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GEOMETRIES ON POLYGONS IN THE UNIT DISC

CHARALAMPOS CHARITOS, IOANNIS PAPADOPERAKIS, AND GEORGIOS TSAPOGAS

ABSTRACT. For a family C of properly embedded curves in the 2-dimensional disk D2 satisfying cer-

tain uniqueness properties, we consider convex polygons P ⊂ D2 and define a metric d on P such that

(P,d) is a geodesically complete metric space whose geodesics are precisely the curves
{

c∩P
∣∣ c ∈ C

}
.

Moreover, in the special case C consists of all Euclidean lines, it is shown that P with this new metric

is not isometric to any convex domain in R2 equipped with its Hilbert metric.

We generalize this construction to certain classes of uniquely geodesic metric spaces homeomorphic

to R2.

1. Introduction

Hilbert’s 4th problem was asking for a characterization of all metrics on a convex subset of Euclidean

space for which straight lines are geodesics. Before Hilbert, Beltrami in [1] had already shown that

the unit disc in the plane, with the Euclidean chords taken as geodesics of infinite length, is a model

of the hyperbolic geometry. However, Beltrami did not give a formula for this distance, and this

led Klein in [7] to express the distance in the unit disc in terms of the cross radio. Over the years,

Hilbert’s fourth problem became a very active research area and Hilbert’s metric defined on convex

domains using cross ratio played an important role. It was gradually realized that the discovery of all

metrics satisfying Hilbert’s problem was not plausible. Consequently, each metric resolving Hilbert’s

problem defines a new geometry worth to be studied. A very important class of such metrics, defined

by means of the cross ratio, are referred to as Hilbert metrics and play a central role in this research

area, see [12] for the origin of Hilbert geometry.

Among the prominent mathematicians worked on the Hilbert’s fourth problem, it is worthy to

mention Busemann and Pogorelov, see for instance [4], [9], [10]. The ideas of the latter to solve

Hilbert’s fourth problem came from Busemann, who introduced integral geometry techniques to ap-

proach Hilbert’s problem.

Hilbert’s 4th problem admits various formulations as well as generalizations. One of them is to find

metrics on subsets of the plane with prescribed geodesics. Blaschke and Bol in [2] were the first to

consider such problems while Busemann and Salzman [5] focused on the whole Euclidean plane.

Convex polytopes constitute an important class of convex domains whose Hilbert geometry has

been extensively studied, see for example [13]. In this work we focus on convex polygons in the unit

disk D2 in R2. We consider a class C of continuous curves in D2∪∂D2 satisfying natural assumptions

(see properties (C1)-(C3) below) analogous to those satisfied by the class of geodesics in a uniquely

geodesic metric space. Then for any convex polygon P ⊂ D2 we explicitly construct a metric on P,

2020 Mathematics Subject Classification. 51F99.

Key words and phrases. Hilbert Geometry, geodesic metric space.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

3 Oct 2023 03:28:21 PDT
230517-Tsapogas Version 3 - Submitted to Rocky Mountain J. Math.

http://msp.org/
https://doi.org/rmj.YEAR.-
https://doi.org/rmj.YEAR..PAGE


GEOMETRIES ON POLYGONS IN THE UNIT DISC 2

in fact a family of metrics, such that (P,d) is a geodesically complete metric space whose geodesics

are precisely the curves
{

c∩P
∣∣ c ∈ C

}
. The construction uses a family of pseudo-metrics on P, one

pseudo-metric for each boundary point in ∂D2. This is done in Section 2.

In Section 3 we show that the same construction works for proper uniquely geodesic metric spaces

homeomorphic to R2. In Section 4 we show that when C is just the class of the straight lines in D2, the

construction of the metric d on P gives rise to a Hilbert geometry, that is, straight lines are precisely

the geodesics with respect to d, and yet, (P,d) as a metric space is not isometric to any convex domain

in R2 equipped with the standard Hilbert metric defined via cross ratio.

2. Definitions and Preliminaries

Let D2 be the (open) unit disk in R2 and let C be a family of continuous and injective maps I →
D2 ∪ ∂D2 where I is a close interval in R, the endpoints of I are mapped in ∂D2 and the interior of I

is mapped into D2. Assume that C satisfies the following properties:

(C1) for any two points x,y ∈ D2 there exists a unique curve cxy ∈ C containing both x and y. The

restriction of cxy with endpoints x and y will be called the segment from x to y and will be

denoted by [x,y] .
(C2) for any two points ξ ,η ∈ ∂D2 there exists a unique curve cξ η ∈ C with endpoints ξ and η .

We call cξ η the line from ξ to η and denote it by (ξ ,η) .

(C3) for any x ∈ D2 and ξ ∈ ∂D2 there exists a unique curve cxξ ∈ C having ξ as one endpoint and

containing x. The restriction of cxξ with endpoints x and ξ will be called the ray from x to ξ
and will be denoted by [x,ξ ) .

Examples of such families include the geodesic lines in the hyperbolic disk as well as homeomor-

phic images of these.

From the above properties it easily follows that for any two curves c,c′ ∈ C either c∩ c′ = ∅ or,

c∩ c′ is a singleton. In particular, the same holds for any two segments.

Let θ1,θ2,θ3,θ4,θ1 be four points in ∂D2 in cyclic clockwise order. Each pair of points θi,θ j i 6= j

determines exactly two subarcs of ∂D2. Denote by

: Őθ1θ2 ≡ Őθ2θ1 the subarc not containing θ3,θ4,
: Őθ3θ4 ≡ Őθ4θ3 the subarc not containing θ1,θ2,
: Őθ2θ4 ≡ Őθ4θ2 the subarc not containing θ1,
: Őθ1θ3 ≡ Őθ3θ1 the subarc not containing θ4.

