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Abstract

In this paper, we investigate the long-time behavior of wave equations with nonlocal

nonlinear damping and nonlinear colored noise defined on the whole space Rn. We first

establish a continuous cocycle for the equations. And then the dissipative property

of solutions is obtained by utilizing the barrier method to overcome the difficulty

brought by the nonlocal nonlinear damping. Finally, we obtain the existence and

uniqueness of pullback random attractors. The asymptotic compactness of the cocycle

associated with the problem is derived by the aid of energy equation and uniform tail-

estimates to overcome the obstacle caused by the lack of compact Sobolev embeddings

on unbounded domains.
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attractors

1 Introduction

We consider the asymptotic behavior of solutions of the following nonlocal nonlinear

damping wave equations driven by nonlinear colored noise on the entire space Rn:utt −4u+ σ(‖∇u‖2)g(ut) + νu+ f(u) = h(t, x) +R(t, x, u)ζδ(θtω),

u(τ, x) = u0(x), ut(τ, x) = u1,0(x), t > τ, τ ∈ R,
(1.1)
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where x ∈ Rn, ν is a positive constant, h ∈ L2
loc(R, L2(Rn)), ζδ is the colored noise with

correlation time δ > 0. The damping coefficient σ(·) ∈ C1(R+) and σ(s) > 0 for all

s ∈ R+, f, g and R are nonlinear functions on R which satisfy certain conditions. Here,

‖ · ‖ stands for the usual L2−norm.

For the deterministic case (i.e.,R ≡ 0), the asymptotic behaviour of solutions for

wave equations with various different nonlocal damping were studied intensively, such as

nonlocal weak damping σ(‖∇u‖2)ut, nonlocal fractional damping σ(‖∇u‖2)(−4)θut(0 <

θ ≤ 1) and nonlocal nonlinear damping σ(‖∇u‖2)g(ut)(see, e.g., [3,8,22] and the references

therein).

The main object of this paper is to analyze the asymptotic behavior of solutions for

(1.1) under the influence of the nonlocal nonlinear damping

σ(‖∇u‖2)g(ut). (1.2)

The damping (1.2) given by the product of two nonlinearities was first used by Silva and

Narciso in [12], in which they discussed the well-posedness and long-time dynamics for the

following extensible beam model

utt +42u− kφ(‖∇u‖2)4u+ σ(‖∇u‖2)g(ut) + f(u) = h, (1.3)

where kφ(s) ≥ −α0, σ(s) > 0, cg′ |s|γ ≤ |g′(s)| ≤ cg′(1 + |s|γ) and |f ′(s)| ≤ cf ′(1 + |s|ρ).
Later, Narciso [11] investigated the well-posedness as well as the asymptotic behavior of

solutions for a quasi-linear Kirchhoff wave model with nonlocal nonlinear damping

utt − φ(‖∇u‖2)4u+ σ(‖∇u‖2)g(ut) + f(u) = h. (1.4)

Recently, Zhou and Sun [34] showed the well-posedness and long-time dynamics of the

wave equation (1.4) when φ(‖∇u‖2) ≡ 1 and the growth exponent p of the nonlinearity

f(u) satisfies 2 ≤ p ≤ p∗ with p∗ = 6γ
γ+1(≥ 3).

The dynamics of stochastic wave equations driven by additive or linear multiplicative

white noise have been studied in [14, 17, 18, 25, 27] to the case of bounded domains, and

in [19,29,31] to the case of unbounded domains. As far as some researchers are aware, we

can only define a random dynamical system for the stochastic equation when the diffusion

term is a linear function, and that is why we are currently unable to prove the existence

of pathwise random attractors for stochastic wave equations with nonlinear white noise.

The colored noise is used to approximate the Wiener process in order to overcome the

difficulty caused by the nowhere differentiability of the sample paths. In many complex

systems, it is more reasonable to consider the random influences modeled by colored

noise rather than white noise since the stochastic fluctuations are actually correlated, see,

2

3 Jul 2023 17:55:50 PDT
230119-QiaozhenMa Version 2 - Submitted to Rocky Mountain J. Math.



e.g., [1,4,5,10,13,15,24]. Recently, the long term dynamics of PDEs with colored noise has

been extensively investigated in [7,9,16,20,21,23,26,28,32,33]. For instance, the existence

of random attractors of wave equations with colored noise on unbounded domains was

proved by Wang in [23]. In the present paper, we focus on the random attractors of (1.1)

with nonlocal nonlinear damping and nonlinear colored noise, because not only there has

no any results to (1.1), but also these problems have more challenges and more interesting

when the equation include nonlocal nonlinear damping and random term.

In order to obtain the existence of pullback random attractors for the continuous

cocycle associated with (1.1), as we all know, the key step is to establish the pullback

asymptotic compactness of the cocycle in H1(Rn) × L2(Rn). The main difficulties come

from the following aspects:

(i) The Sobolev embeddings are no longer compact in unbounded domains. This is

essentially distinct from the case of bounded domains and is a major obstacle for proving

the asymptotic compactness of the solution operator.

(ii) Due to the influence of the nonlocal nonlinear damping, the energy is not de-

creasing along trajectories and the typical method based on the construction of a suitable

Gronwall’s inequality to prove dissipativity fails in our case.

To overcome these difficulties, we first utilize the barrier method to overcome the

difficulty brought by the nonlinear term σ(‖∇u‖2)g(ut) and then prove the dissipation

as in [3, 22, 34]. Hereafter, we use the idea of energy equation along with the uniform

tail-estimates of solutions to establish the desired pullback asymptotic compactness in

H1(Rn)× L2(Rn), see Lemma 4.4 for more details.

This paper is organized as follows. In the next section, we recall some basic concepts

and results on colored noise as well as pullback random attractors for continuous cocycles.

Section 3 is devoted to the existence of continuous cocycle of (1.1) in H1(Rn) × L2(Rn).

In the last section, we prove the existence and uniqueness of pullback random attractors.

Hereafter, the inner product and norm of L2(Rn) will be denoted by (·, ·) and ‖ · ‖,
respectively. The letter c and ci(i = 1, 2, · · · ) are generic positive constants, which may

be different from line to line.

2 Preliminaries

In this section, we recall some basic concepts and results on colored noise as well as

pullback random attractors for continuous cocycles, see [2, 4, 15,31].
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2.1 Pullback random attractors for continuous cocycles

Let (X, ‖ · ‖X) be a complete separable metric space with Borel σ-algebra B(X). We

first recall the definition of Hausdorff semi-distance of two non-empty sets A,B:

distX(A,B) = sup
x∈A

inf
y∈B

dX(x, y).

Definition 2.1 Let (Ω,F ,P, {θt}t∈R) be a metric dynamical system with probability space

(Ω,F ,P) and measure-preserving group θ : R × Ω → Ω of translations on Ω. A mapping

Φ : R+ × R × Ω × X → X is called a continuous cocycle on X over (Ω,F ,P, {θt}t∈R) if

for all τ ∈ R, ω ∈ Ω and t, s ∈ R+, the following conditions are satisfied:

(i) Φ(·, τ, ·, ·) : R+ × Ω×X → X is (B(R+)×F × B(X),B(X))-measurable;

(ii) Φ(0, τ, ω, ·) is the identity on X;

(iii) Φ(s+ t, τ, ω, ·) = Φ(t, τ + s, θsω, ·)Φ(s, τ, ω, ·);
(iv) Φ(t, τ, ω, ·) : X → X is continuous.

Let D be a collection of some families of nonempty subsets of X.

Definition 2.2 A family K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is called a D−pullback

absorbing set for Φ if for all D ∈ D, τ ∈ R and ω ∈ Ω, there exists T = T (D, τ, ω) > 0

such that, for all t > T ,

Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)) ⊆ K(τ, ω).

Definition 2.3 The continuous cocycle Φ is called D−pullback asymptotically compact

in X if for all D ∈ D, τ ∈ R and ω ∈ Ω, the sequence xn ∈ Φ(tn, τ − tn, θ−tnω,D(τ −
tn, θ−tnω)) has a convergent subsequence in X as tn → +∞.

Definition 2.4 A family A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is called a D−pullback

random attractor of Φ in X if for every τ ∈ R, ω ∈ Ω, the following conditions are

satisfied:

(i) A(τ, ·) : Ω→ X is measurable with respect to F , and A(τ, ω) is compact in X;

(ii) A is invariant: Φ(t, τ, ω,A(τ, ω)) = A(t+ τ, θtω),∀t ∈ R+;

(iii) A attracts every member of D in X: for every D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,

lim
t→+∞

distX(Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)),A(τ, ω)) = 0,

where distX(·, ·) is the Hausdorff semi-distance in X.

We have the following result for continuous cocycles on X.
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Theorem 2.5 ( [30]). Suppose X is a separable Banach space. Let D be an inclusion-

closed collection of some families of nonempty subsets of X, and Φ be a continuous cocycle

on X over (Ω,F ,P, {θt}t∈R). Furthermore, we assume

(i) Φ has a closed measurable D−pullback absorbing set K = {K(τ, ω) : τ ∈ R, ω ∈ Ω}
in D ;

(ii) Φ is D−pullback asymptotically compact in X.

Then Φ has a unique D−pullback random attractor A in D which is given by

A(τ, ω) =
⋂
t0>0

⋃
t>t0

Φ(t, τ − t, θ−tω,K(τ − t, θ−tω))
X

.

2.2 Colored noise

To describe the colored noise, we introduce a probability space (Ω,F ,P), where Ω =

{ω ∈ C(R,R) : ω(0) = 0} equipped with the compact-open topology, F is the Borel σ-

algebra of Ω, P is the Wiener measure. The classical transformation {θt}t∈R on Ω is given

by θtω(·) = ω(·+ t)−ω(t) for all (ω, t) ∈ Ω×R. Let W be a two-sided real-valued Wiener

process on (Ω,F ,P), for each δ > 0, we define

ζδ : Ω→ R by ζδ(ω) =
1

δ

∫ 0

−∞
e
s
δ dW (s).

Then the process ζδ(θtω) is called a real-valued colored noise (also known as an Ornstein-

Uhlenbeck process) which is the unique stationary solution of the one-dimensional stochas-

tic differential equation

dζδ +
1

δ
ζδdt =

1

δ
dW.

