# GENERALIZED TRANSFORMS AND CONVOLUTIONS OF BOUNDED CYLINDER FUNCTIONALS ON WIENER SPACE 

SANGHUN BYEON AND JAE GIL CHOI


#### Abstract

In this paper we study the generalized Fourier-Feynman transform (GFFT) and the generalized convolution product (GCP) associated with Gaussian processes $\mathscr{Z}_{h}$ for functionals on Wiener space. To do this we first establish the existences of the GFFT and the GCP of bounded cylinder functionals $F$ having the form $F(x)=\widehat{\mu}\left(\left\langle\alpha_{1}, x\right\rangle, \ldots,\left\langle\alpha_{n}, x\right\rangle\right)$ where $\widehat{\mu}$ is the Fourier-Stieltjes transform of a complex measure $\mu$ on $\mathbb{R}^{n}$ and the pair $\langle\alpha, x\rangle$ denotes the Paley-Wiener-Zygmund (PWZ) integral $\int_{0}^{T} \alpha(t) d x(t)$. It turned out that the structure of the cylinder functionals combined with Gaussian processes makes establishing the relationship between the GFFT and the GCP very difficult. We thus clarify a class of the kernel functions $h$ of the processes $\mathscr{Z}_{h}$ in order to obtain relationships between them.


## 1. Introduction

The theory of the analytic Fourier-Feynman transform (FFT) suggested by Brue [1] now is playing a central role in the analytic Feynman integration theory and its applications. The classical FFT and several analogies have been improved in various research articles. For instance, see [2, 8, 9, 10, 12, 17].

Let $C_{0}[0, T]$ be the Wiener space, the space of all real-valued continuous functions $x$ on the time interval $[0, T]$ with $x(0)=0$. The Wiener space $C_{0}[0, T]$ can be considered as the space of all continuous sample paths of a Wiener process with the time interval [ $0, T]$. In [8, 9, 10, 17], Huffman, Park, Skoug and Storvick established basic relationships between the FFT and the convolution product (CP) for various functionals $F$ and $G$ on $C_{0}[0, T]$, as follows:

$$
\begin{equation*}
T_{q}^{(p)}\left((F * G)_{q}\right)(y)=T_{q}^{(p)}(F)\left(\frac{y}{\sqrt{2}}\right) T_{q}^{(p)}(G)\left(\frac{y}{\sqrt{2}}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(T_{q}^{(p)}(F) * T_{q}^{(p)}(G)\right)_{-q}(y)=T_{q}^{(p)}\left(F\left(\frac{\cdot}{\sqrt{2}}\right) G\left(\frac{\cdot}{\sqrt{2}}\right)\right)(y) \tag{1.2}
\end{equation*}
$$

for scale-almost every $y \in C_{0}[0, T]$, where $T_{q}^{(p)}(F)$ and $(F * G)_{q}$ indicate the $L_{p}$ analytic FFT and the CP of functionals $F$ and $G$ on $C_{0}[0, T]$. In view of equations (1.1) and (1.2), we can see that the FFT $T_{q}^{(p)}$ acts like a homomorphism with convolution $*$. For a basic survey of the FFT and the corresponding CP , see [19].

2020 Mathematics Subject Classification. 28C20, 46G12, 60G15, 60 J 65.
Key words and phrases. Wiener space, generalized Fourier-Feynman transform, generalized convolution product, Gaussian process, cylinder functional.
where $\mathfrak{m}$ denote the Wiener measure and $\mathscr{Z}_{h}$ is a stochastic process on $C_{0}[0, T] \times[0, T]$ defined by the PWZ integral $\mathscr{Z}_{h}(x, t)=\int_{0}^{t} h(s) \tilde{d} x(s)$, see $[14,15,16]$, and where $h$ is a nonzero function in $L_{2}[0, T]$.

The stochastic process $\mathscr{Z}_{h}$ is Gaussian with mean zero and variance function $\beta_{h}(t)=\int_{0}^{t} h^{2}(s) d s$. If we choose $h$ to be constant, say $h=c$, then it follows that given $t_{1}, t_{2}, t_{3}, t_{4} \in[0, T]$ with $\left|t_{2}-t_{1}\right|=$ $\left|t_{4}-t_{3}\right|$, the increments $\mathscr{Z}_{h}\left(x, t_{2}\right)-\mathscr{Z}_{h}\left(x, t_{1}\right)$ and $\mathscr{Z}_{h}\left(x, t_{4}\right)-\mathscr{Z}_{h}\left(x, t_{3}\right)$ have a same normal distribution $N\left(0, c^{2}\left|t_{2}-t_{1}\right|\right)$, and so the process $\left\{\mathscr{Z}_{c}(x, t): t \in[0, T]\right\}$ is stationary in time. But if $h$ is not constant, then $\beta_{h}\left(t_{2}\right)-\beta_{h}\left(t_{1}\right) \neq \beta_{h}\left(t_{4}\right)-\beta_{h}\left(t_{3}\right)$ in spite of $\left|t_{2}-t_{1}\right|=\left|t_{4}-t_{3}\right|$. Thus in this case,, the Gaussian process $\left\{\mathscr{Z}_{h}(x, t): t \in[0, T]\right\}$ is not stationary in time.

In $[3,11]$, the authors used a single $L_{2}$ function in order to extend the concept of the CP for functionals on $C_{0}[0, T]$. But in this paper, we adopt the modified definition of the CP from $[4,5,18]$ in order to obtain more general relationships between our transforms and convolutions.

Our main results are summarized as follows. Let $F$ and $G$ be Wiener integrable functionals in a certain class of bounded functionals on $C_{0}[0, T]$. Then it follows that

$$
\begin{equation*}
T_{q, h}^{(p)}\left((F * G)_{q}^{\left(k_{1}, k_{2}\right)}\right)(y)=T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(p)}(F)\left(\frac{y}{\sqrt{2}}\right) T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(p)}(G)\left(\frac{y}{\sqrt{2}}\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(p)}(F) * T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(p)}(G)\right)_{-q}^{\left(k_{1}, k_{2}\right)}(y)=T_{q, h}^{(p)}\left(F\left(\frac{\cdot}{\sqrt{2}}\right) G\left(\frac{\cdot}{\sqrt{2}}\right)\right)(y) \tag{1.4}
\end{equation*}
$$

for scale-almost every $y \in C_{0}[0, T]$, where $T_{q, h}^{(p)}(F)$ and $(F * G)_{q}^{\left(k_{1}, k_{2}\right)}$ denote the GFFT and the GCP, respectively, studied in this paper, and $h, k_{1}, k_{2}, s\left(h, k_{1}\right)$ and $s\left(h, k_{1}\right)$ are functions in $L_{2}[0, T]$ which satisfy the relations

$$
s\left(h, k_{1}\right)^{2}(t)=h^{2}(t)+k_{1}^{2}(t) \text { and } s\left(h, k_{2}\right)^{2}(t)=h^{2}(t)+k_{2}^{2}(t)
$$

for $m_{L}$-a.e. $t \in[0, T]$, respectively, and where $m_{L}$ indicates the Lebesgue measure on $[0, T]$.
In $[4,18]$, equations (1.3) and (1.4) were established for specific bounded functionals defined on Wiener and Yeh-Wiener spaces. The functionals considered in this paper are also bounded on the Wiener space $C_{0}[0, T]$. But the functionals used in this paper are also characterized as the $n$-dimensional cylinder functionals

$$
f\left(\left\langle\alpha_{1}, x\right\rangle, \ldots,\left\langle\alpha_{n}, x\right\rangle\right), \quad x \in C_{0}[0, T]
$$

where $f$ is a Lebesgue measurable function on $\mathbb{R}^{n}$ and the pair $\langle\alpha, x\rangle$ denotes the PWZ integral $\mathscr{Z}_{\alpha}(x, T)=\int_{0}^{T} \alpha(s) \tilde{d} x(s)$. It turns out, as noted in Remark 3.3 below, that the structure of the cylinder functionals combined with Gaussian processes makes establishing the existences of the GFFT and the GCP associated with Gaussian processes $\mathscr{Z}_{h}$, as well as the equalities in (1.3) and (1.4), very difficult. We thus clarify a class of the kernel functions $h$ of the processes $\mathscr{Z}_{h}$ in order to obtain the existences of the GFFT and the GCP associated with Gaussian processes.

On the Wiener space $C_{0}[0, T]$, let $\mathscr{M}$ denote the family of all Wiener measurable subsets of $C_{0}[0, T]$. It is well-known that $\left(C_{0}[0, T], \mathscr{M}, \mathfrak{m}\right)$ is a complete probability measure space.

In order to define the GFFT and the GCP, we need the concept of the scale-invariant measurability on $C_{0}[0, T]$. A subset $B$ of $C_{0}[0, T]$ is called a scale-invariant measurable (SIM) set if $\rho B \in \mathscr{M}$ for all $\rho>0$, and a SIM set $N$ is called a scale-invariant null set if $\mathfrak{m}(\rho N)=0$ for all $\rho>0$. A property which holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere (SI-a.e.). A functional $F$ is said to be SIM provided $F$ is defined on a SIM set and $F(\rho \cdot)$ is $\mathscr{M}$-measurable for every $\rho>0$. If two functionals $F$ and $G$ are equal SI-a.e., we write $F \approx G$. For more detailed studies of the scale-invariant measurability, see $[6,13]$.