In the sequel we will also deal with arcs determined by a triple of points θ1,θ2,θ3 in ∂D2. In this

case Őθ1θ2 ≡ Őθ2θ1 is the subarc not containing θ3 and similarly for Őθ1θ3, Őθ2θ3.
Clearly, each c ∈ C splits D2 into two components. We will say that two curves c,c′ ∈ C intersect

transversely (by (C1), at a single point) if c intersects both components of D2 determined by c′. The

following property follows from (C1)-(C3):

(C4) all intersections between curves in C are transverse.

To see this assume, on the contrary, that the lines (ξ ,ξ ′) and (η ,η ′) intersect at a (single) point

x ∈ D2 and the intersection is not transverse. We may assume that the cyclic clockwise order of

the boundary points of these lines is η ,ξ ,ξ ′,η ′,η . For any points θ ∈ Ňηξ and θ ′ ∈ Ŋη ′ξ ′ we claim
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θθ

x x

fx (θ ) = f (x,θ ) = xθ fθ (y) = f (y,θ ) = yθ

FIGURE 1. The projection maps fx : ∂D2 → ∂D2 and fθ : D2 → ∂D2.

that the line (θ ,θ ′) necessarily contains x. To check this observe that the union cxη ∪ cxξ separates

D2 ∪ ∂D2 into two components, one containing θ and the other θ ′. If x /∈ (θ ,θ ′) then (θ ,θ ′) must

intersect transversely the interior of either cxη or cxξ . Without loss of generality, assume that (θ ,θ ′)

intersects transversely the interior of cxη at a point, say, z1. The line (η ,η ′) separates D2 ∪ ∂D2 into

two components and both θ ,θ ′ belong to one of them. It follows that (θ ,θ ′) must intersect (η ,η ′)
at an other point, say, z2. Then the points z1,z2 belong to (θ ,θ ′) as well as to (η ,η ′) which violates

property (C1). This shows that x ∈ (θ ,θ ′) .

To complete the proof of (C4) consider a point θ ′′ ∈ Ŋη ′ξ ′ with θ ′′ 6= θ ′. Then we would have x ∈
(θ ,θ ′)∩ (θ ,θ ′′) and, by property (C3), (θ ,θ ′) ≡ (θ ,θ ′′) which, by (C2), implies that θ ′′ = θ ′, a

contradiction.

We will also need the following property which follows immediately from property (C3):

(C5) for pairwise distinct points θ ,θ1, . . .θm in ∂D2, (θ ,θi)∩ (θ ,θ j) = /0 if i 6= j.

Denote by
∣∣Ŋθiθ j

∣∣ the Euclidean length of the arc Ŋθiθ j and define the ratio [θ1,θ2,θ3,θ4] of the points

θ1,θ2,θ3,θ4 by

(1) [θ1,θ2,θ3,θ4] :=

∣∣Őθ1θ3

∣∣ ∣∣Őθ4θ2

∣∣
∣∣Őθ1θ2

∣∣ ∣∣Őθ4θ3

∣∣ .

We will say that X is a convex subset of D2 if for any two points x,y ∈ X the segment [x,y] is

entirely contained in X . We say that P is a convex polygon in D2 if P is an open convex subset of D2

whose boundary is a finite union of segments.
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θ θn
ξ2

ξ1

η1

η2

z

x xn

z1

z2

xη2

xη1

zξ1

xθ
zξ2

xnθn

FIGURE 2. Notation for the proof of Lemma 2.

3. A metric with prescribed geodesics

Our goal is to define a metric d on a convex polygon P such that the metric space (P,d) is a geodesi-

cally complete metric space whose geodesics are precisely
{

c∩P
∣∣ c ∈ C

}
. We note here that the

word geodesic has the classical meaning, namely, the image of an isometric map R→ P.
We will be using the terminology segment, ray and line as introduced in properties (C1), (C2) and

(C3).

Define a function

f : D2 ×∂D2 → ∂D2

as follows: for (x,θ ) ∈ D2 ×∂D2 there exists, by property (C3), a unique curve cxθ containing x and

having θ as one endpoint. Set f (x,θ ) to be the other endpoint of cxθ .
For fixed x ∈ D2 we denote by fx the induced map

fx : ∂D2 → ∂D2 given by fx(θ ) := f (x,θ ),

see Figure 1. Similarly, for fixed θ ∈ ∂D2 we have the induced map

fθ : D2 → ∂D2 given by fθ (x) := f (x,θ ).

Notation 1. We will be writing xθ instead of f (x,θ ) and we will be calling xθ the projection from θ
of x to the boundary ∂D2.
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θ θ

g1(θ ) = θ1

θ2 = g2(θ )

g1(θ ) = θ1

θ2 = θ3 = g2(θ )
θk θk

θk−1 θk−1

θ3

v1 v1

v2 v2

v3 v3

vk vk

FIGURE 3. The functions g1,g2 : on the right is the case where the line (θ ,θ2) con-

tains the vertex v3 and, hence, the side [v2,v3]

Lemma 2. The function f : D2 ×∂D2 → ∂D2 defined above is continuous.

Proof. For the reader’s convenience, all notation introduced in this proof is included in Figure 2.

Assume f is not continuous at a point (x,θ ) ∈ D2 × ∂D2. Then, there must exist a positive real ε0

such that

(2) ∀n ∈ N,∃(xn,θn) satisfying

∣∣∣Ŋθ θn

∣∣∣< 1

n
, |x− xn|<

1

n
and

∣∣Ŕxθ xnθn

∣∣≥ ε0.

where the arc
Ŋθ θn is the subarc of ∂D2 not containing xθ and Ŕxθ xnθn

the subarc not containing θ .

There are exactly two boundary points in ∂D2 each of which determines, along with xθ , an arc of

Euclidean length ε0. In other words, there exist η1,η2 in ∂D2 such that the projections xη1
,xη2

satisfy

(3)
∣∣Ŕxθ xη1

∣∣= ε0 =
∣∣Ŕxθ xη2

∣∣

where, Ŕxθ xη1
,Ŕxθ xη2

are the subarcs not containing θ . Let Őη1 η2 be the subarc of ∂D2 which has

endpoints η1 η2 and does not contain xη1
,xη2

. Clearly, by transversality of the intersection of the lines

cxθ ,cxη1
,cxη2

the arc Őη1 η2 contains θ .