Note that there exists a subset of full probability measure (still denoted by Ω) such that

for all ω ∈ Ω, ζδ(θtω) is continuous in t ∈ R and limt→±∞
ζδ(θtω)

t = 0.

3 Continuous cocycle

In this section, we establish the existence of continuous cocycle of (1.1) in H1(Rn) ×
L2(Rn). Throughout this paper, we make the following assumptions on the nonlinear

functions in (1.1). Let f : R→ R be a continuous function which satisfy, for all s, s1, s2 ∈
R,

lim inf
|s|→∞

sf(s) > 0, (3.1)

f(0) = 0, |f(s1)− f(s2)| ≤ α1(|s1|p−1 + |s2|p−1)|s1 − s2|, (3.2)
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F (s) ≥ α2|s|p+1, (3.3)

where p ≥ 1 for n = 1, 2 and 1 ≤ p < n
n−2 for n ≥ 3, α1 and α2 are positive constants, and

F (r) =
∫ r
0 f(s)ds for all r ∈ R.

Let R : R× Rn × R→ R be continuous such that for all t, s, s1, s2 ∈ R and x ∈ Rn,

|R(t, x, s)| ≤ β1(t, x)|s|q + β2(t, x), (3.4)

|R(t, x, s1)−R(t, x, s2)| ≤ β3(t, x)(|s1|q−1 + |s2|q−1 + β4(t, x))|s1 − s2|, (3.5)

where 1 ≤ q < p+1
2 , β1 ∈ L

2p+2
p+1−2q

loc (R, L
2p+2
p+1−2q (Rn)), β2 ∈ L2

loc(R, L2(Rn)), and β3, β4 ∈
L∞(R, L∞(Rn)).

The nonlinear damping g(·) ∈ C1(R) is a monotone increasing function, g(0) = 0, and

there exist two positive constants κ1 and κ2 such that

κ1|s|γ−1 ≤ g′(s) ≤ κ2(1 + |s|γ−1), ∀s ∈ R, (3.6)

where γ ≥ 1 for n = 1, 2 and 1 ≤ γ ≤ n+2
n−2 for n ≥ 3.

To define a continuous non-autonomous cocycle for the nonlocal nonlinear damping

wave equations (1.1) driven by nonlinear colored noise, we first give the definition of weak

solutions to problem (1.1). Given τ ∈ R, ω ∈ Ω, u0 ∈ H1(Rn) and u1,0 ∈ L2(Rn). A

mapping u(·, τ, ω, u0, u1,0) : [τ,+∞) → H1(Rn) is called a (weak) solution of (1.1) if for

u(τ, τ, ω, u0, u1,0) = u0, ut(τ, τ, ω, u0, u1,0) = u1,0,

u(·, τ, ω, u0, u1,0) ∈ L∞(τ, τ + T ;H1(Rn)) ∩ C([τ, τ + T ], L2(Rn)), (3.7)

ut(·, τ, ω, u0, u1,0) ∈ L∞(τ, τ + T ;L2(Rn)) ∩ C([τ, τ + T ], H−1(Rn)), (3.8)

and u satisfies that for all T > 0 and ψ ∈ C∞0 ((τ, τ + T )× Rn),

−
∫ τ+T

τ
(ut, ψt)dt+

∫ τ+T

τ
(∇u,∇ψ)dt+

∫ τ+T

τ
(σ(‖∇u‖2)g(ut), ψ)dt

+ν

∫ τ+T

τ
(u, ψ)dt+

∫ τ+T

τ

∫
Rn
f(u(t, x))ψ(t, x)dxdt

=

∫ τ+T

τ
(h(t), ψ)dt+

∫ τ+T

τ

∫
Rn
R(t, x, u(t, x))ζδ(θtω)ψ(t, x)dxdt, (3.9)

for every ψ ∈ C∞0 ((τ, τ + T )× Rn) and for almost all t ∈ [τ, τ + T ].
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If, in addition, u(t, τ, ·, u0, u1,0) : Ω → H1(Rn) is (F ,B(H1(Rn)))-measurable, and

ut(t, τ, ·, u0, u1,0) : Ω → L2(Rn) is (F ,B(L2(Rn)))-measurable, then u is called a measur-

able solution.

Since the nonlocal nonlinear damping wave equations (1.1) can be viewed as a deter-

ministic equation parametrized by ω ∈ Ω, then by the Galerkin method as in [6], we prove

that for every τ ∈ R, ω ∈ Ω, and (u0, u1,0) ∈ H1(Rn) × L2(Rn), problem (1.1) under the

assumptions (3.1)-(3.6) admits a unique weak solution u(t, τ, ω, u0, u1,0) for all t ≥ τ in the

sense of (3.7)-(3.8) such that u is continuously depends on (u0, u1,0) ∈ H1(Rn)× L2(Rn),

and u is (F ,B(H1(Rn))× B(L2(Rn)))-measurable in ω ∈ Ω. Furthermore, the solution u

of (1.1) satisfies the energy equation

d

dt

(
‖ut‖2 + ν‖u‖2 + ‖∇u‖2 + 2

∫
Rn
F (u(t, x))dx

)
+ 2σ(‖∇u‖2)

∫
Rn
g(ut(t, x))ut(t, x)dx

= 2(h(t), ut(t)) + 2ζδ(θtω)

∫
Rn
R(t, x, u(t, x))ut(t, x)dx, (3.10)

and

d

dt
(u(t), ut(t))+ν‖u‖2+‖∇u‖2+σ(‖∇u‖2)

∫
Rn
g(ut(t, x))u(t, x)dx+

∫
Rn
f(u(t, x))u(t, x)dx

= ‖ut‖2 + (h(t), u(t)) + ζδ(θtω)

∫
Rn
R(t, x, u(t, x))u(t, x)dx, (3.11)

for almost all t > τ .

The rest of this paper is devoted to the existence of random atractors of (1.1). To

that end, we need to define a continuous cocycle in terms of the solution operator of

(1.1). Given t ∈ R+, τ ∈ R, ω ∈ Ω and (u0, u1,0) ∈ H1(Rn) × L2(Rn), define a mapping

Φ : R+ × R× Ω×H1(Rn)× L2(Rn)→ H1(Rn)× L2(Rn) given by

Φ(t, τ, ω, (u0, u1,0)) = (u(t+ τ, τ, θ−τω, u0), ut(t+ τ, τ, θ−τω, u1,0)), (3.12)

where u is the unique solution of (1.1) and u is (F ,B(H1(Rn) × L2(Rn)))-measurable in

ω ∈ Ω. Therefore, Φ is a continuous cocycle on H1(Rn) × L2(Rn) over (Ω,F ,P, {θt}t∈R)

in the sense of [30].

4 Pullback random atractors

In this section, we first construct a pullback random absorbing set, and then prove

the pullback asymptotic compactness of solutions. Ultimately, we achieve the existence of

pullback random attractors for (1.1).
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Recall that a family D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} of bounded nonempty subsets in

H1(Rn)× L2(Rn) is tempered if for every C > 0, τ ∈ R and ω ∈ Ω,

lim
t→+∞

e−Ct‖D(τ − t, θ−tω)‖2H1(Rn)×L2(Rn) = 0, (4.1)

where ‖D‖H1(Rn)×L2(Rn) = sup%∈D ‖%‖H1(Rn)×L2(Rn). Let D be the collection of all tem-

pered families of bounded nonempty subsets of H1(Rn)× L2(Rn), i.e.

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D satisfies (4.1)}. (4.2)

From now on, we also assume f satisfies: for all s ∈ R and % ∈ (0, 1],

f(s)s− %F (s) ≥ 0. (4.3)

Since κ1, κ2, l, ν, σ0 and σ1 are positive constants, γ ≥ 1, and % ∈ (0, 1], we find that

there exists a sufficiently small positive number ε such that

0 < ε < min

{
1, ν,

4− 2%

%
,

σ0κ1

γ(2σ1κ2)
γ+1
γ

}
,
σ0κ1
2γ
− εσ21κ

2
2

ν
> 0, lσo − 2ε− 1

4
ε%− ε2%

8ν
> 0.

(4.4)

We further assume that∫ τ

−∞
e

1
4
ε%s‖h(s)‖2ds <∞, ∀ τ ∈ R, (4.5)

and for any C > 0,

lim
t→+∞

e−Ct
∫ 0

−∞
e

1
4
ε%s‖h(s− t)‖2ds = 0. (4.6)

Note that condition (4.6) implies that the non-autonomous term h(t) is tempered in

L2(Rn) as t → −∞. To derive the uniform estimates of solutions for large time, we now

assume that the functions β1 and β2 in (3.4) satisfy:

β1 ∈ L∞(R, L
2p+2
p+1−2q (Rn)), β2 ∈ L∞(R, L2(Rn)). (4.7)

4.1 Construction of pullback random absorbing sets

We first derive uniform estimates of the solutions for large time.

Lemma 4.1 Suppose (3.1)-(3.6) and (4.5) hold. Then for any τ ∈ R, ω ∈ Ω and D ∈ D,

there exists T = T (τ, ω,D) > 0 such that for all t ≥ T and all r ∈ [−t, 0], the solution u

of (1.1) satisfies,
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‖ut(τ + r, τ − t, θ−τω, u1,0)‖2 + ‖u(τ + r, τ − t, θ−τω, u0)‖2H1(Rn)

+

∫
Rn
F (u(τ + r, τ − t, θ−τω, u0))dx

+

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)

(
‖ut(s, τ − t, θ−τω, u1,0)‖2 + ‖u(s, τ − t, θ−τω, u0)‖2H1(Rn))

)
ds

≤ L1e
− 1

4
ε%r

∫ 0

−∞
e

1
4
εγs(1 + ‖h(s+ t)‖2 + |ζδ(θsω)|

2(p+1)
p+1−2q )ds,

where (u0, u1,0) ∈ D(τ − t, θ−tω) and L1 is a positive number independent of τ, ω and D.

