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ABSTRACT. We are concerned with the global behavior of positive solutions for some

classes of semipositone third-order nonlinear boundary value problems

u′′′ = λf(t, u), t ∈ (0, 1),

u(0) = u′(η) = 0, u′′(1) + g(u(1))u(1) = 0,

where η ∈ ( 1
2
, 1), λ is a positive parameter, g ∈ C([0,∞), [0,∞)) and f ∈ C([0, 1]× [0,∞),R)

with f(t, 0) < 0. The proof of our main results are based upon bifurcation theory.

1. Introduction.

In this paper, we investigate the global behavior of positive solutions for third-order nonlinear

boundary value problems

u′′′ = λf(t, u), t ∈ (0, 1),

u(0) = u′(η) = 0, u′′(1) + g(u(1))u(1) = 0,
(1.1)

where η ∈ ( 1
2 , 1) and λ is a positive parameter. We assume that the following assumptions.

(F1) (semipositone) f : [0, 1]× [0,∞)→ R is continuous with f(t, 0) < 0 for all t ∈ [0, 1].

(G1) g : [0,∞) → [0,∞) is continuously differentiable and nondecreasing about ξ, that is,

0 ≤ g(0) ≤ g(ξ) ≤ g(∞) <∞.

This is a generalization of the right focal boundary value problems used in [1, 2, 3, 4, 5, 6]

with g(u(1)) = 0 and [7] with g(u(1)) = γ. However, this is not the case with nonlinear boundary

conditions as the problem

u′′′ = 1, t ∈ (0, 1),

u(0) = u′(η) = 0, u′′(1) + g(u(1))u(1) = 0,
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2 ZHONGHUA BI AND SANYANG LIU

with g
(

2
15

)
= 1 and g

(
1
6

)
= 2 has at least two solutions u(t) = t3

6 −
t2

2 m + (mη − η2

2 )t where

m ∈ { 1715 ,
4
3} and η = 2

3 . Meanwhile, we notice that all of the main results in the above works

use a key condition that the nonlinearities are nonnegative at u = 0, i.e., f(t, 0) ≥ 0, which is

called a positone problem. On the contrary, few works of positive solutions of the boundary value

problems with (F1) are developed in [8, 9]. In this case, the maximum principle may fail. In

order to overcome this difficulty, as a first step, they translated the semipositone problem into a

positone problem using the transformations f(t, u)+M > 0 where M > 0 is a constant. Naturally,

a question is raised that how to deal with the semipositone problems without transformation.

Concurrently, we found that they provided no information about the global behavior of the set of

positive solutions since the spectrum structure of third-order linear eigenvalue problems has not

been established so far. The purpose of this paper is to fill, at least partially, this gap.

To our knowledge, existence, uniqueness and multiplicity of positive solutions of semipositone

second-order boundary value problems have been studied, see [10, 11, 12, 13] with linear boundary

conditions, and [14, 15, 16] with nonlinear boundary conditions. It is worth noting that based

upon the bifurcation method, with the exception of Ambrosetti et al. [10] that deals with

semipositone elliptic problems with linear boundary conditions, recently, Ma [15, 16] obtained the

existence of positive solutions for second-order semipositone problems with nonlinear boundary

conditions

− u′′ = λf̃(t, u), t ∈ (0, 1),

u(0) = 0, u′(1) + c̃(u(1))u(1) = 0.

Comparing with that, the difference in the study of third-order boundary value problems is that

the third-order differential operator is non-self adjoint.

Motivated by the above works, in this paper, we investigate the global behavior of positive solu-

tions for the semipositone third-order problems with nonlinear boundary conditions. Depending on

the behavior of f(t, u) as u→∞, the same abstract setting is employed to deal with both asymp-

totically linear, superlinear as well as sublinear problems. All results are obtained by showing that

there exists a global branch of solutions of (1.1) which bifurcates from infinity and proving that

for λ near the bifurcation value, solutions of large norms are indeed positive to apply bifurcation

theory or topological methods. Since there are some differences between second- and third-order

cases, we have to overcome several new difficulties in the proof of our main results.