Let
Ŋθ η1 be the subarc not containing xη1

,xη2
and similarly we specify

Ŋθ η2. Pick arbitrary points

ξ1 ∈ Ŋθ η1, ξ2 ∈ Ŋθ η2, z1 ∈ [x,xη2
) and z2 ∈ [x,xη1

) with z1 6= x 6= z2. The rays [z1,ξ2) and [z2,ξ1)
intersect at a point, say, z and x is contained in the region Rz bounded by the rays

[
z,zξ1

)
,
[
z,zξ2

)
and

the arc Ŕzξ1
zξ2

where the latter is the subarc not containing ξ1,ξ2.
Without loss of generality and by choosing, if necessary, a subsequence we may assume that the

sequence {θn} ⊆ Őξ1 ξ2 and the sequence {xn} is contained in the region Rz. Now for any (xn,θn) ∈
Őξ1 ξ2 ×Rz we have that cxnθn

intersects both lines
(
ξ1,zξ1

)
,
(
ξ2,zξ2

)
at exactly one point and, thus,

the projection xnθn
is contained in Ŕzξ1

zξ2
. As Ŕzξ1

zξ2
⊂ Ŕxη1

xη2
we have, by (3),

∣∣Ŕxθ xnθn

∣∣ < ε0 which

contradicts (2). �

Denote by vi, i = 1, . . . ,k the vertices of P and fix a point θ ∈ ∂D2. For each i denote by (θ ,θi) the

line containing vi (see Figure 3). Observe that for i 6= j it may happen that the line (θ ,θi) contains
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θθ

ξθξθ
ηθηθ

yθyθ xθxθ

xx
yy z

zθ

zθ

z

Case BCase A

FIGURE 4. The arcs defining the cross ratio [ηθ ,yθ ,xθ ,ξθ ]

a vertex v j, i 6= j in which case (θ ,θi) = (θ ,θ j) . Otherwise, by property (C5), (θ ,θi)∩ (θ ,θ j) =
/0. In particular, the above lines are at most k and at least 2. Since each (θ ,θi) separates D2 into

two components there exist exactly two of them, say, (θ ,θ1) and (θ ,θ2) which are outermost in

the following sense: one component of D2 \ (θ ,θ1) contains all lines (θ ,θi) , i 6= 1 and the other

component contains none and similarly for (θ ,θ2) . Clearly, the line (θ ,θ1) either contains only the

vertex v1 or, by convexity of P, contains a segment [v1,v
′
1] . In the former case, θ1 is just fv1

(θ ). The

same holds for (θ ,θ2) .
The above discussion shows that for each θ ∈ ∂D2 there exist unique points g1 (θ ) ,g2 (θ ) in ∂D2

such that the region bounded by the lines (θ ,g1 (θ )) , (θ ,g2 (θ )) and the arc Ŕg1 (θ )g2 (θ ) contains P

and is minimal with respect to the property of containing P. The arc Ŕg1 (θ )g2 (θ ) is meant to be the

subarc with endpoints g1 (θ ) ,g2 (θ ) not containing θ .
For simplicity, we will be writing ξθ and ηθ instead of g1 (θ ) and g2 (θ ) respectively.

Lemma 3. The maps gi : ∂D2 → ∂D2, i = 1,2 are continuous.

Proof. If θ is not the endpoint of a line containing a segment of ∂P, then, as explained above, g1 (θ )
is given by some fv1

for a vertex v1. Therefore, g1 is continuous at every such θ . Let now θ be the

endpoint of a line containing a segment [v,w] of ∂P and Ŕθ+θ− a sufficiently small neighborhood of θ
in ∂D2. Clearly, fv (θ ) = fw (θ ) and either g1 = fv on Őθ+θ and g1 = fw on Őθ−θ or, g1 = fw on Őθ+θ
and g1 = fv on Őθ−θ . In any case g1 is continuous at every θ ∈ ∂D2 and identically g2 is. �

For any point θ ∈ ∂D2 we first define a pseudo-metric dθ on P. Given any two points x,y ∈ P we

may assume, without loss of generality, that the clockwise cyclic order of the four images of θ under

the functions fx, fy and g1,g2 is g2 (θ ) , fy (θ ) , fx (θ ) ,g1 (θ ) . With the simplified notation introduced
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GEOMETRIES ON POLYGONS IN THE UNIT DISC 7

above these four points are: ηθ ,yθ ,xθ ,ξθ . Define the θ−distance of the points x,y by

(4) dθ (x,y) := log [ηθ ,yθ ,xθ ,ξθ ] = log
|Őηθ xθ |

∣∣Őξθ yθ

∣∣
|Őηθ yθ |

∣∣Őξθ xθ

∣∣ .

Lemma 4. The distance dθ is a pseudo-metric on P.

Proof. Clearly dθ is symmetric. Moreover, if x 6= y then for every θ which is not an endpoint of the

curve cxy we have xθ 6= yθ which implies

|Őηθ xθ |

|Őηθ yθ |
> 1 and

∣∣Őξθ yθ

∣∣
∣∣Őξθ xθ

∣∣ > 1 =⇒ dθ (x,y) = log
|Őηθ xθ |

∣∣Őξθ yθ

∣∣
|Őηθ yθ |

∣∣Őξθ xθ

∣∣ � log1 = 0.

This shows that dθ (x,y) 6= 0 if x 6= y and θ is not an endpoint of cxy. Clearly,

(5) if θ is an endpoint of cxy then dθ (z,w) = 0 for any pair of points z,w ∈ cxy.

This is the reason dθ is just a pseudo-metric and not a metric.

