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Abstract. Let (X,U) be a uniform space and (K(X),UH) be a hyperspace of non-empty
compact subsets of X equipped with the Hausdorff uniformity. We show that (X,U) is
complete iff every UH -Cauchy net converges to its Kuratowski-Painlevé limit in (K(X),UH).
We also show that a metrizable locally convex space X is complete, iff for every compact subset
of X, its closed convex hull is also compact. This is not necessarily true for non-metrizable
spaces.

1. Introduction

In this paper, we present a novel proof demonstrating the completeness of a uniform space
(X,U) if and only if (K(X),UH) is complete, where (K(X),UH) is a hyperspace of non-empty
compact subsets of X equipped with the Hausdorff uniformity.

The definition of Hausdorff uniformity is based on the idea of Hausdorff distance. Let (X,d)
be a metric space and A,B ⊆ X. The excess of a set A over B is e(A,B) = sup{d(a,B) : a ∈ A}.
Pompeiou [16] has considered the distance of two sets defined as e(A,B) + e(B,A). Later
development led to a slightly different Hausdorff distance defined as

ρH(A,B) = max{e(A,B), e(B,A)} = inf{ε > 0 : A ⊆ Sε(B) and B ⊆ Sε(A)},

where Sε(A) is an ε-enlargement of the set A. Note that Hausdorff distance can be infinite for
unbounded sets. The result by Hahn [6] asserts that if X is a complete metric space, then the
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NEW CHARACTERIZATIONS OF COMPLETENESS AND HAUSDORFF UNIFORMITY 2

space of its closed and bounded subsets, equipped with the Hausdorff distance, is complete,
too. This also holds for the space CL(X), of all non-empty closed subsets of X. The classical
proof of the completeness of the Hausdorf distance in the metrizable setting shows that the
Kuratowksi-Painleve limit superior of a Cauchy sequence of non-empty closed sets is non-empty
and then that the sequence actually converges to this limit superior. A good source for this
proof is [13], and another earlier source is [2].

Another approach can be found in [1]. The assignment A 7→ d(·,A) is an isometry between
(CL(X),ρH) and the space of distance functions equipped with a natural distance generated by
the topology of uniform convergence. The function space approach to establish the completeness
of ρH on CL(X) is based on the fact that the uniform limit of a sequence of distance functions
(d(·,An)) on a complete metric space must be a distance function [1, Lemma 3.1.1].

Given a uniform space (X,U), we can define a Hausdorff uniformity on the space CL(X); the
details are in the section below. However, completeness of X does not ensure the completeness
of CL(X); in fact, completeness of CL(X) amounts to supercompleteness of X, see [5, 11]. The
authors have found that space is supercomplete, iff it is paracompact, and the coarsest locally
fine uniformity finer than the original uniformity is fine. One can easily find a complete uniform
space that is not paracompact and hence not supercomplete. This leaves the question whether
K(X) is always complete, provided X is complete. While Morita previously established this
result in [15], our proof offers a more constructive approach, showing that in a complete uniform
space (X,U) every UH -Cauchy net converges to its Kuratowski-Painlevé limit in (K(X),UH).

In the second part of this paper, we investigate the interrelation between the completeness
of a topological vector space and the property that the closed convex hull of a compact space
is again compact. We can mention here that Hörmander’s theorem [1, Theorem 3.2.9] ties
Hausdorff distance to convexity. On the other hand, the above property is important in the
study of spaces of minimal usco and minimal cusco maps, particularly in understanding the
connections between these two spaces. Also, the fact that the Hausdorff uniformity is complete
on the compact sets is significant in the examination of these spaces, [8, 9, 10] (the result itself
is used in [10]). Thus, these applications can provide another connection of this part to the
first one. It is worth noting that minimal usco and minimal cusco maps play a crucial role in
various fields, such as functional analysis, optimization, and the study of the differentiability of
Lipschitz functions, among others. For further applications and insights regarding these maps,
we refer readers to the book [7].

2. Preliminaries

All topological spaces are assumed to be at least Hausdorff. By Z,N,R,R+,C, we will denote
the sets of integers, natural numbers (positive integers), real numbers, positive real numbers,
and complex numbers, respectively. They will be considered to be equipped with their usual
structures when needed. We will denote uniform space as (X,U), where U is a uniformity (a
system of entourages). We will also always assume that it is Hausdorff.