The rest of the paper is arranged as follows. Some notation and preliminaries are listed in

Section 2. In Section 3, we deal with asymptotically linear problems. In Section 4, we prove that

(1.1) has at least one solution for λ ∈ (0, λ∗] in the case that f satisfies the superlinear condition.

Similar arguments can be used in the sublinear case, we show that (1.1) possesses positive solutions
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SEMIPOSITONE THIRD-ORDER THREE-POINT BOUNDARY VALUE PROBLEMS 3

provided λ is large enough in Section 5.

2. Notation and Preliminaries. We will work in X = C[0, 1] with the norm ‖u‖ :=

max
t∈[0,1]

|u(t)| and the inner product in L2(0, 1) by 〈·, ·〉. Also we set Br = {u ∈ X : ‖u‖ < r}.

Denote that Gγ(t, s) is the Green’s function of the linear problem (e ∈ X)

u′′′(t) = e(t), t ∈ (0, 1),

u(0) = u′(η) = 0, u′′(1) + γu(1) = 0,
(2.1)

which is explicitly given by

Gγ(t, s) =


s ∈ [0, η] :


t(2s−t)

2 + γts2(2η−t)
2(2+γ(1−2η)) , t ≤ s,

s2

2 + γts2(2η−t)
2(2+γ(1−2η)) , t ≥ s,

s ∈ [η, 1] :


t(2η−t)(2+γ(1−s)2)

2(2+γ(1−2η)) , t ≤ s,
t(2η−t)(2+γ(1−s)2)

2(2+γ(1−2η)) + (t−s)2
2 , t ≥ s.

Notice that in the special case γ = 0, (2.1) can be reduced to a class of three-point boundary value

problems coupled with u(0) = u′(η) = u′′(1) = 0. This result just coincides with [1].

Lemma 2.1. ([7, Lemma 2.1]) Let γ ∈ [0, 2
2η−1 ) with η ∈ ( 1

2 , 1). Then

(i) Gγ(t, s) is nonnegative and increasing in γ for fixed (t, s) ∈ [0, 1]× [0, 1];

(ii) l(t)Gγ(η, s) ≤ Gγ(t, s) ≤ Gγ(η, s), where l(t) := t(2η−t)
η2 .

Next, we consider the principal eigenvalue of the following linear eigenvalue problem

u′′′ = λa(t)u, t ∈ (0, 1),

u(0) = u′(η) = 0, u′′(1) + γu(1) = 0.
(2.2)

Let θ ∈ (0, 1− η). Define the P ⊂ X by

P :=

{
u ∈ X| min

t∈[η−θ,η+θ]
u(t) ≥ l(η + θ)‖u‖

}
.

Let A : P → X be the map defined by

Au(t) := λ

∫ 1

0

Gγ(t, s)a(s)u(s)ds, t ∈ [0, 1].

Lemma 2.2. For γ ∈ [0, 2
2η−1 ) with η ∈ ( 1

2 , 1), (2.2) has a principal eigenvalue λ1[a(·), γ], which

is positive and simple, and the corresponding eigenfunction φ1(t) is positive on [0, 1].

Proof. From the definition of P , we know that P is normal and has nonempty interior.

Obviously, X = P − P . Since Gγ(t, s) > 0, then A is a strong positive operator, that is, A ∈ int P .

By Krein-Rutman Theorem [18, Theorem 19.3(a)], the spectral radius r(A) is positive, and there
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4 ZHONGHUA BI AND SANYANG LIU

exists φ1 ∈ X such that φ1 > 0 on [0, 1] and Aφ1 = r(A)φ1. Thus, λ1[a(·), γ] = (r(A))−1 > 0. Let

A∗ be conjugate operator of A, then A∗ψ1 = r(A∗)ψ1, where ψ1 ∈ X such that ψ1 > 0 on [0, 1]

corresponding to λ1[a(·), γ]. Since

〈Aφ1, ψ1〉 = λ1[a(·), γ]〈φ1, ψ1〉 = 〈φ1, A∗ψ1〉,

then the algebraic multiplicity of λ1[a(·), γ] is 1. Thus, λ1[a(·), γ] is the principal eigenvalue of

(2.2). �

Lemma 2.3. Assume that (G1) holds. Then for e ∈ X, the problem

v′′′(t) = e(t), t ∈ (0, 1),

v(0) = v′(η) = 0, v′′(1) + g(v(1))v(1) = 0,
(2.3)

has a unique solution v ∈ C3[0, 1].