For any $h \in L_{2}[0, T]$ with $\|h\|_{2}>0$, let $\mathscr{Z}_{h}: C_{0}[0, T] \times[0, T] \rightarrow \mathbb{R}$ be the stochastic process

$$
\begin{equation*}
\mathscr{Z}_{h}(x, t)=\int_{0}^{t} h(s) \tilde{d} x(s)=\int_{0}^{T} h(s) \chi_{[0, t]}(s) \tilde{d} x(s)=\left\langle h \chi_{[0, t]}, x\right\rangle \tag{2.1}
\end{equation*}
$$

where $\chi_{[0, t]}$ denotes the indicator function of the interval $[0, t]$. Let $\beta_{h}(t)=\int_{0}^{t} h^{2}(s) d s$ for each $t \in[0, T]$. Then the stochastic process $\mathscr{Z}_{h}$ on $C_{0}[0, T]$ and the time interval $[0, T]$ is a Gaussian process with mean zero and covariance function

$$
\beta_{h}(\min \{s, t\})=\int_{C_{0}[0, T]} \mathscr{Z}_{h}(x, s) \mathscr{Z}_{h}(x, t) d \mathfrak{m}(x) .
$$

In addition, by [20, Theorem 21.1], $\mathscr{Z}_{h}(\cdot, t)$ is stochastically continuous in $t$ on $[0, T]$. If $h$ is of bounded variation on $[0, T]$, then for every $x \in C_{0}[0, T], \mathscr{Z}_{h}(x, t)$ is a continuous function of $t$. Furthermore, for any $h_{1}, h_{2} \in L_{2}[0, T]$,

$$
\int_{C_{0}[0, T]} \mathscr{Z}_{h_{1}}(x, s) \mathscr{Z}_{h_{2}}(x, t) d \mathfrak{m}(x)=\int_{0}^{\min \{s, t\}} h_{1}(u) h_{2}(u) d u .
$$

If $h(t) \equiv 1$ on $[0, T]$, then the process $\mathscr{Z}_{1}$ on $C_{0}[0, T] \times[0, T]$ given by $\mathscr{Z}_{1}(x, t)=x(t)$ is a Wiener process. It is known that the Wiener process $\mathscr{Z}_{1}$ is stationary in time, whereas the stochastic process $\mathscr{Z}_{h}$ generally is not. For more details, see [5, 7].

Let $\mathbb{C}_{+}=\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)>0\}$ and let $\widetilde{\mathbb{C}}_{+}=\{\lambda \in \mathbb{C} \backslash\{0\}: \operatorname{Re}(\lambda) \geq 0\}$. Let $F: C_{0}[0, T] \rightarrow \mathbb{C}$ be a SIM functional such that

$$
J_{F}(h ; \lambda)=\int_{C_{0}[0, T]} F\left(\lambda^{-1 / 2} \mathscr{Z}_{h}(x, \cdot)\right) d \mathfrak{m}(x)
$$

exists as a finite number for all $\lambda>0$. If there exists a function $J_{F}^{*}(h ; \lambda)$ analytic in $\mathbb{C}_{+}$such that $J_{F}^{*}(h ; \lambda)=J_{F}(h ; \lambda)$ for all $\lambda>0$, then $J_{F}^{*}(h ; \lambda)$ is defined to be the generalized analytic Wiener integral of $F$ over $C_{0}[0, T]$ with parameter $\lambda$. For $\lambda \in \mathbb{C}_{+}$, we will write

$$
\int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(\mathscr{Z}_{h}(x, \cdot)\right) d \mathfrak{m}(x)=J_{F}^{*}(h ; \lambda) .
$$

Let $q \neq 0$ be a real number and let $F$ be a functional such that $\int_{C_{0}[0, T]}^{\text {anw } \lambda} F\left(\mathscr{Z}_{h}(x, \cdot)\right) d \mathfrak{m}(x)$ exists for all $\lambda \in \mathbb{C}_{+}$. If the following limit exists, we call it the generalized analytic Feynman integral of $F$ with

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION
parameter $q$, and we write

$$
\int_{C_{0}[0, T]}^{\operatorname{anf}_{q}} F\left(\mathscr{Z}_{h}(x, \cdot)\right) d \mathfrak{m}(x)=\lim _{\lambda \rightarrow-i q} \int_{C_{0}[0, T]}^{\operatorname{anw}_{\lambda}} F\left(\mathscr{Z}_{h}(x, \cdot)\right) d \mathfrak{m}(x)
$$

where $\lambda \rightarrow-i q$ through in $\mathbb{C}_{+}$.
We are now ready to state the definition of the GFFT.
Definition 2.1. Let $F: C_{0}[0, T] \rightarrow \mathbb{C}$ be a SIM functional such that the analytic Wiener integral

$$
T_{\lambda, h}(F)(y)=\int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(y+\mathscr{Z}_{h}(x, \cdot)\right) d \mathfrak{m}(x)
$$

exists for all $\lambda \in \mathbb{C}_{+}$and for SI-a.e. $y \in C_{0}[0, T]$. Let $q$ be a nonzero real number. For $p \in(1,2]$, we define the $L_{p}$ analytic GFFT (with respect to the process $\mathscr{Z}_{h}$ ), $T_{q, h}^{(p)}(F)$ of $F$, by the formula,

$$
T_{q, h}^{(p)}(F)(y)=\underset{\substack{\lambda \rightarrow-i q \\ \lambda \in \mathbb{C}_{+}}}{\operatorname{li.} . \mathrm{m}_{\lambda, h}} T_{\lambda, h}(F)(y),
$$

whenever this limit exists; i.e., for each $\rho>0$,

$$
\lim _{\substack{\lambda \rightarrow-i q \\ \lambda \in \mathbb{C}_{+}}} \int_{C_{0}[0, T]}\left|T_{\lambda, h}(F)(\rho y)-T_{q, h}^{(p)}(F)(\rho y)\right|^{p^{\prime}} d \mathfrak{m}(y)=0
$$

where $1 / p+1 / p^{\prime}=1$. We define the $L_{1}$ analytic $G F F T, T_{q, h}^{(1)}(F)$ of $F$, by the formula

$$
T_{q, h}^{(1)}(F)(y)=\lim _{\substack{\lambda \rightarrow-i q \\ \lambda \in \mathbb{C}_{+}}} T_{\lambda, h}(F)(y)
$$

for SI-a.e. $y \in C_{0}[0, T]$, if the limit exists.
Next we give the definition of the GCP $[4,5,18]$.
Definition 2.2. Let $F$ and $G$ be SIM functionals on $C_{0}[0, T]$. For $\lambda \in \widetilde{\mathbb{C}}_{+}$and $h_{1}, h_{2} \in L_{2}[0, T]$, we define their $G C P$ with respect to $\left\{\mathscr{Z}_{h_{1}}, \mathscr{Z}_{h_{2}}\right\}$ (if it exists) by

$$
\begin{aligned}
& (F * G)_{\lambda}^{\left(h_{1}, h_{2}\right)}(y) \\
& = \begin{cases}\int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(\frac{y+\mathscr{Z}_{h_{1}}(x, \cdot)}{\mathscr{V}_{2}}\right) G\left(\frac{y-\mathscr{Z}_{h_{2}}(x, \cdot)}{\sqrt{2}}\right) d \mathfrak{m}(x), & \lambda \in \mathbb{C}_{+} \\
\int_{C_{0}[0, T]}^{\mathrm{anf}_{q}} F\left(\frac{y+\mathscr{Z}_{h_{1}}(x, \cdot)}{\sqrt{2}}\right) G\left(\frac{y-\mathscr{Z}_{h_{2}}(x, \cdot)}{\sqrt{2}}\right) d \mathfrak{m}(x), & \lambda=-i q, q \in \mathbb{R} \backslash\{0\} .\end{cases}
\end{aligned}
$$

When $\lambda=-$ iq, we denote $(F * G)_{\lambda}^{\left(h_{1}, h_{2}\right)}$ by $(F * G)_{q}^{\left(h_{1}, h_{2}\right)}$.
Remark 2.3. The processes $\mathscr{Z}_{h_{1}}$ and $\mathscr{Z}_{h_{2}}$ in (2.2) are Gaussian processes on $C_{0}[0, T] \times[0, T]$ which are not stationary in time. Furthermore, one can see that for each $t \in[0, T]$,

$$
\mathscr{Z}_{h_{1}}(x, t) \sim N\left(0, \int_{0}^{t} h_{1}^{2}(s) d s\right) \text { and } \mathscr{Z}_{h_{2}}(x, t) \sim N\left(0, \int_{0}^{t} h_{2}^{2}(s) d s\right) .
$$

That is, the processes $\mathscr{Z}_{h_{1}}$ and $\mathscr{Z}_{h_{2}}$ have different Gaussian distributions.

$$
\begin{equation*}
F(x)=f\left(\left\langle g_{1}, x\right\rangle, \ldots,\left\langle g_{n}, x\right\rangle\right), \quad x \in C_{0}[0, T] \tag{3.2}
\end{equation*}
$$

Thus we lose no generality in assuming that every cylinder functional on $C_{0}[0, T]$ is of the form (3.2).
In order to simplify many expressions in this paper, we use the following conventions: for $\vec{u}=$ $\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$ and a set $\left\{g_{1}, \ldots, g_{n}\right\}$ of functions in $L_{2}[0, T]$, let $f(\vec{u}) \equiv f\left(u_{1}, \ldots, u_{n}\right),\langle\vec{g}, x\rangle \equiv$ $\left(\left\langle g_{1}, x\right\rangle, \ldots,\left\langle g_{n}, x\right\rangle\right)$, and $f(\langle\vec{g}, x\rangle) \equiv f\left(\left\langle g_{1}, x\right\rangle, \ldots,\left\langle g_{n}, x\right\rangle\right)$.

