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NEURAL CODES AND NEURAL RING ENDOMORPHISMS

NEHA GUPTA AND SUHITH K N

ABSTRACT. We investigate combinatorial, topological, and algebraic properties of certain classes of
neural codes. We look into a conjecture that states if the minimal open convex embedding dimension of a
neural code is two, then its minimal convex embedding dimension is also two. We prove the conjecture
for two interesting classes of examples and provide a counterexample for the converse of the conjecture.
We introduce a new class of neural codes, doublet maximal. We show that a doublet maximal code
is open convex if and only if it is max intersection-complete. We prove that surjective neural ring
homomorphisms preserve max intersection-complete property. We introduce another class of neural
codes, circulant codes. We give the count of neural ring endomorphisms for several sub-classes of this
class.

1. Introduction

The Nobel prize in Medicine for the year 2014 was awarded to Neuroscientist John O’Keefe [12]
for the discovery of place cells (type of neurons) in the rat’s hippocampus. Place cells respond when
an animal is in a particular region in its environment (stimuli space). Different place cells respond in
different regions. The regions in which a place cell responds are called its place field. Place cells and
their place fields encode binary information about the responses of an animal in a given environment.
So, the study of binary codes is an essential part of this area of research.

We define a neural code C to be a collection of subsets of the set [n] = {1,2, . . . ,n}. Each element
of C is called a codeword. Given a collection of place fields one can associate it with a neural code.
Consider a collection of place fields, U = {U1, . . . ,Un} in some stimuli space X ⊆ Rk. Then the
associated neural code for U is defined as

C (U ) =

{
σ ∈ [n]

∣∣∣ ⋂
j∈σ

U j\
⋃
i ̸∈σ

Ui ̸= φ

}
.

We call A U
σ =

⋂
j∈σ

U j\
⋃
i ̸∈σ

Ui the atom of a codeword σ ∈ C (U ), and denote Uσ =
⋂
j∈σ

U j. Fix

U/0 = X . Figure 1 discusses an example to obtain a neural code from a given collection of place fields.
Conversely, given any neural code C , one can associate a collection of regions (subsets of some Rk)
that can represent the neural code geometrically. We say that a neural code C is realizable if there
exists a collection U = {U1, . . . ,Un} with Ui ⊆ X ⊆ Rk, such that C = C (U ). Here, U is called the
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Figure 1. This figure has four place fields in the stimuli space X ⊆R2. The associated
neural code is { /0,1,2,3,12,124} Technically the code obtained should have been
written as { /0,{1},{2},{3},{1,2},{1,2,4}}. But we abuse the notations for simplicity
throughout the paper.

realization of C and X its stimuli space. Further, we will address neural codes as simply codes for the
rest of the paper. Also, we will fix the notation X for the stimuli space of a realizable code.

Experimental data [3] showed that the place fields are approximately open convex sets in R2. So,
for every realizable code C , there is a natural question to ask about the topological properties of the
subsets Ui of U . The realization U of a code C is called open convex if each set Ui is open convex in
Rk. In this case, C is referred as an open convex code. Similarly, we can have a convex or a closed
convex code. Next, we discuss about minimal embedding dimension of a code. Let C be a realizable
code with X ⊆ Rk as its stimuli space. Then k is said to be minimal embedding dimension of the code
C , if there exists no l < k with a collection U ′ in Rl such that C (U ′) = C . Franke and Muthiah [6]
provided an algorithm to prove that every code is convex. Cruz et al. [2] showed that if a code C is
max intersection-complete1 then it is both open convex and closed convex.

In 2013, Curto et al. [4] explored this topic and brought some algebraic direction to it. They
associated a ring structure to a given code C on n neurons, and called it a neural ring RC associated with
C . They defined RC as F2[x1,x2, . . . ,xn]/IC where IC = { f ∈ F2[x1,x2, . . . ,xn] | f (c) = 0 for all c ∈
C }. For any codeword c the characteristic function ρc

2 has Π
ci=1

xi Π
c j=0

(1− x j) as its polynomial form.

Curto and Youngs [5] discuss ring homomorphisms between two neural rings. They proved that there
is a 1-1 correspondence between code maps q : C → D and the ring homomorphisms φ : RD → RC .
The map q associated with the ring homomorphism φ is denoted by qφ , and is called the associated
code map. They also showed that RC

∼= RD if and only if |C | = |D |. That means, the neural ring
loses information of the codewords present in the code and only considers the cardinality of the
code. So, they defined some more relevant conditions on the ring homomorphisms, and called these
maps called neural ring homomorphisms. Further characterized neural ring homomorphisms with the

1A code C is max intersection-complete if C contains all intersections of its maximal codewords.

2The characteristic function is given by ρc(v) =

{
1 if v = c

0 otherwise.
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associated code maps. Lastly, they connected the idea of codes being open convex with neural ring
homomorphisms.

Curto et al. [4] also defined a neural ideal as JC = ⟨{ρc | c ̸∈ C }⟩. Neural ideal is closely associated
to Stanley-Reisner ideal [11]. Jeffs, Omar and Youngs [9] tried to get all ring homomorphisms
from F2[y1, . . . ,yn]→ F2[x1, . . . ,xm] that preserve neural ideals. They showed that only specific ring
homomorphisms satisfy the above condition. Brown and Curto [1] defined periodic codes inspired
by the sound localization system of barn owls. These codes have special patterns that signify the
periodicity of the stimulus. They showed that, except for some special cases, this code need not be
convex. They introduced a concept known as convex closures, a way of adding codewords to make a
code convex. Further, they construct convex closure of periodic codes. We worked with a subclass of
periodic codes and called them circulant codes with support p. We count neural ring endomorphisms
for numerous codes in this class.