Whenever we consider topological vector space X, it will be over the field K, that is, either
R or C. The field will be mentioned only if necessary. Its zero element will be denoted as 0
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NEW CHARACTERIZATIONS OF COMPLETENESS AND HAUSDORFF UNIFORMITY 3

and the system of neighborhoods of 0 as N . Recall that every topological vector space has a
compatible uniformity generated by the entourages of the form

VO = {(x,y) ∈ X ×X : x−y ∈ O},

where O ∈ N .
The symbols A and coA stand for the closure and the convex hull of the set A, respectively.

Denote coA = coA, a closed convex hull of A. A subset A of a topological vector space X is
bounded (totally bounded) if for every O ∈ N , there is λ ∈ R+ (finite F ⊆ X) such that A ⊆ λO
(A ⊆ F + O). A set A ⊆ Y is absolutely convex if it is convex and for every λ ∈ K, such that
|λ| ≤ 1 it holds λA ⊆ A.

The topological vector space is called locally convex, iff N has a base consisting of convex
sets. In this case, it has a base consisting of absolutely convex sets. A completely metrizable
locally convex topological vector space is called Fréchet space. For other basic notions, we refer
to [3, 4, 12].

We will denote by
P(X) the system of all subsets of X;

CL(X) the system of non-empty closed subsets of X;
K(X) the system of non-empty compact subsets of X;

CK(X) the system of non-empty compact and convex subsets of X.
Let (X,U) be a uniform space. We will use the Hausdorff uniformity UH on CL(X), see [14],

which is generated by entourages of the form

WU = {(A,B) ∈ CL(X)×CL(X) : A ⊆ U [B] and B ⊆ U [A]},

where U ∈ U . Note the similarity to the alternative definition of the Hausdorff distance mentioned
in the introduction. Also note that we could define this uniformity on P(X), but it would not
necessarily have the Hausdorff property, while on CL(X), it does. It can be inherited to K(X)
and CK(X). We will denote the topology generated by UH as τH .

If X is a topological vector space, then we can generate Hausdorff uniformity from the
standard uniformity on X, which is generated from the system of neighborhoods of 0, N . In
particular, UH has a base consisting of the elements of the form

WO = {(A,B) ∈ CL(X)×CL(X) : A ⊆ O +B and B ⊆ O +A},

where O ∈ N . Note that it is sufficient when O runs through some basis on N .
Another well known topology on CL(X) is the Vietoris topology, denoted by τV , which is

generated by the following subbase:

{V + : V is an open subset of X}∪{V − : V is an open subset of X},

where
V + = {A ∈ CL(X) : A ⊆ V } and V − = {A ∈ CL(X) : A∩V ̸= ∅}.

Proposition 2.1 ([14]). Let (X,U) be a uniform space, then τH and τV coincide on K(X).
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NEW CHARACTERIZATIONS OF COMPLETENESS AND HAUSDORFF UNIFORMITY 4

3. Completeness of Hausdorff uniformity

Let X be a topological space and (Fσ)σ∈Σ be a net of non-empty closed subsets of X. Then
LiFσ is the set of all points x ∈ X such that for every neighborhood U of x, there is σ0 ∈ Σ
such that Fσ ∩U ̸= ∅ for every σ ≥ σ0. LsKσ is the set of all points x ∈ X such that for every
neighbourhood U of x and every σ ∈ Σ there is η ≥ σ such that Fη ∩U ̸= ∅. One can easily see
that LiFσ ⊆ LsFσ. If LiFσ = LsFσ, then F = LiFσ = LsFσ is the Kuratowski-Painlevé limit of
(Fσ)σ∈Σ, see [1].

Lemma 3.1. Let X be a regular space. Let (Fσ)σ∈Σ be a net of non-empty closed sets which
converges to a non-empty closed set F in (CL(X), τV ). Then F is the Kuratowski-Painlevé limit
of (Fσ)σ∈Σ.

Proof. It is easy to verify that F ⊆ LiFσ. Suppose that x ∈ F . We will show that LsFσ ⊆ F .
Suppose there is x ∈ LsFσ \F . The regularity of X implies that there are two disjoint open sets
U,V in X such that x ∈ U and F ⊆ V . There is σ0 ∈ Σ such that Fσ ⊆ V for every σ ≥ σ0, a
contradiction since x ∈ LsFσ. □

Lemma 3.2. Let (X,U) be a uniform space and (Fσ)σ∈Σ be a UH-Cauchy net of subsets of X.
Then LiFσ = LsFσ.