Proof. By (3.10) and (3.11) we get

d

dt
Vε(t) + ε‖∇u‖2 + 2σ(‖∇u‖2)

∫
Rn
g(ut(t, x))ut(t, x)dx

−ε‖ut‖2 + εν‖u‖2 + ε

∫
Rn
f(u(t, x))u(t, x)dx

= (h(t) +R(t, ·, u(t))ζδ(θtω), εu+ 2ut)− εσ(‖∇u‖2)
∫
Rn
g(ut(t, x))u(t, x)dx, (4.8)

where

Vε(t) = ‖ut‖2 + ν‖u‖2 + ‖∇u‖2 + 2

∫
Rn
F (u(t, x))dx+ ε(u, ut).

We now estimate the right-hand side of (4.8). By Young’s inequality, we have

|(R(t, ·, u(t))ζδ(θtω), εu+ 2ut)|

≤ ε‖R(t, ·, u(t))ζδ(θtω)‖ ‖u(t)‖+ 2‖R(t, ·, u(t))ζδ(θtω)‖ ‖ut(t)‖

≤ 1

8
εν‖u(t)‖2 +

1

2
ε‖ut(t)‖2 + c1‖R(t, ·, u(t))ζδ(θtω)‖2, (4.9)

where c1 = 2ε
ν + 2

ε . By means of (3.3), (3.4), (4.7) and the Hölder inequality, we get

‖R(t, ·, u(t))ζδ(θtω)‖2 ≤ 2

∫
Rn
|ζδ(θtω)|2

(
|β1(t, x)|2|u(t, x)|2q + |β2(t, x)|2

)
dx

≤ 1

2
ε%c−11 α2

∫
Rn
|u(t, x)|p+1dx+c2

∫
Rn

(
|ζδ(θtω)|2β1(t, x)|2)

) p+1
p+1−2q dx+2|ζδ(θtω)|2‖β2(t)‖2

≤ 1

2
ε%c−11

∫
Rn
F (u(t, x))dx+ c3|ζδ(θtω)|

2(p+1)
p+1−2q + c3|ζδ(θtω)|2, (4.10)
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where c3 > 0 depends on ε, ν, γ, α2, β1 and β2. Inserting (4.10) to (4.9) yields

|(R(t, ·, u(t))ζδ(θtω), εu+ 2ut)| ≤
1

8
εν‖u(t)‖2 +

1

2
ε‖ut(t)‖2

+
1

2
ε%

∫
Rn
F (u(t, x))dx+ c1c3|ζδ(θtω)|

2(p+1)
p+1−2q + c1c3|ζδ(θtω)|2. (4.11)

Using Young’s inequality, we have

|(h(t), εu+ 2ut)| ≤
1

8
εν‖u(t)‖2 +

1

2
ε‖ut(t)‖2 + c1‖h(t)‖2. (4.12)

Due to (4.3), there holds

ε

∫
Rn
f(u(t, x))u(t, x)dx ≥ ε%

∫
Rn
F (u(t, x))dx. (4.13)

According to (3.7) and the continuity of σ, there exists a constant Ĉ > 0 such that

σ(‖∇u‖2) ≤ max
0≤λ≤Ĉ

σ(λ) = σ1, (4.14)

where σ1 = σ1(‖(u0, u1,0)‖H1(Rn)×L2(Rn)) > 0. Using the Hölder inequality and embedding

H1(Rn) ↪→ Lγ+1(Rn), we get

−εσ(‖∇u‖2)
∫
Rn
g(ut(t, x))u(t, x)dx

≤ εσ1κ2
∫
Rn
|ut(t, x)||u(t, x)|dx+ εσ1κ2

∫
Rn
|ut(t, x)|γ |u(t, x)|dx

≤ εσ1κ2‖ut‖‖u‖+ εσ1κ2

(∫
Rn
|ut(t, x)|γ+1dx

) γ
γ+1
(∫

Rn
|u(t, x)|γ+1dx

) 1
γ+1

≤ εσ1κ2‖ut‖‖u‖+ εσ1κ2‖ut‖γLγ+1‖u‖Lγ+1

≤ εσ1κ2‖ut‖‖u‖+ εd1

(
‖ut‖γLγ+1‖∇u‖

γ−1
γ+1

) γ+1
γ

+
1

2
ε‖∇u‖

2
γ+1

(γ+1)

≤ εσ21κ
2
2

ν
‖ut‖γ+1

Lγ+1 +
1

4
εν‖u‖2 + εd1‖ut‖γ+1

Lγ+1‖∇u‖
γ−1
γ +

1

2
ε‖∇u‖2 + εc4, (4.15)

where we have used the fact that

εσ21κ
2
2

ν
‖ut‖2 ≤

εσ21κ
2
2

ν
‖ut‖γ+1

Lγ+1 + εc4,

and d1 = 2
1
γ (σ1κ2)

γ+1
γ , c4 > 0 depends on γ. Inserting (4.11)-(4.13) and (4.15) into (4.8)

yield
d

dt
Vε(t)− 2ε‖ut‖2 +

1

2
εν‖u‖2 +

1

2
ε‖∇u‖2
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+
1

2
ε%

∫
Rn
F (u(t, x))dx+ 2σ(‖∇u‖2)

∫
Rn
g(ut(t, x))ut(t, x)dx

≤ εd1‖ut‖γ+1
Lγ+1‖∇u‖

γ−1
γ +

εσ21κ
2
2

ν
‖ut‖γ+1

Lγ+1

+c1c3|ζδ(θtω)|
2(p+1)
p+1−2q + c1c3|ζδ(θtω)|2 + c1‖h(t)‖2 + εc4. (4.16)

Thanks to (4.16), it leads to

d

dt
Vε(t) +

1

4
ε%Vε(t) + (−2ε− 1

4
ε%)‖ut‖2 +

1

4
εν(2− %)‖u‖2 +

1

4
ε(2− %)‖∇u‖2

−1

4
ε2%(u, ut) + 2σ(‖∇u‖2)

∫
Rn
g(ut(t, x))ut(t, x)dx

≤ εd1‖ut‖γ+1
Lγ+1‖∇u‖

γ−1
γ +

εσ21κ
2
2

ν
‖ut‖γ+1

Lγ+1

+c1c3|ζδ(θtω)|
2(p+1)
p+1−2q + c1c3|ζδ(θtω)|2 + c1‖h(t)‖2 + εc4. (4.17)

Note that

1

4
ε2%|(u, ut)| ≤

1

8
ε2ν%‖u‖2 +

ε2%

8ν
‖ut‖2. (4.18)

Then it follows from (4.17)-(4.18) that

d

dt
Vε(t) +

1

4
ε%Vε(t) +

1

8
εν(4− 2%− ε%)‖u‖2 +

1

4
ε(2− %)‖∇u‖2

+2σ(‖∇u‖2)
∫
Rn
g(ut(t, x))ut(t, x)dx

≤ (2ε+
1

4
ε%+

ε2%

8ν
)‖ut‖2 + εd1‖ut‖γ+1

Lγ+1‖∇u‖
γ−1
γ +

εσ21κ
2
2

ν
‖ut‖γ+1

Lγ+1

+c1c3|ζδ(θtω)|
2(p+1)
p+1−2q + c1c3|ζδ(θtω)|2 + c1‖h(t)‖2 + εc4. (4.19)

Since σ is a strictly positive continuous function on R+, then there exists a constant σ0 > 0

such that

σ(‖∇u‖2) ≥ σ0 > 0, (4.20)

where σ0 = σ0(‖(u0, u1,0)‖H1(Rn)×L2(Rn)) > 0. In addition, by (3.6), we have

2σ(‖∇u‖2)
∫
Rn
g(ut(t, x))ut(t, x)dx ≥ σ0

∫
Rn
g(ut(t, x))ut(t, x)dx+

σ0κ1
γ
‖ut‖γ+1

Lγ+1 . (4.21)
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According to (3.6), there exist l > 0 and L > 0 such that g′(s) ≥ l when |s| > L. Then

we get ∫
Rn
g(ut(t, x))ut(t, x)dx ≥ l

∫
O
|ut(t, x)|2dx,

where O = {x ∈ Rn : |x| > L}. Thus,

σ0

∫
Rn
g(ut(t, x))ut(t, x)dx− (2ε+

1

4
ε%+

ε2%

8ν
)‖ut‖2

≥ (lσ0 − 2ε− 1

4
ε%− ε2%

8ν
)

∫
O
|ut(t, x)|2dx− c5, (4.22)

where c5 > 0 depends on ε, ν, %. By condition (4.4), there exists a sufficiently small positive

number ε such that

lσ0 − 2ε− 1

4
ε%− ε2%

8ν
> 0,

σ0κ1
γ
− εσ21κ

2
2

ν
>
σ0κ1
2γ
, d2. (4.23)

It follows from (4.19)-(4.23) that

d

dt
Vε(t) +

1

4
ε%Vε(t) +

1

8
εν(4− 2%− ε%)‖u‖2 +

1

4
ε(2− %)‖∇u‖2

≤ ‖ut‖γ+1
Lγ+1

(
εd1(Vε(t))

γ−1
2γ − d2

)
+ c6

(
1 + ‖h(t)‖2 + |ζδ(θtω)|

2(p+1)
p+1−2q

)
, (4.24)

where c6 > 0 depends on c1, c3, c4 and c5. When γ = 1, from condition (4.4), we can

rewrite (4.24) as

d

dt
Vε(t) +

1

4
ε%Vε(t) +

1

8
εν(4− 2%− ε%)‖u‖2 +

1

4
ε(2− %)‖∇u‖2 + (d2 − εd1)‖ut‖2

≤ c6
(

1 + ‖h(t)‖2 + |ζδ(θtω)|
2(p+1)
p+1−2q

)
. (4.25)

Solving (4.25) on [τ − t, τ + r] with t > 0 and all r ∈ [−t, 0], after replacing ω by θ−τω,

we get

‖ut(τ + r, τ − t, θ−τω, u1,0)‖2 + ν‖u(τ + r, τ − t, θ−τω, u0)‖2 + ‖∇u(τ + r, τ − t, θ−τω, u0)‖2

+2

∫
Rn
F (u(τ +r, τ − t, θ−τω, u0))dx+ε(u(τ +r, τ − t, θ−τω, u0), ut(τ +r, τ − t, θ−τω, u1,0))

+(d2 − εd1)
∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)‖ut(s, τ − t, θ−τω, u1,0)‖2ds

12
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+
1

8
εν(4− 2%− ε%)

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)‖u(s, τ − t, θ−τω, u0)‖2ds

+
1

4
ε(2− %)