Proof. First, we show that (2.3) exists at least one solution, which is equivalent to the fixed

point of the following equation

v(t) = T̃ v(t) :=

∫ 1

0

Gg(v(1))(t, s)e(s)ds.

It is not hard to show that T̃ is completely continuous and

v ≤ max
0≤t,s≤1

Gg(v(1)) · ‖e‖ := ρ.

By Schauder fixed point theorem, T̃ has a fixed point in Bρ. So (2.3) has a solution.

Next, we show that (2.3) has a unique solution in C3[0, 1].

Suppose the contrary that v1 and v2 are two solutions of (2.3) with v1 6= v2. Then we can obtain

that

(v2 − v1)′′′ = 0, t ∈ (0, 1),

(v2 − v1)(0) = (v′2 − v′1)(η) = 0,

(v′′2 − v′′1 )(1) + [g(v2(1))v2(1)− g(v1(1))v1(1)] = 0.

Since

(2.4) (g(x)x)′ = g′(x)x+ g(x) ≥ g(0) ≥ 0

and

g(v2(1))v2(1)− g(v1(1))v1(1) = [g′(ξ)ξ + g(ξ)](v2 − v1),
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SEMIPOSITONE THIRD-ORDER THREE-POINT BOUNDARY VALUE PROBLEMS 5

for a ξ ∈ [min{u(1), v(1)},max{u(1), v(1)}]. Thus

(v2 − v1)′′′ = 0, t ∈ (0, 1),

(v2 − v1)(0) = (v′2 − v′1)(η) = 0,

(v′′2 − v′′1 )(1) + [g′(ξ)ξ + g(ξ)](v2 − v1) = 0,

which contradicts with (2.4). Therefore,

v2(t)− v1(t) ≡ 0, t ∈ [0, 1].

�

In view of Lemma 2.3, we can define a nonlinear operator K : X → C3[0, 1] by

u := Ke,

where u ∈ C3[0, 1] is the unique solution of (2.3). It is easy to check that K is completely

continuous. From the above notation, it follows that (1.1) is equivalent to

(2.5) u− λKf(·, u) = 0, u ∈ X.

Hereafter we will use the same symbol to denote both the function and the associated Nemytskii

operator.

We denote that if there exists a sequence (µn, un) with µn → λ∞ and un ∈ X, such that

un − µnKf(un) = 0 and ‖un‖ → ∞, then λ∞ is a bifurcation from infinity for (2.5).

In some situations, like the specific ones we will discuss later, an appropriate rescaling allows

us to find bifurcation from infinity by means of the Leray-Schauder topological degree, denoted

by deg(·, ·, ·). Recall that K : X → X is continuous and compact, and hence it makes sense to

consider the topological degree of I − λKf , where I is the identity map.

3. Asymptotically linear problems.

Theorem 3.1. Assume that (F1) and (G1) are satisfied. f satisfies the following assumption.

(F2) There exists a function c ∈ X with c(t) > 0 for t ∈ [0, 1] such that

lim
u→∞

f(t, u)

u
= c.

Then there exists ε > 0 such that (1.1) has positive solutions provided either

(i) α > 0 (possibly ∞) in [0, 1] and λ ∈ [λ∞ − ε, λ∞); or
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6 ZHONGHUA BI AND SANYANG LIU

(ii) β < 0 (possibly −∞) in [0, 1] and λ ∈ (λ∞, λ∞ + ε],

where λ∞ = λ1[c(·),g(u(1))]
c and

α(t) = lim inf
u→∞

(f(t, u)− cu), β(t) = lim sup
u→∞

(f(t, u)− cu).