Equation (3.3) below can be easily obtained by the change of variables theorem.
Lemma 3.1. Let $\mathscr{G}=\left\{g_{1}, \ldots, g_{n}\right\}$ be an orthogonal set of nonzero functions in $L_{2}[0, T]$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a Lebesgue measurable function. Then

$$
\begin{equation*}
\int_{C_{0}[0, T]} f(\langle\vec{g}, x\rangle) d \mathfrak{m}(x) \stackrel{*}{=}\left(\prod_{j=1}^{n} 2 \pi\left\|g_{j}\right\|_{2}^{2}\right)^{-1 / 2} \int_{\mathbb{R}^{n}} f(\vec{u}) \exp \left\{-\sum_{j=1}^{n} \frac{u_{j}^{2}}{2\left\|g_{j}\right\|_{2}^{2}}\right\} d \vec{u} \tag{3.3}
\end{equation*}
$$

where by $\stackrel{*}{=}$ we mean that if either side exists, both sides exist and equality holds.
Lemma 3.2 ([7]). For each $v \in L_{2}[0, T]$ and each $h \in L_{\infty}[0, T]$ with $\|h\|_{2}>0$, it follows that

$$
\begin{equation*}
\left\langle u, \mathscr{Z}_{h}(x, \cdot)\right\rangle=\langle u h, x\rangle \tag{3.4}
\end{equation*}
$$

for SI-a.e. $x \in C_{0}[0, T]$.
Remark 3.3. In view of Lemma 3.2, we require $h$ to be in $L_{\infty}[0, T]$ rather than simply in $L_{2}[0, T]$ throughout this paper. For a nonzero function $h \in L_{\infty}[0, T]$, let $\mathscr{Z}_{h}$ be the Gaussian process defined by (2.1) above and let $F$ be given by (3.2). Then by equation (3.4), we observe that

$$
F\left(\mathscr{Z}_{h}(x, \cdot)\right)=f\left(\left\langle g_{1}, \mathscr{Z}_{h}(x, \cdot)\right\rangle, \ldots,\left\langle g_{n}, \mathscr{Z}_{h}(x, \cdot)\right\rangle\right)=f\left(\left\langle g_{1} h, x\right\rangle, \ldots,\left\langle g_{n} h, x\right\rangle\right)
$$

Even though the subset $\mathscr{A}=\left\{g_{1}, \ldots, g_{n}\right\}$ of $L_{2}[0, T]$ is orthogonal, the subset $\mathscr{A} h \equiv\{g h: g \in \mathscr{A}\}$ of $L_{2}[0, T]$ might not be orthogonal. Thus the equality in the equation

$$
\int_{C_{0}[0, T]} f\left(\left\langle\vec{g}, \mathscr{Z}_{h}(x, \cdot)\right\rangle\right) d \mathfrak{m}(x)=\left(\prod_{j=1}^{n} 2 \pi\left\|g_{j} h\right\|_{2}^{2}\right)^{-1 / 2} \int_{\mathbb{R}^{n}} f(\vec{u}) \exp \left\{-\sum_{j=1}^{n} \frac{u_{j}^{2}}{2\left\|g_{j} h\right\|_{2}^{2}}\right\} d \vec{u}
$$

does not hold true. This observation is critical to the development of the relationships between the GFFT and the GCP of cylinder functionals. Thus, throughout remainder of this paper, we will need to
put additional restrictions on the kernel function $h$ of the Gaussian process $\mathscr{Z}_{h}$ in order to establish the formulas involving GFFTs and GCPs.

As mentioned in Remark 3.3, we clearly need to impose additional restrictions on the functionals used in this paper.

Definition 3.4. Given an orthogonal set $\mathscr{A}=\left\{g_{1}, \ldots, g_{n}\right\}$ of functions in $L_{2}[0, T] \backslash\{0\}$, let $\mathscr{O}_{\infty}(\mathscr{A})$ be the class of all nonzero elements $h \in L_{\infty}[0, T]$ such that $\mathscr{A} h$ is orthogonal in $L_{2}[0, T]$.

Example 3.5. For every $\rho \in \mathbb{R} \backslash\{0\}$, the constant function $\rho$ is an element of $\mathscr{O}_{\infty}(\mathscr{A})$ for every orthogonal subset $\mathscr{A}$ of $L_{2}[0, T]$.

Example 3.6. For each $j \in \mathbb{N}$, let
and

$$
\begin{gather*}
g_{j}(t)=\frac{\sqrt{2}}{\sqrt[4]{T}} \cos \left(\frac{(2 j-1) \pi}{2 T} t\right) \\
\alpha_{j}(t)=\frac{1}{\sqrt[4]{T}} g_{j}(t)=\frac{\sqrt{2}}{\sqrt[2]{T}} \cos \left(\frac{(2 j-1) \pi}{2 T} t\right) \tag{3.5}
\end{gather*}
$$

on $[0, T]$. Then $\mathscr{S}=\left\{g_{j}\right\}_{j=1}^{\infty}$ is an orthogonal sequence of functions in $L_{2}[0, T]$. In addition, $\widetilde{\mathscr{S}}=$ $\left\{\alpha_{j}\right\}_{j=1}^{\infty}$ is a complete orthonormal sequence in $L_{2}[0, T]$. In this case we have the following assertions.
(i) For every $j \in \mathbb{N},\left\|g_{j}\right\|_{2}^{2}=\sqrt{T}>0$ and $g_{j} \in L_{\infty}[0, T]$.
(ii) Let $n \in \mathbb{N}$ be fixed and let $L$ be a positive integer with $L>n$. Then for any $i, j \in\{1, \ldots, n\}$, $\int_{0}^{T} g_{i}(t) g_{j}(t) g_{L}^{2}(t) d t=\delta_{i j}$ (the Kronecker delta). In other words, for each integer $L$ with $L>n$, the set $\left\{g_{1} g_{L}, \ldots, g_{n} g_{L}\right\}$ is an orthonormal set of functions in $L_{2}[0, T]$.
Let $\mathscr{A}_{\cos }=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ where $\alpha_{i}$ 's are given by (3.5) for each $i \in\{1, \ldots, n\}$. Then, from the observations above, it follows that
(i) $\mathscr{A}_{\text {cos }}$ is an orthonormal set of functions in $L_{2}[0, T]$,
(ii) $\left\{g_{n+1}, g_{n+2}, \ldots\right\} \subset \mathscr{O}_{\infty}\left(\mathscr{A}_{\text {cos }}\right)$,
(iii) $\left\{\alpha_{n+1}, \alpha_{n+2}, \ldots\right\}=\widetilde{\mathscr{S}} \backslash \mathscr{A}_{\cos } \subset \mathscr{O}_{\infty}\left(\mathscr{A}_{\text {cos }}\right)$.

Next, we introduce a class of bounded cylinder functionals on $C_{0}[0, T]$. Let $\mathscr{M}\left(\mathbb{R}^{n}\right)$ be the space of complex-valued Borel measures on $\mathscr{B}\left(\mathbb{R}^{n}\right)$, the Borel class on $\mathbb{R}^{n}$. It is known that a complex-valued Borel measure $\mu$ has a finite total variation $\|\mu\|$, and the class $\mathscr{M}\left(\mathbb{R}^{n}\right)$ is a Banach algebra under the norm $\|\cdot\|$ and with convolution as multiplication.

Given a complex measure $\mu$ in $\mathscr{M}\left(\mathbb{R}^{n}\right)$, the Fourier-Stieltjes transform $\widehat{\mu}$ of $\mu$ is a complex-valued function on $\mathbb{R}^{n}$ defined by

$$
\begin{equation*}
\widehat{\mu}(\vec{u})=\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n} u_{j} v_{j}\right\} d \mu(\vec{v}) \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
F_{\mu}(x)=\widehat{\mu}(\langle\vec{\alpha}, x\rangle)=\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, x\right\rangle v_{j}\right\} d \mu(\vec{v}) \tag{3.7}
\end{equation*}
$$

for SI-a.e. $x \in C_{0}[0, T]$, where $\widehat{\mu}$ is the Fourier-Stieltjes transform of $\mu$ in $\mathscr{M}\left(\mathbb{R}^{n}\right)$. Given any $\mu \in \mathscr{M}\left(\mathbb{R}^{n}\right)$, the function $\widehat{\mu}$ corresponding to $\mu$ by (3.6) is bounded (and so is $F_{\mu}$ ), because $|\widehat{\mu}(\vec{u})| \leq$ $\|\mu\|<+\infty$ for every $\vec{u} \in \mathbb{R}^{n}$. Note that the functional $F_{\mu}$ having the form (3.7) is SIM on $C_{0}[0, T]$.