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)‖∇u(s, τ − t, θ−τω, u0)‖2ds

≤ e−
1
4
ε%(t+r)

(
‖u1,0‖2 + ν‖u0‖2 + ‖∇u0‖2 + 2

∫
Rn
F (u0(t, x))dx+ ε(u0, u1,0)

)

+c6e
− 1

4
ε%r

∫ r

−t
e

1
4
ε%s

(
1 + ‖h(s+ τ)‖2 + |ζδ(θsω)|

2(p+1)
p+1−2q

)
ds. (4.26)

For the first term on the right-hand side of (4.26), by (3.2) we have

e−
1
4
ε%(t+r)

(
‖u1,0‖2 + ν‖u0‖2 + ‖∇u0‖2 + 2

∫
Rn
F (u0(t, x))dx+ ε(u0, u1,0)

)
≤ c7e−

1
4
ε%(t+r)

(
1 + ‖u1,0‖2 + ‖u0‖2H1(Rn) + ‖u0‖p+1

H1(Rn)

)
≤ c8e−

1
4
ε%(t+r)

(
1 + ‖D(τ − t, θ−tω)‖p+1

)
→ 0, as t→∞. (4.27)

Combining with (4.5) and (4.26)-(4.27) we infer that there exists T = T (τ, ω,D) > 0 such

that for all t ≥ T and r ∈ [−t, 0],

‖ut(τ + r, τ − t, θ−τω, u1,0)‖2 + ν‖u(τ + r, τ − t, θ−τω, u0)‖2 + ‖∇u(τ + r, τ − t, θ−τω, u0)‖2

+2

∫
Rn
F (u(τ +r, τ − t, θ−τω, u0))dx+ε(u(τ +r, τ − t, θ−τω, u0), ut(τ +r, τ − t, θ−τω, u1,0))

+(d2 − εd1)
∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)‖ut(s, τ − t, θ−τω, u1,0)‖2ds

+
1

8
εν(4− 2%− ε%)

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)‖u(s, τ − t, θ−τω, u0)‖2ds

+
1

4
ε(2− %)

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)‖∇u(s, τ − t, θ−τω, u0)‖2ds

≤ c9e−
1
4
ε%r

∫ 0

−∞
e

1
4
ε%s

(
1 + ‖h(s+ τ)‖2 + |ζδ(θsω)|

2(p+1)
p+1−2q

)
ds. (4.28)

By (4.4) and Young’s inequality, we have

|ε(u(τ + r, τ − t, θ−τω, u0), ut(τ + r, τ − t, θ−τω, u1,0))|

≤ 1

2
ε‖u(τ + r, τ − t, θ−τω, u0)‖2 +

1

2
ε‖ut(τ + r, τ − t, θ−τω, u1,0)‖2

13
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≤ 1

2
ν‖u(τ + r, τ − t, θ−τω, u0)‖2 +

1

2
‖ut(τ + r, τ − t, θ−τω, u1,0)‖2. (4.29)

Inserting (4.29) into (4.28), we can conclude that for all t ≥ T and all r ∈ [−t, 0],

1

2
‖ut(τ + r, τ − t, θ−τω, u1,0)‖2 +

1

2
ν‖u(τ + r, τ − t, θ−τω, u0)‖2

+‖∇u(τ + r, τ − t, θ−τω, u0)‖2 + 2

∫
Rn
F (u(τ + r, τ − t, θ−τω, u0))dx

+(d2 − εd1)
∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)‖ut(s, τ − t, θ−τω, u1,0)‖γ+1

Lγ+1ds

+
1

8
εν(4− 2%− ε%)

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)‖u(s, τ − t, θ−τω, u0)‖2ds

+
1

4
ε(2− %)

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)‖∇u(s, τ − t, θ−τω, u0)‖2ds

≤ c9e−
1
4
ε%r

∫ 0

−∞
e

1
4
ε%s

(
1 + ‖h(s+ τ)‖2 + |ζδ(θsω)|

2(p+1)
p+1−2q

)
ds, (4.30)

which yields the desired uniform estimates when γ = 1.

Next, we discuss the case of γ > 1. We infer from (4.24) the following crucial result:

For any s ≥ τ such that

Vε(s) ≤
(
d2
εd1

) 2γ
γ−1

− c10 ≡ ϕ(ε), (4.31)

then

εd1(Vε(t))
γ−1
2γ − d2 ≤ 0, ∀ t ≥ s ≥ τ, (4.32)

i.e.,

Vε(t) ≤
(
d2
εd1

) 2γ
γ−1

, ∀ t ≥ s ≥ τ. (4.33)

Indeed, we can infer from (4.31) that

Vε(s) ≤ ϕ(ε) ≤
(
d2
εd1

) 2γ
γ−1

, ∀ s ≥ τ ,

which implies

εd1(Vε(s))
γ−1
2γ − d2 ≤ 0, ∀ s ≥ τ.
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Thus exploiting the continuity of Vε(t), we have (4.32) is valid for t from some interval

[s, s+ T ). If T < +∞, there exists T ∗ > 0 such that

εd1(Vε(t))
γ−1
2γ − d2 < 0, ∀t ∈ [s, s+ T ∗) (4.34)

and

εd1(Vε(s+ T ∗))
γ−1
2γ − d2 = 0. (4.35)

From (4.24) and (4.34), we deduce

d

dt
Vε(t) +

1

4
ε%Vε(t) ≤ c6

(
1 + ‖h(t)‖2 + |ζδ(θtω)|

2(p+1)
p+1−2q

)
, ∀t ∈ [s, s+ T ∗]. (4.36)

Integrating (4.36) from s to t yields

Vε(t) ≤ e−
1
4
ε%(t−s)Vε(s) + c6

∫ t

s
e−

1
4
ε%(t−r)

(
1 + ‖h(r)‖2 + |ζδ(θrω)|

2(p+1)
p+1−2q

)
dr. (4.37)

By (4.5), we have

Vε(t) ≤ e−
1
4
ε%(t−s)Vε(s) + c10, ∀t ∈ [s, s+ T ∗]. (4.38)

When t = s+ T ∗, we infer from (4.31) and (4.38) that

Vε(s+ T ∗) < Vε(s) + c10 ≤
(
d2
εd1

) 2γ
γ−1

.

This contradicts to the second relation in (4.35). Hence T = +∞ and (4.32) holds.

So we infer from (4.24) that

d

dt
Vε(t) +

1

4
ε%Vε(t) +

1

8
εν(4− 2%− ε%)‖u‖2 +

1

4
ε(2− %)‖∇u‖2

≤ c6
(

1 + ‖h(t)‖2 + |ζδ(θtω)|
2(p+1)
p+1−2q

)
. (4.39)

Similar to the arguments in (4.25)-(4.30), we get the desired estimates when γ > 1, which

completes the proof together with (4.30). �

As a consequence of Lemma 4.1, we conclude that the cocycle Φ has a D−pullback

random absorbing set.
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Lemma 4.2 Let (3.1)-(3.6), (4.3) and (4.5)-(4.6) hold. Then the cocycle Φ possesses a

closed measurable D−pullback absorbing set K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, which is

given by

K(τ, ω) = {(u0, u1,0) ∈ H1(Rn)× L2(Rn) : ‖u0‖2H1(Rn) + ‖u1,0‖2 ≤ R(τ, ω)}, (4.40)

where

R(τ, ω) = L1

∫ 0

−∞
e

1
4
ε%s(1 + ‖h(s+ t)‖2 + |ζδ(θsω)|

2(p+1)
p+1−2q )ds,

and L1 is the same number as in Lemma 4.1.

Proof. Together with (3.12) and Lemma 4.1 with r = 0, we find that for every τ ∈ R, ω ∈
Ω and D ∈ D, there exists T = T (τ, ω,D) > 0 such that for all t ≥ T ,

Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)) ⊆ K(τ, ω). (4.41)

On the other hand, by (4.5)-(4.6), one can verify that for every c > 0, τ ∈ R and ω ∈ Ω,

lim
t→+∞

e−ct‖K(τ − t, θ−tω)‖H1(Rn)×L2(Rn) = 0. (4.42)

By virtue of (4.41)-(4.42) we know that K ∈ D is a closed measurable D−pullback ab-

sorbing set of Φ. �

The following uniform estimates on the tails of solutions will be crucial for proving

the D−pullback asymptotic compactness of Φ. To this end, we choose a smooth function

ρ : Rn → R such that 0 ≤ ρ(x) ≤ 1 for any x ∈ Rn, and

ρ(x) = 0 for |x| ≤ 1

2
; and ρ(x) = 1 for |x| ≥ 1. (4.43)

For every m ∈ N, let

ρm(x) = ρ(
x

m
), x ∈ Rn.

Then there exists a positive number c0 independent of m such that |∇ρm(x)| ≤ 1
mc0 for

all x ∈ Rn and m ∈ N.

