; x as a (highly reducible) tensor product of local
representations.

Theorem 1.2 (Theorem 5.12). For a square-free integer N > 1,

HDy y =DM @ ((X) D,,) ® ((X) Vl/z,p),
PIN

pIN
where Dy, is the Steinberg representation of GL(2,Qy).

We note that the global representations generated by the automorphic forms corresponding to
the Ezy N are in general not tensor products.

In the final section we repeat parts of the previous theory in a modified setting involving a
primitive Dirichlet character ¢ of conductor v > 1 and the corresponding character xy = ®y, of
Q*\A*. The relevant global representations are now Vj, := x| -|* x x7!| - |7*. The point is that
for s = (k — 1)/2 the archimedean component Vs, still contains the holomorphic discrete series
representation D};‘ill as a submodule, allowing us to construct from V(;_1)/2 , holomorphic modular
forms of weight k by choosing appropriate vectors fi € V(3_1)/2,, and forming an Eisenstein series.
This way we obtain certain elements of Mj,(I'o(u?)), which are familiar from the classical theory;
see Sect. 6.4. For k = 2 we go one step further and consider natural vectors fo ny € V2, where
N is an appropriately chosen squarefree integer. These lead to Eisenstein series in Ma(Tg(u?N))
whose Fourier expansion is identified in Theorem 6.6. To the best of our knowledge these Eisenstein
series have not been previously considered, but in Proposition 6.7 we relate them to certain oldforms
that can be found in the literature. Finally we identify the global representations generated by the
Eisenstein series with character. This is now easier since the global intertwining operator is zero,
implying that the map f +— E(-, f) commutes with the action of the global Hecke algebra.

The Hecke summation can be carried out in a similar manner for Eisenstein series on higher
rank symplectic groups. While working on the degree two case we realized that a detailed analysis
of the degree one case would be helpful, which provided the motivation for this work.

The structure of this paper is as follows. In Sect. 2 we review some of our notation and basic
theory used in various parts of the paper. In Sect. 3, we compute the local and global intertwining
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operators for vectors in Vs. In Sect. 4, we compute the local and global Whittaker integrals for
vectors in V;. The calculations from Sects. 3 and 4 are essential components in proving our main
results on adelic and classical Eisenstein series without character in Sect. 5. Finally, in Sect. 6, we
treat Eisenstein series with character.

Acknowledgements: We would like to thank Charles Conley, Paul Garrett and Cris Poor for
providing helpful comments. We would also like to thank the referee for the detailed comments
and suggestions. Shaoyun Yi is supported by the National Natural Science Foundation of China
(No. 12301016) and the Fundamental Research Funds for the Central Universities (No. 20720230025).

2 Preparations

In this section we review some basic facts about differential operators, Hecke algebras and induced
representations which will be used throughout the paper.
2.1 Differential operators

The Lie algebra s[(2,R) is spanned by

A~

H=[g%]), R=[§5, L=I%0) (5)
with the commutation relations [H, R] = 2R, [H,L] = —2L and [R, L] = H. Tts complexification
5[(2,C) is spanned by

701 Ly g Leq o
H=—i[%],  R=5[i4],  I=35[57] (6)

with the commutation relations [H, R] = 2R, [H,L] = —2L and [R,L] = H. For 0 € R, let

[ cos(8) sin(9)
T(Q) - |:7 sin(0) COS(Q)} ) (7)

For an integer k, let W (k) be the space of smooth functions ® on SL(2,R) with the property
B(gr(0)) = " ®(g),  OER, geSLI2R). (8)

This condition is equivalent to H® = k®. It follows that R induces a map W (k) — W(k+2) and L
induces a map W (k) — W(k —2). Let W be the space of smooth functions on the complex upper
half plane H. For ® € W (k) we define an element & € W by

1/2

o +iy) =y e 11" L)), (9)

The map ® — & establishes an isomorphism W (k) = W.

Proposition 2.1. Define operators Ry, Ly on the space W of smooth functions on H by

k 0 0
= — 4+ 2i— Ly = —2iy>—.
Ry, y+ i3 k W o=
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Then the diagrams

Wk —— W Wk —— W
N I
W(k—-2) —— W W(k+2) —— W
are commutative.
Proof. Standard calculations. O

2.2 Hecke algebras

To have a convenient notation, we work with the local and global Hecke algebras. In the global
case, we will have no opportunity in this note for base fields other than Q, so we will make the
definitions for this case only. Note that the Eisenstein series of weight two is holomorphic when
the base field is totally real but not Q; see [5, Final Remark on p. 65]. The symbol A will always
denote the ring of adeles of Q.

For each prime p, let H, be the local Hecke algebra at p, consisting of compactly supported,
locally constant functions on G(Q,). Note that these algebras are non-unital. The category of
smooth G(Qy)-representations is equivalent to the category of nondegenerate (in the sense of [2])
‘Hp-modules. We understand all H,-modules to be non-degenerate without mentioning it. We let
Hin = @Q Hp, the restricted tensor product taken over all prime numbers. Note that the restricted
tensor product requires a choice of distinguished vector at almost every place; we always take the
characteristic function of K, = GL(2,Z,) to be the distinguished vector.

We will use the following notations for archimedean objects:

GR) = GL(2,R), g=gl(2,R), Ks=O0(2). (10)

There is a general notion of archimedean Hecke algebra H.,, introduced in [11], such that the
category of (g, Ko )-modules is isomorphic to the category of Hoo-modules. Like in the p-adic case
Hoo is non-unital. However, in our situation we can get by with the simpler version of H, given
in [6, Defn. 4.1]. The point is that if a vector v in a (g, K« )-module has a weight already, then
SO(2) acting on v stays within the same one-dimensional space. We really only need to act with
the universal enveloping algebra U(g) and the group element [1 ,1]. Hence we introduce a formal
element ¢_ and define Ho, = U(g) ® e_U(g), with the multiplication determined by 2 = 1 and
e_Xe_ = [1 71]X [ ! 71] for X € g. Note that this version of H, actually is unital.

The global Hecke algebra is H = Hoo ® Han- It acts on the space A of automorphic forms
on G(A) := GL(2,A). Any irreducible subquotient is called an automorphic representation. The
G(A)-representation generated by an automorphic form ® is H®. Here, we use the word “G(A)-
representation” as a synonym for H-module, even though it is not a representation of G(A) in the
strict sense of the word.

If (7,V) is an irreducible H-module, then there exist irreducible H,-modules (mp,V}) for all
places p < 00, and for almost all finite p a non-zero K,-fixed vector v, such that 7 is the restricted
tensor product of the representations m, with respect to these distinguished vectors. We shall simply
write 7 = Qm, or V= Q V).
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2.3 Induced representations

In this paper we will work exclusively with parabolically induced representations of GL(2) over a
p-adic field, or over R, or over the adeles of Q. We recall some basic facts.

The non-archimedean case

Let F' be a non-archimedean local field of characteristic zero. In this context we will always use
the following notations. We let o be the ring of integers of F', and p the maximal ideal of 0. The
symbol @ denotes a generator of p. The absolute value | -| on F is normalized such that || = ¢~ !,
where ¢ = #0/p. Let v be the normalized valuation on F. We normalize the Haar measure on F
such that the volume of o is 1.

Let 7 be a character of F*. Using a common notation, we denote by 1 x =1 the representation
of G = GL(2, F') parabolically induced by the character [“ Z] — n(a/d) of the upper triangular
subgroup B. Hence, the standard model of 1 x n~! consists of smooth functions f : G — C with

the transformation property

F([*5]9) = n(a/d) |a/d|'/? £ (g) (11)
for g € G, a,d € F*, and b € F. The group G acts on this space by right translations. It is known
by [10, Thm. 3.3] or [1, Thm. 4.5.1] that  x n~! is irreducible except when 7% = | - |*1. If n? = | - |,
and hence n = pl - |1/ 2 with a quadratic character y, then there is an exact sequence

0 — pStare,r) — - M2 pl |7 — plare,ry — 0, (12)

where Star,2, ) (resp. lgr(z,r)) denotes the Steinberg (resp. trivial) representation of GL(2, F'). If

n=pul- |_1/ 2 with a quadratic character p, then there is an exact sequence

|—1/2 |1/2

0 — plare,r)y — - X pl - — uStare,r) — 0. (13)

In this latter case, the one-dimensional subspace realizing plgre,r) is spanned by the function
g — p(det(g)).

To have a concise notation, we let Vy = |- ]° x |- |7* for a complex parameter s. Then
a S-‘rl/Q
DR 0) (14)
for the functions in V. For s = 1/2 and s = —1/2 we have the exact sequences
0 — Staree,r) — Vij2 — laner) — 0, (15)
0— 1GL(2,F) — V—1/2 — StGL(Q,F) — 0. (16)
The archimedean case
Now consider the field R with its usual absolute value | -|. For a complex parameter s, there

exists a Hilbert space representation V, whose space of smooth vectors consists of smooth functions
f: GL(2,R) — C with the transformation property (14); see [1, Prop. 2.5.3]. We usually work with
the subspace V; of K-finite vectors, which is a (g, K+ )-module, or equivalently, an H..-module.
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As a vector space, V; has a basis consisting of the weight-k functions fgk) for k € 27, where we use
the Iwasawa decomposition to define

s+1/2 oik0
—sin(0) cos(6)

(e ) =

7“(9) _ [ cos(0) sin(@):|. (17)
The following result uses the Lie algebra elements defined in (6).