In Sections 4 and 5 below, we will use the following integration formula in order to verify the existences of the GFFT and the GCP of functionals in the class $\widehat{\mathfrak{T}}_{\mathscr{A}}$ :

$$
\begin{equation*}
\int_{\mathbb{R}} \exp \left\{-a v^{2}+b v\right\} d v=\sqrt{\frac{\pi}{a}} \exp \left\{\frac{b^{2}}{4 a}\right\} \tag{3.8}
\end{equation*}
$$

for $a, b \in \mathbb{C}$ with $\operatorname{Re}(a)>0$.

## 4. Generalized Fourier-Feynman transform

In this section, we will provide the existence of the $L_{p}$ analytic GFFT of functionals in the class $\widehat{\mathfrak{T}}_{\mathscr{A}}$.
Theorem 4.1. Let $F_{\mu} \in \widehat{\mathfrak{T}}_{\mathscr{A}}$ be given by (3.7). Then for all nonzero real number $q$, and any $h \in \mathscr{O}_{\infty}(\mathscr{A})$, the $L_{1}$ analytic GFFT $T_{q, h}^{(1)}$ of $F_{\mu}$ exists and is given by the formula

$$
\begin{equation*}
T_{q, h}^{(1)}\left(F_{\mu}\right)(y)=\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\} d \mu(\vec{v}) \tag{4.1}
\end{equation*}
$$

for SI-a.e. $y \in C_{0}[0, T]$.
Proof. Using (3.7) with $x$ replaced with $y+\lambda^{-1 / 2} x$, (3.4), the Fubini theorem, (3.3), and (3.8), it follows that for all $\lambda>0$,

$$
\begin{aligned}
& J_{F_{\mu}(y+\cdot)}(h ; \lambda) \\
& =\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}\right\}\left[\int_{C_{0}[0, T]} \exp \left\{i \lambda^{-1 / 2} \sum_{j=1}^{n}\left\langle\alpha_{j} h, x\right\rangle v_{j}\right\} d \mathfrak{m}(x)\right] d \mu(\vec{v}) \\
& =\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}\right\} \prod_{j=1}^{n}\left[\left(2 \pi\left\|\alpha_{j} h\right\|_{2}^{2}\right)^{-1 / 2} \int_{\mathbb{R}} \exp \left\{i \lambda^{-1 / 2} u_{j} v_{j}-\frac{u_{j}^{2}}{2\left\|\alpha_{j} h\right\|_{2}^{2}}\right\} d u_{j}\right] d \mu(\vec{v}) \\
& =\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}-\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\} d \mu(\vec{v}) .
\end{aligned}
$$

Now, for each $\lambda \in \mathbb{C}$, let

$$
\begin{equation*}
J_{F_{\mu}(y+\cdot)}^{*}(h ; \lambda) \equiv \int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}-\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\} d \mu(\vec{v}) . \tag{4.2}
\end{equation*}
$$

Because the function $\Psi(\lambda)=\exp \left\{-\sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2} /(2 \lambda)\right\}$ is analytic on $\mathbb{C}_{+}$, applying the Morera theorem, it follows that

$$
\int_{\triangle} J_{F_{\mu}(y+\cdot)}^{*}(h ; \lambda) d \lambda=\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}\right\}\left(\int_{\triangle} \Psi(\lambda) d \lambda\right) d \mu(\vec{v})=0
$$

where $\triangle$ is a simple closed contour lying in $\mathbb{C}_{+}$. Thus the analytic transform $T_{\lambda, h}\left(F_{\mu}\right)(y)=J_{F_{\mu}(y+\cdot)}^{*}(h ; \boldsymbol{\lambda})$ exists and is given by the right-hand side of (4.2).

Next, we note that for each $\lambda \in \mathbb{C}_{+}, \operatorname{Re}(\lambda)>0$. From this, we see that for all $\lambda \in \mathbb{C}_{+}$,

$$
\begin{aligned}
\left|T_{\lambda, h}\left(F_{\mu}\right)(y)\right| & \leq \int_{\mathbb{R}^{n}}\left|\exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}-\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\}\right| d|\mu|(\vec{v}) \\
& =\int_{\mathbb{R}^{n}}\left|\exp \left\{-\frac{\operatorname{Re}(\lambda)}{2|\lambda|^{2}} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\}\right| d|\mu|(\vec{v}) \leq\|\mu\|<+\infty .
\end{aligned}
$$

By the bounded convergence theorem, it thus follows that

$$
\begin{aligned}
T_{q, h}^{(1)}\left(F_{\mu}\right)(y) & =\lim _{\substack{\lambda \rightarrow-i q \\
\lambda \in \mathbb{C}_{+}}} \int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}-\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\} d \mu(\vec{v}) \\
& =\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\} d \mu(\vec{v})
\end{aligned}
$$

as desired.
Theorem 4.2. Let $F_{\mu} \in \widehat{\mathfrak{T}}_{\mathscr{A}}$ be given by (3.7). Then for each $p \in(1,2]$, all nonzero real number $q$, and any $h \in O_{\infty}(\mathscr{A})$, the $L_{p}$ analytic GFFT of $F_{\mu}, T_{q, h}^{(p)}\left(F_{\mu}\right)$ exists and is given by the right-hand side of (4.1) for SI-a.e. $y \in C_{0}[0, T]$.

Proof. It was shown in the proof of Theorem 4.1 that $T_{\lambda, h}(F)(y)$ is an analytic function of $\lambda$ throughout the right-half complex plane $\mathbb{C}_{+}$.

In view of Definition 2.1, it will suffice to show that for each $\rho>0$,

$$
\lim _{\substack{\lambda \rightarrow-i q \\ \lambda \in \mathbb{C}_{+}}} \int_{C_{0}[0, T]}\left|T_{\lambda, h}\left(F_{\mu}\right)(\rho y)-T_{q, h}^{(1)}\left(F_{\mu}\right)(\rho y)\right|^{p^{\prime}} d \mathfrak{m}(y)=0
$$

where $1 / p+1 / p^{\prime}=1$.
Fixing $p \in(1,2]$, it follows that for all $\rho>0$ and all $\lambda \in \mathbb{C}_{+}$,

$$
\begin{aligned}
& \left|T_{\lambda, h}\left(F_{\mu}\right)(\rho y)-T_{q, h}^{(1)}\left(F_{\mu}\right)(\rho y)\right|^{p^{\prime}} \\
& =\left|\int_{\mathbb{R}^{n}} \exp \left\{i \rho \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle\right\}\left[\exp \left\{-\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\}-\exp \left\{-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\}\right] d \mu(\vec{v})\right|^{p^{\prime}} \\
& \leq\left(\int_{\mathbb{R}^{n}}\left[\left|\exp \left\{-\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\}\right|+1\right] d|\mu|(\vec{v})\right)^{p^{\prime}}
\end{aligned}
$$

Hence, by the bounded convergence theorem, we see that for each $p \in(1,2]$ and all $\rho>0$,

$$
\begin{aligned}
& \lim _{\substack{\lambda \rightarrow-i q \\
\lambda \in \mathbb{C}_{+}}} \int_{C_{0}[0, T]}\left|T_{\lambda, h}\left(F_{\mu}\right)(\rho y)-T_{q, h}^{(1)}\left(F_{\mu}\right)(\rho y)\right|^{p^{\prime}} d \mathfrak{m}(y) \\
& =\int_{C_{0}[0, T]} \mid \int_{\mathbb{R}^{n}} \exp \left\{i \rho \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle\right\} \\
& \quad \times\left.\lim _{\substack{\lambda \rightarrow-i q \\
\lambda \in \mathbb{C}_{+}}}\left[\exp \left\{-\frac{1}{2 \lambda} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\}-\exp \left\{-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\}\right] d \mu(\vec{v})\right|^{p^{\prime}} d \mathfrak{m}(y) \\
& =0
\end{aligned}
$$

which concludes the proof of Theorem 4.2.
Theorem 4.3. Let $F_{\mu} \in \widehat{\mathfrak{T}}_{\mathscr{A}}$ be given by (3.7). Then for each $p \in[1,2]$, all $q \in \mathbb{R} \backslash\{0\}$, and any $h \in \mathscr{O}_{\infty}(\mathscr{A})$, the $L_{p}$ analytic $G F F T T_{q, h}^{(p)}\left(F_{\mu}\right)$ of $F$ is in the class $\widehat{\mathfrak{T}}_{\mathscr{A}}$.