Lemma 4.3 Let (3.1)-(3.6), (4.3) and (4.5)-(4.6) hold. Then for every η > 0, τ ∈ R, ω ∈
Ω and D ∈ D, there exists T0 = T0(ς, τ, ω,D) > 0 and m0 = m0(ς, τ, ω) ≥ 1 such that for

all t ≥ T0, r ∈ [−t, 0] and m ≥ m0, the solution u of (1.1) satisfies∫
|x|≥m

(|ut(τ + r, τ − t, θ−τω, u1,0)|2 + |u(τ + r, τ − t, θ−τω, u0)|2dx

+

∫
|x|≥m

|∇u(τ + r, τ − t, θ−τω, u0)|2)dx < ηe−
1
4
ε%r,

for all (u0, u1,0) ∈ D(τ − t, θ−tω).
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Proof. Given m ∈ N, let ρm be the smooth function as defined by (4.43). Similar to the

energy equation (3.10), we find

d

dt

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x))

)
dx

+2σ(‖∇u‖2)
∫
Rn
ρm(x)g(ut(t, x))ut(t, x)dx

= −2

∫
Rn
ut(t, x)∇u(t, x) · ∇ρm(x)dx+ 2

∫
Rn
ρm(x)h(t, x)ut(t, x)dx

+2ζδ(θtω)

∫
Rn
ρm(x)R(t, x, u(t, x))ut(t, x)dx. (4.44)

Similar to (3.11), we have

d

dt

∫
Rn
ρm(x)u(t, x)ut(t, x)dx+ ν

∫
Rn
ρm(x)|u(t, x)|2dx+

∫
Rn
ρm(x)|∇u(t, x)|2dx

+σ(‖∇u‖2)
∫
Rn
ρm(x)g(ut(t, x))u(t, x)dx+

∫
Rn
ρm(x)f(u(t, x))u(t, x)dx

=

∫
Rn
ρm(x)|ut(t, x)|2dx−

∫
Rn
u(t, x)∇u(t, x) · ∇ρm(x)dx

+

∫
Rn
ρm(x)h(t, x)u(t, x)dx+ ζδ(θtω)

∫
Rn
ρm(x)R(t, x, u(t, x))u(t, x)dx. (4.45)

It follows from (4.44)-(4.45) that

d

dt

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

−ε
∫
Rn
ρm(x)|ut(t, x)|2dx+ εν

∫
Rn
ρm(x)|u(t, x)|2dx+ ε

∫
Rn
ρm(x)|∇u(t, x)|2dx

+ε

∫
Rn
ρm(x)f(u(t, x))u(t, x)dx+ 2σ(‖∇u‖2)

∫
Rn
ρm(x)g(ut(t, x))ut(t, x)dx

=

∫
Rn
ρm(x) (h(t, x) +R(t, x, u(t, x))ζδ(θtω)) (εu(t, x) + 2ut(t, x))) dx

−ε
∫
Rn
u(t, x)∇u(t, x) · ∇ρm(x)dx− 2

∫
Rn
ut(t, x)∇u(t, x) · ∇ρm(x)dx

−σ(‖∇u‖2)
∫
Rn
ρm(x)g(ut(t, x))u(t, x)dx. (4.46)
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By (4.3) and (4.46), we obtain

d

dt

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

−ε
∫
Rn
ρm(x)|ut(t, x)|2dx+ εν

∫
Rn
ρm(x)|u(t, x)|2dx+ ε

∫
Rn
ρm(x)|∇u(t, x)|2dx

+ε%

∫
Rn
ρm(x)F (u(t, x))dx+ 2σ(‖∇u‖2)

∫
Rn
ρm(x)g(ut(t, x))ut(t, x)dx

≤
∫
Rn
ρm(x) (h(t, x) +R(t, x, u(t, x))ζδ(θtω)) (εu(t, x) + 2ut(t, x))) dx

−ε
∫
Rn
u(t, x)∇u(t, x) · ∇ρm(x)dx− 2

∫
Rn
ut(t, x)∇u(t, x) · ∇ρm(x)dx

−σ(‖∇u‖2)
∫
Rn
ρm(x)g(ut(t, x))u(t, x)dx. (4.47)

Following the arguments of (4.9)-(4.12), by (3.3)-(3.4) and (4.7) one can verify that the

first term on the right-hand side of (4.47) is bounded by∣∣∣∣∫
Rn
ρm(x) (h(t, x) +R(t, x, u(t, x))ζδ(θtω)) (εu(t, x) + 2ut(t, x)) dx

∣∣∣∣
≤ 1

4
εν

∫
Rn
ρm(x)|u(t, x)|2dx+ ε

∫
Rn
ρm(x)|ut(t, x)|2dx+

1

2
ε%

∫
Rn
ρm(x)F (u(t, x))dx

+c11

∫
Rn
ρm(x)

(
|h(t, x)|2 + |ζδ(θtω)β1(t, x)|

2(p+1)
p+1−2q + |ζδ(θtω)β2(t, x)|2

)
dx, (4.48)

where c11 > 0 depends on ε, ν and %. By the property of ρm, we have∣∣∣∣−ε ∫
Rn
u(t, x)∇u(t, x) · ∇ρm(x)dx− 2

∫
Rn
ut(t, x)∇u(t, x) · ∇ρm(x)dx

∣∣∣∣
≤ c12

m
(‖u(t)‖+ ‖ut(t)‖)‖∇u(t)‖, (4.49)

where c12 > 0 depends only on ε, but not on m. Similar to (4.15), we arrive at

−σ(‖∇u‖2)
∫
Rn
ρm(x)g(ut(t, x))u(t, x)dx

≤ εσ21κ
2
2

ν

∫
Rn
ρm(x)|ut(t, x)|γ+1dx+

1

4
εν

∫
Rn
ρm(x)|u(t, x)|2dx+

1

2
ε

∫
Rn
ρm(x)|∇u(t, x)|2dx
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+εd1

∫
Rn
ρm(x)|ut(t, x)|γ+1dx

(∫
Rn
ρm(x)|∇ut(t, x)|2dx

) γ−1
2γ

+ εc4. (4.50)

Inserting (4.48)-(4.50) into (4.47) yields

d

dt

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

−2ε

∫
Rn
ρm(x)|ut(t, x)|2dx+

1

2
εν

∫
Rn
ρm(x)|u(t, x)|2dx+

1

2
ε

∫
Rn
ρm(x)|∇u(t, x)|2dx

+
1

2
ε%

∫
Rn
ρm(x)F (u(t, x))dx+ 2σ(‖∇u‖2)

∫
Rn
ρm(x)g(ut(t, x))ut(t, x)dx

≤ εd1
∫
Rn
ρm(x)|ut(t, x)|γ+1dx

(∫
Rn
ρm(x)|∇ut(t, x)|2dx

) γ−1
2γ

+c11

∫
Rn
ρm(x)

(
|h(t, x)|2 + |ζδ(θtω)β1(t, x)|

2(p+1)
p+1−2q + |ζδ(θtω)β2(t, x)|2

)
dx

+
εσ21κ

2
2

ν

∫
Rn
ρm(x)|ut(t, x)|γ+1dx+

c12
m

(‖u(t)‖+ ‖ut(t)‖)‖∇u(t)‖+ εc4, (4.51)

which can be rewritten as

d

dt

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

+
1

4
ε%

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

+
1

4
εν(2− %)

∫
Rn
ρm(x)|u(t, x)|2dx+

1

4
ε(2− %)

∫
Rn
ρm(x)|∇u(t, x)|2dx

+(−2ε− 1

4
ε%)

∫
Rn
ρm(x)|ut(t, x)|2dx+ 2σ(‖∇u‖2)

∫
Rn
ρm(x)g(ut(t, x))ut(t, x)dx

−1

4
ε2%

∫
Rn
ρm(x)u(t, x)ut(t, x)dx

≤ εd1
∫
Rn
ρm(x)|ut(t, x)|γ+1dx

(∫
Rn
ρm(x)|∇ut(t, x)|2dx

) γ−1
2γ

+c11

∫
Rn
ρm(x)

(
|h(t, x)|2 + |ζδ(θtω)β1(t, x)|

2(p+1)
p+1−2q + |ζδ(θtω)β2(t, x)|2

)
dx

+
εσ21κ

2
2

ν

∫
Rn
ρm(x)|ut(t, x)|γ+1dx+

c12
m

(‖u(t)‖+ ‖ut(t)‖)‖∇u(t)‖+ εc4, (4.52)
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By Young’s inequality, we have

1

4
ε2%

∫
Rn
ρm(x)u(t, x)ut(t, x)dx

≤ 1

8
ε2ν%

∫
Rn
ρm(x)|u(t, x)|2dx+

ε2%

8ν

∫
Rn
ρm(x)|ut(t, x)|2dx. (4.53)

Inserting (4.53) into (4.52) yields

d

dt

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

+
1

4
ε%

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

+
1

8
εν(4− 2%− ε%)

∫
Rn
ρm(x)|u(t, x)|2dx+

1

4
ε(2− %)

∫
Rn
ρm(x)|∇u(t, x)|2dx

+2σ(‖∇u‖2)
∫
Rn
ρm(x)g(ut(t, x))ut(t, x)dx

≤ (2ε+
1

4
ε%+

ε2%

8ν
)

∫
Rn
ρm(x)|ut(t, x)|2dx+

εσ21κ
2
2

ν

∫
Rn
ρm(x)|ut(t, x)|γ+1dx

+εd1

∫
Rn
ρm(x)|ut(t, x)|γ+1dx

(∫
Rn
ρm(x)|∇ut(t, x)|2dx

) γ−1
2γ

+c11

∫
Rn
ρm(x)

(
|h(t, x)|2 + |ζδ(θtω)β1(t, x)|

2(p+1)
p+1−2q + |ζδ(θtω)β2(t, x)|2

)
dx

+
c12
m

(‖u(t)‖+ ‖ut(t)‖)‖∇u(t)‖+ εc4, (4.54)

Collecting (3.6) and (4.14), we deduce

2σ(‖∇u‖2)
∫
Rn
ρm(x)g(ut(t, x))ut(t, x)dx

≥ σo
∫
Rn
ρm(x)g(ut(t, x))ut(t, x)dx+

σ0κ1
γ

∫
Rn
ρm(x)|ut(t, x)|γ+1dx. (4.55)

By (3.6), there exist l > 0 and L > 0 such that g′(s) ≥ l when |s| > L. Then we get

σo

∫
Rn
ρm(x)g(ut(t, x))ut(t, x)dx− (2ε+

1

4
ε%+

ε2%

8ν
)

∫
Rn
ρm(x)|ut(t, x)|2dx

≥ (lσo − 2ε− 1

4
ε%− ε2%

8ν
)

∫
O
ρm(x)|ut(t, x)|2dx− c5, (4.56)
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where c5 > 0 and O are given in Lemma 4.1. Similar to (4.24), we have

d

dt

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

+
1

4
ε%

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

+
1

8
εν(4− 2%− ε%)

∫
Rn
ρm(x)|u(t, x)|2dx+

1

4
ε(2− %)

∫
Rn
ρm(x)|∇u(t, x)|2dx

≤
(
εd1(

∫
Rn
ρm(x)(|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)))dx)

γ−1
2γ − d2

)
·∫

Rn
ρm(x)|ut(t, x)|γ+1dx+

c12
m

(‖u(t)‖+ ‖ut(t)‖)‖∇u(t)‖

+c11

∫
Rn
ρm(x)

(
|h(t, x)|2 + |ζδ(θtω)β1(t, x)|

2(p+1)
p+1−2q + |ζδ(θtω)β2(t, x)|2

)
dx. (4.57)