For the triangle inequality, let x,y,z ∈ P and observe that in the definition of dθ the points involved are

projected onto the boundary circle where the log of the cross ratio obeys the triangle inequality. We

carry out the calculation by considering two cases (see Figure 4):

Case A: zθ ∈ Őxθ yθ . In this case the triangle inequality is, in fact, equality:

dθ (x,z)+dθ (z,y) = log [ηθ ,zθ ,xθ ,ξθ ]+ log [ηθ ,zθ ,yθ ,ξθ ]

= log

(
|Őηθ xθ |

∣∣Őξθ zθ

∣∣
|Őηθ zθ |

∣∣Őξθ xθ

∣∣ ·
|Őηθ zθ |

∣∣Őξθ yθ

∣∣
|Őηθ yθ |

∣∣Őξθ zθ

∣∣

)

= log
|Őηθ xθ |

∣∣Őξθ yθ

∣∣
|Őηθ yθ |

∣∣Őξθ xθ

∣∣ = dθ (x,y)(6)

Case B: zθ /∈ Őxθ yθ . We may assume that zθ is contained in the interior of the arc Őyθ ηθ (the case

zθ ∈ Őξθ xθ is treated in an identical manner) which implies that yθ ∈ Őxθ zθ . By Case A we have

d (x,y)+d (y,z) = d (x,z) =⇒ d (x,y)≤ d (x,z)≤ d (x,z)+d (z,y) .

�

We now define a metric d on P.

Definition 5. Consider a countable dense subset Θ = {θi|i ∈ N} of ∂D2 with the following property:

for each segment [v,w] in ∂P, the endpoints of the curve cvw are contained in Θ. To each θi in Θ assign

a positive real wi such that the series ∑
i

wi converges. For x,y ∈ P define

d (x,y) :=
∞

∑
i=1

wi dθi
(x,y) .

Observe that for fixed x,y ∈ P the function θ → dθ (x,y) is, by Lemmata 2 and 3, continuous on ∂D2.
It follows that the set

{
dθi

(x,y)
∣∣ θi ∈ Θ

}
is, by compactness of ∂D2, bounded by some M > 0 and

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

3 Oct 2023 03:28:21 PDT
230517-Tsapogas Version 3 - Submitted to Rocky Mountain J. Math.



GEOMETRIES ON POLYGONS IN THE UNIT DISC 8

thus

d (x,y)≤ M
∞

∑
i=1

wi <+∞.

Proposition 6. d is a metric on P.

Proof. The triangle inequality for d follows from the triangle inequality of all dθ proven in Lemma 4.

Similarly, if x 6= y then dθ (x,y) 6= 0 for every θ ∈ Θ which is not an endpoint of the curve cxy (see the

beginning of the proof of Lemma 4). Therefore, d is a metric on P. �

Proposition 7. The topology induced by d is equivalent to the Euclidean topology.

Proof. We first show that the Euclidean topology of P is thinner than the topology induced by d. For

this, it suffices to show that

(7) ∀z0 ∈ P and ε > 0,∃ρ > 0 such that |z− z0|< ρ ⇒ d(z,z0)< ε .

Observe that, by Lemma 2, property (7) holds for the pseudo-metric dθ , namely, for fixed θ ∈ ∂D2

(8) ∃ρθ > 0 such that |z− z0|< ρθ ⇒ dθ (z,z0)< ε .

Let N(z0) be a compact (in the Euclidean topology) neighborhood in P containing z0. Let F : ∂D2 ×
N(z0)×N(z0)→R be the function given by

F(θ ,w,z) = dθ (w,z) = log

(
|Őηθ zθ |

|Ŕηθ wθ |

∣∣Őξθ wθ

∣∣
∣∣Őξθ zθ

∣∣

)
.

By Lemma 3, the projection points g1(θ ) = ξθ and g2(θ ) = ηθ depend continuously on θ and by

Lemma 2 the same holds for every projection point wθ . This shows that F is continuous on ∂D2 ×
N(z0)×N(z0). In particular, (8) holds. By compactness, F is uniformly continuous which implies

that ρθ in (8) can be chosen independent of θ . It follows that (7) holds.

We proceed with the proof of the proposition by showing the converse. For this it suffices to show

that for any sequence {zn} converging to z0 with respect to the metric d, we have |zn − z0| → 0.
Assume, on the contrary, that {zn} is a sequence in P with d (z0,zn)→ 0 and |zn − z0| > ε0 for some

ε0 > 0.
By choosing, if necessary, a subsequence we may assume that {zn} converges (in the Euclidean

sense) to a point z′. Let θ0 be a point in ∂D2 such that the line cz0θ0
does not contain z′. Pick a

compact Euclidean ball B(z′) containing z′ such that

(9) B(z′)∩ cz0θ0
= /0.

The image fz0

(
B(z′)

)
of B(z′) under the continuous map fz0

: ∂D2 → ∂D2 is a compact and connected

subset of ∂D2 which, by (9), does not contain θ0. It follows that we may pick a compact subinterval

N (θ0) of ∂D2 containing θ0 and disjoint from fz0

(
B(z′)

)
. By (5) we know that for any θ ∈ ∂D2 and

x ∈ D2

dθ (x,z0) = 0 ⇐⇒ x ∈ cz0θ

which implies that

(10) dθ (z,z0)> 0 for all θ ∈ N (θ0) and z ∈ B(z′).
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GEOMETRIES ON POLYGONS IN THE UNIT DISC 9

In other words, the restriction of the above defined map F : ∂D2 ×N(z0)×N(z0) → R on the set

B(z′)×N (θ0)×{z0} does not attain the value 0 ∈ R. By continuity and compactness, let M > 0 be

the minimum of F on B(z′)×N (θ0)×{z0}.
Let ΘK =

{
θk

∣∣ k = 1,2, . . .
}

be an enumeration of the set Θ∩N (θ0) for which we proved that

dθk
(zn,z0)> M for all zn and θk ∈ ΘK.