Proof. Let $F_{\mu} \in \widehat{\mathfrak{T}}_{\mathscr{A}}$ be given by (3.7) with corresponding complex measure $\mu \in \mathscr{M}\left(\mathbb{R}^{n}\right)$. Given any function $h$ in $\mathscr{O}_{\infty}(\mathscr{A})$, define a set function $\mu_{t, q}^{h}: \mathscr{B}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ by the formula.

$$
\mu_{t, q}^{h}(U)=\int_{U} \exp \left\{-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\} d \mu(\vec{v})
$$

for $U \in \mathscr{B}\left(\mathbb{R}^{n}\right)$. It is obvious that the set function $\mu_{t, q}^{h}$ satisfies the countable additivity on the class $\mathscr{B}\left(\mathbb{R}^{n}\right)$. We also note that

$$
\begin{aligned}
\left\|\mu_{t, q}^{h}\right\| \equiv\left|\mu_{t, q}^{h}\right|\left(\mathbb{R}^{n}\right) & \leq \int_{\mathbb{R}^{n}}\left|\exp \left\{-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\}\right| d|\mu|(\vec{v}) \\
& =\int_{\mathbb{R}^{n}} d|\mu|(\vec{v})=|\mu|\left(\mathbb{R}^{n}\right)=\|\mu\|<+\infty
\end{aligned}
$$

Thus the set function $\mu_{t, q}^{h}$ is in the Banach algebra $\mathscr{M}\left(\mathbb{R}^{n}\right)$. Furthermore, it follows that

$$
\begin{aligned}
T_{q, h}^{(p)}\left(F_{\mu}\right)(y) & =\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} v_{j}^{2}\right\} d \mu(\vec{v}) \\
& =\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle v_{j}\right\} d \mu_{t, q}^{h}(\vec{v})=F_{\mu_{t, q}^{h}}(y)
\end{aligned}
$$

for SI-a.e. $y \in C_{0}[0, T]$. Thus we see that $T_{q, h}^{(p)}\left(F_{\mu}\right)$ is an element of the class $\widehat{\mathfrak{T}}_{\mathscr{A}}$ for all $q \in \mathbb{R} \backslash\{0\}$ and any function $h \in \mathscr{O}_{\infty}(\mathscr{A})$.

The following corollary is a simple consequence of Theorems 4.1, 4.2, and 4.3, and will be very useful to prove our main theorem (namely, Theorem 6.3 below).

Corollary 4.4. Let $F_{\mu} \in \widehat{\mathfrak{T}}_{\mathscr{A}}$ be given by (3.7). Then for each $p \in[1,2]$, all $q \in \mathbb{R} \backslash\{0\}$, and any $h \in \mathscr{O}_{\infty}(\mathscr{A})$,

$$
\begin{equation*}
T_{-q, h}^{(p)}\left(T_{q, h}^{(p)}\left(F_{\mu}\right)\right) \approx F_{\mu} \tag{4.3}
\end{equation*}
$$

In other words, the $L_{p}$ analytic GFFT, $T_{q, h}^{(p)}$ has the inverse transform $\left\{T_{q, h}^{(p)}\right\}^{-1}=T_{-q, h}^{(p)}$.

## 5. Generalized convolution product

In this section, we establish the existence of the GCP of functionals in the class $\widehat{\mathfrak{T}}_{\mathscr{A}}$. But in order to ensure the existence of the GCP of functionals in $\widehat{\mathfrak{T}}_{\mathscr{A}}$, we have to provide a condition for functions in $\mathscr{O}_{\infty}(\mathscr{A})$.

Given an orthonormal set $\mathscr{A}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of functions in $L_{2}[0, T]$, consider the class $\mathscr{O}_{\infty}(A)$ defined in Section 3 above. In evaluation of the GCP $\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}$ of functionals $F_{\mu_{1}}$ and $F_{\mu_{2}}$ in $\widehat{\mathfrak{T}}_{\mathscr{A}}$, it arises the question that for all vectors $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ in $\mathbb{R}^{n}$, whether the PWZ integrals

$$
\begin{equation*}
\mathscr{G}_{\left(\vec{u}, \overrightarrow{\vec{r}} ; k_{1}, k_{2}\right)}=\left\{\left\langle u_{1} \alpha_{1} k_{1}-v_{1} \alpha_{1} k_{2}, x\right\rangle, \ldots,\left\langle u_{n} \alpha_{n} k_{1}-v_{n} \alpha_{n} k_{2}, x\right\rangle\right\} \tag{5.1}
\end{equation*}
$$

form a set of independent Gaussian random variables or not. Precisely speaking, when we evaluate the GCP $\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}$, it might not be able to use Lemma 3.1, because the Gaussian random variables in the set $\mathscr{G}_{\left(\vec{u}, \vec{v} ; k_{1}, k_{2}\right)}$ are generally not independent. Consequently, in order to apply Lemma 3.1 to the calculation of the GCP $\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}$, we have to apply the Gram-Schmidt process to the set

$$
\begin{equation*}
\mathscr{A}_{\left(\vec{u}, \vec{v} ; k_{1}, k_{2}\right)}=\left\{u_{1} \alpha_{1} k_{1}-v_{1} \alpha_{1} k_{2}, \ldots, u_{n} \alpha_{n} k_{1}-v_{n} \alpha_{n} k_{2}\right\} . \tag{5.2}
\end{equation*}
$$

In view of these situation, we will consider the class of ordered pairs of functions in $\mathscr{O}_{\infty}(\mathscr{A})$ throughout the remainder of this paper.

Definition 5.1. Given an orthonormal set $\mathscr{A}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of functions in $L_{2}[0, T] \backslash\{0\}$, let

$$
\mathscr{P}_{\infty}(\mathscr{A})=\left\{\left(k_{1}, k_{2}\right) \in \mathscr{O}_{\infty}(\mathscr{A}) \times \mathscr{O}_{\infty}(\mathscr{A}): \int_{0}^{T} \alpha_{i}(t) \alpha_{j}(t) k_{1}(t) k_{2}(t) d t=0 \text { for } i \neq j\right\} .
$$

Clearly, for any $h \in \mathscr{O}_{\infty}(\mathscr{A}),(h, h) \in \mathscr{P}_{\infty}(\mathscr{A})$.
Following example tells us that the class $\mathscr{P}_{\infty}\left(\mathscr{A}_{\text {cos }}\right)$ is not empty for the orthonormal set $\mathscr{A}_{\text {cos }}$ discussed in Example 3.6.

Example 5.2. Consider the orthonormal sequence $\widetilde{\mathscr{S}}=\left\{\alpha_{j}\right\}_{j=1}^{\infty}$ in $L_{2}[0, T]$ presented in Example 3.6. Let $\mathscr{A}_{\text {cos }}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. As shown in Example 3.6, one can see that for any functions $k_{1}$ and $k_{2}$ in $\widetilde{\mathscr{S}} \backslash \mathscr{A}_{\mathrm{cos}}$, the pair $\left(k_{1}, k_{2}\right)$ of the functions $k_{1}$ and $k_{2}$ is in the class $\mathscr{P}_{\infty}\left(\mathscr{A}_{\mathrm{cos}}\right)$.

Lemma 5.3. Given an orthonormal set $\mathscr{A}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ in $L_{2}[0, T]$, let $\left(k_{1}, k_{2}\right)$ be in the class $\mathscr{P}_{\infty}(\mathscr{A})$. Then for any vectors $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ in $\mathbb{R}^{n}$, the set of functions in $\mathscr{A}_{\left(\vec{u}, \vec{v}, k_{1}, k_{2}\right)}$ defined by (5.2) is an orthogonal set in $L_{2}[0, T]$. Thus it follows that the Gaussian random variables in the set $\mathscr{G}_{\left(\vec{u}, \vec{p} ; k_{1}, k_{2}\right)}$ given by (5.1) form a set of independent Gaussian random variables.