Proof. We want to prove that LsFσ ⊆ LiFσ. Let x ∈ LsFσ and V be an open neighborhood of
x. Let U be an open symmetric element fom U such that (U ◦U ◦U)[x] ⊆ V . Since (Fσ)σ∈Σ is a
UH -Cauchy net, there is σ0 ∈ Σ such that Fσ ⊆ U [Fσ0 ] and Fσ0 ⊆ U [Fσ] for every σ ≥ σ0. Since
x ∈ LsFσ, there is η ≥ σ0 such that Fη ∩U [x] ̸= ∅, so x ∈ U [Fη] ⊆ (U ◦U)[Fσ0 ] ⊆ (U ◦U ◦U)[Fσ]
and thus ∅ ̸= Fσ ∩ (U ◦U ◦U)[x] ⊆ Fσ ∩V for every σ ≥ σ0. □

A family A of subsets of a uniform space (X,U) contains small sets (resp. almost small sets)
iff for each U ∈ U there are A ∈ A and x ∈ X (resp. finite D ⊆ X) such that A ⊆ U [x] (resp.
A ⊆ U [D]).

Theorem 3.3 ([12]). A uniform space is complete if and only if each family of closed sets,
which has the finite intersection property and contains small sets, has a non-empty intersection.

Theorem 3.4. A uniform space is complete if and only if each family of closed sets, which has
the finite intersection property and contains almost small sets, has a non-empty intersection.

Proof. Let (X,U) be a complete uniform space. Let F be a family of closed sets in X, which has
the finite intersection property and contains almost small sets. Let F ′ be the family of all finite
intersections of elements of F . Then F ′ is a filter base and let A be an ultrafilter which contains
F ′. We will show that A contains small sets. Let U ∈ U be arbitrary and V ∈ U be a closed
set in X × X such that V ⊆ U . Since F contains almost small sets, there is F ∈ F such that
F ⊂ V [D] for a finite set D = {x1, ...,xn}. Then F = (F ∩V [x1])∪ ...∪ (F ∩V [xn]) ∈ A. Since
A is an ultrafilter, there is i ∈ {1,2, ...,n} such that F ∩V [xi] ∈ A. Since F ∩V [xi] ⊆ U [xi], A
contains small sets. Put A′ = {A : A ∈ A} and observe that F ⊆ F ′ ⊆ A′ ⊆ A. Then A′ is the
family of closed sets, which has the finite intersection property and contains small sets. Thus by
Theorem 3.3 we have ∅ ̸= ⋂

A′ ⊆
⋂

F . The reverse implication follows from Theorem 3.3. □
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NEW CHARACTERIZATIONS OF COMPLETENESS AND HAUSDORFF UNIFORMITY 5

A net (Aσ)σ∈Σ of subsets of a uniform space (X,U) is nested iff for every η,σ ∈ Σ such
that η ≥ σ holds Aη ⊆ Aσ. It is easy to see that a for a nested net, the corresponding system
{Aσ : σ ∈ Σ} has the finite intersection property iff it does not contain an empty set.

Lemma 3.5. Let (X,U) be a complete uniform space. Let (Fσ)σ∈Σ be a nested net of non-empty
closed sets such that F = {Fσ : σ ∈ Σ} contains almost small sets. Then (Fσ)σ∈Σ converges to a
non-empty compact set F = ⋂

F in (CL(X), τV ).

Proof. By Theorem 3.4, the set F is non-empty, and it is obviously closed. Since F contains
almost small sets, it is easy to verify that F is totally bounded and thus compact. We will now
prove that (Fσ)σ∈Σ converges to F in (CL(X), τV ).

Let U ⊆ X be open and F ⊆ U . We claim that there is σ0 ∈ Σ such that for every σ ≥ σ0 holds
Fσ ⊆ U . If this is not true, then the net (Fσ \U)σ∈Σ is nested, does not contain an empty set,
and contains almost small sets. Thus by Theorem 3.4 we have ∅ ≠ ⋂

{Fσ \U : σ ∈ Σ} ⊆ F \U, a
contradiction.

Now let U ⊆ X be open and F ∩ U ̸= ∅. Since for every σ ∈ Σ it holds F ⊆ Fσ, then
Fσ ∩U ̸= ∅. □

The following theorem is a generalization of the result of Morita [15]. He did not specify that
if (X,U) is complete a UH -Cauchy net converges to its Kuratowski-Painlevé limit.

