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ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT
PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY

MUSTAPHA BOUALLALA

ABSTRACT. In this paper, we study a quasistatic contact problem involving fractional calculus, friction,
and an electro-viscoelastic body supported by a conductive foundation. The contact is characterized by
Signorini’s conditions, and friction is governed by Coulomb’s law. The weak formulation takes the form
of a system that couples a fractional variational inequality for displacement with an elliptic variational
equality for the electric potential. We establish the existence of a weak solution, relying on techniques
such as monotone operators, Abstract Volterra theory, Caputo derivatives, the Rothe method, and the
Banach fixed-point theorem in our proofs.

1. Introduction

The field of fractional calculus has emerged as a new area in various branches of applied mathematics,
serving as a modeling tool for numerous physical phenomena across mechanics, technology, electron-
ics, energy, and more (see, for example, [3, 7, 9, 14]). The quasistatic frictionless contact problem for
a viscoelastic body with the fractional Kelvin-Voigt law was addressed in [5].The authors in [17, 19]
addressed a class of elliptic and parabolic differential hemivariational inequalities involving the time
fractional order integral operator, applied in the context of contact problems.

References [6, 15, 16] describe fractional mathematical models for materials exhibiting viscoelastic
behavior, and more recent developments are discussed in [12, 13]. Bouallala et al. [1] addressed a
thermo-viscoelastic fractional contact problem with normal compliance and Coulomb’s friction. They
demonstrated the existence of a weak solution using monotone operators, the Galerkin method, abstract
Caputo derivatives, and fixed point theorems. More recently, the authors of [20] have initiated the study
of a new frictionless dynamic contact problem model for a viscoelastic body with normal compliance,
taking into account the Kelvin-Voigt constitutive law with a time fractional component.

In this paper, we study a new mathematical model that describes the time fractional process of
contact between an electro-viscoelastic body and an electrically conductive support. The constitutive
relation is modeled with the following fractional Kelvin-Voigt law.

σ(t) = F ε
(C

0 Dα
t u(t)

)
+Bε (u(t))−E ∗E(ϕ(t)) in Ω× (0,T ),(1)

D(t) = E ε(u(t))+βE(ϕ(t)) in Ω× (0,T ),(2)
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where α ∈ (0,1] and t ∈ [0,T ].
The case where α = 1 has been studied in various contexts, incorporating different contact and friction
laws; however, the specific conditions used in this study have not been explored. References related to
this framework can be found in [21, 22, 23, 24].

The motivation behind choosing this model is to generalize the behavior laws of rheological models
used in linear viscoelasticity, which consist of springs and dampers. This also allows describing
viscoelastic behavior across a wide range of frequencies with few parameters. This combination
with piezoelectricity has several applications in physics, engineering, and applied sciences, such as
biological models aimed at capturing long-term memory properties observed in biological systems,
as well as mechanical modeling of rubbers and elastomers. This is particularly relevant for materials
capable of memorizing past deformations and exhibiting viscoelastic behavior.
Moreover, we assume that the contact is described with the Signorini’s condition and the Coulomb’s
friction including. We derive the variational formulation of this problem, and we prove the existence of
a weak solution.
The major difficulties in this work lie mainly in the estimations for the convergence of the Rothe
method, as well as in the mechanical-electrical coupling.

The paper is structured as follows: In section 2, we present the model for the equilibrium process of
the electro-viscoelastic body in frictional contact with a conductive foundation involving time fractional.
In section 3, we outline the assumptions regarding the data, develop a variational formulation of the
friction contact problem, and present our existence results. In Section 4, we establish the weak
solvability of this hemivariational inequality by applying abstract results on monotone operators,
the Rothe method, and the Banach fixed-point theorem. Finally, in the Appendix, we provide some
necessary definitions and results that are useful in proving the main result.

2. The Fractional Contact Problem

We begin by defining the mechanical setting of the contact problem. We assume the presence of
an electro-viscoelastic body occupying a domain Ω in Rd , where d = 1,2,3. The boundary ∂Ω is
Lipschitz continuous and can be divided into three disjoint, open, and measurable parts: ΓD, ΓN ,
and ΓC. Additionally, we partition ∂Ω\ΓC into two open parts, Γa and Γb, with the conditions that
meas(ΓD) > 0 and meas(Γa) > 0. The fractional problem will be discussed within the finite time
interval [0,T ], where T > 0.
The body is assumed to be clamped in ΓD× (0,T ) and subjected to a volume force f1 and a volume
electric charge density q1 in Ω× (0,T ). Additionally, it is subject to mechanical and electrical con-
straints on the boundary. Furthermore, we assume that a density of traction forces, denoted as f2, acts
on the boundary segment ΓN× (0,T ). We also impose the condition that the electrical potential is zero
on Γa, and a surface electrical charge density of q2 is prescribed on Γb× (0,T ).
In the reference configuration, the body may come into contact with an electrically conductive foun-
dation over ΓC. We assume that the foundation’s potential is held constant at ϕF . This contact is
characterized by friction, and there may be electrical charges present on the contact surface. The
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normalized gap denoted by g exists between ΓC and the rigid foundation.

We denote the unit outward normal vector as ν = (νi), and we will use the standard notation for the
tangential components of the displacement field vector u and the stress tensor σ

uν = u ·ν , uτ = u−uν ·ν , and σν = σν ·ν , στ = σν−σνν .(3)

We introduce the notation Sd to represent the linear space of second-order symmetric tensors on Rd .
The symbols ”·” and ‖ · ‖ represent the inner products and Euclidean norms on Rd and Sd , respectively.
In other words, for all u,v ∈ Rd and for all σ ,τ ∈ Sd

u · v = uivi, ‖v‖Rd = (v,v)
1
2 , for all u = (ui), v = (vi) ∈ Rd,

σ · τ = σi jτi j, ‖τ‖Sd = (τ,τ)
1
2 , for all σ = (σi j), τ = (τi j) ∈ Sd.