Lemma 2.2. Let fs(k) € Vs be the function in (17). Then, for all even integers k,

Hf® = kf®, (18)

RF = (54 155) ik, (19)

L = (s 4 25 5) 2, (20)

e_fiB) = fl=F) (21)

Proof. Standard calculations. O

It follows that Vj is irreducible unless s € % +Z. If s = ¥-1 with a positive even integer k, then

2
there is an exact sequence

0— Dk 5V, — Fr_1 — 0, (22)
where D}g‘jll is the discrete series representation of PGL(2,R) with weight structure [...,—k —

2,—k,k,k+2,...], and Fj_ is the (k— 1)-dimensional irreducible representation of PGL(2,R) with
weight structure [—k +2,—k+4,....k — 4,k —2]. If s = % with a positive even integer k, then
there is an exact sequence

0 — Fr1 — Vs — DI, — 0. (23)

We may also consider the twist of V by the sign character of R*, i.e, sgn|- |® x sgn|-|7*. Then
we have similar reducibilities and exact sequences as in (22), except Fi_1 is replaced by the twist
sgn Fr_1. (The discrete series representations are invariant under twisting by sgn.)

For s =1/2 and s = —1/2 we have, in analogy with (15) and (16), the exact sequences

0— D' — Vi — F1 — 0, (24)

0— F1 — V_yp — DI — 0, (25)

where le"l is the lowest discrete series representation (lowest weight 2) and F1 = lgpor) is the
trivial representation.

The global case

Let A be the ring of adeles of Q. In the global context we denote the absolute value on Q, by |- |,
the absolute value on R by ||, and let |- | =[], <. |- |» be the global absolute value (the product
being over the places of Q). For a complex parameter s and a place v we have the local H,-modules
Vs, defined above. We also have an analogous global H-module Vj, consisting of smooth K -finite
functions f on GL(2,A) with the transformation property (11). There is a natural isomorphism of
H-modules Vi = ) Vs ,,, where we mean the restricted tensor product over the places of Q. We take
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the unique Kj-invariant function f?%h € Vi p with the property fsg,h(l) = 1 as the distinguished

vector to form the restricted tensor product.
The global V5 is highly reducible, since every V5, is reducible. To have a uniform notation,
we let D, be the infinite-dimensional invariant subspace of Vy /3,, and F, = Vo, /D,. Hence

Dhol if v = o0,
y 22 _ (26)
StaLeg,) Hv=p<oo,
1 if v =
F, GL(2,R) 1 v = 00, (27)
lar(e,g, fv=p<oo.

By [13, Lemma 1], the irreducible subquotients of V; /, are (RpesDy) @ (®U¢S Fu), where S is a
finite set of places.

Flat sections

In the p-adic case let G = GL(2, F), K = GL(2,0), in the real case let G = GL(2,R), K = K,
and in the global case let G = GL(2,A), K = K [, GL(2,Zp). In either context, a family of
functions fs; € Vi, where s runs through a complex domain D, is said to be a flat section if the
restriction of fs to K is independent of s. Using the Iwasawa decomposition, we define a function
0:G—Cby

S9) =3 whereg = [54]s. n e K. (25)

If f € Vg,, then the function fs := 6°7% f lies in Vj, for any s, so € C. The family {fs} is then the
unique flat section containing f.

3 Local and global intertwining operators

In this section we review the standard intertwining operators A : Vs — V_g in the non-archimedean,
archimedean and global case. The global intertwining operator has a simple pole at the critical point
s = 1/2. We will show in Sect. 3.4 that it can still be evaluated on a large enough invariant subspace.
The fact that it does not retain the full intertwining property is responsible for the non-holomorphy
of the classical modular form Ej.

3.1 Non-archimedean case

Let F' be a non-archimedean local field of characteristic zero. The symbols o, p, @, ¢, |-| and v have
the same meanings as in Sect. 2.3. We let G = GL(2, F) and K = GL(2,0). For a non-negative
integer n, let To(p") = K N [pn o]. We fix the Haar measure on F for which the volume of o is 1.

For a complex parameter s let Vi = |-|° x |- |7% be as in Sect. 2.3, with the reducibilities (15)
and (16). For f, € V; with ¢%° # 1, we define

q72Ns
=g ([ AGM a0 ). e
F

N—oc0 q 2
v(b)>—N
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Using the identity [, ~'][[* 4] = [* ' *1] [,2 yo1 1], it is easily verified that the expression in paren-
theses stabilizes for large enough N, so that the definition makes sense. Assuming that Re(s) > 0,
a standard calculation shows that

(Adfs) ( / fo([, ]2 2]g) db. (30)

It is straightforward to verify from (30) that Asfs € V_g, so that we obtain an intertwining operator
As 1 Vs — V_g for Re(s) > 0. In fact, the intertwining property can also be verified from (29), so
that it holds for any s € C such that ¢?* # 1.

Now assume that fs varies in a flat section. Then it follows from (29) that ( sfs)(g) is a
meromorphic function of s, for any fixed g, with possible poles at the points where ¢%* = 1.

Remark 3.1. A different proof of the intertwining property

(Asf")(9) = (Asf)(gh), (31)

where f € Vi and f"(g) = f(gh), goes as follows. First, it holds for Re(s) > 0 by (30). For
other values of s, let fs be the flat section containing f. Then (As(fs)")(g) = (Asfs)(gh) holds for
Re(s) > 0, and one argues that both sides are meromorphic functions of s. However, it is not entirely
obvious that the left hand side is a meromorphic function of s, since in general (fs)" # (f)s.

For a compact-open subgroup I' of G, let V! be the finite-dimensional subspace of V; consisting
of I-invariant vectors. The intertwining operator Ay induces a map VI — VI.. We consider in
particular I' = Tg(p). Since G = BTo(p)UB[; ' |To(p), where B is the upper triangular subgroup,
To(p)

the space Vs is 2—dimensional We define two distinguished vectors in this space. The first is the
normalized spherical vector fsP", characterized by f5P"(1) = 1 and being K-invariant. The second
is the Steinberg vector

1 _
= o (P e P D L), (32

which satisfies f5t(1) = 1 and J‘Et([1 _1}) = —¢~!. The two vectors fsSph and f5' form a basis of

VSFO(’J). Calculations show that
AsfPh = 11__‘];2_1 = (33)
e (34
In particular, for s = 1/2,
£ = 7= (5 - 0 21 (35)

lies in the kernel of Aj/. It is the newform in the Steinberg representation explaining the name.

The kernel of A/, is the subrepresentation Stqr,2 7y of Vy/2. The vector = 1 /2, which is a constant
function, spans the kernel of A_; /5.

10
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Remark 3.2. If f € Vyy lies in Stgr(e,r), and if fs is the flat section containing f, then the
function (Asfs)(g) has a zero at s = 1/2. Therefore the definition

(Byaf)(g) = lim Asf2)9)

s—1/2 s —1/2 (36)

makes sense. It is easy to see that Byjof € V_y5. It follows from (34) that B,y is non-zero. As
a consequence, 31/2 cannot be an intertwining operator, since V_y 5 does not contain an invariant
subspace isomorphic to Stgr2,F)-

3.2 Archimedean case

In the archimedean case we recall that V; is the subspace of Ko-finite vectors of the Hilbert space
representation Vs = | - |* x | - |~ of G(R) = GL(2,R). It is spanned by the functions f§’“) defined in
(17), for k € 2Z. We consider the usual Lebesgue measure on R. For f € V; we define

(Asf) (g) = / F([ 1] g) db. (37)
R

The calculation in [1, Prop. 2.6.2] shows that the integral in (37) is convergent for Re(s) > 0 (just
like in the p-adic case) and defines a vector in V_j.

Lemma 3.3. Assume that Re(s) > 0 and k € 2Z. Then

T(s)D(s + 1/2)
s+ 1+ k)/20D0(s+(1—k)/2)

Proof. See [1, Prop. 2.6.3]. O

) (38)

—s

Asfs(k) = (_1)k/2\/777 T

In particular,

O _ 7L 0
AL = V7 e . (39)
A0 = —yr 2ol T o) (40)

2s+1 T(s+1/2)

We can use (38) to define Asfégk) for any s ¢ {0,—1,—2,...}. (The numerator has poles, some
of which are canceled by poles of the denominator.) Using Lemma 2.2 one can show that the map
A; Vs — V_, thus defined is a map of Hoo.-modules.

Remark 3.4. Assume that V, and V_g are irreducible. Then the existence of the intertwining op-
erator As shows that Vs and V_g are infinitesimally equivalent, i.e., their underlying Hoo-modules
are equivalent. However, they are not isomorphic as Hilbert space representations; see [1, Exer-
cise 2.6.1].