Then

d(zn,z0) = ∑
θi∈Θ

widθi
(zn,z0)≥ ∑

θk∈ΘK

wkdθk
(zn,z0)> M ∑

k

wk > 0

which contradicts the assumption d (z0,zn)→ 0. This completes the proof of the proposition. �

Theorem 8. The metric space (P,d) is a geodesic metric space whose geodesics are precisely the

curves
{

c∩P
∣∣ c ∈ C

}
. In particular, (P,d) is uniquely geodesic.

Proof. Let [x,y] be the segment with endpoints x,y ∈ P. In other words (see terminology introduced

in property (C1)), [x,y] is the restriction of cxy to an appropriate interval I such that cxy
∣∣I : I → P has

endpoints x and y. As all curves in C are assumed to be continuous and injective with respect to the

Euclidean topology of P so is the restriction cxy
∣∣I .

Proposition 7 implies that

(11) cxy
∣∣I : I → P is continuous with respect to the topology induced by d.

We will next show that

(12) d(x,z)+d(z,y) = d(x,y) for every z ∈ [x,y].

Let z ∈ [x,y] . If θ is not an endpoint of the curve cxy, then xθ 6= yθ and z is contained in the re-

gion bounded by (θ ,xθ ) ,(θ ,yθ ) and the arc Őxθ yθ (which is the arc not containing θ ). By property

(C5) (θ ,zθ ) does not intersect neither (θ ,xθ ) nor (θ ,yθ ) . It follows that zθ ∈ Őxθ yθ . Moreover, the

calculation (6) carried out in Case A of Lemma 4 holds verbatim, that is,

(13) dθ (x,y) = dθ (x,z)+dθ (z,y) .

On the other hand, if θ is an endpoint of the curve cxy, then xθ = zθ = yθ and the above inequality

holds trivially. It follows that equality (13) holds for all θ ∈ Θ and hence d (x,y) = d (x,z)+d (z,y) .
The additive property (12) holds for any three points in [x,y] which implies that

(14) cxy
∣∣I : I → P has finite length.

The latter property along with (11) assert that cxy
∣∣I can be parametrized by arclength. It is well known

(see, for example, Proposition 2.2.7 in [8]) that a curve with arclength parametrization and endpoints

x,y is a geodesic segment with respect to a metric d if and only if for every z in the curve we have

d(x,z)+d(z,y) = d(x,y). This completes the proof that [x,y] is a geodesic with respect to d.
Last we show that the segment [x,y] is the unique geodesic segment with respect to d joining x,y.

Assume, on the contrary, that there exists a geodesic joining x,y which contains a point z /∈ [x,y] . By

the previous discussion, we may assume that y /∈ [x,z] and x /∈ [y,z] . In other words, z is not a point of

the curve cxy.
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GEOMETRIES ON POLYGONS IN THE UNIT DISC 10

Let ξxy be one endpoint of cxy. Clearly,

dξxy
(x,y) = 0 � dξxy

(x,z) .

By the triangle inequality for the pseudo-metric dξxy
we have

dξxy
(x,y)� dξxy

(x,z)+dξxy
(z,y)

and

dθ (x,y)≤ dθ (x,z)+dθ (z,y) for all θ 6= ξxy.

It follows that d (x,y) � d (x,z)+ d (z,y) which contradicts the fact that z lies on a geodesic joining

x,y.
�

Lemma 9. Let x ∈ P, v a point in the boundary of P and [x,v] the unique segment obtained from C .
By the above Theorem, [x,v) = [x,v]\{v} can be viewed as a geodesic (with respect to d) ray rv of P.
Then, for any sequence {yn} ⊂ [x,v) converging to v in the Euclidean sense we have

d (x,yn)→ ∞ as n → ∞.

In particular, the geodesic ray rv is realized by an isometry rv : [0,∞)−→ P and (P,d) a geodesically

complete metric space.

Proof. Let θ0,ξθ0
be the endpoints of the curve c which is the unique curve determined by the segment

of ∂P containing v. By assumption in Definition 5, θ0 ∈ Θ and it suffices to show that

dθ0
(x,yn)→ ∞ as n → ∞.

We claim that (yn)θ0
→ ξθ0

or, equivalently,

∣∣∣ Ŕξθ0
(yn)θ0

∣∣∣ −→ 0. To see this, assume, on the contrary,

that

(15) ∃ε0 > 0 : ∀n ∈ N,∃N > n with

∣∣∣ Ŕξθ0
(yN)θ0

∣∣∣≥ ε0.

Pick a point θδ ∈ Ŕξθ0
(y1)θ0

such that
∣∣Ŕξθ0

θδ

∣∣ < ε0. The line (θ0,θδ ) must intersect [x,v] at a point,

say, yδ . For all n ∈ N such that yn ∈ [yδ ,v) we have

∣∣∣ Ŕξθ0
(yn)θ0

∣∣∣<
∣∣Ŕξθ0

θδ

∣∣< ε0 contradicting (15).