Theorem 3.6. Let (X,U) be a uniform space. Then (X,U) is complete if and only if every UH-
Cauchy net (Kσ)σ∈Σ in (K(X),UH) has a non-empty Kuratowski-Painlevé limit and converges
to it in (K(X),UH).

Proof. If every UH -Cauchy net converges in (K(X),UH), then (K(X),UH) is complete. Then
also (X,U) is complete, since X is a closed subspace of (K(X),UH).

Suppose now that (X,U) is complete. Let (Kσ)σ∈Σ be a UH -Cauchy net of non-empty compact
subsets of X. For every σ ∈ Σ put Fσ = ⋃

{Kη : η ≥ σ}. Notice that ⋂
{Fσ : σ ∈ Σ} = LsKσ, see

[1].
By Lemma 3.2 we have K := LiKσ = LsKσ. The net (Fσ)σ∈Σ is nested with non-empty

closed members. To prove that it contains almost small sets take any U ∈ U . Let V ∈ U be
closed such that V ◦ V ⊆ U . Since (Kσ)σ∈Σ is a UH -Cauchy net, there is σ0 ∈ Σ such that
Kσ ⊆ V [Kσ0 ] for every σ ≥ σ0. Compactness of Kσ0 implies that there is a finite D ⊆ Kσ0 such
that Kσ0 ⊆ V [D]. Thus Fσ0 ⊆ U [D]. By Lemma 3.5 the net (Fσ)σ∈Σ converges to a non-empty
compact set K in (CL(X), τV ).

We will now prove that K is a cluster point of the net (Kσ)σ∈Σ in (K(X), τV ). Let W ⊆ X be
open and K ⊆ W . Then there is σ0 ∈ Σ such that for every σ ≥ σ0 we have W ⊇ Fσ ⊇ Kσ. Now
let W ⊆ X be open and K ∩W ̸= ∅. Then for every σ ∈ Σ there is σ′ ≥ σ such that Fσ′ ∩W ̸= ∅
and thus there is σ′′ ≥ σ′ such that Kσ′′ ∩W ̸= ∅.

From Proposition 2.1, we have that K is a cluster point of the net (Kσ)σ∈Σ in (K(X),UH),
which is by the assumption Cauchy and thus K is its limit. □

Proposition 3.7 ([10, Lemma 6.2]). Let X be a locally convex topological vector space, then
CK(X) is a closed subset of (K(X),UH).
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NEW CHARACTERIZATIONS OF COMPLETENESS AND HAUSDORFF UNIFORMITY 6

Corollary 3.8. Let (X,U) be a uniform space. The following are equivalent:
(1) (X,U) is complete;
(2) (K(X),UH) is complete;

moreover if X is a locally convex topological vector space and U is its standard uniformity, the
above are equivalent to

(3) (CK(X),UH) is complete.

4. Closed convex hull of a compact set

We will work with a locally convex topological vector space X, which will be equipped with its
standard uniformity, thus uniform notions like completeness are with respect to it.

The operator of the closed convex hull co : P(X) → CL(X); coA = coA is an important tool.
We will be interested in the following property

(∗) for every compact set K ⊆ X, the set coK is compact.

It is a well-known fact that in a locally convex topological vector space X, the convex hull of
any totally bounded set is totally bounded. Moreover, if X is complete, then for every compact
set K ⊆ X, the set coK is compact. In other words, complete locally convex spaces fulfill the
property (∗).

We will say that a topological vector space X is quasi-complete, see [17] if every closed and
bounded subset of X is complete. The following lemma is well known.

Lemma 4.1 ([17, 4.3 Corollary]). Let X be a quasi-complete, locally convex topological vector
space. Then for every compact set K ⊆ X, the set coK is compact.

Note that coK in the above lemma is closed, totally bounded, by the assumption also
complete, and hence compact.

Lemma 4.2 ([9, Lemma 6.4]). Let X be a topological vector space, O ∈ N be closed and convex,
and let A,B ⊆ X. If coB is compact and A ⊆ O +B, then coA ⊆ O +coB.

The importance of the property (∗) is shown in the following statement.

Theorem 4.3. Let X be a locally convex topological vector space fulfilling property (∗). Then

co : (K(X),UH) → (CK(X),UH)

is a (uniformly continuous) retraction.

Proof. From the property (∗), we have that the closed convex hull of a compact set is again
compact and obviously also convex, thus the codomain of the function co is indeed CK(X) ⊆
K(X). Note that if K ∈ CK(X), then coK = K, so it suffices to prove that co is uniformly
continuous.