Let ¢ be an odd positive integer. It follows from (38) that

Agafin =0 <<= kex{l+1,0+3,..}, (41)

11
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showing that the kernel of A,/ is precisely the subrepresentation D];Ol of Vy/o. In particular, for
s = 1/2, the discrete series representation D! is the kernel of A, /2-

Let Vf/ég be the subspace of V;/, spanned by the fs(k) with k # 0. For f € Vf/ég, let fs be the

unique flat section containing f, and define

(A1)2f)(g) = Jim ¢ (25)(Asfs)(g), g€ GR). (42)

This is well-defined, because lim,_,;/5(Asfs)(g) = 0 by (38). It is easy to see that 1211/2]“ €V i)

Lemma 3.5. Let 1211/2 T VA V_1/2 be the operator defined in (42). Then the following holds for

1/2
all even, mon-zero integers k.
i)
Ao ®) T (k) 43
1/2f1/2— ‘k|f_1/2' ( )
ii)
A1/2(Hf1(]/2) = H(A1/2f1(]/€%)- (44)
i) —
- R(Aqi,of )5) if k# =2,
A1/2(Rf1(1/€%) — {0 1/2J1/2 ik (45)
i) i "
- L(Ayof0) ifk#2,
v)
bt k e k
A1/2(5—f1(/%) = 5—(A1/2f1(/%)~ (47)

Proof. Property (43) follows from (38), observing that the I'-function has residue (—1)"/(n!) at
s = —n for a positive integer n. Property (44) is immediate from (43) and (18). Property (47) is
immediate from (43) and (21). Equation (45) holds for k& = —2, because Rfl(/_22) =0. For k > 2 or

k < —4 it follows from (43) and (19). Equation (46) holds for k£ = 2, because Lfl% =0. For k>4
or k < —2 it follows from (43) and (20). O

It follows from Lemma 3.5 that if we compose /Nll e Vf’jg

Vo1 J/C = le"l, then we obtain an H.-isomorphism Vf;g — D}fOI.

— V_1/2 with the projection V_; 5 —

12
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3.3 Global case

We now consider the global H-module V; = @ V;,. Let the Haar measure on A be the product
of the local measures chosen above. We choose the Haar measure on Q\A such that the volume of
Q\A is 1. We would like to define a global intertwining operator A : Vs — V_g by the integral

— [#L 1 e (48)
A

To investigate convergence, assume that f corresponds to a pure tensor ®f,, and that g = (gy)y.
Then
=TT [ A1 e (49
Y Q

Let T be a finite set of finite places such that f, = sPh for p ¢ T'; such a set T exists by definition
of the restricted tensor product. Then

(Asf) (g)—( /fv Lo g0) db)( 19 /fS - If]gp)db>

vGTU{oo}
e 1— 2s—1 .
® ( H (As,va)(gu)> < H 1*7172‘9 —p},lp(gp)> (50)
veTU{oo} pET

We see from properties of the Riemann zeta function that the infinite product converges if Re(s) >
1/2. Since every element of V5 is a sum of pure tensors, we conclude that the integral in (48)
converges provided that Re(s) > 1/2, and that in this region it defines an intertwining operator
Ag: Vo =V,

We may rewrite (50) as

2s 1—p 2 sp
(1.5)0) = 2ot ( TT 1 Lamr At ) ( T #20a0))- G0

peT P pg¢T

If f = fs = ®fs, varies in a flat section, then the only pole in the region Re(s) > 0 of the right
hand side of (51) is at s = 1/2, coming from the factor ((2s). Thus (Asfs)(g) admits an analytic
continuation to this region, with at most one simple pole at s = 1/2. The other possible poles on C
can also be determined from (51), but we will have no need for this discussion. (Among these, the
most intractable ones come from the zeros of ((2s + 1), which is why it is tempting to normalize
the intertwining operator by multiplying by this factor.)

3.4 The spaces V1/2 and 1/2

Recall from the previous section that in Re(s) > 0 the global intertwining operator has only one
possible pole at s = 1/2. The next result shows that for most f there is actually no pole. For
J € Vija, let fs be the flat section containing f, and define

(A1/2f)(g) == lim (Asfo)(g), g€ G(A), (52)

s—1/2

13
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provided this limit exists. Let V/ /2 be the subspace of f € V} /o for which the limit (52) exists for
all g € G(A). In the following proof we will utilize the subspaces Uy of Vi, defined by

Up=Cfl) @ ( RQWw /2,,,) (53)

p<oo

for k € 27Z. Here fl(];; ~ 18 the normalized weight-k function in V5 o; see (17). Note that Vi, =
EBke2Z Uk.

Proposition 3.6. The space Vl’/2 is invariant under the action of G(Aqy). The space V1/2/V1’/2 18
one-dimensional and carries the trivial representation of G(Agy).

Proof. 1t follows from (51) and Lemma 3.3 that Uy C Vl’/2 if kK # 0. For a square-free, positive

integer N, let
Vo = Cfie® (QD2) & (R Visan) (54)
pIN ptN

where we recall Dy, is the infinite-dimensional invariant subspace of V} /3 ,. Since D, is the kernel of
Ay )9.p, it follows from (51) that Up y C Vl’/2 if N > 1. As vector spaces (but not as H,-modules)

we have Vi, = Cfls%lyp

® (®p<oo ffl/);p) plus elements of Uy y for various N > 1. In other words, if U} is the

@® Uj. (The sum is direct because U} C Vl’/2

® D,. It follows that any element of Uy can be written as a multiple of

sph . (0)
f11/)2 = J1/2,00

sum of all spaces Uy y for all N > 1, then Uy = Cf
and P8 ¢ v/ Jo-) Altogether it follows that

sph
1/2

1/2
Vi = Cfls%l o Uy @ @ Ug- (55)
ke2Z
k+£0
It is now clear that
Vip=Us& P Uk (56)
k€27
kA0

Since every Uy, and every Uy n for N > 1 is G(Agy)-invariant, so is V] /2 Since G(Qy) acts trivially
on Vi/2,/Dp, it follows that G(Q,) acts trivially on

Vi (vl/z,oo @D, (® vl/g,p/)) , (57)

p'#p
and hence on V1/2/V1’/2. O
More important for us than V] /2 will be its subspace
VI/;Q = @ U, = Dll'lOI ® < ® V1/2,p> . (58)
ke2Z p<oo
k#0

For this space we can prove that A;/, has the following intertwining properties.

14
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Proposition 3.7. Let f € V/

1/2°
i) For h € G(Agy), let f*(g) = f(gh). Then
(A1j2f")(9) = (A1jaf)(gh)  for h € G(Agn). (59)
ii) If f € Uy with k # 0, then
A1/2(Hf) = H(A1/2f)7 (60)
) R(Ayof) ifk# -2,
Ava(RS) = {0 A, (61)
_JL(Ayf) ik #2,
Aypa(Lf) = {0 ., (62)
A1/2(57f) = 57(141/2]?)- (63)

Proof. Tt is obvious from (58) that f" V{;Q. We may assume that f = ®f, is a pure tensor. Let

';goo with k # 0, i.e., f € Uy. Letting s

go to 1/2 in (51), we see that for every large enough set T of finite places,

g = (gp) and h = (hp). We may also assume that foo = fl(

-1

(120) (0) = s eee ) ) ( TT 1= Aol ) (69)

peT p

where 1211/2700]"1(% ., is the function defined in (42). In this form the intertwining property (59)
follows because each A, /5, is an intertwining operator; we just have to choose a set T' large enough
so that it works for both f and f". Properties (60)—(63) follow from (44)-(47). O

For later use, we note that (64), in conjunction with (43), gives the formula

_ 6 1
(4120) (6) = = (0 (HT e ). (65)

whenever f = ®f, € V;p with foo = fl(];% «, and T'is such that f, = fls%lp and g, € K, forp ¢ T

4 Whittaker integrals

In this section we study local and global Whittaker integrals, proceeding analogously to the study
of the intertwining operators in the previous section.

4.1 Non-archimedean case

Let F' be a non-archimedean local field of characteristic zero. We use the same notations as in
Sect. 3.1. We fix a character 1 of F' of conductor o. For a € F*, we let ¢)*(x) = ¥ (ax). For f € Vg,
we define the - Whittaker function associated to f by

(Wef)(g) = lim [ ([, 7] [* 4 ]9)v(—ab) db. (66)

n—oo

pf‘n
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The sequence given by the integrals stabilizes, and hence the limit exists for all s. Provided that
Re(s) > 0, it is easy to see that

(W F) ( / £( J9)i(—ab) db. (67)

It follows from (66) that, for any s € C,
WeH([Y1]9) = [yl (W f)(g) (68)
for all g € G and y,« € F*.
Lemma 4.1. Suppose that ¢** # 1. Let a,y € F*.
i) If fSph € Vs is the normalized spherical vector, then

(o [y| /2= — g®|y[Y/25) (1 — g=27)

if v(ay) =0,

(W FP([Y4]) = 1— g% (69)
0 if v(ay) < 0.
i) If f5¢ € Vy is the Steinberg vector defined in (32), then
(1 _ q_QS_l)]a\23|y]1/2+s _ (1 25 1)‘y’1/2—s .
a if v(ay) > 0,
(WS ) = = Flan) 20, (20
0 if v(ay) <0

Proof. In view of (68), we may assume that y = 1. Assume that f € V; is I'g(p)-invariant. Assuming
v(a) > 0, a straightforward calculation shows that

‘04‘28(1 _ q72571) 4 qfl -1
1— q2s :

(WeH@ = ([, D+ Q) (71)

Equation (69) follows by setting f(1) = f([, ']) = 1 in (71). Equation (70) follows by setting
f(1)=1 and f([l_l]): —¢~lin (71). O

For s =1/2 and v(ay) > 0, the expressions in (69) and (70) simplify as follows,

(Wl (Y1) = (1 ¢ Mg (1 +q7Y), (72)
(W23 (Y 1]) = —a Myl + 7). (73)

4.2 Archimedean case

For s € C, let V5 be the Hso-module considered in Sect. 3.2. For f € V; and a € R*, we consider
the Whittaker function

Waf /f ) 2miad db. (74)
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We would like to evaluate these integrals if f = fsgk) is the weight-k function given in (17). As in
the proof of [1, Thm. 3.7.1] we find

(Waf(k)) ([1 x][y ]) _ efQﬁiaz ‘ ’1/275 1 sz b—i k€27riozby db (75)
o e Y b+ 1 2+ 1
R

for Re(s) > 0. Using [7, 3.384.9], we get

(Wo ) ([L3]V ]) = e2rior (DMl om0

T(s + 172 — sgn(ag)k/2) " etewp/z=stitloy)), (76

where W, , is the Whittaker function defined in [7, 9.220]. For fixed non-zero z, the functions

W, u(2) are entire functions of x and p. It follows that (W fs(k))(g) admits analytic continuation
to an entire function of s.
For k > 2 and s = 551, by (76) and [4, 13.18.2],

0 if ay > 0,

We_vyofietn ) (CEV D) = 4 (2mi)h o (77)
(;_)1)" |k/2| |k716727rza(x+1y) if ay < 0.