Since γ ≥ 1, similar to the arguments in (4.25) and (4.39), we obtain

d

dt

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

+
1

4
ε%

∫
Rn
ρm(x)

(
|ut(t, x)|2 + ν|u(t, x)|2 + |∇u(t, x)|2 + 2F (u(t, x)) + εu(t, x)ut(t, x)

)
dx

+c11

∫
Rn
ρm(x)

(
|h(t, x)|2 + |ζδ(θtω)β1(t, x)|

2(p+1)
p+1−2q + |ζδ(θtω)β2(t, x)|2

)
dx

+
c12
m

(‖u(t)‖+ ‖ut(t)‖)‖∇u(t)‖. (4.58)

Integrating (4.58) on [τ − t, τ + r] with t > 0 and all r ∈ [−t, 0], after replacing ω by θ−τω,

we get∫
Rn
ρm(x)

(
|ut(τ + r, τ − t, θ−τω, u1,0)|2 + ν|u(τ + r, τ − t, θ−τω, u0)|2 + |∇u|2

)
dx

+2

∫
Rn
ρm(x)F (u(τ + r, τ − t, θ−τω, u0))dx

+ε

∫
Rn
ρm(x)u(τ + r, τ − t, θ−τω, u0)ut(τ + r, τ − t, θ−τω, u1,0)dx

≤ e−
1
4
ε%(t+r)

∫
Rn
ρm(x)

(
|u1,0|2 + ν|u0|2 + |∇u0|2 + 2F (u0(x)) + εu0(x)u1,0(x)

)
dx

+c11e
− 1

4
ε%r

∫ r

−t
e

1
4
ε%s

∫
Rn
ρm(x)

(
|h(s+ τ, x)|2 + |ζδ(θsω)β1(s, x)|

2(p+1)
q+1−2q

)
dxds
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+c11e
− 1

4
ε%r

∫ r

−t
e

1
4
ε%s

∫
Rn
ρm(x)|ζδ(θsω)β2(s, x)|2dxds

+
2c12
m

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)

(
‖u(s, τ − t, θ−τω, u0)‖2H1(Rn) + ‖ut(s, τ − t, θ−τω, u1,0)‖2

)
ds.

(4.59)

Analogous to (4.27), the first term on the right-hand side of (4.59) is bounded. Hence,

there exists T1 = T1(ς, τ, ω,D) > 0 such that for all t ≥ T1,

e−
1
4
ε%(t+r)

∫
Rn
ρm(x)

(
|u1,0|2 + ν|u0|2 + |∇u0|2 + 2F (u0(x)) + εu0(x)u1,0(x)

)
dx < ηe−

1
4
ε%r.

(4.60)

For the second term on the right-hand side of (4.59) we have

c11e
− 1

4
ε%r

∫ r

−t
e

1
4
ε%s

∫
Rn
ρm(x)

(
|h(s+ τ, x)|2 + |ζδ(θsω)β1(s, x)|

2(p+1)
q+1−2q

)
dxds

+c11e
− 1

4
ε%r

∫ r

−t
e

1
4
ε%s

∫
Rn
ρm(x)|ζδ(θsω)β2(s, x)|2dxds

≤ c11e−
1
4
ε%r

∫ r

−∞
e

1
4
ε%s

∫
|x|≥ 1

2
m

(
|h(s+ τ, x)|2 + |ζδ(θsω)β1(s, x)|

2(p+1)
q+1−2q

)
dxds

+c11e
− 1

4
ε%r

∫ r

−∞
e

1
4
ε%s

∫
|x|≥ 1

2
m
|ζδ(θsω)β2(s, x)|2dxds

≤ c11e−
1
4
ε%r

∫ r

−∞
e

1
4
ε%s

∫
|x|≥ 1

2
m
|h(s+ τ, x)|2dxds

+c11e
− 1

4
ε%r

∫ r

−∞
e

1
4
ε%s|ζδ(θsω)|

2(p+1)
q+1−2q ds

∫
|x|≥ 1

2
m
|β1(s, x)|

2(p+1)
q+1−2q dx

+c11e
− 1

4
ε%r

∫ r

−∞
e

1
4
ε%s|ζδ(θsω)|2ds

∫
|x|≥ 1

2
m
|β2(s, x)|2dx. (4.61)

Combining (4.5) with (4.7) we find that there exists m1 = m1(ς, τ, ω) ≥ 1 such that for

all m ≥ m1, the right-hand side of (4.47) is bounded by ηe−
1
4
ε%r. Thus, for all m ≥ m1

and r ∈ [−t, 0],

c11e
− 1

4
ε%r

∫ r

−t
e

1
4
ε%s

∫
Rn
ρm(x)

(
|h(s+ τ, x)|2 + |ζδ(θsω)β1(s, x)|

2(p+1)
q+1−2q

)
dxds

+c11e
− 1

4
ε%r

∫ r

−t
e

1
4
ε%s

∫
Rn
ρm(x)|ζδ(θsω)β2(s, x)|2dxds < ηe−

1
4
ε%r. (4.62)
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For the last term in (4.59), by Lemma 4.1 we see that there exists T2 = T2(ς, τ, ω,D) ≥ T1
such that for all t ≥ T2,

2c12
m

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)

(
‖u(s, τ − t, θ−τω, u0)‖2H1(Rn) + ‖ut(s, τ − t, θ−τω, u1,0)‖2

)
ds ≤ c13

m
,

where c13 > 0 depends only on ε, ν, γ, τ and ω, but not on m, which implies that there

exists m2 = m2(ς, τ, ω) ≥ m1 such that for all m ≥ m2 and t ≥ T2,

2c12
m

∫ τ+r

τ−t
e

1
4
ε%(s−τ−r)

(
‖u(s, τ − t, θ−τω, u0)‖2H1(Rn) + ‖ut(s, τ − t, θ−τω, u1,0)‖2

)
ds

< ηe−
1
4
ε%r. (4.63)

It follows from (4.59)-(4.60) and (4.62)-(4.63) that for all m ≥ m2 and t ≥ T2,∫
Rn
ρm(x)

(
|ut(τ + r, τ − t, θ−τω, u1,0)|2 + ν|u(τ + r, τ − t, θ−τω, u0)|2 + |∇u|2

)
dx

+2

∫
Rn
ρm(x)F (u(τ + r, τ − t, θ−τω, u0))dx

+ε

∫
Rn
ρm(x)u(τ + r, τ − t, θ−τω, u0)ut(τ + r, τ − t, θ−τω, u1,0)dx

< 3ηe−
1
4
ε%r. (4.64)

Similar to (4.29), By (4.4) and Young’s inequality, we claim that

ε

∫
Rn
ρm(x)u(τ + r, τ − t, θ−τω, u0)ut(τ + r, τ − t, θ−τω, u1,0)dx

≤ 1

2
ε

∫
Rn
ρm(x)|u(τ + r, τ − t, θ−τω, u0)|2dx+

1

2
ε

∫
Rn
ρm(x)|ut(τ + r, τ − t, θ−τω, u1,0)|2dx

≤ 1

2
ν

∫
Rn
ρm(x)|u(τ + r, τ − t, θ−τω, u0)|2dx+

1

2

∫
Rn
ρm(x)|ut(τ + r, τ − t, θ−τω, u1,0)|2dx,

which along with (3.3) and (4.64) yields that for all m ≥ m2 and t ≥ T2,∫
|x|≥m

(
1

2
|ut(τ + r, τ − t, θ−τω, u1,0)|2 +

1

2
ν|u(τ + r, τ − t, θ−τω, u0)|2

+|∇u(τ + r, τ − t, θ−τω, u0)|2)dx

≤
∫
Rn
ρm(x)(

1

2
|ut(τ + r, τ − t, θ−τω, u1,0)|2 +

1

2
ν|u(τ + r, τ − t, θ−τω, u0)|2

+|∇u(τ + r, τ − t, θ−τω, u0)|2)dx

< 3ηe−
1
4
ε%r, (4.65)

which completes the proof. �
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4.2 Existence of random attractors

In this subsection, we above all investigate the D−pullback asymptotic compactness of

Φ in H1(Rn)×L2(Rn) by combining the idea of energy equation with the trick of uniform

tail-estimates. And then we prove the existence and uniqueness of D−pullback random

attractors of Φ.

Given (u, v) ∈ H1(Rn)× L2(Rn), let

E(u, v) = ‖v‖2 + ν‖u‖2 + ‖∇u‖2 + 2

∫
Rn
F (u(x))dx+ ε(u, v),

and

Ψ(u, v) = (h(t) +R(t, ·, u(t))ζδ(θtω), εu+ 2v)− εσ(‖∇u‖2)
∫
Rn
g(ut(t, x))u(t, x)dx

+
1

2
ε(2 + %)‖v‖2 − 1

2
εν(2− %)‖u‖2 − 1

2
ε(2− %)‖∇u‖2 +

1

2
ε2(u, v)

−2σ(‖∇u‖2)
∫
Rn
g(ut(t, x))ut(t, x)dx+ ε

∫
Rn

(%F (u(t, x))− f(u(t, x))u(t, x))dx.

Then the energy equation (4.8) can be rewritten as

d

dt
E(u(t), ut(t)) +

1

2
ε%E(u(t), ut(t)) = Ψ(u(t), ut(t)). (4.66)

Integrating (4.66) from τ to t, we have

E(u(t, τ, ω, u0), ut(t, τ, ω, u1,0))

= e
1
2
ε%(τ−t)E(u0, u1,0) +

∫ t

τ
e

1
2
ε%(s−t)Ψ(u(s, τ, ω, u0), ut(s, τ, ω, u1,0))ds. (4.67)

Next, we prove the D−pullback asymptotic compactness of Φ by the energy equation

(4.67).

Lemma 4.4 Let (3.1)-(3.6), (4.3) and (4.5)-(4.6) hold. Then the cocycle Φ is D−pullback

asymptotically compact in H1(Rn)×L2(Rn); that is, for any τ ∈ R, ω ∈ Ω and (u
(n)
0 , u

(n)
1,0 ) ∈

D(τ − tn, θ−tnω) with D ∈ D, the sequence{
Φ(tn, τ − tn, θ−tnω, (u

(n)
0 , u

(n)
1,0 ))

}∞
n=1

has a convergent subsequence in H1(Rn)× L2(Rn) as tn →∞.
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Proof. By the definition of cocycle Φ in (3.12), for all n ∈ N,

Φ(tn, τ − tn, θ−tnω, (un0 , un1,0)) = (u(τ, τ − tn, θ−τω, un0 ), ut(τ, τ − tn, θ−τω, un1,0)).