(4)

We introduce the following notation u : Ω× [0,T ] −→ Rd the displacement field, σ = (σi j) :
Ω× [0,T ]−→ Sd the stress tensor, E(ϕ) = (Ei(ϕ)) the electric vector field, where ϕ : Ω× [0,T ]−→R
is the electric potential and D = (Di) : Ω× [0,T ] −→ Rd the electric displacement. Moreover, let
ε(u) = (εi j(u)) denote the linearized strain tensor given by εi j(u) = 1

2(ui, j +u j,i) where ui j = ∂ui/∂x j.
Here and below ”Div” and ”div” denote the divergence operators for tensor and vector valued functions,
respectively, i.e., Div σ = (σi j, j) and div ξ = (ξ j, j).

The classical formulation of the fractional contact problem is as follows:
Problem (P): Find a displacement field u : Ω× [0,T ]−→Rd and an electric potential ϕ : Ω× [0,T ]−→
R for all α ∈]0,1] such that

σ(t) = F ε
(C

0 Dα
t u(t)

)
+Bε(u(t))−E ∗E(ϕ(t)) in Ω× (0,T ),(5)

D(t) = E ε(u(t))+βE(ϕ(t)) in Ω× (0,T ),(6)

Div σ(t)+ f1(t) = 0 in Ω× (0,T ),(7)

div D(t) = q1(t) in Ω× (0,T ),(8)

u = 0 on ΓD× (0,T ),(9)

σ(t) ·ν = f2(t) on ΓN× (0,T ),(10)

ϕ = 0 on Γa× (0,T ),(11)

D(t) ·ν = q2(t) on Γb× (0,T ),(12)

u(0,x) = u0 in Ω,(13)

σν(u(t))≤ 0, uν(t)≤ g, σν(u(t))(uν(t)−g) = 0 on ΓC× (0,T ),(14)

‖στ(t)‖ ≤ ν f ‖σν(t)‖ ,
‖στ(t)‖< ν f ‖σν(t)‖=⇒ uτ(t) = 0,
‖στ(t)‖= ν f ‖σν(t)‖=⇒∃λ 6= 0 such that στ(t) =−λ uτ(t)

 on ΓC× (0,T ),(15)

D(t) ·ν = ψ (uν(t)−g)φL (ϕ(t)−ϕF) on ΓC× (0,T ),(16)
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In the equations (5)-(6), we represent the fractional Kelvin-Voigt electro-viscoelastic constitutive law
of the Caputo type, as described in [18]. Here, B =

(
bi jkl

)
, β = (βi j), F =

(
fi jkl
)
, and E =

(
ei jk
)

denote the elastic tensor, electric permittivity tensor, viscosity tensor, and third-order piezoelectric
tensor, respectively. The transpose of E is denoted as E ∗ and is defined as follows:

E ∗ =
(
e∗i jk
)
, where e∗i jk = eki j, and E συ = σE ∗υ , for all σ ∈ Sd, υ ∈ Rd.(17)

Equations of stress equilibrium are given in (7)-(8), while (9)-(12) describe the mechanical and
electrical boundary conditions. Furthermore, the initial condition is described in equation (13). The
unilateral boundary condition, (14), represents Signorini’s law, and (15) represents Coulomb’s friction
law, where ν f is the friction coefficient. Finally, equation (16) is the regularized electrical contact on
ΓC such that

φL(s) =


−L if s <−L,
s if −L≤ s≤ L,
L if s > L,

ψ(r) =


0 if r < 0,

keδ r if 0≤ r ≤ 1
δ
,

ke if r > 1
δ
.

(18)

Here, L is a large positive constant, δ > 0 is a small parameter, and ke ≥ 0 represents the electrical
conductivity coefficient as discussed in [8].

3. Weak Formulation and Existence Result

To formulate the weak formulation, we will make use of function spaces.

H = L2 (Ω)d , H1 = H1 (Ω)d , H = {σ ∈ Sd, σi j = σ ji ∈ L2(Ω)},
W = {D = (D)i ∈ H1, Di ∈ L2(Ω), div(D) ∈ L2(Ω)}.

These are real Hilbert spaces with inner products.

(u,v)H =
∫

Ω

uividx, (u,v)H1 = (u,v)H +(ε(u),ε(v))H ,

(σ ,τ)H =
∫

Ω

σi jτi jdx, (D,E)W = (D,E)H +(div D, div E)L2(Ω),

and the associated norms ‖ · ‖H , ‖ · ‖H1 , ‖ · ‖H and ‖ · ‖W , respectively.
Based on the boundary conditions (9) and (11), we introduce closed subspaces of H1.

V = {v ∈ H1, v = 0 on ΓD} and W =
{

ξ ∈ H1(Ω), ξ = 0 on Γa
}
,

endowed with the inner product given by

(u,v)V = (ε(u),ε(v))H , ‖v‖V = (v,v)
1
2
V ,

(ϕ,ξ )W = (∇ϕ,∇ξ )H , ‖ξ‖W = (ξ ,ξ )
1
2
W .

Define Vad as the set of admissible displacements given by.

Vad = {v ∈V, vν ≤ g on ΓC}.
Since V is dense in H, we identify H with its dual space H∗, and we write V ⊂ H ≡ H∗ ⊂V ∗, where
V is a reflexive and separable Banach space, H is a separable Hilbert space, and the embedding
V → H is dense and continuous. The compact embedding operator between V and H is denoted by ı.
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The dual space to V is V ∗, and the dual mapping ı∗ : H→V ∗ of ı is also linear, continuous, and compact.