4.3 Global case

We now work over Q, using the same global setup as in Sect. 3.3. Let ¢ be the character of Q\A
defined in Tate’s thesis; it has the property that 1 (z) = [] % (2y) With e (200) = e 27, For a
finite prime p, the character 1, of Q,, is trivial on Z, but not on p~1Z,.

For f € Vs and o € Q* we consider the global Whittaker function

(W2 £)(g / A( Jg)(—ab) db. (78)

To investigate convergence, assume that f corresponds to a pure tensor ®f,, and that g = (gy)o-
Then

“TI / Fol [ T 2] g)tu (—ab) db = TT(WE, £2)(g0), (79)
Y Q

(2

with the local Whittaker functions W, f, defined in (67) and (74). To ease notation, we will
sometimes write W instead of W, if the context is clear.

Let T be a finite set of finite places such that for primes p ¢ T the function f, is the normalized
spherical vector, g, € K, and v,(co) = 0. Then

= IT ozt ) (Tvsmm)

veTU{oco} p¢T
69 (0% — 48—
(=>( 11 <Ws,va><gv>)(H<1p2 1>)
veTU{co} p¢T
17
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_ C(231+1) (ngoofoo>(goo)< 11 l_pl_gs_l(wgp fp)(gp)>. (80)

peT
It follows that (78) converges for Re(s) > 0.

Lemma 4.2. Let a € Q* and f € V,. For fized g = (gp,) € G(A), there exists an integer M > 0
such that
(Wef)g) =0  ifag¢ M7'Z (81)

The integer M depends only on the right-invariance properties of f under the groups G(Zy), and
on the g, for p < co. We may choose M such that it is divisible only by those primes p for which
[ is not G(Zyp)-invariant or g, ¢ G(Zy).

Proof. We may assume that f = ®f, is a pure tensor. Recall from (79) that (W&f)(g) =
[L,(W*fy)(gy). For a prime p, there exists a positive integer m,, such that for x € p"*»Z,

(W fp)(gp) = (Wafp)([l Tlgp) = Vplaz)(W fp)(gp)- (82)
It follows that (W< f,)(gp) = 0 if o ¢ p~™rZ,. If f, is spherical and g, € G(Z,), we may choose
myp = 0. Then (81) holds with M =[], p™». This concludes the proof. O

Using a common notation, we set, for a complex number ¢ and a positive integer n,

oi(n) = Z d. (83)

dn
The sum is understood to be over the positive divisors of n. We write o for ;.
Lemma 4.3. Let o be a non-zero integer.

i) For Re(s) >0,

a psp o 0'23(|Oé|)
L0750 = ey o e

i1) For s =1/2 and a positive, square-free integer N,

a £St « psph _ O'(TL/)/,L(N)
(}JV(W ) <p1;[v(W ) = ZEIE (55)

where u is the Mébius function, ¢ is Euler’s function, o = o1, and n' = prNp“P(a) 1s the
part of |a| that is relatively prime to N.
Proof. By Lemma 4.1,

(Hov=ssnm) (o)

p|N PN

1— —2s—1 a25_ 1— 2s5—1 0625— 2s 1— —2s—1
=<H< p e >><H<r U >>‘ 6

pIN P PN b
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Setting N =1 gives

a psph _ 1 |a|1278_p
I;I(W Sg’)(l)_C(Qs-i-l)l;[ 1 —p2s

2s

- 1 H 1— p28(1+’l}p(()é))
25+ 1)]alZ . 1 —p2

1 S S\Up (X
:E@;IEEPgIIQ+p2+.”+@F)M>) (87)
* p

This proves (84). Setting s = 1/2 in (86) gives

(TTovs3,0) (TTv=r) ) - (11 —p-2>|a|p) (17 =220 —p-2>>

pIN PIN v TP PIN 1-p
1 1 1 —p1+vp(a>>
~zoia () (T
__ndV) < 1 >J o
c@ale \ =7 )2t =
This proves (85), because ¢(N) =[],y (» — 1). O

5 Eisenstein series

In this section we prove our main results for Eisenstein series without character. The preparations
from Sects. 3 and 4 allow us to make the connection between adelic and classical Eisenstein series.
Theorem 5.11 identifies the global representation generated by the classical Ejs.

5.1 Fourier expansion

As in Sect. 3.3, we consider the global H-module Vi. For any f € Vi, define the Eisenstein series

E(g,f)= >, f(v), geG®). (89)
v€B(Q\G(Q)

By [1, Prop. 3.7.2], the sum converges absolutely if Re(s) > 1/2. Under this assumption, E(-, f) is
an automorphic form on G(A). In order to analytically continue the Eisenstein series to other values
of s, the key is to consider the Fourier expansion and analytically continue each piece. Even though
this is part of a general theory, we briefly recall the main steps for our rather simple situation. For
a € Q, the a-th Fourier coefficient of E(g, f) is defined by

calg )= [ B[ ]g.110(-ab)db (90)
Q\A
The Fourier expansion of the Eisenstein series is
E(g,f) = _ calg. f). (91)
acQ
19
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To calculate the c4(g, f), we use that, by the Bruhat decomposition, a set of representatives for
B(Q)\G(Q) is given by 1 and [, '|[*#], € Q. Substituting

E(g, f)=fl9)+>_ f([, ]["¢]9) (92)

zeQ

into (90) gives
calg, f) = / (T, ]9 —ab) db (93)

A
for a # 0, and

eolg, f) = Fg) + / AL, ][] g) db. (94)
A

The integrals in (93) were analyzed in Sect. 4.3, where we called them (W f)(g) (see (78)), and
found to be convergent for Re(s) > 0. The integrals in (94) were analyzed in Sect. 3.3, where we
called them (A;f)(g) (see (48)), and found to be convergent for Re(s) > 1/2.

Lemma 5.1. Assume that Re(s) > 1/2 and f € V. For fized g = (g9p) € G(A), there exists an
integer M > 0 such that

E(g,f) = @)+ A+ >, (Wf)g). (95)
aEM~1Z
az#0
The integer M depends only on right-invariance properties of f under the groups G(Zy), and on the

gp for p < oo. We may choose M such that it is divisible only by those primes p for which f is not
G(Zy)-invariant or g, ¢ G(Zy).

Proof. We may assume that f = ®f, is a pure tensor. By (91), (93), (94) we have the expansion
(95) with the summation being over « € Q*. By Lemma 4.2 the summation can be restricted to
a € M~'Z as asserted. O

Lemma 5.2. Assume that fs € Vs is a flat section. For Re(s) > 1/2 and fized g = (gp) € G(A),
let M be as in Lemma 5.1, so that

E(g, fs) = fs(9) + (Asf) () + Y. (W f)(9). (96)
aEM 17
a0
The term (W fs)(g) admits an analytic continuation to Re(s) > 0. The term (Asfs)(g) admits
an analytic continuation to the same region, except possibly for s = 1/2. Hence E(g, fs) admits an
analytic continuation to Re(s) >0, s # 1/2.

Proof. By the considerations in Sect. 3.3 and Sect. 3.4, we need only prove the statement about
Yo (W fs)(g). For this we only give a rough sketch, since in the cases of interest for us everything
will follow from explicit calculations. In general, one may assume that fs = ®fs, is a pure tensor,

and that the archimedean section is the function fs(k) of weight k defined in (17), for some even
integer k. We saw in Sect. 4.3 that each individual (W& fs)(g) continues analytically to Re(s) > 0.
20
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Using the Iwasawa decomposition, we may assume that g = [¥ ;] with y € A*. We then have to
show that the series of functions > r/-17 40 Fa(s), Where Fo(s) := (W fs) ([Y 1]), is uniformly
convergent on a bounded domain D in Re(s) > 0. The key is that there exists a polynomial
P € Q[X], independent of « and s € D, such that

(W fs) (1Y 1) | < Plafog)e™mlowele, (97)

The exponential comes from the archimedean place, more precisely from an estimate on the classical
Whittaker function appearing in (76) (see [15, 16.3]). To prove that the contribution from the non-
archimedean places grows at most polynomially in «, one can use the description of the Kirillov

model in [1, Thms. 4.7.2, 4.7.3]. 0
The possible pole at s = 1/2 in Lemma 5.2 comes from the term (A;fs)(g). Let V1//2 and Vl’;z

be the subspaces of V} ; defined in Sect. 3.4. Then
E(g, f) = lim_E(g, fs) (98)

s—1/2

exists for f € V] /2 and all g € G(A); here, fs is the unique flat section containing f. Evidently,

E(g,f) = f(9) + (Aipf)a) + Y (Wiaf)(9), (99)
aEM~17
a#0
with Ay, f as in (52).