Therefore, we need to show the sequence {(u(τ, τ−tn, θ−τω, un0 ), ut(τ, τ−tn, θ−τω, un1,0))}∞n=1

is precompact in H1(Rn)× L2(Rn).

By Lemma 4.1 with r = 0, we find that {(u(τ, τ−tn, θ−τω, un0 ), ut(τ, τ−tn, θ−τω, un1,0))}∞n=1

is bounded in H1(Rn)×L2(Rn) and hence there exists (ξ, ς) ∈ H1(Rn)×L2(Rn) such that,

up to a subsequence,

(u(τ, τ − tn, θ−τω, un0 ), ut(τ, τ − tn, θ−τω, un1,0)) ⇀ (ξ, ς) in H1(Rn)× L2(Rn), (4.68)

which implies

lim inf
n→∞

‖(u(τ, τ − tn, θ−τω, un0 ), ut(τ, τ − tn, θ−τω, un1,0))‖H1(Rn)×L2(Rn) ≥ ‖(ξ, ς)‖H1(Rn)×L2(Rn).

(4.69)

Here, it remains to show

lim sup
n→∞

‖(u(τ, τ − tn, θ−τω, un0 ), ut(τ, τ − tn, θ−τω, un1,0))‖H1(Rn)×L2(Rn) ≤ ‖(ξ, ς)‖H1(Rn)×L2(Rn),

(4.70)

which along with (4.69) shows the strong convergence of (u(τ, τ − tn, θ−τω, u(n)0 ), ut(τ, τ −
tn, θ−τω, u

(n)
1,0 )) in H1(Rn)×L2(Rn), and hence completes the proof. Next, we prove (4.70)

by the energy equation (4.67). By Lemma 4.1, there exists N = N(τ, ω,D) ∈ N such that

for n ≥ N and r ∈ [−tn, 0],

‖u(τ + r, τ − tn, θ−τω, un0 )‖2H1(Rn) + ‖ut(τ + r, τ − tn, θ−τω, un1,0)‖2

+

∫
Rn
F (u(τ + r, τ − tn, θ−τω, un0 ))dx ≤ c14e−

1
4
ε%r, (4.71)

where c14 = c14(τ, ω) > 0 is independent of n.

Since as tn →∞, for each m ∈ N, there exists Nm = Nm(τ, ω,D,m) ≥ N such that tn ≥ m
for all n ≥ N. Thus, by (4.71) we have for n ≥ Nm,

‖u(τ −m, τ − tn, θ−τω, un0 )‖2H1(Rn) + ‖ut(τ −m, τ − tn, θ−τω, un1,0)‖2

+

∫
Rn
F (u(τ −m, τ − tn, θ−τω, un0 ))dx ≤ c14e

1
4
ε%m. (4.72)
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Taking advantage with (4.72) and a diagonal process, we deduce that for each m ∈ N,

there exist (ξm, ςm) ∈ H1(Rn)× L2(Rn) such that, up to a subsequence, as n→∞,

(u(τ −m, τ − tn, θ−τω, un0 ), ut(τ −m, τ − tn, θ−τω, un1,0)) ⇀ (ξm, ςm) in H1(Rn)× L2(Rn).

(4.73)

Thus, (4.72)-(4.73) imply that for all m ∈ N,

‖ξm‖2H1(Rn) + ‖ςm‖2 ≤ c14e
1
4
ε%m. (4.74)

Combining with (4.73) and the weak continuity of solutions of (1.1) with respect to initial

data in H1(Rn)× L2(Rn), we find that for all r ∈ [−m, 0], as n→∞,

u(τ + r, τ −m, θ−τω, u(τ −m, τ − tn, θ−τω, un0 )) ⇀ u(τ + r, τ −m, θ−τω, ξm) in H1(Rn);

that is, for all r ∈ [−m, 0],

u(τ + r, τ − tn, θ−τω, un0 ) ⇀ u(τ + r, τ −m, θ−τω, ξm) in H1(Rn). (4.75)

Similarly, we have for r ∈ [−m, 0], as n→∞,

ut(τ + r, τ − tn, θ−τω, un1,0) ⇀ ut(τ + r, τ −m, θ−τω, ηm) in L2(Rn). (4.76)

Combining (4.68) and (4.75)-(4.76) with r = 0, we have

ξ = u(τ, τ −m, θ−τω, ξm) and ς = ut(τ, τ −m, θ−τω, ςm). (4.77)

It follows from (4.67) and (4.77) that

E(ξ, ς) = E(u(τ, τ −m, θ−τω, ξm), ut(τ, τ −m, θ−τω, ςm))

= e−
1
2
ε%mE(ξm, ςm) +

∫ τ

τ−m
e

1
2
ε%(s−τ)Ψ(u(s, τ −m, θ−τω, ξm), ut(s, τ −m, θ−τω, ςm))ds

= e−
1
2
ε%mE(ξm, ςm)+

∫ τ

τ−m
e

1
2
ε%(s−τ)(h(s), εu(s, τ−m, θ−τω, ξm)+2ut(s, τ−m, θ−τω, ςm))ds

+

∫ τ

τ−m
e

1
2
ε%(s−τ)(R(s, ·, u(s, τ −m, θ−τω, ξm))ζδ(θs−τω),

εu(s, τ −m, θ−τω, ξm) + 2ut(s, τ −m, θ−τω, ςm))ds

−ε
∫ τ

τ−m
e

1
2
ε%(s−τ)σ(‖∇u‖2)

∫
Rn
g(ut(s, τ −m, θ−τω, ςm))u(s, τ −m, θ−τω, ξm)dxds

+
1

2
ε(2 + %)

∫ τ

τ−m
e

1
2
ε%(s−τ)‖ut(s, τ −m, θ−τω, ςm)‖2ds
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−1

2
εν(2− %)

∫ τ

τ−m
e

1
2
ε%(s−τ)‖u(s, τ −m, θ−τω, ξm)‖2ds

−1

2
ε(2− %)

∫ τ

τ−m
e

1
2
ε%(s−τ)‖∇u(s, τ −m, θ−τω, ξm)‖2ds

−2

∫ τ

τ−m
e

1
2
ε%(s−τ)σ(‖∇u‖2)

∫
Rn
g(ut(s, τ −m, θ−τω, ςm))ut(s, τ −m, θ−τω, ςm)dxds

+
1

2
ε2%

∫ τ

τ−m
e

1
2
ε%(s−τ)(u(s, τ −m, θ−τω, ξm), ut(s, τ −m, θ−τω, ςm))ds

+ε

∫ τ

τ−m
e

1
2
ε%(s−τ)

∫
Rn

(%F (u(s, τ −m, θ−τω, ξm))

−f(u(s, τ −m, θ−τω, ξm))u(s, τ −m, θ−τω, ξm))dxds. (4.78)

Since u(τ, τ − tn, θ−τω, un0 ) = u(τ, τ −m, θ−τω, u(τ −m, τ − tn, θ−τω, un0 )), by (4.67) we

have

E(u(τ, τ − tn, θ−τω, un0 ), ut(τ, τ − tn, θ−τω, un1,0))

= e−
1
2
ε%mE(u(τ −m, τ − tn, θ−τω, un0 ), ut(τ −m, τ − tn, θ−τω, un1,0))

+

∫ τ

τ−m
e

1
2
ε%(s−τ)Ψ(u(s, τ −m, θ−τω, u(τ −m, τ − tn, θ−τω, un0 )),

ut(s, τ −m, θ−τω, ut(τ −m, τ − tn, θ−τω, un1,0)))ds

= e−
1
2
ε%mE(u(τ −m, τ − tn, θ−τω, un0 ), ut(τ −m, τ − tn, θ−τω, un1,0))

+

∫ τ

τ−m
e

1
2
ε%(s−τ)Ψ(u(s, τ − tn, θ−τω, un0 ), ut(s, τ − tn, θ−τω, un1,0))ds

= e−
1
2
ε%mE(u(τ −m, τ − tn, θ−τω, un0 ), ut(τ −m, τ − tn, θ−τω, un1,0))

+

∫ 0

−m
e

1
2
ε%s(h(s+ τ), εu(s+ τ, τ − tn, θ−τω, un0 ) + 2ut(s+ τ, τ − tn, θ−τω, un1,0))ds

+

∫ 0

−m
e

1
2
ε%s(R(s+ τ, ·, u(s+ τ, τ − tn, θ−τω, un0 ))ζδ(θsω),

εu(s+ τ, τ − tn, θ−τω, un0 ) + 2ut(s+ τ, τ − tn, θ−τω, un1,0))ds

−ε
∫ 0

−m
e

1
2
ε%sσ(‖∇u‖2)

∫
Rn
g(ut(s+ τ, τ − tn, θ−τω, un1,0))u(s+ τ, τ − tn, θ−τω, un0 )dxds

+
1

2
ε(2 + %)

∫ 0

−m
e

1
2
ε%s‖ut(s+ τ, τ − tn, θ−τω, un1,0)‖2ds

−1

2
εν(2− %)

∫ 0

−m
e

1
2
ε%s‖u(s+ τ, τ − tn, θ−τω, un0 )‖2ds
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−1

2
ε(2− %)

∫ 0

−m
e

1
2
ε%s‖∇u(s+ τ, τ − tn, θ−τω, un0 )‖2ds

−2

∫ 0

−m
e

1
2
ε%sσ(‖∇u‖2)

∫
Rn
g(ut(s+ τ, τ − tn, θ−τω, un1,0))ut(s+ τ, τ − tn, θ−τω, un1,0)dxds

+
1

2
ε2%

∫ 0

−m
e

1
2
ε%s(u(s+ τ, τ − tn, θ−τω, un0 ), ut(s+ τ, τ − tn, θ−τω, un1,0))ds

+ε

∫ 0

−m
e

1
2
ε%s

∫
Rn

(%F (u(s+ τ, τ − tn, θ−τω, un0 ))

−f(u(s+ τ, τ − tn, θ−τω, un0 ))u(s+ τ, τ − tn, θ−τω, un0 ))dxds. (4.79)

Next, we estimate the limit of each term on the right-hand side of (4.79) as n→∞. For

the first term, by (4.72) we get for all n ≥ Nm,

e−
1
2
ε%mE(u(τ −m, τ − tn, θ−τω, un0 ), ut(τ −m, τ − tn, θ−τω, un1,0)) ≤ c15e−

1
4
ε%m, (4.80)

where c15 = c15(τ, ω) > 0 is independent of n and m.