In order to show Theorem 3.1, we firstly extend f(t, ·) to all of R by setting

(3.1) F (t, u) = f(t, |u|).

Set

(3.2) Φ(λ, u) := u− λKF (t, u), u ∈ X.

Obviously, the solution u > 0 of Φ(λ, u) = 0 is a positive solution of (1.1).

Lemma 3.1. For every compact interval Λ ⊂ [0,+∞)\{λ∞}, there exists r > 0 such that

Φ(λ, u) 6= 0, for all λ ∈ Λ, ‖u‖ ≥ r. Moreover,

(i) if α > 0, then Λ = [λ∞, λ], for λ > λ∞;

(ii) if β < 0, then Λ = [0, λ∞].

Proof. Let µn → µ ≥ 0 ∈ Λ, that is, µ 6= λ∞ and ‖un‖ → ∞ be such that

un = µnKF (t, un).

Setting wn = un

‖un‖ , it follows that

wn = µn‖un‖−1KF (t, un).

It follows from (F2) and (3.1) that, up to a subsequence, wn → w in X, where w satisfies the

problem

w′′′ = µc|w|, t ∈ (0, 1),

w(0) = w′(η) = 0, w′′(1) + g(w(1))w(1) = 0,

and ‖w‖ = 1. By the maximum principle, we know that w ≥ 0. Since ‖w‖ = 1, then

µc = λ1[c(·), g(w(1))], namely µ = λ∞, which is a contradiction.

Next, we give a short illustration of Lemma 3.1 (i). And (ii) follows similarly. Now, suppose

that there exists a sequence (µn, un) ∈ (0,∞)×X with µn → λ∞, ‖un‖ → ∞ and µn > λ∞ such

that

(3.3) Φ(µn, un) = 0.
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SEMIPOSITONE THIRD-ORDER THREE-POINT BOUNDARY VALUE PROBLEMS 7

Note that un ∈ X has a unique decomposition

(3.4) un = vn + snφ1,

where sn ∈ R, since un > 0, ψ1 > 0 and
∫ 1

0
vn(t)ψ1(t)dt = 0, by (3.4), we have

(3.5) sn =

(∫ 1

0

un(t)ψ1(t)dt

)(∫ 1

0

φ1(t)ψ1(t)dt

)−1
> 0, n ∈ N.

Then from (3.3), it follows that∫ 1

0

ψ1(t)un(t)dt = µn

∫ 1

0

ψ1(t)KF (un(t))dt.

And since
∫ 1

0
ψ1(t)KF (un(t))dt = −λ1[c(·), g(u(1))]

∫ 1

0
ψ1(t)un(t)dt, we obtain

−λ1[c(·), g(u(1))]

∫ 1

0

ψ1(t)un(t)dt =

∫ 1

0

ψ′′′1 (t)un(t)dt

=−
∫ 1

0

u′′′n (t)ψ1(t)dt

=−
∫ 1

0

µnf(t, un(t))ψ1(t)dt

=−
∫ 1

0

µn(f(t, un(t))− cun(t))ψ1(t)dt−
∫ 1

0

µnun(t)cψ1(t)dt,

then

(µnc− λ1[c(·), g(u(1))])

∫ 1

0

ψ1(t)un(t)dt = −
∫ 1

0

µn(f(t, un(t))− cun(t))ψ1(t)dt.

Since µn > λ∞ and
∫ 1

0
un(t)ψ1(t)dt > 0 for n large enough, we infer that 〈f(un) − cun, ψ1〉 < 0

and from Fatou lemma, we yields

0 ≥ lim inf
n→∞

〈f(un)− cun, ψ1〉 ≥ 〈α,ψ1〉,

which contradicts with α > 0. �

Lemma 3.2. For λ ∈ (λ∞,∞), there exists r > 0 such that

Φ(λ, u) 6= τφ1, for all τ ≥ 0, ‖u‖ ≥ r.