It follows directly from the definition (89) that the map f — E(-, f) from V; to the space of
automorphic forms is intertwining (i.e., a homomorphism of H-modules) if Re(s) > 1/2. This is
less obvious for the analytically continued Eisenstein series, and in fact it is not true for s = 1/2.
The following result clarifies which intertwining properties are retained. Recall the definition of the
space Uy in (53).

Lemma 5.3. For f ¢ V/,

172 let E(g, f) be as defined in (98).

i) For h € G(Agy), let f"(g) = f(gh). Then
E(g, f") = B(gh. f)  for h € G(Asn). (100)

ii) If f € Uy with k # 0, then

E( Hf)=HEC(,[), (101)
E( Rf) = {fE("f) Zzz i :2 (102)
E(,Lf) = {éE(" P ZZZ i ; (103)
B(e f)=c B(.f). (104)

Proof. This follows from (99). The intertwining properties for the first and the third term on the
right hand side are clear. (Observe that Rf = 0 for f € U_g and Lf = 0 for f € Us.) The properties
for the second term follow from Proposition 3.7. O
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5.2 The Eisenstein series E,

Recall that the classical Eisenstein series E}, defined in (2) for an even integer k > 4, are modular
forms of weight k& with a Fourier expansion

En(z) =1+ _@m)t i op—_1(n)e? iz, (105)

SR (b — 1)1 2
(See [3, Sect. 1.1].) In addition, there is the Eisenstein series Eo, defined by the conditionally
convergent series (4). It is a non-holomorphic modular form of weight 2 with Fourier expansion

3 = :
Ey(z)=1- o 24 " o(n)e* . (106)

(See [3, Sect. 1.2].) Theorem 5.4 below will explain the adelic origin of these Eisenstein series.

First, we make some comments about the correspondence between automorphic forms on G(A)
and functions on the upper half plane H. Suppose an automorphic form ® on G(A) is invariant
under the adelic center. Assume also that it is right-invariant under Hp <oo K, where K, is an
open-compact subgroup of K, with K;} = K, for almost all p, and the determinant map Kzla — 7L,
is surjective for all p. Then, by strong approximation, ® is determined by its values on GL(2,R)™.
Assume also that ® has weight k for some integer k, i.e., ®(gr()) = e*?®(g) for all g € G(A) and
6 € R. Then ® is determined by its values on elements of the form [!#][? ] with z,y € R and
y > 0. Now, whenever we have a weight-k function ® on GL(2, R)* invariant under the archimedean
center, we can define a function F' on the upper half plane by

F(2) = det(g9)"2j(g,i)*®(yg), where g € GL(2,R)" is such that gi = z. (107)
Here, j(g,2) = cz +d for g = [‘; Z], as usual. We can take a specific g, namely,
F(z) =y 2o {][",]),  z=a+iy (108)

The F' thus defined transforms like a modular form of weight k£ under I' = SL(2,Q) N Hp oo K
ie., Flyy=F for v €T.

Conversely, starting with a function F on H with this transformation property, we can define
a weight-k function ® on G(A) such that (107) holds. If F is sufficiently regular (e.g., a modular
form), then ® is an automorphic form. We call it the automorphic form corresponding to F.

Theorem 5.4. Let k > 2 be an even integer. Let f € Vii_1)/2 be the following pure tensor,

sph
i = F 1200 ® (@p<oo Fif1y12)- (109)
Then E(-, f) is the automorphic form corresponding to Ej.

Proof. We first assume that k£ > 4. By Lemma 5.1

E(g, fi) = filg) + (Age—1)201) (@) + Y (Wi _y) 2 f2)(9)- (110)
5
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It follows from (41) and (51) that A,_1)/2fx = 0. Applying (108) to our function (110), we see
that the corresponding function on the upper half plane is given by

F(2) =14y 2> (W o fe) (M 511V 1)) (111)
aEZ
a#0

y (77) and (84), for a # 0,

W1y o F) A2 D) = (WO G) o DI D) TT Ve £t ) (1)
p<oo
0 if >0,

_ ke
B km%ok 1(Je]) —2mia(rtiy) if o < ), (112)

(k) (k —1)!
Hence, writing n = —a, we see that F' equals the function Fj in (105).
Now assume that £ = 2. In this case the argument is very similar, but instead of Lemma 5.1 we
use the analytically continued version (99). The main difference for k& = 2 is that the intertwining
operator is non-zero; using (65) with 7' = (), we get

(A2 )([MT]71]) = -

% (113)

Equation (112) simplifies for a < 0 to —24yo(|al)e 2™ @(@+%)  We see that the corresponding
function on the upper half plane is precisely the classical Es given in (106). O

5.3 Eisenstein series of weight 2 with level

Let N be a positive integer. Starting from the non-holomorphic Eisenstein series Es in (106), one
forms the function }

Es n(z) = E2(z) — NEy(Nz). (114)
The %—terms cancel out, so that one obtains a holomorphic modular form of weight 2 with respect
to To(N). (See [3, Sect. 1.2].) The Fourier expansion of Ey v is

Eyn(z) =1-N—24) " a,e’™", (115)
n=1
where
0 — o(n) if N{n, (116)
o(n) — No(n/N) if N |n.

The adelic origin of this function is not difficult to determine. Let fo € Vj /o be the function from
Theorem 5.4, so that E(-, f2) is the automorphic form corresponding to Es. A straightforward
calculation shows that

g E(g[' n. ].f2),  where Ng, = (N,N,N,...) € A}, (117)
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is the automorphic form corresponding to N E» (N z) Since the Eisenstein series is Hg,-intertwining
by Lemma 5.3 i), it follows that E(-, f27N) where fg N = fo— [1 N, | f2, is the automorphic form
corresponding to EZ N-

Now assume that N is square-free. From an adelic point of view, instead of the functions fz, N
it is more natural to consider

2 S
fov = 17 e @ (@piv £) @ (@pin 1303,)- (118)

In the following theorem g denotes the Mobius function and ¢ denotes Euler’s function.

Theorem 5.5. Let N > 1 be a squarefree integer and fo n € V)5 be as in (118). Then the function
on the upper half plane corresponding to E(-, fa n) is given by

N - / Tinz
Eyn(z)=1— 24’;EN; > o(n)e’™m, (119)

n=1
where n/ = HMN p»(") s the part of n relatively prime to N. It is a holomorphic modular form of
weight 2 with respect to To(N).

Proof. Proceeding as in Theorem 5.4, we have

E(g, fov) = fan(9) + (Arjafan)(9) + > (Wi fon) (120)
Q€L
a#0

and Fy n(2) =y P E(['2][Y 1], fav) for z = z+iy. Looking at (51), we see that (A1/2f2,n)(g) =0,
because there is at least one finite place p for which fa v, lies in the kernel of A; /5, (observe the
hypothesis N > 1). The Whittaker functions are calculated as in (112), using (77) and (85). The
assertion follows. O

To understand the relationship between FEs n and Eg}N, we consider elements of the Hecke
algebra Hg,. We define three elements of the local Hecke algebra H,, as follows,

ap = char(Kp), Bp = char([* | Kp), = H(O‘p — Bp); (121)

where “char” means “characteristic function of”. For a square-free, positive integer N, let By, By €
Han be defined by

BN_<®ap>—(®ﬂp>®<®ap>, (122)

p<oo pIN PIN
By = ((%7) 8 (%a) (123)

It follows from the definitions of f27 ~ and fs n above that

Byfo=fon.  Bnfa= fon, (124)
where as before fo € Vj/p is the function from Theorem 5.4. For the second equality, note that
h
W(fj2p) = Fijap BY (35):
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Proposition 5.6. For all square-free integers N > 1,

1 - -
Eyn = o > uw(N/M)Eyn,  Ean=-—Y @(M)Esy. (125)
A M MIN
M#1 M#1

Proof. We calculate

= (I11 5, ) (@ -m)) o (®a) = 5 S wonx, (20

p|N p|N pIN M|N
where
Xy = (@ﬁp) ® <®ap). (127)
p|lM ptM
Note that Xy = X1 — Byr by (122). Since 37y (M) = 0 for N > 1, it follows that
By =~ 3 #(N/M) B (125)

M|N

for N > 1. Let us temporarily redefine B; to be zero, so that (128) also holds for N = 1. Then, by
Moébius inversion,

By=— 3 ¢(M)Buy. (129)
M|N

We apply both sides of (128) and (129) to fa, and get from (124) that

fon = —é\,) E u(N/M) four, fon = — E ©(M) fa,nr (130)
LA VITY MIN
M#£1 M#£1

for N > 1. Now all we have to do is build the adelic Eisenstein series on both sides of these equations.
The equality of the adelic Eisenstein series implies the equality of the classical Eisenstein series in
(125). O

5.4 Global representations generated by Eisenstein series

Some of the results of this section are also contained in [9]. The following, which is more or less
well known, is a consequence of Theorem 5.4.

Corollary 5.7. If k > 4 is an even integer, then the H-module m generated by the automorphic

form corresponding to Ey, is irreducible. We have m = Q) m,, with oo = D}cl‘ill, the discrete series
representation of lowest weight k, and m, = | - ]pk D/Z o X | - |p1 m/2

representation, for all p < oco.

, an irreducible principal series

Proof. Let fi be as in Theorem 5.4. Recall from (22) that the archimedean component f (k=1) /2,00

is the lowest weight vector in the H.,-submodule Dh"l of Vig—1)/2,00- All Vig_1)/2, for p < oo are
irreducible. Hence

W=D ® ( ® V'(kfl)/Z,p> (131)

p<oo
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is an irreducible H-module containing fi. The map f — E(-, f) from W to the space of automorphic
forms is intertwining, since the summation (89) is absolutely convergent. As we saw, it is a non-
zero map, because E(-, fi) is the automorphic form corresponding to Ej. Hence the map is an
isomorphism onto its image, proving the result. ]

To prove a similar result for £ = 2 is more difficult, since the map f — E(-, f) is not quite an
intertwining operator for s = 1/2; see Lemma 5.3. We require the following preparations.