Let HΓ = H
1
2 (Γ)d and γ : H → HΓ be the trace map. For every element v ∈ H, we also use the

notation v to denote the trace γv of v on Γ.
Let H∗

Γ
be the dual of HΓ and 〈·, ·〉 denote the duality pairing between H∗

Γ
and HΓ. For every σ ∈H ,

σν can be defined as the element in H∗
Γ

satisfying

〈σν ,γv〉= (σ ,ε(v))H +(Div σ ,v)H , ∀v ∈ H1.(19)

Moreover, if σ is continuously differentiable on Ω, then

〈σν ,γv〉=
∫

Γ

σν · vda, ∀v ∈ H1,(20)

where da is the surface measure element.
Combining (19) through (20), we have the following Green’s formula in elasticity

(σ ,ε(v))H +(Div σ ,v)H =
∫

Γ

σν .vda.(21)

When D ∈W is a sufficiently regular function, we obtain the following Green’s formula

(D,∇ξ )L2(Ω)+(div D,ξ )L2(Ω) =
∫

Γ

D ·νξ da, ∀ξ ∈ H1(Ω).(22)

Recall that since meas(ΓD)> 0, Korn’s inequality holds

‖ε(v)‖H ≥ cK‖v‖H1 , for all v ∈V,(23)

where cK > 0 is a constant which depends only on Ω and ΓD.
According to the Sobolev trace theorem, there exist constants cd and ce that depend solely on Ω, ΓD,
ΓC, and Γa, such that

‖v‖L2(ΓC)
d ≤ cd‖v‖V , and ‖ξ‖L2(ΓC)

≤ ce‖ξ‖W ,(24)

for all v ∈V and ξ ∈W .
Moreover, due to the positive measure of Γa, the Friedrichs-Poincar inequality is applicable.

‖∇ξ‖W ≥ cF‖ξ‖W , for all ξ ∈W.(25)

Next, let (X ,‖.‖X) be a real Banach space. For 1≤ p≤+∞, k = 1,2, ... we use the usual notations
for the spaces Lp(0,T ;X), C(0,T ;X) and W k,p(0,T ;X) the space of all measurable functions on [0,T ]
with values in X , endowed with the canonical inner product.
In the study of Problem (P), we define the following bilinear forms:

a : V ×V → R, a(u,v) := (F ε(u),ε(v))H ,

b : V ×V → R, b(u,v) := (Bε(u),ε(v))H ,

c : W ×W → R, c(ϕ,ξ ) := (β∇ϕ,∇ξ )H ,

e : V ×W → R, e(v,ξ ) := (E ε(u),∇ξ )H = (E ∗∇ξ ,ε(v))V .

(26)
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ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY6

Using Riesz’s representation theorem, we define the elements f (t) ∈V and q(t) ∈W for all (v,ξ ) ∈
V ×W such that

( f (t),v)V ∗×V =
∫

Ω

f1(t) · vdx+
∫

Γ

f2(t) · vda,(27)

(q(t),ξ )W =
∫

Ω

q1(t) ·ξ dx+
∫

Γb

q2(t) ·ξ da.(28)

Also, we define the mappings j : V → R+ and ` : V ×W ×W → R by

j(v) :=
∫

ΓC

ν f σν (‖vτ‖)da,(29)

`(u(t),ϕ(t),ξ ) :=
∫

ΓC

ψ(uν(t)−g)φL(ϕ(t)−ϕF)ξ da.(30)

Next, let’s introduce the following assumptions:

(H1) i) The forms a, b, and c are bilinear and satisfy the following symmetry property:

fi jkl = f jikl = flki j ∈ L∞(Ω), bi jkl = b jikl = blki j ∈ L∞(Ω) and βi j = β ji ∈ L∞(Ω).

ii) The forms a and c satisfy the property of ellipticity:

a(v,v)≥ ma‖v‖2
V and c(ξ ,ξ )≥ mc‖ξ‖2

W ,

where ma,mc > 0.
(H2) The forms a, b, c, and e satisfy the usual boundedness property:

|a(u,v)| ≤Ma‖u‖V‖v‖V , |b(u,v)| ≤Mb‖u‖V‖v‖V ,
|c(ϕ,ξ )| ≤Mc‖ϕ‖W‖ξ‖W , |e(v,ξ )| ≤Me‖v‖V‖ξ‖W ,

where Ma,Mb,Mc,Me > 0.
(H3) The forces, traction, volume, and surface free charge densities satisfy the following inclusions:

f1 ∈C
(

0,T ;L2(Ω)d
)
, f2 ∈C

(
0,T ;L2 (ΓN)

d
)
,

q1 ∈ L2 (0,T ;L2(Ω)
)
, q2 ∈ L2 (0,T ;L2(Γb)

)
.

(H4) The coefficient of friction, the gap function, the initial condition, and the potential satisfy the
following conditions:

ν f ≥ 0, ν f ∈ L∞ (ΓC) , g≥ 0, g ∈ L∞ (ΓC) , u0 ∈Vad, ϕF ∈ L2 (0,T ;L2(ΓC)
)
.

(H5) The surface electrical conductivity ψ : ΓC×R→ R+ satisfies
i) there exists Lψ > 0 such that |ψ (x,u1)−ψ (x,u2)| ≤ Lψ |u1−u2|, for all u1,u2 ∈ R, and

a.e. x ∈ ΓC;
ii) there exists Mψ > 0 such that |ψ(x,u)|< Mψ for all u ∈ R and x ∈ ΓC;

iii) x 7→ ψ(x,u) is measurable on ΓC for all x ∈ R;
iv) x 7→ ψ(x,u) = 0, for all u≤ 0.