Proof. Let $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ be any vectors in $\mathbb{R}^{n}$. Then, for $i, j \in\{1, \ldots, n\}$ with $i \neq j$, it follows that

$$
\begin{aligned}
& \int_{0}^{T}\left(u_{i} \alpha_{i}(t) k_{1}(t)-v_{i} \alpha_{i}(t) k_{2}(t)\right)\left(u_{j} \alpha_{j}(t) k_{1}(t)-v_{j} \alpha_{j}(t) k_{2}(t)\right) d t \\
& =u_{i} u_{j} \int_{0}^{T} \alpha_{i}(t) \alpha_{j}(t) k_{1}^{2}(t) d t-u_{i} v_{j} \int_{0}^{T} \alpha_{i}(t) \alpha_{j}(t) k_{1}(t) k_{2}(t) d t \\
& -v_{i} u_{j} \int_{0}^{T} \alpha_{i}(t) \alpha_{j}(t) k_{1}(t) k_{2}(t) d t+v_{i} v_{j} \int_{0}^{T} \alpha_{i}(t) \alpha_{j}(t) k_{2}^{2}(t) d t .
\end{aligned}
$$

From the condition for the functions $k_{1}$ and $k_{2}$, it follows that

$$
\int_{0}^{T}\left(u_{i} \alpha_{i}(t) k_{1}(t)-v_{i} \alpha_{i}(t) k_{2}(t)\right)\left(u_{j} \alpha_{j}(t) k_{1}(t)-v_{j} \alpha_{j}(t) k_{2}(t)\right) d t=0
$$

and the lemma is proved.
Theorem 5.4. Let $F_{\mu_{1}}$ and $F_{\mu_{2}}$ be functionals in $\widehat{\mathfrak{T}}_{\mathscr{A}}$ and let $\left(k_{1}, k_{2}\right)$ be in the class $\mathscr{P}_{\infty}(\mathscr{A})$. Then for all real $q \in \mathbb{R} \backslash\{0\}$, the $G C P\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}$ of $F_{\mu_{1}}$ and $F_{\mu_{2}}$ exists and is given by the formula

$$
\begin{aligned}
& \left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}(y) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle\left(\frac{u_{j}+v_{j}}{\sqrt{2}}\right)-\frac{i}{4 q} \sum_{j=1}^{n}\left\|\alpha_{j}\left(u_{j} k_{1}-v_{j} k_{2}\right)\right\|_{2}^{2}\right\} d \mu_{1}(\vec{u}) d \mu_{2}(\vec{v})
\end{aligned}
$$

for SI-a.e. $y \in C_{0}[0, T]$.
Proof. Using (2.2), (3.4), and the Fubini theorem, it first follows that for all $\lambda>0$ and SI-a.e. $y \in$ $C_{0}[0, T]$,

$$
\begin{aligned}
\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{\lambda}^{\left(k_{1}, k_{2}\right)}(y)= & \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle \frac{\left(u_{j}+v_{j}\right)}{\sqrt{2}}\right\} \\
& \times\left[\int_{C_{0}[0, T]} \exp \left\{\frac{i}{\sqrt{2 \lambda}} \sum_{j=1}^{n}\left\langle u_{j} \alpha_{j} k_{1}-v_{j} \alpha_{j} k_{2}, x\right\rangle\right\} d \mathfrak{m}(x)\right] d \mu_{1}(\vec{u}) d \mu_{2}(\vec{v}) .
\end{aligned}
$$

Next, applying Lemma 5.3 and using (3.3), the Fubini theorem, and (3.8), it follows that

$$
\begin{aligned}
& \left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{\lambda}^{\left(k_{1}, k_{2}\right)}(y) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle \frac{\left(u_{j}+v_{j}\right)}{\sqrt{2}}\right\} \prod_{j=1}^{n}\left[\left(2 \pi\left\|u_{j} \alpha_{j} k_{1}-v_{j} \alpha_{j} k_{2}\right\|_{2}^{2}\right)^{-1 / 2}\right. \\
& \left.\quad \times \int_{\mathbb{R}} \exp \left\{\frac{i}{\sqrt{2 \lambda}} r_{j}-\frac{r_{j}^{2}}{2\left\|u_{j} \alpha_{j} k_{1}-v_{j} \alpha_{j} k_{2}\right\|_{2}^{2}}\right\} d r_{j}\right] d \mu_{1}(\vec{u}) d \mu_{2}(\vec{v}) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle \frac{\left(u_{j}+v_{j}\right)}{\sqrt{2}}-\frac{1}{4 \lambda} \sum_{j=1}^{n}\left\|u_{j} \alpha_{j} k_{1}-v_{j} \alpha_{j} k_{2}\right\|^{2}\right\} d \mu_{1}(\vec{u}) d \mu_{2}(\vec{v}) .
\end{aligned}
$$

Now, for each $\lambda \in \mathbb{C}$, let

$$
\begin{aligned}
& J_{\left(F_{\mu_{1}} * F_{\mu_{2}}\right)}^{*}\left(k_{1}, k_{2} ; \lambda\right) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle \frac{\left(u_{j}+v_{j}\right)}{\sqrt{2}}-\frac{1}{4 \lambda} \sum_{j=1}^{n}\left\|u_{j} \alpha_{j} k_{1}-v_{j} \alpha_{j} k_{2}\right\|^{2}\right\} d \mu_{1}(\vec{u}) d \mu_{2}(\vec{v}) .
\end{aligned}
$$

Using similar methods as those used in the proof of Theorem 4.1, we can show that the function $J_{\left(F_{\left.\mu_{1} * F_{\mu_{2}}\right)}^{*}\right.}^{*}\left(k_{1}, k_{2} ; \lambda\right)$ is an analytic function of $\lambda$ throughout $\mathbb{C}_{+}$, and is bounded as a function of $\boldsymbol{\lambda}$ in $\mathbb{C}_{+}$.
Hence, in view of Definition 2.2 and by the bounded convergence theorem, the GCP $\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}$ of $F_{\mu_{1}}$ and $F_{\mu_{2}}$ exists and is given by the right-hand side of (5.3) for SI-a.e. $y \in C_{0}[0, T]$.

Theorem 5.5. Let $F_{\mu_{1}}, F_{\mu_{2}}$, and $\left(k_{1}, k_{2}\right)$ be as in Theorem 5.4. Then for all $q \in \mathbb{R} \backslash\{0\}$, the GCP $\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}$ is in the class $\widehat{\mathfrak{T}}_{\mathscr{A}}$.
Proof. Define a set function $\varphi_{q}^{\left(k_{1}, k_{2}\right)}: \mathscr{B}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ by the formula

$$
\begin{equation*}
\varphi_{q}^{\left(k_{1}, k_{2}\right)}(V)=\iint_{V} \exp \left\{-\frac{i}{4 q} \sum_{j=1}^{n}\left\|u_{j} \alpha_{j} k_{1}-v_{j} \alpha_{j} k_{2}\right\|_{2}^{2}\right\} d \mu_{1}(\vec{u}) d \mu_{2}(\vec{v}) \tag{5.4}
\end{equation*}
$$

for $V \in \mathscr{B}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Then $\varphi_{q}^{\left(k_{1}, k_{2}\right)}$ is a complex measure with finite total variation on $\mathscr{B}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Next, let $\phi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the continuous function given by $\phi(\vec{u}, \vec{v})=(\vec{u}+\vec{v}) / \sqrt{2}$. Then $\phi$ is $\mathscr{B}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)-\mathscr{B}\left(\mathbb{R}^{n}\right)$ measurable. Finally, let the set function $\Phi_{c, q}^{\left(k_{1}, k_{2}\right)}: \mathscr{B}\left(\mathbb{R}^{n}\right) \longrightarrow \mathbb{C}$ be given by

$$
\begin{equation*}
\Phi_{c, q}^{\left(k_{1}, k_{2}\right)}=\varphi_{q}^{\left(k_{1}, k_{2}\right)} \circ \phi^{-1} . \tag{5.5}
\end{equation*}
$$

Then $\Phi_{c, q}^{\left(k_{1}, k_{2}\right)}$ satisfies the countable additivity obviously. Based on these structure above, it follows that

$$
\begin{aligned}
\left\|\Phi_{c, q}^{\left(k_{1}, k_{2}\right)}\right\| & \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}\left|\exp \left\{-\frac{i}{4 q} \sum_{j=1}^{n}\left\|u_{j} \alpha_{j} k_{1}-v_{j} \alpha_{j} k_{2}\right\|_{2}^{2}\right\}\right| d\left|\mu_{1}\right|(\vec{u}) d\left|\mu_{2}\right|(\vec{v}) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} d\left|\mu_{1}\right|(\vec{u}) d\left|\mu_{2}\right|(\vec{v}) \\
& =\left(\int_{\mathbb{R}^{n}} d\left|\mu_{1}\right|(\vec{u})\right)\left(\int_{\mathbb{R}^{n}} d\left|\mu_{2}\right|(\vec{v})\right) \\
& =\left\|\mu_{1}\right\|\left\|\mu_{2}\right\|<+\infty .
\end{aligned}
$$

Thus the set function $\Phi_{c, q}^{\left(k_{1}, k_{2}\right)}$ is a complex measure with finite total variation on $\mathscr{B}\left(\mathbb{R}^{n}\right)$. Using equation (5.3) together with (5.4) and (5.5), it follows that

$$
\begin{aligned}
\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}(y) & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \exp \left\{i\left(\langle\vec{\alpha}, y\rangle, \frac{1}{\sqrt{2}}(\vec{u}+\vec{v})\right)_{\mathbb{R}^{n}}\right\} d \varphi_{q}^{\left(k_{1}, k_{2}\right)}(\vec{u}, \vec{v}) \\
& =\int_{\mathbb{R}^{n}} \exp \left\{i(\langle\vec{\alpha}, y\rangle, \vec{r})_{\mathbb{R}^{n}}\right\} d \Phi_{c, q}^{\left(k_{1}, k_{2}\right)}(\vec{r}) \\
& =F_{\Phi_{c, q}\left(k_{1}, k_{2}\right)}(y)
\end{aligned}
$$

for SI-a.e. $y \in C_{0}[0, T]$, where $(\cdot, \cdot)_{\mathbb{R}^{n}}$ denote the standard inner product on $\mathbb{R}^{n}$. Hence the GCP $\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}$ belongs to the class $\widehat{\mathfrak{T}}_{\mathscr{A}}$.