This shows that

∣∣∣ Ŕξθ0
(yn)θ0

∣∣∣ −→ 0 or, equivalently, log 1∣∣∣ Ŕξθ0
(yn)θ0

∣∣∣
→ ∞. As

∣∣∣ Ŕηθ0
(yn)θ0

∣∣∣ <
∣∣Ŕηθ0

ξθ0

∣∣

for all n it follows

dθ0
(x,yn) = log

∣∣∣ Ŕηθ0
(yn)θ0

∣∣∣
∣∣Ŕξθ0

xθ0

∣∣
∣∣Ŕηθ0

xθ0

∣∣
∣∣∣ Ŕξθ0

(yn)θ0

∣∣∣
≤ log

∣∣Ŕηθ0
ξθ0

∣∣ ∣∣Ŕξθ0
xθ0

∣∣
∣∣Ŕηθ0

xθ0

∣∣
∣∣∣ Ŕξθ0

(yn)θ0

∣∣∣
=

= log

∣∣Ŕηθ0
ξθ0

∣∣ ∣∣Ŕξθ0
xθ0

∣∣
∣∣Ŕηθ0

xθ0

∣∣ + log
1∣∣∣ Ŕξθ0
(yn)θ0

∣∣∣
→ ∞

as required. �

In a similar manner the following can be seen: let v,w be two points in the boundary of P contained

in distinct segments of ∂P. Then (v,w) := cv,w ∩P is a geodesic line in P of infinite length.
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GEOMETRIES ON POLYGONS IN THE UNIT DISC 11

4. Generalizations

In this Section let (X ,ρ) be a proper geodesic metric space homeomorphic to R2 with the following

uniqueness property:

(G1) for any two points x,y ∈ X there exists a unique geodesic segment σxy : I → X , where I is an

interval in R, with endpoints x and y. We denote σxy by [x,y]. Moreover, every segment [x,y]
extends uniquely to a geodesic line (isometry) σ : R→ X . We will be saying that the line σ
contains the segment [x,y] .

Denote by ∂X the boundary at infinity of X defined via asymptotic geodesic rays (see, for example,

[3, page 260]). We assume that ∂X , equipped with the topology of uniform convergence on compact

sets, is homeomorphic to S1 and ∂X compactifies X so that X ∪ ∂X is homeomorphic to the closed

unit disk.

We further assume that X ∪∂X satisfies the following properties

(G2) for every two points ξ ,η ∈ ∂X there exists a unique geodesic line in X joining them.

(G3) for every two points x ∈ X and ξ ∈ ∂X there exists a unique geodesic ray in X joining them.

The class of such geodesic metric spaces satisfying properties (G1), (G2) and (G3) includes universal

coverings of closed surfaces of genus ≥ 2 with a Riemannian metric of non-positive curvature.

We will say that P is a convex subset of X if for any two points x,y ∈ P the segment [x,y] is entirely

contained in P. We say that P is a convex polygon in X if P is an open bounded convex subset of X

whose boundary is a finite union of geodesic segments.

As properties (G1), (G2) and (G3) above are identical with properties (C1), (C2) and (C3) given

at the beginning of Section 2, the construction carried out in Section 2 can be applied verbatim with

the class C being the geodesic lines in X . This defines a new metric d on the convex polygon P

such that (P,d) is a geodesically complete metric space whose geodesic lines are precisely the curves{
c∩P

∣∣ c geodesic line in X
}
.

However, a proper geodesic metric space homeomorphic to R2 need not have a boundary satisfying

property (C2). The Euclidean space R2 itself provides such an example. For this class of metric

spaces we carry out in the next Subsection a construction analogous to the one given in Section 2 by

deploying a convex polygon containing the given polygon P. In the special case of R2 we describe,

in Subsection 4.2 below, an analogous procedure for putting a metric on a polygon P which does not

depend on the choice of a convex polygon containing P.

4.1. Generalization to geodesic metric spaces. Recall that (X ,ρ) denotes a proper geodesic metric

space homeomorphic to R2 satisfying properties (G1)-(G3).

Lemma 10. Given any convex polygon P in X there exists a convex polygon K in X with P∪∂P ⊂ K.

Proof. Denote by A1,A2, . . .An the vertices of P. For each side [Ai,Ai+1] (i = 1, . . . ,n with An+1 ≡ A1)

consider the geodesic (with respect to the geometry of X) line σi containing the side [Ai,Ai+1] .
Claim: for all i, σi ∩P =∅.

To check this assume σi intersects P. Then P \σi consists of two or more components and denote

by P1 the component whose boundary contains [Ai,Ai+1] . If P2 is an other component of P\σi then at

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

3 Oct 2023 03:28:21 PDT
230517-Tsapogas Version 3 - Submitted to Rocky Mountain J. Math.



GEOMETRIES ON POLYGONS IN THE UNIT DISC 12

least one of the vertices Ai,Ai+1 is not contained in ∂P2. Say, Ai /∈ ∂P2 and pick any x ∈ P2. Then the

geodesic segment [Ai,x] must

either, contain [Ai,Ai+1] which violates (G2) because x /∈ σi

or, intersect σi at a point y ∈ σi which violates (G1).

Notation: for a geodesic line h not intersecting P we will be writing h+ for the component of X \h

which contains P.
We next construct a convex polygon K containing P. For each of the n sides [Ai,Ai+1] of the polygon

P consider a geodesic (with respect to the geometry of X) line ℓi as follows: choose points Bi ∈ σi−1

and Ci ∈ σi+1 such that

[Ai−1,Bi] = [Ai−1,Ai]∪ [Ai,Bi] and [Ci,Ai+2] = [Ci,Ai+1]∪ [Ai+1,Ai+2]

Set ℓi to be the unique geodesic line containing Bi,Ci. Observe that for all i, ℓi ∩P =∅. To check this

note that if ℓi intersects P then ℓi must intersect

either, σi−1 at a point other than Bi ∈ σi−1 ∩ ℓi

or, σi+1 at a point other than Ci ∈ σi+1 ∩ ℓi.

In both cases we have, by (G1), a contradiction.

Set K ′ = ∩n
i=1ℓ

+
i . Clearly, K ′ is convex and contains P. If K ′ is bounded we set the desired bounded

convex polygon K to be K ′. If K ′ is not bounded then each end K ′
j, j = 1, . . . ,k of K ′ is determined by

two subrays r j and r j+1 of ℓ j and ℓ j+1 respectively. Pick a line ℓK′
j

intersecting both r j and r j+1 and

then the intersection

K = K ′∩

(
∩k

j=1ℓ
+
K′

j

)

is the desired bounded convex polygon containing P. �

Given any convex bounded polygon P in X consider and fix a convex polygon K containing P in

its interior. As explained above, such a polygon always exists. The boundary ∂K is homeomorphic to

the circle. We may now perform the construction described in Section 3 where the geodesic segments

in the metric space (X ,ρ) with endpoints on ∂K constitute a collection of curves satisfying properties

(C1)-(C4).