Lemma 5.8. Fori € {1,...,n} let G; be a group acting on a vector space V;. Then G = G1X...xGy,
acts on V :=V1 ® ... ®V,. Assume that each V; is a G;-module of length 2, with a unique simple
submodule W;, and with V;/W; 2 W;. Then W := W1 ® ... @ W, is the unique simple submodule
of V.

Proof. The constituents of V' are the modules U; ® ... ® U, where each Uj; is isomorphic to either
W; or V;/W;. In particular, the constituents are pairwise non-isomorphic. It is therefore enough
to show that any simple G-submodule X of V is isomorphic to W. (Then automatically X = W,
since otherwise we can construct a composition series 0 C W C X @ W C ... C V, in which the
isomorphism class of W would occur twice.)

Hence assume that X = U; ® ... ® U, with U; isomorphic to either W; or V;/W;, and suppose
we have an injection ¢ : X — V. For ¢ € {1,...,n — 1}, choose any non-zero u; € U;. Then we
have an injection of vector spaces

a: U, —U1®...00U,—1U,, a(u) =u] ® ... Up—1 D u. (132)

The map (132) commutes with the action of G,,. Pick some non-zero ug € U, and write

m
olalug)) = ij Q vj, w; €VI®...0 V1, v € V. (133)
j=1
We may assume m to be minimal, in which case wi,...,w, (and also vi,...,v,) are linearly

independent. Choose a linear form f on V; ® ... ® V,,—1 such that f(w;) =1 and f(w;) = 0 for
j €42,...,m}. Define

f: (V1®...0 V1)@V, — Vp, Blw @ v) = f(w)v. (134)

Then S(p(a(up))) = vi. In particular, the linear map fo g o« : U, — V,, is not zero. It is easy
to check that this map commutes with the action of GG, on both sides. Since W, is the unique
irreducible subspace of V,,, it follows that U,, &£ W,,.

In the same manner one proves U; = W, as G;-representations for all 4. L]

Let fs be as in Theorem 5.4, i.e.,
2 sph
fo= e @ (Bpeoo Fi75,): (135)

Then &, := E(-, f2) is the automorphic form corresponding to F,. For a prime p we let D, =
StcL(2,0,) be the infinite-dimensional irreducible, invariant subspace of Vo .
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Lemma 5.9. Any Hg,-map

Q) Vijop — HE (136)
p<oo

whose image contains R‘®y or e _R‘®y for some £ > 0 is injective.

Proof. Let ¢ : ®p<oo ‘/1/2710 — Han P2 be an Hgy-map whose image contains R!®y or e_ R'®, for
some ¢ > 0. By composing with e_ if necessary, we may assume that the image of ¢ contains R‘®,.
Let p = ®pp be the representation of Han on @, Vij2,p- Let f € Qoo Vijap be a vector with
#(f) = R‘®5. Then
/ pp(9)f dg (137)
G(Zp)
also maps to R‘®;. We may thus assume that f = Qp<oo ff%l »

Assume that ¢ has a non-trivial kernel K; we will obtain a contradiction. Considering Hg,v
for any non-zero vector v € K, we see that K contains an Hg,-invariant subspace of the form
W® (®MN ‘/1/2729), where N > 1 is a square-free positive integer, and W C ®p|N V1/2,p 18 invariant
under @,y Hp. By Lemma 5.8, W contains &),y Dp. Hence

((XN)DP> ® <(p§§>vl/2,p) CK. (138)
p

Let By be as in (123). We have
B = @y [il2p) @ (@pn 135, (139)

by definition of By. By (138), Byf € K, so that ¢(Bxf) = 0. On the other hand, ¢(Byf) =
Byo(f) = ByR'®y = R‘By®y. By (124), By®, is the automorphic form corresponding to
Ey n. Using Proposition 2.1 and (119), it is easy to see that R‘By®y # 0. This is the desired
contradiction. ]

For the next result, recall the definitions (53) of Uy and (58) of Vl’}z.

Proposition 5.10. Consider the map E from ‘/1/;2 to the space of automorphic forms given by
f— E(-, f). Let o be the image of fa.

i) The image of E is contained in H®o, and is 1-codimensional in this space. An element of
HDPo which is not in the image is the constant function 1.

it) The map E is injective.

Proof. i) Tt follows from Proposition 2.1 that L®s is a constant automorphic form. Hence, if we
denote the space of constant automorphic forms simply by C, then C C H®5.
By the PBW theorem, U (g)®2 has a basis L®g, ®o, R®9, R?2®,, . ... Hence

Hoo®2 =C & (PC(R'Dy) & @) C(e_R'Dy). (140)
=0 =0
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It follows that - -
HPy =C & @D R MHan®2 © Pe- R Hen®s. (141)
£=0 £=0
For k > 2, set ¢ = (k — 2)/2. Then, using Lemma 5.3,

E(Uy) = E(R'Uy) = E(R Hgn fo) = RHen o (142)

Similarly, for k& < —2, we see E(Uy) = ¢ R"Hg,®2, where £ = (—k — 2)/2. In view of (141), this
proves our assertions.

ii) By weight considerations, it is enough to prove that the restriction of E to Uy is injective. By
Lemma 5.3 i), this restriction is an Hgy-map. Clearly, Uy = ®p<oo V1/27p as Hgp-modules. Hence
the injectivity follows from Lemma 5.9. 0

Theorem 5.11. Let &3 = E(-, f2) be the automorphic form corresponding to Eo. Then the global
representation H®o generated by o admits a filtration

0C CCHPs, (143)

where C is the space of constant automorphic forms, and

HPy/C =D @ Q) Vijzy (144)

p<oo
as H-modules.

Proof. The map E from Proposition 5.10 induces a vector space isomorphism ‘/1/;2 — H®Py/C. Since
L(E(f2)) = L®4 is a constant automorphic form and Uy = Hgy, f2, it follows that L(E(f)) € C for
f € Us. Applying e_, it follows that R(E(f)) € C for f € U_3. Combined with the intertwining
properties of Lemma 5.3, it follows that we constructed an isomorphism of H-modules Vl’;z —
HPy/C. Now all we need to do is observe (58). O

Next we consider the global representations generated by the Fisenstein series of weight 2 with
level. For a positive, square-free integer N, we let

Fon =0 ® (®p|N ff}z,p) ® ( SptN ffl/);p), (145)
Uk,n = Heinfro,n = Cfl(l;%yoo ® (®Dp) ® <® V1/27p), (146)
p|N ptN
1/;2,N = @ Upn =D ® <®Dp> ® <® V1/2,p)- (147)
kkG;OZ pIN pIN

Observe that H fo ny = VII;Q,N'

Theorem 5.12. For a square-free integer N > 1 let ®o v = E(-, fa,n) be the automorphic form
corresponding to Ea n (see Theorem 5.5). Then

by = DM @ (@ Dp) ® (® v /gﬁp). (148)
p|N pIN
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Proof. We consider the restriction of the injective map E : Vl’}Q — HPs to Vl%,N' Let 7, € H, be

the operator defined in (121) and By € Hgy, be as in (123). Since L®q is a constant automorphic
form, ~,(L®2) = 0. Hence By(L®2) = 0, and it follows that

L(E(Uz,n)) = L(E(Hin f2,n))
= Han L(E(f2,n))
= Hn L(E(Bn f2))
= Han BN L(E(f2))
= Hgn BN LP2
=0. (149)

By applying e_ it follows that R(E(U_2 n)) = 0. Lemma 5.3 now implies that the map E : Vl’;Q N
H®D, is H-intertwining. Hence Vl';Q N = Hfon 2 HE(f2 n) = HPo n as H-modules. O

6 Eisenstein series with character

In the previous sections we have explained the adelic origin of the Eisenstein series E}, including the
case k = 2. The literature also contains Eisenstein series E}, ¢, whose definition involves a Dirichlet
character £. In this section we apply the necessary modifications to our previous theory in order
to account for the presence of a non-trivial £. The arguments will be slightly more complicated in
some places, but easier in others, due to the fact that the global intertwining operator vanishes.

Instead of the Vj, the relevant induced representations will now be the Vj , := x| -|* x x| |7%,
where Y is a character of F'* in the context of a p-adic field F', or a character of R* in the archimedean
case, or a character of Q*\A* in the global context. In the p-adic case, this representation is
reducible if and only if x2 = | - |21, i.e., if x = p| - |~*F'/2 with a quadratic character p. In this
case Vi = p| - |FY/2 x p| - [F1/2 = #Vi1/2, and we have the exact sequences (12) and (13).