## 6. Relationships between the GFFT and the GCP

In order to obtain our main results in this paper, we define the following conventions. Note that for any nonzero functions $h_{1}$ and $h_{2}$ in $L_{2}[0, T]$, there exists a function $s$ in $L_{2}[0, T]$ such that

$$
\begin{equation*}
s^{2}(t)=h_{1}^{2}(t)+h_{2}^{2}(t) \tag{6.1}
\end{equation*}
$$

for $m_{L}$-a.e. $t \in[0, T]$. It is clear that the function $s$ satisfying (6.1) is not unique. Thus we will use the symbol $s\left(h_{1}, h_{2}\right)$ for any functions $s$ which satisfy (6.1). Given functions $h_{1}$ and $h_{2}$ in $L_{2}[0, T] \backslash\{0\}$, a lot of functions, $s\left(h_{1}, h_{2}\right)$, exist in $L_{2}[0, T]$. Thus $s\left(h_{1}, h_{2}\right)$ can be considered as an equivalence class of the equivalence relation $\sim$ on $L_{2}[0, T]$ given by

$$
s_{1} \sim s_{2} \Longleftrightarrow s_{1}^{2}=s_{2}^{2} \quad m_{L} \text {-a.e.. }
$$

But we see that for every function $s$ in the equivalence class $s\left(h_{1}, h_{2}\right)$, the Gaussian random variable $\langle s, x\rangle$ has the normal distribution $N\left(0,\left\|h_{1}\right\|_{2}^{2}+\left\|h_{2}\right\|_{2}^{2}\right)$. If the functions $h_{1}$ and $h_{2}$ are in $L_{\infty}[0, T]$, then we can take $s\left(h_{1}, h_{2}\right)$ to be in $L_{\infty}[0, T]$.
Theorem 6.1. Let $F_{\mu_{1}}$ and $F_{\mu_{2}}$ be functionals in $\widehat{\mathfrak{T}}_{\mathscr{A}}$, let $h$ be a function in $\mathscr{O}_{\infty}(\mathscr{A})$, and let $\left(k_{1}, k_{2}\right)$ be in the class $\mathscr{P}_{\infty}(\mathscr{A})$. Assume that

$$
h^{2}(t)=k_{1}(t) k_{2}(t)
$$

for $m_{L}$-a.e. $t \in[0, T]$. Then for each $p \in[1,2]$ and all real $q \in \mathbb{R} \backslash\{0\}$, it follows that

$$
\begin{equation*}
T_{q, h}^{(p)}\left(\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}\right)(y)=T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{1}}\right)\left(\frac{y}{\sqrt{2}}\right) T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{2}}\right)\left(\frac{y}{\sqrt{2}}\right) \tag{6.2}
\end{equation*}
$$

for SI-a.e. $y \in C_{0}[0, T]$, where $s\left(h, k_{1}\right)$ and $s\left(h, k_{2}\right)$ are the functions which satisfy the relation

$$
\begin{equation*}
s\left(h, k_{1}\right)^{2}(t)=h^{2}(t)+k_{1}^{2}(t) \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
s\left(h, k_{2}\right)^{2}(t)=h^{2}(t)+k_{2}^{2}(t) \tag{6.4}
\end{equation*}
$$

for $m_{L}$-a.e. $t \in[0, T]$, respectively.
Proof. In view of Theorem 4.2, it suffices to show that

$$
T_{q, h}^{(1)}\left(\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}\right)(y)=T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(1)}\left(F_{\mu_{1}}\right)\left(\frac{y}{\sqrt{2}}\right) T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(1)}\left(F_{\mu_{2}}\right)\left(\frac{y}{\sqrt{2}}\right)
$$

for SI-a.e. $y \in C_{0}[0, T]$.
Since the GCP $\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}$ of $F_{\mu_{1}}$ and $F_{\mu_{2}}$ is an element of $\widehat{\mathfrak{T}}_{\mathscr{A}}$ by Theorem 5.5, the GFFT of $\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}, T_{q, h}^{(1)}\left(\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}\right)$ exists for all $q \in \mathbb{R} \backslash\{0\}$ by Theorem 4.1. Next using (4.1) with $F_{\mu}$ replaced with $\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}$, and (5.6), it follows that

$$
\begin{equation*}
T_{q, h}^{(1)}\left(\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}\right)(y)=\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle r_{j}\right\} d\left(\Phi_{c, q}^{\left(k_{1}, k_{2}\right)}\right)_{t, q}^{h}(\vec{r}) \tag{6.5}
\end{equation*}
$$

where $\left(\Phi_{c, q}^{\left(k_{1}, k_{2}\right)}\right)_{t, q}^{h}$ is the complex measure in $\mathscr{M}\left(\mathbb{R}^{n}\right)$ given by

$$
\begin{equation*}
\left(\Phi_{c, q}^{\left(k_{1}, k_{2}\right)}\right)_{t, q}^{h}(U)=\int_{U} \exp \left\{-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} r_{j}^{2}\right\} d \Phi_{c, q}^{\left(k_{1}, k_{2}\right)}(\vec{r}) \tag{6.6}
\end{equation*}
$$

for $U \in \mathscr{B}\left(\mathbb{R}^{n}\right)$, and where $\Phi_{c, q}^{\left(k_{1}, k_{2}\right)}$ is given by (5.5). Now the assumption yields the equality that given
any $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$,

$$
\begin{aligned}
& \left(u_{j}+v_{j}\right)^{2}\left\|\alpha_{j} h\right\|_{2}^{2}+\left\|u_{j} \alpha_{j} k_{1}-v_{j} \alpha_{j} k_{2}\right\|_{2}^{2} \\
& =\left(u_{j}+v_{j}\right)^{2} \int_{0}^{T} \alpha_{j}^{2}(t) h^{2}(t) d t+\int_{0}^{T}\left(u_{j} \alpha_{j}(t) k_{1}(t)-v_{j} \alpha_{j}(t) k_{2}(t)\right)^{2} d t \\
& =u_{j}^{2} \int_{0}^{T} \alpha_{j}^{2}(t)\left(h^{2}(t)+k_{1}^{2}(t)\right) d t+v_{j}^{2} \int_{0}^{T} \alpha_{j}^{2}(t)\left(h^{2}(t)+k_{2}^{2}(t)\right) d t \\
& =u_{j}^{2}\left\|\alpha_{j} s\left(h, k_{1}\right)\right\|_{2}^{2}+v_{j}^{2}\left\|\alpha_{j} s\left(h, k_{2}\right)\right\|_{2}^{2}
\end{aligned}
$$

for each $j \in\{1, \ldots, n\}$. Thus, using (6.5), (6.6), (5.5), (5.4), (6.7), the Fubini theorem, (4.1), (6.3), and (6.4), it follows that

$$
\begin{aligned}
& T_{q, h}^{(1)}\left(\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{\left(k_{1}, k_{2}\right)}\right)(y) \\
& =\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle r_{j}-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2} r_{j}^{2}\right\} d \Phi_{c, q}^{\left(k_{1}, k_{2}\right)}(\vec{r}) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, y\right\rangle \frac{\left(u_{j}+v_{j}\right)}{\sqrt{2}}-\frac{i}{4 q} \sum_{j=1}^{n}\left\|\alpha_{j} h\right\|_{2}^{2}\left(u_{j}+v_{j}\right)^{2}\right. \\
& \left.\quad-\frac{i}{4 q} \sum_{j=1}^{n}\left\|u_{j} \alpha_{j} k_{1}-v_{j} \alpha_{j} k_{2}\right\|_{2}^{2}\right\} d \mu_{1}(\vec{u}) d \mu_{2}(\vec{v}) \\
& =\int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, \frac{y}{\sqrt{2}}\right\rangle u_{j}-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} \frac{s\left(h, k_{1}\right)}{\sqrt{2}}\right\|_{2}^{2} u_{j}^{2}\right\} d \mu_{1}(\vec{u}) \\
& \times \int_{\mathbb{R}^{n}} \exp \left\{i \sum_{j=1}^{n}\left\langle\alpha_{j}, \frac{y}{\sqrt{2}}\right\rangle v_{j}-\frac{i}{2 q} \sum_{j=1}^{n}\left\|\alpha_{j} \frac{s\left(h, k_{2}\right)}{\sqrt{2}}\right\|_{2}^{2} v_{j}^{2}\right\} d \mu_{2}(\vec{v}) \\
& =T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(1)}\left(F_{\mu_{1}}\right)\left(\frac{y}{\sqrt{2}}\right) T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(1)}\left(F_{\mu_{2}}\right)\left(\frac{y}{\sqrt{2}}\right)
\end{aligned}
$$

for SI-a.e. $y \in C_{0}[0, T]$.
Setting $k_{1}=k_{2}=h$ in equation (6.2), we have the following corollary which agrees with the results in $[3,11]$.