The Euclidean length
∣∣Ŋθiθ j

∣∣ used to define the pseudo-metric dθ in P is the only adjustment needed:

for points θ1,θ2,θ3,θ4 in cyclic clockwise order in ∂K, denote by Ŋθiθ j the piece-wise geodesic curve

in ∂K with endpoints θi,θ j and by
∣∣Ŋθiθ j

∣∣ its length with respect to the metric ρ of X . Then the

pseudo-metric dθ is given by (4) in an identical way.

The metric space (P,d) obtained in this way is a geodesic metric space whose geodesics are pre-

cisely the curves {
σ ∩P

∣∣ σ is a geodesic line in (X ,ρ)
}
.

In particular, (P,d) is uniquely geodesic (G1) and geodesically complete (G2).

4.2. The special case R2. Let P be a convex polygon in Euclidean space R2. We may view S1 ⊂ R2

as the set of directions in R2 where each x ∈ S1 determines a unique angle θ ∈ [0,2π) .
For each direction θ there exist exactly two parallel lines, say ℓξ , ℓη such that the strip bounded by

them contains P and the strip is minimal with respect to this property. Pick any line ℓ perpendicular
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yθ

y

ℓη

ℓξ
ℓ

ℓy

ℓx
x

xθ
θ

ηθ

ξθ

FIGURE 5. The strip which bounds P in the θ direction and the projection points

whose distances define dθ

to ℓξ , ℓη and denote by ℓx (resp. ℓy) the line which contains x (resp. y) and is parallel to ℓξ (see Figure

5). Set

ξθ the intersection point ℓξ ∩ ℓ
ηθ the intersection point ℓη ∩ ℓ
xθ the intersection point ℓx ∩ ℓ
yθ the intersection point ℓy ∩ ℓ

We may define dθ as in Section 2, equation (4)

dθ (x,y) := log [ηθ ,yθ ,xθ ,ξθ ] = log
|ηθ xθ | |ξθ yθ |

|ηθ yθ | |ξθ xθ |

where | | stands for Euclidean distance. As in Lemma 4, it can be seen that dθ is a pseudo-distance

on P.
Let Θ be a dense subset of S1 containing all directions determined by the sides of P. As in Definition

5, to each θi in Θ assign a positive real wi such that the series ∑
i

wi converges. For x,y ∈ P define

d (x,y) :=
∞

∑
i=1

wi dθi
(x,y) .

Working in an identical way as in Section 2 it can be seen that d is a metric making P a geodesically

complete metric space whose geodesic lines are precisely the (open) Euclidean segments in P.

5. Further properties of (P,d)

For a convex domain U in R2 denote by dH the Hilbert metric on U for which we refer the reader to

[8, Ch.5, Section 6]. Let (P,d) be the metric space obtained in Section 3 with the collection of curves

C being the Euclidean lines.
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x∞

xλ yλ

y∞

θxy

θ∞

θλ

vu

zλ

x∞

xλ yλ

y∞

θxy

θλ

θ∞vu x∞

xλ yλzλ

y∞

θxy

θλ

θ∞vu

Case I Case II Case III

FIGURE 6. The three cases considered in the Claim in the proof of Theorem 11.

Theorem 11. For any convex domain U in R2 equipped with the Hilbert metric dH the metric spaces

(P,d) and (U,dH ) are not isometric.

Proof. Before dealing with the proof of the Theorem, we will state and prove a claim concerning

geodesic rays in P which have endpoints in the same side of P.
Let [u,v] be a side of P, where u,v are vertices in ∂P, and consider two parallel (in the Euclidean

sense) geodesic rays [x,x∞] and [y,y∞] with x∞,y∞ ∈ [u,v] and y∞ ∈ [x∞,v] Pick sequences {xn}n∈N ⊂
[x,x∞] and {yn}n∈N ⊂ [y,y∞] such that for all n ∈ N the segment [xn,yn] is parallel to [u,v] and, in

addition, xn → x∞ and yn → y∞. In other words,

lim
n→∞

d (x,xn) = ∞ = lim
n→∞

d (y,yn) .

Claim: The set
{

d (xn,yn)
∣∣ n ∈ N

}
is bounded.

Proof of Claim. As d (xn,yn) =
∞

∑
k=1

wk dθk
(xn,yn) it suffices to show that

{
dθk

(xn,yn)
∣∣ k,n ∈ N

}

is bounded. Assume that it is not. Then there must exist a sequence

(16)
{

dθk(λ )

(
xn(λ ),yn(λ )

)}∞

λ=1

converging to ∞ as λ → ∞. To simplify notation we write dθλ
(xλ ,yλ ) instead of dθk(λ )

(
xn(λ ),yn(λ )

)
.

The Euclidean line extending the side [u,v] intersects the boundary of the unit disk in two points

denoted by θ∞ and θ−∞. Clearly,
{

dθλ
(xλ ,yλ )

}
is bounded for all θλ away from θ∞ and θ−∞. We

will examine
{

dθλ
(xλ ,yλ )

}
for θλ close to θ∞ and an identical argument will work for θ−∞. We may

assume that the segment [u,θ∞] contains v.
We distinguish 3 cases as depicted in Figure 6. Denote by θxy the intersection of ∂D2 with the

extension of [xλ ,yλ ] such that yλ ∈ [xλ ,θxy] .
Case I: θxy ∈ Őθλ θ∞.
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x∞

xλ yλ zλ

y∞

θxy

θ∞

θλ

vu

ηθλ

θ−∞

(xλ )θλ

(yλ )θλ

ξθλ

FIGURE 7. Relevant notation in Case I of the Claim in the proof of Theorem 11.