(H6) For all v ∈V , and a.e. t ∈ (0,T )
i) j is locally Lipschitz on ΓC;
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ii) there exists c j > 0 such that

‖∂ j(v)‖V ∗ ≤ c j(1+‖v‖V ).

By utilizing the above assumptions, notations, and equations (19)(28), along with the equation
E(ϕ) = −∇ϕ , we can derive the following variational formulation for Problem (P) in terms of the
displacement field and electric potential:
Problem (PV): Find a displacement field u : Ω× [0,T ]→Rd , and an electric potential ϕ : Ω× [0,T ]→
R a.e. t ∈]0,T [ for all v ∈V , ξ ∈W and α ∈]0,1] such that

a
(C

0 Dα
t u(t),v−u(t)

)
+b(u(t),v−u(t))+ e(v−u(t),ϕ(t))

+ j(v)− j(u(t))≥ ( f (t),v−u(t))V ∗×V ,
(31)

c(ϕ(t),ξ )− e(u(t),ξ )+ `(u(t),ϕ(t),ξ ) = (q(t),ξ )W ,(32)

u(0) = u0.(33)

Finally, we have the following existence result

Theorem 3.1. Assuming hypotheses (H1)-(H6), then Problem (PV) has at least one solution that
satisfies the following regularity

u ∈W 1,2 (0,T ;V ) and ϕ ∈ L2 (0,T ;W ) .(34)

4. Proof of main result

The proof of Theorem 3.1 will be carried out in several steps and is based on results for time frac-
tional hemivariational inequalities, variational equalities, the Rothe method, and the Banach fixed point.

In the first step, let β ∈ L2 (0,T ;V ∗), and we will consider the following problem.
Problem (PV1): Find a displacement field u : Ω× [0,T ]→Rd a.e. t ∈]0,T [ for all v ∈V and α ∈]0,1]
such that

a
(C

0 Dα
t uβ (t),v−uβ (t)

)
+b
(
uβ (t),v−uβ (t)

)
+
(
β (t),v−uβ (t)

)
V ∗×V

+ j(v)− j
(
uβ (t)

)
≥
(

f (t),v−uβ (t)
)

V ∗×V .
(35)

Using Riesz’s representation theorem, we define the following operator.(
fβ (t),v−uβ (t)

)
V ∗×V =

(
f (t),v−uβ (t)

)
V ∗×V −

(
β (t),v−uβ (t)

)
V ∗×V .(36)

Problem (PV1) can be reformulated as follows:
Find w ∈V for a.e., t ∈]0,T [ such that

a(w(t))+b
(
u0 + 0Iα

t uβ (t)
)
+∂ j

(
u0 + 0Iα

t uβ (t)
)
3 f (t),(37)

where w(t) = C
0 Dα

t uβ (t) and uβ (t) = u0 + 0Iα
t w(t).

Let N ∈ N be fixed, and τ = ∆t =
T
N

. We can consider the following approximation of the fractional
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ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY8

integral operator 0Iα
tn w(t) by:

0Ĩα
tn w(t) =

1
Γ(α)

n

∑
i=1

∫ ti

ti−1

(tn− s)α−1w(ti)ds

=
τα

Γ(α +1)

n

∑
i=1

w(ti) [(n− i+1)α − (n− i)α ] ,

(38)

for a sufficiently small time step τ and tk = kτ .
We also define the functional f k

τ as follows for k = 1, . . . ,N

f k
τ =

1
τ

∫ tk

tk−1

f (s)ds.(39)

Now, by applying the Rothe method to (37), we obtain the following fractional Rothe problem:
Problem (FR): Find

{
wk

τ

}N
k=1 ⊂V such that

a
(

wk
τ

)
+b
(

uk
βτ

)
+∂ j

(
uk

βτ

)
3 f k

τ ,(40)

where uk
βτ

is defined by

uk
βτ

= u0 +
τα

Γ(α +1)

k

∑
i=1

wi
τ [(k− i+1)α − (k− i)α ] , for k = 1, · · · ,N.(41)

Then, we have the following Lemma.

Lemma 4.1. There exists τ0 > 0 such that if τ ∈ (0,τ0), then Problem (FR) has at least one solution.

Proof. We suppose that
{

wk
τ

}n−1
k=0 is given, and we will find wn

τ ∈V that satisfies (40) and (41).
For w ∈V , we consider the multivalued operators R : V →V ∗ and P : V →V ∗ are given by

R(w) = P(w)+∂ j(w),(42)

where

P(w) = a(w)+b

(
u0 +

τα

Γ(α +1)

n−1

∑
i=1

wi
τ [(n− i+1)α − (n− i)α ]+

τα

Γ(α +1)
w

)
.(43)

Now, we will prove that R is a surjective operator.
First, we will establish that the operator R is coercive. Let cτ > 0 be the constant defined by

cτ = ‖u0‖+
τα

Γ(α +1)

n−1

∑
i=1

∥∥wi
τ

∥∥ [(n− i+1)α − (n− i)α ] .(44)
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ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY9

From the hypothesis (H6) and (44), we obtain∣∣∣∣∣∂ j

(
u0 +

τα

Γ(α +1)

n−1

∑
i=1

wi
τ [(n− i+1)α − (n− i)α ]+

τα

Γ(α +1)
w

)∣∣∣∣∣
V ∗

≤ cτ

(
1+‖u0‖+

τα

Γ(α +1)

n−1

∑
i=1

∥∥wi
τ

∥∥ [(n− i+1)α − (n− i)α ]+
τα

Γ(α +1)
‖w‖V

)

≤ cτ

(
1+ cτ +

τα

Γ(α +1)
‖w‖V

)
.