By (4.71), (4.75)-(4.76) and the Lebesgue dominated convergence theorem, we get

lim
n→∞

∫ 0

−m
e

1
2
ε%s(h(s+ τ), εu(s+ τ, τ − tn, θ−τω, un0 ) + 2ut(s+ τ, τ − tn, θ−τω, un1,0))ds

≤
∫ 0

−m
e

1
2
ε%s(h(s+ τ), εu(s+ τ, τ −m, θ−τω, ξm) + 2ut(s+ τ, τ −m, θ−τω, ςm))ds.

(4.81)

By Lemma 4.3 we get that for every η > 0, there exists k0 = k0(τ, ω, η,m) ∈ N and

Ñm = Ñm(τ, ω, η,m) ≥ Nm such that for all n ≥ Ñm and r ∈ [−m, 0],∫
|x|≥k0

|u(τ + r, τ − tn, θ−τω, un0 )|2dx < ηe−
1
4
ε%r. (4.82)

Combining with (4.75), (4.82) and the compactness of embedding H1 ↪→ L2 in bounded

domains, we get that for all r ∈ [−m, 0], as n→∞,

u(τ + r, τ − tn, θ−τω, un0 )→ u(τ + r, τ −m, θ−τω, ξm) in L2(Rn). (4.83)

According to (4.71), (4.83), and the Lebesgue dominated convergence theorem as well as

the interpolation inequality, we conclude

lim
n→∞

∫ 0

−m
‖u(s+ τ, τ − tn, θ−τω, un0 )− u(s+ τ, τ −m, θ−τω, ξm)‖2ds = 0, (4.84)
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and

lim
n→∞

∫ 0

−m
‖u(s+ τ, τ − tn, θ−τω, un0 )− u(s+ τ, τ −m, θ−τω, ξm)‖2q

L2q(Rn)ds = 0, (4.85)

Combining (3.5) with (4.85), we get

lim
n→∞

∫ 0

−m
‖R(s+ τ, ·, u(s+ τ, τ − tn, θ−τω, un0 ))−R(s+ τ, ·, u(s+ τ, τ −m, θ−τω, ξm))‖2ds = 0.

(4.86)

It follows from (4.71), (4.75)-(4.76), (4.86) and the Lebesgue dominated convergence the-

orem that as n→∞,∫ 0

−m
e

1
2
ε%s(R(s+ τ, ·, u(s+ τ, τ − tn, θ−τω, un0 ))ζδ(θsω),

εu(s+ τ, τ − tn, θ−τω, un0 ) + 2ut(s+ τ, τ − tn, θ−τω, un1,0))ds

→
∫ 0

−m
e

1
2
ε%s(R(s+ τ, ·, u(s+ τ, τ −m, θ−τω, ξm))ζδ(θsω),

εu(s+ τ, τ −m, θ−τω, ξm) + 2ut(s+ τ, τ −m, θ−τω, ςm))ds. (4.87)

Similarly, by (4.71), (4.83) and the Lebesgue dominated convergence theorem, we have

lim
n→∞

∫ 0

−m
‖u(s+ τ, τ − tn, θ−τω, un0 )− u(s+ τ, τ −m, θ−τω, ξm)‖γ+1

Lγ+1(Rn)ds = 0, (4.88)

which follows from (4.75)-(4.76), (3.6) and the Lebesgue dominated convergence theorem

that as n→∞,∫ 0

−m
e

1
2
ε%sσ(‖∇u‖2)

∫
Rn
g(ut(s+ τ, τ − tn, θ−τω, un1,0))u(s+ τ, τ − tn, θ−τω, un0 )dxds

→
∫ 0

−m
e

1
2
ε%sσ(‖∇u‖2)

∫
Rn
g(ut(s+ τ, τ −m, θ−τω, ςm))u(s+ τ, τ −m, θ−τω, ξm)dxds,

(4.89)

and∫ 0

−m
e

1
2
ε%sσ(‖∇u‖2)

∫
Rn
g(ut(s+ τ, τ − tn, θ−τω, un1,0))ut(s+ τ, τ − tn, θ−τω, un1,0)dxds

→
∫ 0

−m
e

1
2
ε%sσ(‖∇u‖2)

∫
Rn
g(ut(s+ τ, τ −m, θ−τω, ςm))u(s+ τ, τ −m, θ−τω, ςm)dxds.

(4.90)
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By (4.75)-(4.76) and (4.84) we have

lim
n→∞

∫ 0

−m
e

1
2
ε%s‖ut(s+ τ, τ − tn, θ−τω, un1,0)‖2ds

=

∫ 0

−m
e

1
2
ε%s‖ut(s+ τ, τ −m, θ−τω, ςm)‖2ds, (4.91)

and

lim
n→∞

∫ 0

−m
e

1
2
ε%s(u(s+ τ, τ − tn, θ−τω, un0 ), ut(s+ τ, τ − tn, θ−τω, un1,0))ds

=

∫ 0

−m
e

1
2
ε%s(u(s+ τ, τ −m, θ−τω, ξm), ut(s+ τ, τ −m, θ−τω, ςm))ds. (4.92)

On the other hand, by (4.75)-(4.76), (4.84) and Fatou’s lemma, we achieve

lim inf
n→∞

∫ 0

−m
e

1
2
ε%s‖u(s+ τ, τ − tn, θ−τω, un0 )‖2ds

≥
∫ 0

−m
e

1
2
ε%s‖u(s+ τ, τ −m, θ−τω, ξm)‖2ds, (4.93)

and

lim inf
n→∞

∫ 0

−m
e

1
2
ε%s‖∇u(s+ τ, τ − tn, θ−τω, un0 )‖2ds

≥
∫ 0

−m
e

1
2
ε%s‖∇u(s+ τ, τ −m, θ−τω, ξm)‖2ds, (4.94)

By a diagonal process, we infer from (4.84) that there exists a further subsequence

(not relabeled) such that for every m ∈ N,

u(τ + ·, τ − tn, θ−τω, uτ−tn)→ u(τ + ·, τ −m, θ−τω, ξm) a.e. on (−m, 0)× R. (4.95)

Thus, by (4.3), (4.95) and Fatou’s lemma, it follows that

lim inf
n→∞

∫ 0

−m
e

1
2
ε%s

∫
Rn

(f(u(s+ τ, τ − tn, θ−τω, un0 ))u(s+ τ, τ − tn, θ−τω, un0 )

−%F (u(s+ τ, τ − tn, θ−τω, un0 )))dxds

≥
∫ 0

−m
e

1
2
ε%s

∫
Rn

(f(u(s+ τ, τ −m, θ−τω, ξm))u(s+ τ, τ −m, θ−τω, ξm)
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−%F (u(s+ τ, τ −m, θ−τω, ξm)))dxds. (4.96)

Taking the limit of (4.79) as n → ∞, we infer from (4.78)-(4.81), (4.87)-(4.94) and

(4.96) that

lim sup
n→∞

E(u(τ, τ − tn, θ−τω, un0 ), ut(τ, τ − tn, θ−τω, un1,0))

≤ E(ξ, ς) + c15e
− 1

4
ε%m − e−

1
2
ε%mE(ξm, ςm)

≤ E(ξ, ς) + c15e
− 1

4
ε%m − εe−

1
2
ε%m(ξm, ςm). (4.97)

Combining (4.74) with (4.97) yields

lim sup
n→∞

E(u(τ, τ − tn, θ−τω, un0 ), ut(τ, τ − tn, θ−τω, un1,0)) ≤ E(ξ, ς) + (εc14 + c15)e
− 1

4
ε%m.

(4.98)

Taking the limit of (4.98) as m→∞, we obtain

lim sup
n→∞

E(u(τ, τ − tn, θ−τω, un0 ), ut(τ, τ − tn, θ−τω, un1,0)) ≤ E(ξ, ς). (4.99)

Thanks to (4.77) and (4.83), we get that as n→∞,

u(τ, τ − tn, θ−τω, un0 )→ ξ in L2(Rn). (4.100)

Due to (4.100), there exists a further subsequence (not relabeled) such that as n→∞,

u(τ, τ − tn, θ−τω, un0 )→ ξ a.e. on Rn. (4.101)

Therefore, using Fatou’s lemma, we infer from (3.3) and (4.101) that

lim inf
n→∞

∫
Rn
F (u(τ, τ − tn, θ−τω, un0 ))dx ≥

∫
Rn
F (ξ)dx. (4.102)

Combining (4.75)-(4.76) with (4.100) yields

lim
n→∞

(u(τ, τ − tn, θ−τω, un0 ), ut(τ, τ − tn, θ−τω, un1,0)) = (ξ, ς). (4.103)

It follows from (4.99) and (4.102)-(4.103) that

lim sup
n→∞

(‖ut(τ, τ − tn, θ−τω, un1,0)‖2 + ν‖u(τ, τ − tn, θ−τω, un0 )‖2

+‖∇u(τ, τ − tn, θ−τω, un0 )‖2)

≤ ‖ς‖2 + ν‖ξ‖2 + ‖∇ξ‖2. (4.104)

Then (4.70) follows from (4.104) immediately. This completes the proof. �

Now, we present our main result on the existence and uniqueness of D−pullback ran-

dom attractors of Φ.
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Theorem 4.5 Let (3.1)-(3.6), (4.3) and (4.5)-(4.6) hold. Then the cocycle Φ has a unique

D−pullback random attractor in H1(Rn)× L2(Rn).

Proof. Since Φ has a closed measurable D−pullback absorbing set by Lemma 4.2 and is

D−pullback asymptotically compact in H1(Rn)×L2(Rn) by Lemma 4.4, then the existence

and uniqueness of D−pullback random attractor of Φ follows from [30,31] immediately. �
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