Case II: θλ ∈ Ŕθxyθ∞.
Case III: θ∞ ∈ Ŕθλ θxy.
We discuss in detail Case I (see Figure 7). The distance dθλ

(xλ ,yλ ) is by definition (see equations (1)

and (4)) the sum of the logarithms of two ratios

dθλ
(xλ ,yλ ) = log

∣∣∣ Ŕηθλ
(xλ )θλ

∣∣∣
∣∣∣ Ŕηθλ

(yλ )θλ

∣∣∣
+ log

∣∣∣ Ŕξθλ
(yλ )θλ

∣∣∣
∣∣∣ Ŕξθλ

(xλ )θλ

∣∣∣

For large enough λ both projections (xλ )θλ
and (yλ )θλ

approach θ−∞ and therefore the second sum-

mand is bounded for all large enough λ . We will reach a contradiction by showing that the first

summand or, equivalently, the ratio xλ θ̂λ zλ/zλ θ̂λ yλ of the corresponding angles is bounded, where

zλ is the point where the extension of [xλ ,yλ ] meets [θλ ,v] . As sina < a < 2sin a for small enough a

we may work with the ratio

sin
(

xλ θ̂λ zλ

)

sin
(

zλ θ̂λ yλ

)

Using the law of sines for the triangles xλ θλ zλ and yλ θλ zλ , we obtain

sin
(

xλ θ̂λ zλ

)

sin
(

zλ θ̂λ yλ

) =
|xλ zλ | |yλ θλ |

|yλ zλ | |xλ θλ |
.
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GEOMETRIES ON POLYGONS IN THE UNIT DISC 16

Clearly, the right hand side of the above equality converges to
|x∞v| |y∞θ∞|
|y∞v| |x∞θ∞|

as λ → ∞, which is a

positive real number depending on the Euclidean distances of the boundary points x∞,y∞,v and θ∞.
Therefore we have shown that the set

{
dλ (xλ ,yλ )

∣∣ λ satisfies Case I
}

is bounded.

In Case II, adopting the same reasoning, we will reach a contradiction by showing that the ratio

yλ θ̂λ v /xλ θ̂λ v is bounded. As

yλ θ̂λ v

xλ θ̂λ v
=

xλ θ̂λ v+ xλ θ̂λ yλ

xλ θ̂λ v
= 1+

xλ θ̂λ yλ

xλ θ̂λ v

it suffices to bound the ratio

sin
(

xλ θ̂λ yλ

)

sin
(

xλ θ̂λ v
) .

Using again the law of sines for the triangles xλ θλ yλ and xλ θλ v we obtain

sin
(

xλ θ̂λ yλ

)

sin
(

xλ θ̂λ v
) =

sin (yλ x̂λ θλ )

sin (vx̂λ θλ )

|xλ yλ | |θλ v|

|yλ θλ | |xλ v|

<
sin
(

xλ θ̂λ v
)

sin (vx̂λ θλ )

|xλ yλ | |θλ v|

|yλ θλ | |xλ v|

(∗)
=

|xλ v|

|θλ v|

|xλ yλ | |θλ v|

|yλ θλ | |xλ v|
=

|xλ yλ |

|yλ θλ |
(17)

where the equality (∗) follows from the law of sines for the triangle xλ θλ v and the inequality follows

from the fact the angle xλ θ̂λ v is always (in Case II) strictly larger than yλ x̂λ θλ .

The right hand side of (17) clearly converges to
|x∞y∞|
|y∞θ∞|

as λ → ∞, and as before, it follows that the

set {
dλ (xλ ,yλ )

∣∣ λ satisfies Case II
}

is bounded.

In Case III observe that the extension of the segment [xλ ,yλ ] intersects [θλ ,u] at a point zλ which,

for sufficiently large λ , lies inside the unit disk. As in Case I, we use the law of sines for the triangles

yλ θλ zλ and xλ θλ zλ to obtain

sin
(

yλ θ̂λ zλ

)

sin
(

xλ θ̂λ zλ

) =
|yλ zλ | |xλ θλ |

|xλ zλ | |yλ θλ |
−→

|y∞u| |x∞θ∞|

|x∞u| |y∞θ∞|
as λ → ∞.

This completes the proof of the Claim.

We return now to the proof of Theorem 11. Assume, on the contrary, that F : (P,d) → (U,dH )
is an isometry. We write a′ for the image F (a) of a point a ∈ P. The images of the geodesic rays

[x,x∞] and [y,y∞] under F, denoted by [x′,x′∞] and [y′,y′∞] respectively, are clearly geodesic rays in U

determining boundary points x′∞,y
′
∞ ∈ ∂U. Moreover,

lim
n→∞

dH

(
x′,x′n

)
= ∞ = lim

n→∞
dH

(
y′,y′n

)
.
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Let [x′∞,y
′
∞] be the Euclidean segment joining x′∞ and y′∞.

If (x′∞,y
′
∞) is contained in U then dH (x′n,y

′
n)→ ∞ as n → ∞, a contradiction by the Claim.

If (x′∞,y
′
∞) *U, then by convexity of U, (x′∞,y

′
∞) ⊂ ∂U, that is, ∂U contains at least one segment.

In an identical way, we may perform the same construction starting with the side [v,q] adjacent to [u,v]
and geodesic rays [z,z∞] and [w,w∞] with z∞,w∞ ∈ [v,q] . It follows that (z′∞,w

′
∞) determines again a

segment in ∂U. If x′∞,y
′
∞,z

′
∞,w

′
∞ were collinear then the geodesic line (y∞,z∞) ⊂ P would have an

image (y′∞,z
′
∞) ⊂ U connecting the points y′∞,z

′
∞ contained in a segment in ∂U, which is impossible.

It follows that ∂U contains two distinct segments and, thus, the metric space (U,dH ) is not uniquely

geodesic, a contradiction by Proposition 8. �
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