(45)

Due to (H1) and (44), we have

R(w,w)≥ ma‖w‖2
V −Mb

(
cτ +

τα

Γ(α +1)
‖w‖V

)
‖w‖V

− c j

(
1+ cτ +

τα

Γ(α +1)
‖w‖V

)
R(w,w)≥

(
ma−

τα (Mb + c j)

Γ(α +1)

)
‖w‖2

V −
(

Mbcτ +
c jτ

α

Γ(α +1)

)
‖w‖V − c j(1+ cτ).

(46)

We choose τ0 =

(
maΓ(α +1)
τα (Mb + c j)

)1/α

to demonstrate that R is a coercive operator. Next, we apply the

assumptions regarding a and b to deduce

P(w,w)≥
(

ma−
Mbτα

Γ(α +1)

)
‖w‖2

V .(47)

Then, P is a bounded, continuous, and coercive operator. Hence, P is pseudomonotone.
Now, we will prove that the multivalued operator G : V →V ∗ is given by

G(w) = ∂ j

(
u0 +

τα

Γ(α +1)

n−1

∑
i=1

wi
τ [(n− i+1)α − (n− i)α ]+

τα

Γ(α +1)
w

)
,(48)

for w ∈V , is pseudomonotone.
It follows from the properties of j and the reflexivity of V that G(w) is nonempty, convex, and weakly
compact for all w ∈V .
Also, by (H6), G is bounded. Let {wm} ⊂V be such that wm→ w weakly in V , as m→ ∞ and

θm ∈ ∂ j

(
u0 +

τα

Γ(α +1)

n−1

∑
i=1

wi
τ [(n− i+1)α − (n− i)α ]+

τα

Γ(α +1)
wm

)
.(49)

Since the operator ∂ j is bounded, the sequence {θm} is bounded in V ∗. Therefore, by passing to a
subsequence, if necessary, we have θm→ θ weakly in V ∗ as m→∞. Since the graph of the multivalued
mapping

V 3 w 7→ ∂ j

(
u0 +

τα

Γ(α +1)

n−1

∑
i=1

wi
τ [(n− i+1)α − (n− i)α ]+

τα

Γ(α +1)
w

)
,(50)
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ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY10

is closed with respect to V ×V ∗ topology (see [11, Proposition 3.23(v)]), we deduce that

θ ∈ ∂ j

(
u0 +

τα

Γ(α +1)

n−1

∑
i=1

wi
τ [(n− i+1)α − (n− i)α ]+

τα

Γ(α +1)
w

)
.(51)

Furthermore, it is clear that θ ∈ G(w) and we have

〈θm,wm〉 → 〈θ ,w〉V ∗,V , as m→ ∞.(52)

Using Proposition 4.1, we deduce that the operator G is pseudomonotone. Hence, the operator R is
pseudomonotone. Therefore, Problem (FR) has at least one solution. �

Now, we will present estimates for the sequence of solutions of the fractional Rothe problem (40).

Lemma 4.2. Under assumptions (H1)-(H6) and (44), there exists τ0 > 0 and C > 0 independent of τ ,
such that 0 < τ < τ0, solutions of Problem (FR) satisfy

max
k

∥∥∥wk
τ

∥∥∥≤C,(53)

max
k

∥∥∥uk
βτ

∥∥∥≤C,(54)

max
k

∥∥∥θ
k
τ

∥∥∥≤C,(55)

for k = 1, ...,N and θ k
τ ∈ ∂ j

(
wk

τ

)
and

a
(

wk
τ

)
+b
(

wk
τ

)
+θ

k
τ = f k

τ .(56)

Proof. For all 1≤ n≤ N, multiply (56) by wn
τ . We obtain

a(wn
τ ,w

n
τ)+b

(
un

βτ
,wn

τ

)
+ 〈θ n

τ ,w
n
τ〉V ∗×V = 〈 f n

τ ,w
n
τ〉 .(57)
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ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY11

From (41) and hypotheses (H1), (H2), and (H6), we have

〈 f n
τ ,w

n
τ〉 ≥ ma ‖wn

τ‖
2
V −Mb

∥∥∥un
βτ

∥∥∥
V
‖wn

τ‖V − c j

(
1+
∥∥∥un

βτ

∥∥∥
V

)
‖wn

τ‖V

≥ ma ‖wn
τ‖V −Mb

(
‖u0‖V +

τα

Γ(α +1)

n

∑
i=1

∥∥wi
τ

∥∥
V [(n− i+1)α − (n− i)α ]

)
‖wn

τ‖V

−

(
1+‖u0‖V +

τα

Γ(α +1)

n

∑
i=1

∥∥wi
τ

∥∥
V [(n− i+1)α − (n− i)α ]

)
‖wn

τ‖V

≥ ma ‖wn
τ‖

2
V −

Mbτα

Γ(α +1)
‖wn

τ‖
2
V −Mb ‖u0‖V ‖w

n
τ‖V

− c j ‖wn
τ‖V − c j ‖u0‖V ‖w

n
τ‖V −

c jτ
α

Γ(α +1)
‖wn

τ‖
2
V

− Mbτα

Γ(α +1)

n−1

∑
j=1

[(n− i+1)α − (n− i)α ]
∥∥wi

τ

∥∥
V ‖w

n
τ‖V

−
c jτ

α

Γ(α +1)

n−1

∑
i=1

[(n− i+1)α − (n− i)α ]
∥∥wi

τ

∥∥
V ‖w

n
τ‖V .

(58)

Therefore, based on the previous analysis, we deduce that

‖ f n
τ ‖V +

τα(Mb + c j)

Γ(α +1)

∥∥wi
τ

∥∥
V

n−1

∑
i=1

[(n− i+1)α − (n− i)α ]

+ c j +(c j +Mb)‖u0‖V ≥
(

ma−
τα(Mb + c j)

Γ(α +1)

)
‖wn

τ‖V .