Take an arbitrary O ∈ N that is closed and convex. Suppose that A,B ∈ K(X) and (A,B) ∈
WO, then A ⊆ O +B. Since coB is compact, then from the Lemma 4.2 we have that coA ⊆ O +
coB. Similarly, for the order B,A and thus (coA,coB) ∈ WO, i.e., co is uniformly continuous. □
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NEW CHARACTERIZATIONS OF COMPLETENESS AND HAUSDORFF UNIFORMITY 7

Recall that the Krein–Milman theorem says that if X is a locally convex topological vector
space and K ∈ CK(X), then the set E(K) of extreme points of K is non-empty and coE(K) = K.
This means that the preimage co−1(K) contains all sets A ∈ K(X) such that E(K) ⊆ A ⊆ K.

It is now interesting to investigate the property (∗). If X is not complete, then it does not
have to have it, as the following example shows.

Example 4.4. Let X ⊆ ℓ2 be such that (xn)n∈N ∈ X, iff finitely many xn ̸= 0. Let {en : n ∈ N}
be the standard orthonormal basis of ℓ2 and

K = {0}∪
{

vn = en

n
: n ∈ N

}
⊆ X.

Observe that K is compact and

coK =
{

n∑
k=1

αkvk : n ∈ N,αk ≥ 0,
n∑

k=1
αk ≤ 1

}
.

Since
∞∑

k=1
2−k = 1, then xn =

n∑
k=1

2−kvk ∈ coK ⊆ coK,

where the closure is in the space X. Observe that in the space ℓ2 the sequence (xn)n∈N converges
to ∑∞

k=1 2−kvk ̸∈ X. Thus (xn)n∈N has no cluster point in X, i.e. coK is not compact.

This example can be generalized into the following theorem.

Theorem 4.5. Let X be a metrizable locally convex space. If for every compact K ⊆ X, the set
coK is compact, then X is complete.

Proof. Let {Un : n ∈ N} be a countable base of neighborhoods of 0, consisting of absolutely
convex sets. For every n ∈ N let pn be the Minkowski functional of Un; i.e., it is a seminorm.
Following [4, Proposition 4.10], for every x,y ∈ X, we can define the following:

d(x,y) =
∞∑

n=1
2−n pn(x−y)

1+pn(x−y) .

One can easily check that
◦ d is a metric, that generates the standard uniformity on X;
◦ d is translation invariant; i.e. for every x,y,z ∈ X: d(x− z,y − z) = d(x,y);
◦ for every x,y ∈ X and α ∈ K, such that |α| ≥ 1: d(αx,αy) ≤ |α|d(x,y).

Note that the first two facts are proven in [4, Proposition 4.10].
Suppose (xn)n∈N is a Cauchy sequence in X. We want to prove that it is convergent. For

every k ∈ N there is nk such that for every p,q ≥ nk: d(xp,xq) ≤ 3−k. Without loss of generality
the sequence (nk)k∈N is non-decreasing. Put z1 = 2xn1 and zk = 2k(xnk

−xnk−1) for k > 1, then

xnt =
t∑

k=1
2−kzk,
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NEW CHARACTERIZATIONS OF COMPLETENESS AND HAUSDORFF UNIFORMITY 8

for every t ∈ N. For k > 1, we have that

d(zk,0) = d(2k(xnk
−xnk−1),0) ≤ 2kd(xnk

,xnk−1) ≤ 3(2/3)k → 0,

thus the sequence (zk)k∈N converges to 0 and so K = {zk : k ∈ N} ∪ {0} is compact. Observe
that

coK =
{

t∑
k=1

αkzk : t ∈ N,αk ≥ 0,
t∑

k=1
αk ≤ 1

}
.

Since ∑∞
k=1 2−k = 1 then xnt ∈ coK for every t ∈ N. By the assumption coK is compact and

thus (xnt)t∈N has a cluster point, i.e., (xn)n∈N has to be convergent. □

This means that for metrizable spaces, the property (∗) is equivalent to completeness. The
natural question is if this is also true in the non-metrizable case. The answer is no, as the
following example shows.

Example 4.6 ([17, p. 148]). Let X be an infinite-dimensional Fréchet space. Let X ′ be its weak
dual, i.e., continuous dual with the weak* topology. Then X ′ is non-metrizable, non-complete,
but it is quasi-complete, and hence it fulfills the property (∗).
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