Proof. Suppose that there exist a sequence {un} in X with ‖un‖ → ∞ and numbers τn ≥ 0

such that Φ(λ, un) = τnφ1. Then

u′′′n = λF (t, un) + τnλ1[c(·), g(u(1))]φ1.

Since F (t, u) ≈ c|u| → ∞ and τnλ1[c(·), g(u(1))]φ1 ≥ 0, by (2.3), we know that un > 0 for all

t ∈ [0, 1].

Choose ε > 0 such that

λ∞ < λ(1− ε).
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8 ZHONGHUA BI AND SANYANG LIU

From condition (F2), there exists a positive constant R0 such that

f(t, u) ≥ (1− ε)cu, ∀ u > R0, t ∈ [0, 1].

It follows from ‖un‖ → ∞ that there exists a positive constant N∗ such that

un > R0, ∀ n ≥ N∗,

and

(3.6) f(t, un) ≥ (1− ε)cun.

By (3.5) and (3.6), we have

snλ1[c(·), g(u(1))]

∫ 1

0

φ1(t)ψ1(t)dt =−
∫ 1

0

ψ′′′1 (t)un(t)dt

=

∫ 1

0

u′′′n (t)ψ1(t)dt

=λ

∫ 1

0

F (t, un)ψ1(t)dt+ τλ1[c(·), g(u(1))]

∫ 1

0

φ1(t)ψ1(t)dt

≥λ
∫ 1

0

F (t, un)ψ1(t)dt

≥λ
∫ 1

0

(1− ε)cun(t)ψ1(t)dt

=λ(1− ε)csn
∫ 1

0

φ1(t)ψ1(t)dt.

Thus,

λ∞ ≥ λ(1− ε),

which is a contradiction. �

For u 6= 0, we set z = u
‖u‖2 . Letting

Ψ(λ, z) :=
Φ(λ, u)

‖u‖2
=
u− λKF (t, u)

‖u‖2
= z − λ‖z‖2KF

(
t,

z

‖z‖2

)
.

λ∞ is a bifurcation from infinity for (3.2) if and only if it is a bifurcation from the trivial z = 0

for Ψ = 0. From Lemma 3.1, for all λ < λ∞, it follows by homotopy that

deg(Ψ(λ, ·), B 1
r
, 0) = deg(Ψ(0, ·), B 1

r
, 0)

= deg(I,B 1
r
, 0) = 1.

(3.7)

Similarly, from Lemma 3.1, for all τ ∈ [0, 1] and λ > λ∞,

deg(Ψ(λ, ·), B 1
r
, 0) = deg(Ψ(0, ·)− τϕ1, B 1

r
, 0)

= deg(Ψ(0, ·)− φ1, B 1
r
, 0) = 0.

(3.8)

Set

Σ := {(λ, u) ∈ [0,+∞)×X : u 6= 0,Φ(λ, u) = 0}.
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SEMIPOSITONE THIRD-ORDER THREE-POINT BOUNDARY VALUE PROBLEMS 9

From (3.7) and (3.8) and the above discussion, it follows that

Lemma 3.3. λ∞ is a bifurcation from infinity for (3.2). More precisely, there exists an unbounded

closed connected set Σ∞ ⊂ Σ that bifurcates from infinity. Moreover, Σ∞ bifurcates to the left (to

the right) provided that α > 0 (respectively β < 0).

Proof of Theorem 3.1 By the previous lemmas, it is enough to show that if µn → λ∞ and

‖un‖ → ∞, then for all t ∈ [0, 1] and n large enough, un > 0. Let wn = un

‖un‖ and using the

preceding arguments, we obtain that, up to subsequence, wn → w in X and w = ϑφ1, ϑ > 0.

Then, it follows that un > 0 for n large enough.

4. Superlinear problems.

Theorem 4.1. Assume that (F1) and (G1) are satisfied. f satisfies the following condition.

(F3) There exists a function c ∈ X with c(t) > 0 for t ∈ [0, 1] such that

lim
u→∞

f(t, u)

up
= c, p ∈ (1,∞).