(59)

We choose τ0 =

(
maΓ(α +1)
2(Mb + c j)

)1/α

. We deduce that ma−
τα(Mb + c j)

Γ(α +1)
≥ ma

2
for all 0 < τ < τ0.

Thus,

2
‖ f n

τ ‖V
ma

+2
c j + c j ‖u0‖+Mb ‖u0‖

ma

+2
τα(Mb + c j)

maΓ(α +1)

n−1

∑
i=1

∥∥wi
τ

∥∥
V [(n− i+1)α − (n− i)α ]≥ ‖wn

τ‖V .

(60)

Using hypothesis (H3), for all τ > 0 and n ∈ N, there exists a constant c f > 0 such that ‖ f n
τ ‖V ≤ c f .

Naming

c0 =
2

ma

(
c f +Mb ‖u0‖+ c j ‖u0‖+ c j

)
.(61)
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ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY12

Applying the generalized discrete Gronwall’s inequality of Lemma 4.6, we can see that

‖ f n
τ ‖V ≤ c0 exp

(
2τα(Mb + c j)

maΓ(α +1)

n−1

∑
i=1

[(n− i+1)α − (n− i)α ]

)

= c0 exp
(

2tα
n (Mb + c j)

maΓ(α +1)

)
≤C,

(62)

so, the estimate (53) is true.
Furthermore, considering (62) and (41), we obtain the following estimate

∥∥∥un
βτ

∥∥∥
V
=

∥∥∥∥∥u0 +
τα

Γ(α +1)

n

∑
i=1

wi
τ [(n− i+1)α − (n− i)α ]

∥∥∥∥∥
V

≤ ‖u0‖V +
n

∑
i=1

(
tα
n−i+1− tα

n−i
)

≤ ‖u0‖V +
CT α

Γ(α +1)
≤C.

(63)

Finally, by (H6), we obtain the following estimate for θ n
τ

‖θ n
τ ‖V ∗ ≤ c j(1+‖un

τ‖V )≤ c j(1+C).(64)

Thus, Lemma 4.2 is proven �

The solvability of Problem (PV1) follows from the following result

Theorem 4.3. For all v ∈V and a.e., t ∈ (0,T ), Problem (PV1) has at least one solution u ∈V .

Proof. Let {τn} be a sequence such that τn→ 0, as n→ ∞.
Based on the estimate (53)-(55) the sequence {wτ},

{
uβτ

}
and

{
θ τ

}
interpolate to {wτ},

{
uβτ

}
and

{θτ} respectively are bounded for k = 1, ...,N.
Therefore, there exist w ∈V , u ∈V and θ ∈V ∗ such that

wτ → w weakly in V, as τ → 0,(65)

uβτ
→ u weakly in V, as τ → 0,(66)

θ τ → θ weakly in V ∗, as τ → 0.(67)

Using [10, Lemma 4(a)], we obtain that

0Iα
t wτ → 0Iα

t w weakly in V, as τ → 0.(68)

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

17 Dec 2023 06:25:22 PST
230213-Bouallala Version 3 - Submitted to Rocky Mountain J. Math.



ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY13

By using (53), and for all t ∈ (0,T ), it follows that∥∥uβτ
(t)−u0−0 Iα

t wτ(t)
∥∥= ∥∥∥∥∥ τα

Γ(α +1)

n

∑
i=1

wi
τ [(n− i+1)α − (n− i)α ]

− 1
Γ(α)

∫ t

0
(t− s)α−1wτ(s)ds

∥∥∥∥
≤ C

Γ(α)

∫ tn

t
(tn− s)α−1 ds+

∫ t

0

∣∣∣(t− s)α−1− (tn− s)α−1
∣∣∣ds

≤ C
Γ(α)

[
(tn− t)α + tα +(tn− t)α − tα

n
]
,

(69)

for t ∈ [tn−1, tn]. Then

uβτ
(t)−u0− 0Iα

t wτ(t)→ 0 strongly in V, as τ → 0.(70)

This, combined with (68), leads to

uβτ
(t)→ u0 + 0Iα

t w(t) weakly in V, as τ → 0.(71)

Since the mapping v 7→ ∂ j(v) is upper semi-continuous from V to V ∗, and based on (67) and [11,
Theorem 3.13], we have

θ(t) ∈ ∂ j (u0 + 0Iα
t wτ) , for a.e., t ∈]0,T [.(72)

Now, we define the Nemytskii operators a and b corresponding to a and b as follows:

(aw)(t) = aw(t), and (bw)(t) = b(u0 + 0Iα
t w(t)) ,(73)

for all w ∈V and a.e., t ∈]0,T [.
Given the assumption (H2), as well as (65) and (66), we have for t ∈ (0,T ) that

a wτ → aw weakly in V, as τ → 0,(74)

and

b(u0 + 0Iα
t wτ(t))→ b(u0 + 0Iα

t w(t)) weakly in V, as τ → 0.(75)

From (H2) and (53), we have∫ T

0
‖b(u0 + 0Iα

t wτ(t))‖V dt ≤ MbC
Γ(α +1)

∫ T

0
tαdt +T Mb ‖u0‖

=
MbCT α+1

Γ(α +2)
+T Mb ‖u0‖ .

(76)

Applying the Lebesgue dominated convergence theorem, we can write

lim
τ→0

b(wτ ,v) = lim
τ→0

∫ T

0
b(u0 + 0Iα

t wτ(t),v(t))dt

=
∫ T

0
lim
τ→0

b(u0 + 0Iα
t wτ(t),v(t))dt

=
∫ T

0
b(u0 + 0Iα

t w(t),v(t))dt = b(w,v).