6.1 Dirichlet characters

In the following we fix a primitive Dirichlet character £ of conductor w > 1. Then there exists a
unique character x = ®y<coXvy 0f Q“\A* with the property

[[xw(@) =¢@™  foracZ with (a,u) = 1. (150)
plu

For a prime p { u the local component yx, is unramified with Satake parameter x,(p) = &(p). For
a prime p | u the local component Y, is ramified with conductor exponent a(x,) = vp(u). The
archimedean component is given by

iv if£(—-1)=1
oo = triv if £(—1) , (151)
sgn if {(—1) = —1.
Since x(a) = 1, it follows from (150) that
pr(a) =¢(|al) for a € Z with (a,u) = 1. (152)

pla
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The classical Gauss sum of £ is defined by

Ge) =" e(a)e™™". (153)

As in Sect. 4.3, we fix the global additive character ) = [[ v, as in Tate’s thesis. Attached to x is
a global e-factor

(s, x) = [ (s x0s90), (154)

v<o0

defined as a product of local factors. The archimedean e-factor is independent of the complex
variable s, and is given by

1 if yoo = triv,
6(87 XOO7 7/’00) = { . . > (155)
—1  if xoo = sgn.
Lemma 6.1. With the above notations and conventions,
1T €00, %0, 45) = G(&). (156)
p<oo
Proof. This is an exercise, using the standard formula
Ot = [ @) d (157)
p—a(Xp)Z;f
as a starting point. ]

Since ¢ is primitive, we have an equality of L-functions L(s,§) = L(s,x), where L(s,§) =
So¢ 1 &(n)n~% is the classical Dirichlet L-series. In the following the Dirichlet character £? will
be relevant, by which we mean the function £2(n) = £(n)? for n € Z (as opposed to the primitive
Dirichlet character associated to this function). We have L(s,£2) = [T L, X3), but not in general

L(s,€%) = L(s,x%).

6.2 Intertwining operators
Non-archimedean case

Let F, @, q, |-|, v, G be as in Sect. 2.3. Let x be a character of F*. Recall that Vj , is the standard
space of the parabolically induced representation x| - |* x x~!| - | %, consisting of locally constant
functions f : G — C with the transformation property

a

F([ehe) =5

a

) fa. (158)

Set

5= {Xz(w) if x? is unramified, (159)

0 if x2 is ramified.
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Generalizing (29), we define for fs € V;

BN —2Ns ) (160)

(Aenfdla) = / AL e+ - gL
v(b

assuming ¢** # (. By a similar argument as in Sect. 3.1, we see that A, is an intertwining operator
Vsx = V_s -1, for any s € C with > #£B.

Assume that x itself is unramified. Then we have a normalized spherical vector fsg(h. We also
define the Steinberg vector fSt by

1 —_ p—
fss& = W((l + 871 28)f§5<h — x(w) Lgs 1/2(q +1)[! w]f?&h), (161)
which satisfies fssgc(l) =1 and f§§(([1 —1]) = —q~!. The two vectors fgp and fSt form a basis of
Vsl;(é(p). Calculations show that
1— Bq72571 b
sxf3 = T g et (162)
1 _/Bq 2541
1
As Xf Wf—i,xfl- (163)
In particular, if xy = u| - |~**t'/? with an unramified quadratic character p, then Vix = Vij2,u, and
iy (fsph W@ L) (164)
/2 = 1/2, w12,

lies in the kernel of Ay /5 ;.

Archimedean case

Let x be either the trivial character or the sign character of R*. Then Vi, is the Ho-module
spanned by the functions fs(];) for k € 2Z, where

i la|stl/2 i
B[ 4]r0) = xtad H|5[ e

: (165)

for a,d €e R*, b € R, and r(0) as in (7). Lemma 2.2 still holds with fs(];) instead of fs(k), except that
(21) has to be replaced by z—:,fgcx) = X(—l)f§;<k). We still have the sequences (22) and (23), with
Vs, instead of Vy and xFj—; instead of Fj_1; there is no need to twist DEO_II, since it is invariant
under twisting by the sign character.

For the archimedean intertwining operator A, : Vi, — V_,,, defined just as in (37) and
convergent for Re(s) > 0, we still have the statement of Lemma 3.3.
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Global case

Now let x = ®y<ooXov be the character of Q*\A* corresponding to our primitive Dirichlet character
&, and consider the global H-module
Vix = @ Voo (166)
v

with the local H,-modules Vj,, defined above. We would like to define a global intertwining
operator A, : Vs — V_, —1 by an integral as in (48). To investigate convergence, let f = ®@f, be
a pure tensor in V. Let T" be a finite set of finite places such that x; is unramified and f, = Ss;;(k;

for p ¢ T'; such a set T exists by definition of the restricted tensor product. Similar to (50), we get

Ao = ( T oo ) (TS0 o). 16

2 9
veTU{co} p¢T Xb (p)p X

Again we see that the product converges for Re(s) > 1/2. We may rewrite (167) as

(Asxp fp) gp) Hfsph

p¢T

1—x5(p)p

1= x2(p)p~21!

L(2s,x?) —2s

(Aea0) = 7o )0 (T

peT

(168)
Now assume that f = fs = ®f, varies in a flat section. Assume further that fs. = fs(’;)w for
some even k > 2. Then, by (41), the limit lim,_,; /5(As .. fs.00)(9oo) 18 zero. It follows that the
right hand side of (168) is analytic in the region Re(s) > 0. In fact:

o If 2 £ 1, then L(2s, x?) is holomorphic in Re(s) > 0, so that (A4, f)(g) vanishes at s = 1/2.

o If x> = 1, then L(2s,x?) has a simple pole at s = 1/2. However, in this case we will let
Js,p be the flat section containing an element of the subrepresentation x,Star(2,q,) of Vi/2,y,-
Note that by our assumptions on £ the set 7' is non-empty, and that fi/o,  is in the kernel of
A1/2,y,- Hence we still obtain that (Asy f)(g) vanishes at s = 1/2.

6.3 Whittaker integrals
Non-archimedean case

We use the same p-adic setup as in the previous section. For f € V,, and a € F'* we define W
by the same formula as in (66). Instead of (68), we have

(W (Y 119) = x() " yV2 = (WL f)(9) (169)

for all g € G and y, € F*.
Assume that y is ramified with conductor exponent a(x). Then Vsl;(g(p ) = 0for 0 <n <

2a(x), and dim %1;2(,3”) = 1 for n = 2a(x). A non-zero Iy(p?*X))-invariant vector is given in
[14, Prop. 2.1.2]. It is supported on the double coset B[wal(x) 1]Fo(p2a(X))a where B is the upper

triangular subgroup of GL(2, F'). We call such a vector f3}", and normalize it so that

2 ([ a0 1 1) = x(@) 7, (170)
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Note that the definition is independent of the choice of uniformizer. If x? # |- |725*!, then fes

is the newform in the irreducible principal series representation V. If x = p|-|7**/2 with a
quadratic character y, then fiT" is the newform in the subrepresentation uStgr2) of Vs -

Lemma 6.2. The following holds for any o,y € F*.

i) Suppose that x is unramified. Let B = x*(w) and assume that ¢** # 3. If f?f;{h € Vi is the
normalized spherical vector, then

(WSSO 4])

O (@l x@)lyl*t = B¢ x(y) My[V* )1 = Bg >
= 1_ ﬂ Tg2s if v(ay) > 0, )
0 if v(ay) <0

ii) Suppose that x is unramified. Let 8 = x?(w) and assume that ¢* # B. If fSt € Vs is the
Steinberg vector defined in (161), then

WSSNTY 1))
(1= Bg 22 (a)|al*x(y)|y[>* = (1= B> Vx(y) " y|V/**

_ b i vlay) > 0
0 if v(ay) <0
(172)
i1) Suppose a(x) > 0. Then, with fi" as in (170),
0 if v(ay) # 0,
W LS 1D =9 _ao2s . . (173)
i g~ O 270y (—a)e(0, x,9)  if v(ay) =0
Proof. i) and ii) follow by setting x = | - |* and replacing s by s +t in Lemma 4.1. For iii) see [14,
Lemma 2.2.1]. O

Archimedean case
We consider the archimedean V; ,, where x is either trivial or the sign character. Recall that it is

spanned by the functions in (165). Generalizing (77), we have

0 if ay > 0,
k

W (k) 1z11Yy — Nk 174
( (kfl)/&xf(k—l)/&x)([ 71D (5{:2W1)1)|X(y)|yk/2|a’k162ma($+iy) if ay <O0. )

In our application we will have y > 0, in which case there is no difference to the previous formula.
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Global case

Let & be our primitive Dirichlet character of conductor u > 1, and x the corresponding character of
Q*\A*. We consider the global Whittaker functional W defined as in (78) with f € V; ,, with
the same global additive character 1) = [[¢,. Then Lemma 4.2 is still true.

For a positive integer n, we define the generalized power sum as follows,

n) Y & (mym', (175)
mln

the sum being taken over positive divisors of n. We write o¢ for af. The following lemma is

analogous to Lemma 4.3.
Lemma 6.3. Let a be a non-zero integer. If (a,u) = 1, then the following formulas hold.

i) For Re(s) >0

(T o) (TTove, )

plu ptu
Xoo(—a)|a] 7%
- w2t L(2s + 1, €2) <p1<_£5(07><p>¢p)>0§s(04)- (176)

ii) For s =1/2 and a positive, square-free integer N with (N,u) =1 and X127 =1 forp| N,

(TI0¥, 220 ) ( TT0¥5., 5500)0) ( IOV, 175,000

plu p|N plulN
_ (-l p(N) o
= T 2L E)e(N) <p1<1f<0’><pawp>>s<ra/a|>o€<|ar>, )

where o is the part of o relatively prime to N.
If (o,u) # 1, then the left hand sides of (176) and (177) are zero.