Then there exists λ∗ > 0 such that (1.1) has positive solutions for λ ∈ (0, λ∗]. More precisely, there

exists a connected set of positive solution of (1.1) bifurcates from infinity at λ∞ = 0.

Set

G(t, u) := F (t, u)− c|u|p,

where the definition of F (t, u) is the same as (3.1).

Next, using the rescaling w = du and λ = dp−1 with d > 0 to show that λ∞ = 0 is a bifurcation

from infinity for

(4.1) u− λKF (t, u) = 0,

which is equivalent to (λ, u) is a solution of (4.1) if and only if

(4.2) w −KF̃ (d,w) = 0,

where

F̃ (d,w) := c|w|p + dpG(d−1w).

We extend F̃ to d = 0 and set

F̃ (0, w) := c|w|p.
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10 ZHONGHUA BI AND SANYANG LIU

By (F3), we know that F̃ (d,w) is continuous for (d,w) ∈ [0,∞)× R. Let

S(d,w) := w −KF̃ (d,w), d ∈ (0,∞).

Then S(d, ·) is compact. For d = 0, solution of S(0, w) = 0 are noting but solutions of

w′′′ = c|w|p, t ∈ (0, 1),

w(0) = w′(η) = 0, w′′(1) + g(∞)w(1) = 0.
(4.3)

Now, we claim that there exist two constants R1, R2 with 0 < R1 < R2 such that

(4.4) S(0, w) 6= 0, for all ‖w‖ ≥ R2,

(4.5) S(0, w) 6= 0, for all 0 < ‖w‖ ≤ R1,

and

(4.6) deg(S(0, w), PR\P̄r, 0) = −1, for r ∈ (0, R1], R ∈ [R2,∞).

Firstly, we show that there exists a positive constant R such that S(0, w) 6= 0, for all ‖w‖ ≥ R.

Suppose that, there exists a sequence {wn} of (4.3) satisfying

lim
n→∞

‖wn‖ =∞,

i.e.,

w′′′n = (c|wn|p−1)wn, t ∈ (0, 1),

wn(0) = w′n(η) = 0, w′′n(1) + g(∞)wn(1) = 0.

Notice that

lim
n→∞

c|wn|p−1 =∞, t ∈ [0, 1].

From the remarks in the final paragraph on P. 56 of [17], wn must change its sign in [0, 1], which

contradicts that wn(t) > 0 for all t ∈ [0, 1].

Secondly, we show that there exists R1 > 0 such that S(0, w) 6= 0 for all 0 < ‖w‖ ≤ R1.

Suppose to the contrary that (4.5) is not true. Then there exists a sequence wn of solutions of

(4.3), which satisfies

(4.7) ‖wn‖ → 0, n→∞.

Let vn = wn

‖wn‖ . From (4.3), we have

v′′′n = c
|wn|p

‖wn‖
, t ∈ (0, 1),

vn(0) = v′n(η) = 0, v′′n(1) + g(∞)vn(1) = 0.

From (4.7), we have lim
n→∞

vn = 0 uniformly in t ∈ [0, 1].
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SEMIPOSITONE THIRD-ORDER THREE-POINT BOUNDARY VALUE PROBLEMS 11

By the standard argument, after taking a subsequence and relabeling if necessary, it follows that

there exists v∗ ∈ X with ‖v‖ = 1 such that

vn → v∗, n→∞

and

v′′′∗ = 0, t ∈ (0, 1),

v∗(0) = v′∗(η) = 0, v′′∗ (1) + g(∞)v∗(1) = 0,

which implies that v∗ = 0. However, this is a contradiction. Therefore, (4.5) holds.

In the end, we show (4.6) is valid. Denote

Pr := {u ∈ P : ‖u‖ < r}.

Now, from (4.4) and (4.5), we have

S(0, w) 6= 0, ∀w ∈ ∂PR; S(0, w) 6= 0, ∀w ∈ ∂Pr,

which implies

S(0, w) 6= 0, ∀w ∈ ∂(PR\P̄r).