(77)
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ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY14

On the other hand, from [2, Lemma 3.3], we know that

fτ → f strongly in V, as τ → 0.(78)

Finally, by utilizing (72), (74), and (76), we can pass to the limit in equation (40), which implies that
w ∈ L2 (0,T ;V ) is a solution to the problem (37).
Hence, we infer that uβ ∈W 1,2 (0,T ;V ) given by uβ (t) = u0 + 0Iα

t w(t) for almost every t ∈]0,T [ is a
solution to Problem (PV). �

In the second step, let z ∈ L2 (0,T ;W ∗), and use the displacement field uβ obtained in Lemma 4.1 to
derive the following variational formulation of the electric potential.
Problem (PV2): Find an electric potential ϕz : Ω×]0,T [→ R a.e. t ∈]0,T [ for all ξ ∈W such that

c(ϕz(t),ξ )− e(uz(t),ξ )+(z(t),ξ )W = (q(t),ξ )W .(79)

The well-posedness of Problem (PV2) follows

Lemma 4.4. For ξ ∈W and for a.e. t ∈]0,T [, Problem (PV2) has a unique solution ϕz ∈ L2 (0,T ;W ).

Proof. Let t ∈]0,T [.
Using Riesz’s representation theorem, we define the operator A : W →W as follows:

A (ϕz(t),ξ ) := c(ϕz(t),ξ )− e(uz(t),ξ ) ,(80)

and

(qz(t),ξ )W = (q(t),ξ )W − (z(t),ξ )W , for all ξ ∈W.(81)

By (28) and in accordance with (H3), we obtain that qz ∈ L2 (0,T ;W )
Then equation (79) can be written

A (ϕz(t),ξ ) = (qz(t),ξ )W , for all ξ ∈W.(82)

Let ϕz1 ,ϕz2 ∈W . Then, assumption (H1) implies

A (ϕz1(t)−ϕz2(t),ϕz1(t)−ϕz2(t))≥ mc ‖ϕz1(t)−ϕz2(t)‖
2
W ,(83)

and by hypothesis (H2), we have that

‖A (ϕz1(t)−ϕz2(t),ξ )‖W ≤ sup(Ma,Me)‖ϕz1(t)−ϕz2(t)‖W ‖ξ‖W .(84)

Thus

‖A (ϕz1(t)−ϕz2(t))‖W ≤ sup(Ma,Me)‖ϕz1(t)−ϕz2(t)‖W .(85)

Inequalities (73) and (75) demonstrate that the operator A is strongly monotone and Lipschitz contin-
uous on W . Therefore, we deduce the existence of a unique element ϕz ∈ L2 (0,T ;W ). �

In the last step, for all t ∈ (0,T ), we define the operator

Λ(z,β )(t) := (Λ1(z,β )(t),Λ2(z,β )(t)) ,(86)

given by

(Λ1 (z,β )(t),v) = e(v,ϕz(t)) , for all v ∈V,(87)

(Λ2 (z,β )(t),ξ ) = `
(
uβ (t),ϕz(t),ξ

)
, for all ξ ∈W.(88)
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ROTHE TIME-DISCRETIZATION METHOD FOR A FRACTIONAL CONTACT PROBLEM WITH COULOMB’S FRICTION IN ELECTRO-VISCOELASTICITY15

We have the following result

Lemma 4.5. For (z,β ) ∈ L2 (0,T ;W ∗)×L2 (0,T ;V ∗) the operator Λ is continuous and has a unique
fixed point (z∗,β ∗).

Proof. Let (z,β ) ∈ L2 (0,T ;W ∗×V ∗) and t1, t2 ∈ [0,T ]. From (87) and (H2), we have

‖Λ1(z,β )(t1)−Λ1(z,β )(t2)‖W×V ≤Me ‖ϕz(t1)−ϕz(t2)‖W .(89)

By (88), in combination with (24) and (30), there exists a positive constant c depending on Lψ , Mψ ,
and cd such that

‖Λ2(z,β )(t1)−Λ2(z,β )(t2)‖W×V

≤ c
(∥∥uβ (t1)−uβ (t2)

∥∥
V +‖ϕz(t1)−ϕz(t2)‖W

)
.

(90)

Considering the regularity of ϕzβ and uzβ , we find that

(Λ1(z,β )×Λ2(z,β )) ∈C ([0,T ],W ×V ) .(91)

Hence, the operator Λ is continuous.
Let (z1,β1) , (z2,β2) ∈ L2 (0,T ;W ∗×V ∗) and t ∈]0,T [.
Similar to (90) and utilizing (86), we have

‖Λ(z1,β1)(t)−Λ(z2,β2)(t)‖W×V

≤ c
(∥∥uβ1(t)−uβ2(t)

∥∥
V +‖ϕz1(t)−ϕz2(t)‖W

)
.

(92)

Therefore, from (35), we obtain

b
(
uβ1(t)−uβ2(t),uβ1(t)−uβ2(t)

)
≤−a

(C
0 Dα

t uβ1(t)−
C
0 Dα

t uβ1(t),uβ1(t)−uβ2(t)
)

−
(
β1(t)−β2(t),uβ1(t)−uβ2(t)

)
V ∗×V .

(93)

By Definition 4.2, we deduce that∥∥C
0 Dα

t uβ1(t)−
C
0 Dα

t uβ2(t)
∥∥

V ≤
T 1−α

Γ(α)

∥∥u̇β1(t)− u̇β2(t)
∥∥

V .(94)

Now, from (H1) and (H2), we have

mb
∥∥uβ1(t)−uβ2(t)

∥∥2
V

≤Ma
∥∥C

0 Dα
t uβ1(t)−

C
0 Dα

t uβ2(t)
∥∥

V

∥∥uβ1(t)−uβ2(t)
∥∥

V

+‖β1(t)−β2(t)‖V
∥∥uβ1(t)−uβ2(t)

∥∥
V .