Proof. The last statement follows from (173). We will therefore assume that («,u) = 1.
i) From (171) and (173) we get

(TTovz, ) (H<

plu pfu

_ (H a0 EHL )20,y 1) )
plu

_ 1 vp () (25-+1) Xpl)lels” — B, 'p 28)
LI 110 (HP (= Q)E(O,va¢p)><g . 1= gt

(ﬁ 1 25)1} a)+1
T w2t 25+1§2 <HXP OXm%)(HXp )lal; ><H 1-6,'p )

plu

o)
< Oap(e)lels” — ﬁ 'p 23)(1—5;)29_25_1))

/6 p23
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- e (I10s00) (Dot ([ 57)

ptu
2 xmle ;(';;'{Sg)“ (plloem,xp,wp)) (gu +E)? 28+--~+(§<p>2p23>vp<“>>>
_ xec@)lalz¢(la])
o ustIL(2s +1,€2) <pl<—£ (0, xp- ¥7) ) <%§ )

In view of (175), this proves i).
ii) follows from a similar calculation, using (171), (172) and (173). O

6.4 The classical Eisenstein series with character

We continue to let £ be our non-trivial primitive Dirichlet character of conductor u > 1. For an
even integer k > 2, let

Epe(2) = Ok, €) Zak L(n)eminz (178)
with 0§ | defined in (175), and

(2m)* G(€)
(k— D)IWFL(k, €2)

C(k,§) = (179)

We note that this normalization of the Eisenstein series differs from the one in [3, Sects. 4.5, 4.6].
We choose the form in (178) since the following result works out nicely coming from the adelic
Eisenstein series.

Theorem 6.4. Let & be a primitive Dirichlet character modulo w > 1, and let x be the corresponding
character of Q*\A*. Let k > 2 be an even integer and fr € V(j_1)/2, e the following pure tensor,

_ (k) new sph
Jex = f(k—l)/2,xoo ® <®p|u f(k—l)/z,xp) ® (®Mu f(i?—l)/zxp)' (180)

Then E(-, fry) is the automorphic form corresponding to Ey¢. It is a holomorphic modular form
of weight k with respect to T'o(u?).

Proof. If k > 4, then we have, similar to Lemma 5.1,

E(g, fex) = frx(9) + (A1) /25 frex)(9) + Z(W(O;é_l)/zxfk,x)(g)- (181)
a€EZ
a#0

It follows from (168) that A(,_1)/2fk,x = 0. Since there is at least one prime p | u, it follows from
the definition of f3" that fi\(g) = 0 for archimedean g. Hence

B9, frr) = SO Wa_1y Jen) () for g € G(R). (182)
ot
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If k£ = 2, we obtain the same identity by analytic continuation; see the comments after (168).
Applying (108) to our function (182), we see from Lemma 6.3 i) and (174) that the corresponding
function on the upper half plane is given by

_yfk/QZ -1y 20c Fep ) (1171 ])

a€Z
a#0
Nk _ —(k—1)
k)2 (2m0)" | kj2p k=1 —2mia(aiy) Xoo(— )| ¢
=Y Z (k— 1)|‘y| ‘Oé| e Y ukL(k,§2) H 8(07Xp7wp) Uk—l(’a‘)
a€Z<o p<oo
(eyu)=1
(2mi)* 1 o
— TI'ZTLZ' 1
(k — 1) ukL(k, £2) pgo £(0, Xp, ¥p) Z"k 1 (183)
Now we use Lemma 6.1 to complete the proof. O

Remark 6.5. The constant term in (178) is zero, i.e., the Eisenstein series Ej ¢ vanishes at the
cusp at infinity. This stems from the fact that both fi(g) and (Ag_1)/2frx)(g) in (181) are zero
for archimedean g. It follows from (168) that in fact (A(x—1)/2,fkx)(g) = 0 for any g € G(A).
Hence, for any h € SL(2,Q),

(Eglh)(z) = .?J_”C/QE([1 Y 1 1R frx)
= frx(hgy) T v k/2 Z (k-1 /Q,ka,x)([l 1Y 1]hgr}) (184)
a€Z
a#0

The cusps are in bijection with B(Q)\SL(2,Q)/T'o(u?). Looking at the support of the local newforms
n (170), we see from (184) that Ey ¢ vanishes at all cusps except the one represented by [ u 1]
6.5 Eisenstein series of weight 2 with level u?>N

We continue to assume that £ is a primitive Dirichlet character modulo v > 1 and y is the corre-
sponding character of Q*\A*. Let N be a square-free positive integer with (u, N) = 1 and such
that X;% =1 for p | N. (Note that, for p { u, we have X% = 1 if and only if £(p)? = 1; see (152).)
Consider the element of Vi /5 , defined by

Jony = f1/2Xoo ( plu fil/e;]xp> <®pIN fls/tz,xp) ® (®MuN fls?g,x,,)' (185)

See (161) for the definition of fls/t2 " In the following result u is the Mobius function and ¢ is
Euler’s function.

Theorem 6.6. Let &, x,u, N be as above and fo Ny € Vija, be as in (185). Let C(2,€) be as in
(179) for k = 2. Then the function on the upper half plane corresponding to E(-, fa n,y) is given by

Bong(2) = Zg (=) ot ayemine, (186)

where n’ is the part of n relatively prime to N. It is a holomorphic modular form of weight 2 with
respect to To(u?N).
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Proof. The proof is similar to that of Theorem 6.4, making use of Lemma 6.3 ii) and (174). O

Up to normalization, the following Eisenstein series is defined in [3, Sect. 4.6],
Byne(2) = N-C(2,€) ) 0(n)e™ N = N - By ¢(Nz). (187)

It is a holomorphic modular form of weight 2 with respect to To(u?N). It is easily verified that
E(, fQ,N,X), where fQJV’X = [1 Nﬁn]fg’x, is the automorphic form corresponding to E27N7€. Here Ng,
is defined in (117) and fa € V)2, is the function from Theorem 6.4.

There is a result analogous to Proposition 5.6 which relates EZ N to By ne. To derive it, we
define the following elements of the local Hecke algebra H,,

1 char (I (p*r™))

Qp = Char(Kp)v Bp = Char([l p]Kp)7 T = ﬂ(ap - Xp(p)ﬁp)v 5p = VOl(Fo(pvP(“))) . (188)

Here we assume p f u for Bp,vp, and p | u for 6,. For a square-free, positive integer N, let
BN’X, BN,X € Hgn be defined by

b= (@4) (@4) (@)

plu ptuN
= (®a)e (@m) (®e) (190
plu pluN
It follows that ) y
BNva27X = f27N,X7 BNxf2,x f2Nx7 (191)

where as before fa\ € Vo, is the function from Theorem 6.4. For the second equality, note that
([T ,) = [y, Dy (164).
Proposition 6.7. For all square-free, positive integers N,
Z E(M)(N/M)Es pe, Eyne =&(N) Z (M) Es, - (192)
M IN M|N
Proof. We calculate

<®5p> © <®(ap - Xp(p)ﬂp)) ® ( 0% ap>

b 1 _
pIN b pluN
u <

N
= E(N/M)u(M)Byyas - (193)
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Using M&bius inversion, it follows that

By =&(N) > @(M)Bayy. (194)
M|N

Note here that £(N) = £(N)~!. We apply both sides of (193) and (194) to fa,y, and get from (191)
that

JoNx = gp(lj\f) Z E(N/M) (M) fo, 01,5 fony =E(N) Z ©(M) fo, 0, - (195)

M|N M|N

Next we take the adelic Eisenstein series on both sides of these equations. Then the equality of the
adelic Eisenstein series implies the equality of the classical Eisenstein series in (192). O

6.6 Global representations generated by Eisenstein series with character

In this section we continue to let £ be a primitive Dirichlet character with conductor v > 1 and y
the corresponding character of Q*\A*. Recall the classical Eisenstein series with character (178).
The following is a version of Corollary 5.7 that takes the presence of the characters into account.

Corollary 6.8. If k > 4 is an even integer, then the H-module m generated by the automorphic

orm corresponding to Ey ¢ is irreducible. We have m = Q) m,, with mse = DO, the discrete series
i4 g £ k-1

gﬁ—1V2 y (1—k)/2

representation of lowest weight k, and mp, = x| - le1| “p , an irreducible principal

series representation, for all p < oo.

For weight 2 we have to be more careful because the summation (89) is no longer absolutely
convergent. However the arguments of Section 5.4, in particular Lemma 5.9 and Proposition 5.10
ii), remain valid. The situation is actually easier, because Fs¢ is holomorphic, hence the one-
dimensional space of constant functions in Theorem 5.11 is no longer present. The upshot is that the
automorphic form ®g, = F(-, fa,,) corresponding to Ey¢ generates the same global representation
as the function fzy. Thus we obtain the following results, where we recall that D, = Stgr2,,)-

Theorem 6.9. Let &, = E(-, f2,) be the automorphic form corresponding to Es¢. Then the
global representation H®z, generated by Pg is

HPoy =D @ (XQ) Vi, © Q) xDp @ Q) Vij2n, (196)
plu plu plu
X2#1 x2=1

as H-modules.

Theorem 6.10. For a square-free positive integer N with (u, N) = 1 and such that X;% =1 for
p| N, let ®3 n\ = E(-, fo,n,y) be the automorphic form corresponding to Es n¢. Then

HPny 2D @ Q) Vijzn, @ Q) P @ Q) x0Dp @ X Vija,- (197)
plu plu p|N pluN
X2#1 x2=1

In terms of Dirichlet characters, the condition X;% = 1 for p | u can be detected as follows. Let 7
be the primitive Dirichlet character corresponding to ¢2, and let u; | u be the conductor of . Then
x2 is the character of Q*\A* corresponding to 1. Hence XIQ; = 1 if and only if p t u; and n(p) = 1.
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