Thus deg(S(0, w), PR\P̄r, 0) is well defined.

Note that f̃(w) = |w|p. Next, we show that deg(S(0, w), PR\P̄r, 0) = −1. It is easy to verity

the following conditions

(H1) f0 := lim
w→0+

f̃(w)
w = 0;

(H2) f∞ := lim
w→+∞

f̃(w)
w =∞.

Choose M1 > 0 such that

(4.8)
(η + θ)(η − θ)

η2
M1

∫ η+θ

η−θ
G(η, s)c(s)ds > 1.

From (H2), there exists a constant R2 > 0 such that f(w) > M1w, ∀w ≥ R2. Choose

R > max{R1, R2}, we claim that ‖KF̃ (0, w)‖ > ‖w‖ for w ∈ ∂PR. In fact, for w ∈ ∂PR,

(KF̃ (0, w))(t) =

∫ 1

0

G(t, s)c(s)|w|pds

≥ (η + θ)(η − θ)
η2

M1‖w‖
∫ η+θ

η−θ
G(η, s)c(s)ds

>‖w‖.

Hence, from the fixed point index theorem of [18], we have

(4.9) i(KF̃ (0, ·), PR, P ) = 0.
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On the other hand, from (H1), there exists a constant δ > 0 such that w ∈ [0, δ], and

f̃(w) ≤ κw,

where κ > 0 satisfying

κ

∫ η+θ

η−θ
G(η, s)c(s)ds ≤ 1.

Choose 0 < r < min{δ, R2 }, for w ∈ ∂Pr,

‖KF̃ (0, w)‖ = max
t∈[η−θ,η+θ]

∫ 1

0

G(t, s)c(s)|w|pds

≤κ‖w‖
∫ η+θ

η−θ
G(η, s)c(s)ds

≤‖w‖.

Obviously, KF̃ (0, w) 6= w for w ∈ ∂Pr. By the fixed point index theorem of [18], then

(4.10) i(KF̃ (0, ·), Pr, P ) = 1.

So from the additivity of the fixed point index, (4.9) and (4.10), we get

(4.11) i(KF̃ (0, ·), PR\P̄r, P ) = −1.

From (4.11) and S(0, w) : X → PR\P̄r, it follows that

deg(S(0, w), PR\P̄r, 0) = −1.

Lemma 4.1. For γ ∈ [0, 2
2η−1 ) with η ∈ ( 1

2 , 1), there exists d0 > 0 such that

(i) deg(S(d, ·), PR\P̄r, 0) = −1, ∀d ∈ [0, d0];

(ii) if S(d,w) = 0, d ∈ [0, d0], ‖w‖ ∈ [r,R], then w > 0.

Proof. Suppose to the contrary that, there exists a sequence (dn, wn) with dn → 0, ‖wn‖ ∈ {r,R}

and wn = KF̃ (dn, wn). Since K is a compact operator, then up to a subsequence, wn → w and

S(0, w) = 0, ‖wn‖ ∈ {r,R}, which contradicts with (4.4) and (4.5). Therefore, (i) holds.

In order to prove (ii), we argue again by contradiction. From the preceding argument, we can

find a sequence {wn} ∈ X with {t ∈ [0, 1] : wn ≤ 0} 6= ∅, which satisfies wn → w, ‖w‖ ∈ {r,R}

and S(0, w) = 0; namely, w is a solution of (4.3). From the maximum principle, we have w > 0.

Therefore, wn > 0 for n large enough, which is a contradiction. �

Proof of Theorem 4.1 From Lemma 4.1, ∀d ∈ [0, d0], (4.2) has a positive solution wd.

Recalling, for d > 0 and λ = dp−1, u = w
d gives a solution (λ, uλ) of (4.1) for all 0 < λ < λ∗ := dp−10 .
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Since wd > 0, (λ, uλ) is a positive solution of (1.1). Finally, ∀d ∈ [0, d0], ‖wd‖ ≥ d implies that

‖ud‖ = ‖wd‖/d→∞ as d→ 0.