(95)

Also for uβi(t) =
∫ t

0
u̇βi(s)ds+u0 for i = 1,2, we deduce that

∥∥uβ1(t)−uβ2(t)
∥∥

V ≤ c
∫ t

0

∥∥u̇β1(s)− u̇β2(s)
∥∥

V ds.(96)
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Combining equations (94) through (96), integrating from 0 to t and applying Gronwall’s inequality, we
can conclude that there exists c > 0 such that∥∥uβ1(t)−uβ2(t)

∥∥
L2(0,T ;V )

≤ c‖β1(t)−β2(t)‖L2(0,T ;V ) .(97)

On the other hand, using (79), we can express

c(ϕz1(t)−ϕz2(t) , ϕz1(t)−ϕz2(t))

− e(uz1(t)−uz2(t) , ϕz1(t)−ϕz2(t))

(z1(t)− z2(t) , ϕz1(t)−ϕz2(t))W = 0.
(98)

Similarly to (97), we find that

‖ϕz1(t)−ϕz2(t)‖L2(0,T ;W ) ≤ c‖z1(t)− z2(t)‖L2(0,T ;W ) .(99)

We substitute (97) and (99) into (92) to obtain

‖Λ(z1,β1)(t)−Λ(z2,β2)(t)‖L2(0,T ;W×V ) ≤ c‖(z1,β1)− (z2,β2)‖L2(0,T ;W×V ) .(100)

Reiterating this inequality for n times

‖Λn(z1,β1)(t)−Λ
n(z2,β2)(t)‖L2(0,T ;W×V ) ≤

(cT )n

n!
‖(z1,β1)− (z2,β2)‖L2(0,T ;W×V ) .(101)

Thus, for sufficiently large values of n, Λn becomes a contraction mapping in the Banach space
L2 (0,T ;W ×V ), and as a result, Λ possesses a unique fixed point �

We are now prepared to prove Theorem (3.1)

Proof of Theorem (3.1). Let (z∗,β ∗) ∈ L2 (0,T ;W ∗×V ∗) be the fixed point of the operator Λ and
denote ϕ∗z∗β ∗ , u∗z∗β ∗ be the solutions of Problem (PV1) and Problem (PV2), respectively.

For (z,β ) = (z∗,β ∗), the definition of Λ implies that
(

u∗z∗β ∗ ,ϕ
∗
z∗β ∗

)
is a solution of Problem (PV). �

Appendix

Now, we recall the well-established definition in the field of fractional calculus theory and nonlinear
analysis, as presented in references [4, 7, 11, 14].

Definition 4.1 (Riemann-Liouville fractional integral). Let X be a Banach space and (0,T ) be a
finite time interval. The Riemann-Liouville fractional integral of order α > 0 for a given function
f ∈ L1(0,T ;X) is defined by

0Iα
t f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, ∀t ∈ (0,T ),

where Γ(.) stands for the Gamma function defined by

Γ(α) =
∫

∞

0
tα−1e−tdt.

To complement the definition, we set 0I0
t = I, where I is the identity operator, which means that

0I0
t f (t) = f (t) for a.e. t ∈ (0,T ).
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Definition 4.2 (Caputo derivative of order. 0 < α ≤ 1). Let X be a Banach space, 0 < α ≤ 1 and
(0,T ) be a finite time interval. For a given function f ∈ AC(0,T ;W ), the Caputo fractional derivative
of f is defined by

C
0 Dα

t f (t) =0 I1−α
t f ′(t) =

1
Γ(1−α)

∫ t

0
(t− s)−α f ′(s)ds, ∀t ∈ (0,T ).

The notation AC(0,T ;X) refers to the space of all absolutely continuous functions from (0,T ) into X.

It is obvious that if α = 1, the Caputo derivative reduces to the classical first-order derivative, that is,
we have

C
0 D1

t f (t) = I f ′(t) = f ′(t), for a.e. t ∈ (0,T ).

Proposition 4.1. Let X be a reflexive Banach space, and assume that T : X→ 2X∗ satisfies the following
conditions

(a) for every v ∈ X, T v is a nonempty, closed and convex subset of X∗,
(b) the operator T is bounded,
(c) if vn→ v weakly in X and v∗n→ v∗ weakly in X∗ with v∗n ∈ T vn and if

limsup
n→∞

〈v∗n,vn− v〉 ≤ 0,

then v∗ ∈ T v and 〈v∗n,vn〉 → 〈v∗,v〉.
Then the operator A is pseudomonotone.

Lemma 4.6. Let {un}, {vn} and {wn} be nonnegative sequences satisfying

un ≤ vn +
n−1

∑
k=1

wkuk for all n≥ 1.

Then, we have

un ≤ vn +
n−1

∑
k=1

vkwk exp

(
n−1

∑
j=k+1

w j

)
for all n≥ 1.

Moreover, if {un} and {wn} are such that

un ≤ α =
n−1

∑
k=1

wkuk for all n≥ 1,

where α > 0 is a constant, then for all n≥ 1, it holds

un ≤ α exp

(
n−1

∑
k=1

wk

)
.
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[17] S. Zeng, Z. Liu, S. Migórski, A class of fractional differential hemivariational inequalities with application to contact
problem. Zeitschrift für angewandte Mathematik und Physik, 69 (2018), no. 2, 1-23.

[18] F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional
subdiffusion equation. SIAM Journal on Scientific Computing, 35 (2013), no. 6, 2976-3000.
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