Corollary 6.2. Let $F_{\mu_{1}}$ and $F_{\mu_{2}}$ be functionals in $\widehat{\mathfrak{T}}_{\mathscr{A}}$ and let $h$ be a function in $\mathscr{O}_{\infty}(\mathscr{A})$. Then for each $p \in[1,2]$ and all real $q \in \mathbb{R} \backslash\{0\}$, it follows that

$$
T_{q, h}^{(p)}\left(\left(F_{\mu_{1}} * F_{\mu_{2}}\right)_{q}^{(h, h)}\right)(y)=T_{q, h}^{(p)}\left(F_{\mu_{1}}\right)\left(\frac{y}{\sqrt{2}}\right) T_{q, h}^{(p)}\left(F_{\mu_{2}}\right)\left(\frac{y}{\sqrt{2}}\right)
$$

for SI-a.e. $y \in C_{0}[0, T]$.
Theorem 6.3. Let $F_{\mu_{1}}, F_{\mu_{2}}, h$, and $\left(k_{1}, k_{2}\right)$ be as in Theorem 6.1 under the same assumption. Then for each $p \in[1,2]$ and all $q \in \mathbb{R} \backslash\{0\}$, it follows that

$$
\begin{equation*}
\left(T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{1}}\right) * T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{2}}\right)\right)_{-q}^{\left(k_{1}, k_{2}\right)}(y)=T_{q, h}^{(p)}\left(F_{\mu_{1}}\left(\frac{\cdot}{\sqrt{2}}\right) F_{\mu_{2}}\left(\frac{\cdot}{\sqrt{2}}\right)\right)(y) \tag{6.8}
\end{equation*}
$$

for SI-a.e. $y \in C_{0}[0, T]$, where $s\left(h, k_{1}\right)$ and $s\left(h, k_{2}\right)$ are the functions which satisfy the relations (6.3) and (6.4) respectively.
Proof. Applying (4.3), (6.2) with $F_{\mu_{1}}, F_{\mu_{2}}$, and $q$ replaced with $T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{1}}\right), T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{2}}\right)$ and $-q$ respectively, and (4.3) again, it follows that for SI-a.e. $y \in C_{0}[0, T]$,

$$
\begin{aligned}
& \left(T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{1}}\right) * T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{2}}\right)\right)_{-q}^{\left(k_{1}, k_{2}\right)}(y) \\
& =T_{q, h}^{(p)}\left(T_{-q, h}^{(p)}\left(\left(T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{1}}\right) * T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{2}}\right)\right)_{-q}^{\left(k_{1}, k_{2}\right)}\right)\right)(y) \\
& =T_{q, h}^{(p)}\left(T_{-q, s\left(h, k_{1}\right) / \sqrt{2}}^{(p)}\left(T_{q, s\left(h, k_{1}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{1}}\right)\right)\left(\frac{\cdot}{\sqrt{2}}\right) T_{-q, s\left(h, k_{2}\right) / \sqrt{2}}^{(p)}\left(T_{q, s\left(h, k_{2}\right) / \sqrt{2}}^{(p)}\left(F_{\mu_{2}}\right)\right)\left(\frac{\cdot}{\sqrt{2}}\right)\right)(y) \\
& =T_{q, h}^{(p)}\left(F_{\mu_{1}}\left(\frac{\cdot}{\sqrt{2}}\right) F_{\mu_{2}}\left(\frac{\cdot}{\sqrt{2}}\right)\right)(y)
\end{aligned}
$$

as desired.
Setting $k_{1}=k_{2}=h$ in equation (6.8), we also have the following corollary.
Corollary 6.4. Let $F_{\mu_{1}}$ and $F_{\mu_{2}}$ be functionals in $\widehat{\mathfrak{T}}_{\mathscr{A}}$ and let $h$ be a function in $\mathscr{O}_{\infty}(\mathscr{A})$. Then for each $p \in[1,2]$ and all real $q \in \mathbb{R} \backslash\{0\}$, it follows that

$$
\left(T_{q, h}^{(p)}\left(F_{\mu_{1}}\right) * T_{q, h}^{(p)}\left(F_{\mu_{2}}\right)\right)_{-q}^{(h, h)}(y)=T_{q, h}^{(p)}\left(F_{\mu_{1}}\left(\frac{\cdot}{\sqrt{2}}\right) F_{\mu_{2}}\left(\frac{\cdot}{\sqrt{2}}\right)\right)(y)
$$

for SI-a.e. $y \in C_{0}[0, T]$.
Note that if $h=k_{1}=k_{2} \equiv 1$ on $[0, T]$, then the definitions of the $L_{p}$ analytic GFFT $T_{q, h}^{(p)} \equiv T_{q, 1}^{(p)}$ and the GCP $(\cdot * \cdot)_{q}^{\left(k_{1}, k_{2}\right)} \equiv(\cdot * \cdot)_{q}^{(1,1)}$ agree with the previous definitions [8, 9, 10, 17] of the analytic FFT $T_{q}^{(p)}$ and the $\mathrm{CP}(\cdot * \cdot)_{q}$, because $Z_{1}(x, \cdot)=x$ for all $x \in C_{0}[0, T]$. Thus, setting $k_{1}=k_{2}=h=1$ in (6.2) and (6.8), we also have the following corollary.

Corollary 6.5. Let $F_{\mu_{1}}$ and $F_{\mu_{2}}$ be functionals in $\widehat{\mathfrak{T}}_{\mathscr{A}}$. Then for each $p \in[1,2]$ and all real $q \in \mathbb{R} \backslash\{0\}$, equations (1.1) and (1.2) with $F$ and $G$ replaced with $F_{\mu_{1}}$ and $F_{\mu_{2}}$ respectively hold true for SI-a.e. $y \in C_{0}[0, T]$.
[1] M.D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Ph.D. Thesis, University of Minnesota, Minneapolis, 1972.
[2] R.H.Cameron and D.A. Storvick, "An $L_{2}$ analytic Fourier-Feynman transform", Michigan Math. J. 23 (1976), 1-30.
[3] K.S. Chang, D.H. Cho, B.S. Kim, T.S. Song and I. Yoo, "Relationships involving generalized Fourier-Feynman transform, convolution and first variation", Integral Transforms Spec. Funct. 16 (2005), 391-405.
[4] S.J. Chang, H.S. Chung and J.G. Choi, "Generalized Fourier-Feynman transforms and generalized convolution products on Wiener space", Indag. Math. 28 (2017), 566-579.
[5] J.G. Choi, D. Skoug and S.J. Chang, "A multiple generalized Fourier-Feynman transform via a rotation on Wiener space", Int. J. Math. 23 (2012), Article ID: 1250068.
[6] D.M. Chung, "Scale-invariant measurability in abstract Wiener spaces", Pacific J. Math. 130 (1987), 27-40.
[7] D.M. Chung, C. Park and D. Skoug, "Generalized Feynman integrals via conditional Feynman integrals", Michigan Math. J. 40 (1993), 377-391.
[8] T. Huffman, C. Park and D. Skoug, "Analytic Fourier-Feynman transforms and convolution", Trans. Amer. Math. Soc. 347 (1995), 661-673.
[9] T. Huffman, C. Park and D. Skoug, "Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals", Michigan Math. J. 43 (1996), 247-261.
[10] T. Huffman, C. Park and D. Skoug, "Convolution and Fourier-Feynman transforms", Rocky Mountain J. Math. 27 (1997), 827-841.
[11] T. Huffman, C. Park and D. Skoug, "Generalized transforms and convolutions", Int. J. Math. Math. Sci. 20 (1997), 19-32.
[12] G.W. Johnson and D.L. Skoug, "An $L_{p}$ analytic Fourier-Feynman transform", Michigan Math. J. 26 (1979), 103-127.
[13] G.W. Johnson and D.L. Skoug, "Scale-invariant measurability in Wiener space", Pacific J. Math. 83 (1979), 157-176.
[14] R.E.A.C. Paley, N. Wiener and A. Zygmund, "Notes on random functions", Math. Z. 37 (1933), 647-668.
[15] C. Park, "A generalized Paley-Wiener-Zygmund integral and its applications", Proc. Amer. Math. Soc. 23 (1969), 388-400.
[16] C. Park and D. Skoug, "A note on Paley-Wiener-Zygmund stochastic integrals", Proc. Amer. Math. Soc. 103 (1988), 591-601.
[17] C. Park, D. Skoug and D. Storvick, "Relationships among the first variation, the convolution product, and the FourierFeynman transform", Rocky Mountain J. Math. 28 (1998), 1147-1468.
[18] S.K. Shim and J.G. Choi, "Generalized Fourier-Feynman transforms and generalized convolution products on Wiener space II", Ann. Funct. Anal. 11 (2020), 439-457.
[19] D. Skoug and D. Storvick, "A survey of results involving transforms and convolutions in function space", Rocky Mountain J. Math. 34 (2004), 1147-1175.
[20] J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker Inc., New York, 1973.
Department of Mathematics, Dankook University, Cheonan 31116, Republic of Korea
Email address: shbyeon@dankook.ac.kr
School of General Education, Dankook University, Cheonan 31116, Republic of Korea
Email address: jgchoi@dankook.ac.kr