5. Sublinear problems.

Theorem 5.1. Assume that (F1) and (G1) are satisfied. f satisfies the following condition.

(F4) There exists a function c ∈ X with c(t) > 0 for t ∈ [0, 1], such that

lim
u→∞

f(t, u)

uq
= c, uniformly in t ∈ [0, 1] with q ∈ [0, 1).

Then there exists λ∗ > 0 such that (1.1) has positive solutions for all λ ∈ [λ∗,∞). More precisely,

there exists a connected set of positive solutions of (1.1) bifurcates from infinity for λ∞ =∞.

In this case, we will show that (1.1) exists positive solutions which branch off from ∞ for

λ∞ = ∞. By the same procedure as the superlinear case, we still use the rescaling w = du,

λ = dq−1 and the same notation, with q instead of p. In the case of superlinear problem, (λ, u) is

the solution of (4.1) if (d,w) satisfies (4.2). Now, since q ∈ [0, 1), then

(5.1) λ→∞⇔ d→ 0.

Lemma 5.1. For γ ∈ [0, 2
2η−1 ) with η ∈ ( 1

2 , 1) and q ∈ (0, 1), the problem

w′′′(t) = c(t)wq(t), t ∈ (0, 1),

w(0) = w′(η) = 0, w′′(1) + γw(1) = 0,
(5.2)

has a unique positive solution w0.

Proof. Assume that u1, u2 are positive solutions of (5.2), i.e.,

u′′′1 = c(t)uq1, u1(0) = u′1(η) = 0, u′′1(1) + γu1(1) = 0,

u′′′2 = c(t)uq2, u2(0) = u′2(η) = 0, u′′2(1) + γu2(1) = 0.

We will show that u1 ≥ u2 and u2 ≥ u1.

Suppose on the contrary that u1 � u2. We consider the element ū of the form

ū = u1(t)− εu2(t), t ∈ [0, 1],

where ε ∈ (0, 1). Let there exists τ0 ∈ (0, 1) such that

(5.3) ū(τ0) = u1(τ0)− ε0u2(τ0) = 0.
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On the other hand,

ū′′′(t) = (u1(t)− ε0u2(t))′′′ = c(t)[uq1(t)− ε0uq2(t)] ≥ c(t)[εq0u
q
2(t)− ε0uq2(t)] > 0,

ū(0) = ū′(η) = 0, ū′′(1) + γū(1) = 0.

Thus, ū(t) > 0, which contradicts with (5.3). Therefore, u1 ≥ u2. By the same method, we may

prove that u1 ≤ u2. �

As the same treatment as the sperlinear case, we also can obtain that there exist two constants

R3, R4 with 0 < R3 < R4 such that

(5.4) S(0, w) 6= 0, for all ‖w‖ ≥ R3,

(5.5) S(0, w) 6= 0, for all 0 < ‖w‖ ≤ R4,

and

(5.6) deg(S(0, w), PR\P̄r, 0) = 1, for r ∈ (0, R3], R ∈ [R4,∞).

Therefore, the following results can be obtained.

Lemma 5.2. For γ ∈ [0, 2
2η−1 ) with η ∈ ( 1

2 , 1), there exists d0 > 0 such that

(i) deg(S(d, ·), PR\P̄r, 0) = 1, ∀d ∈ [0, d0];

(ii) if S(d,w) = 0, d ∈ [0, d0], ‖w‖ ∈ [r,R], then w > 0.

Proof of Theorem 5.1 By the continuation, there exists a connected subset Γ of solutions

of S(d,w) = 0 such that (0, w0) ∈ Γ. From Lemma 5.2, we obtain that there exists d0 > 0 such

that these solutions are positive for all d ∈ (0, d0]. Though the rescaling λ = dq−1, u = w
d , Γ is

transformed into a connected subset Σ∞ of solutions of (1.1). These solutions are positive for all

λ > λ∗ := dq−10 and, by (5.1), Σ∞ bifurcates from infinity for λ∞ = +∞.
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