In this paper, we have worked with combinatorial and algebraic properties of some specific kinds
of codes. In the following two sections, we work with the combinatorial and topological properties
of codes. However, the last two sections are exclusively for the algebraic properties. This paper is
structured as follows. In section 2, we work with a conjecture given by Franke and Muthiah [6]. We
provide a few classes of examples in Proposition 2.2 and Remark 2.4 that satisfy this conjecture. Also,
we give a counterexample for the converse of this conjecture. We introduce a new class of codes
called doublet maximal codes in section 3. The main result in section 3 is Theorem 3.8, which states,
“If a code is doublet maximal, then it is open convex if and only if it is max intersection-complete.”
In section 4, we see the relationship of two codes being max intersection-complete via a code map
between them (Theorem 4.9). In the last section, we work with circulant codes with support p. Figure
6 summarizes the main results of this section.

2. Convex codes in dimension 1 and 2

Franke and Muthiah [6] worked on convex codes and wanted to give a direct relation between convex
and open convex codes. They gave the following conjecture:

Conjecture 2.1. [6, Conjecture 2] Suppose C is open convex and has a minimal open convex embedding
dimension of 2. Then the minimal convex embedding dimension of C is 2.

This conjecture seems to hold. We may not yet have a proof for it, but we have two classes of
examples that satisfy the conjecture. Further, we will try to see if the converse of this conjecture holds.

Proposition 2.2. Let C be a code containing subset {i, j,k,σ}, where i, j,k ∈ σ ⊆ [n] and i, j,k are
all distinct elements in [n]. Then the minimal convex embedding dimension of such a code C is greater
than 1.

Proof. Let C be a given code containing {i, j,k,σ}. We show that this code cannot be convex
realizable in R. If possible, let it have a convex realization U in R. Let l ∈ {i, j,k}, then we observe
that Ul ∩A U

l ̸= /0 and Ul ∩A U
σ ̸= /0 as l ∈ σ . Since atoms are disjoint Ul must contain at least two

points. However as Ul’s are convex sets in R, they must be intervals.
Without loss of generality we may assume that Ui is open, U j is clopen (neither closed nor open) and

Uk is a closed set. Fix Ui = (ai,bi) for some ai ̸= bi ∈R. Since i jk ⊆ σ ∈ C we have Ui ∩U j ∩Uk ̸= /0.
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ai a j bi b j

Ui U j

Figure 2. This figure gives us the construction of Ui,U j of the Proposition 2.2

This implies that Ui ∩U j ̸= /0. Therefore we choose a j such that ai < a j < bi. Also, as A U
j ̸= /0,

we get U j ∩
⋂
l ̸= j

(Ul)
c = U j ∩

(⋃
l ̸= j

Ul

)c

= U j\
⋃
l ̸= j

Ul ̸= /0. Further, this implies U j ∩Uc
i ̸= /0. So, we

must have b j ∈Uc
i . We choose b j > bi and construct U j = (a j,b j]. The above construction is shown

in figure 2. Now Uk must intersect Ui ∩U j. Therefore we choose ak such that a j < ak < bi. As
A U

k =Uk\
⋃
l ̸=k

Ul ̸= /0 and with similar calculations as above we see Uk ∩ (Ui ∪U j)
c ̸= /0. So we must

have bk lying in (Ui ∪U j)
c. Hence choose bk > b j, and construct Uk = [ak,bk]. But this gives us that

U j ⊂Ui ∪Uk, leaving A U
j = /0. That is a contradiction to the fact that j ∈ C = C (U ).

Note that we have constructed U j and Uk to the right of Ui. The proof is similar even if we construct
the sets on the left side of Ui. Therefore the code cannot be convex realized in dimension 1. Hence the
minimal convex embedding dimension is greater than 1. □

Proposition 2.3. Let C ′ be a code containing the subsets {i, j,k,σi j,σik,σ jk} where i, j,k are distinct
elements of [n] and i, j ∈ σi j ⊆ [n] with k /∈ σi j, and similarly for σik,σ jk. Then the minimal convex
embedding dimension for the code C ′ is greater than 1.

Proof of Proposition 2.3 is similar to proof of Proposition 2.2.

Remark 2.4. Thus we establish two classes of examples

C ⊇{i, j,k,σ} (i, j,k ∈ σ ⊆ [n])

C ′ ⊇{i, j,k,σi j,σik,σ jk} (as defined above)

that have minimal convex embedding dimension greater than 1. So, if C (or C ′) has a minimal open
convex embedding dimension 2, then C (or C ′) is a supporting class of example for the Conjecture 2.1.

Remark 2.5. Jeffs [7] defined sunflower to be a collection of sets {U1,U2, . . . ,Un} such that Ui ∩U j
is nonempty and a constant subset for all i ̸= j. The code we obtain from a convex open sunflower
with n ≥ 3 always contains {1,2,3,123 . . .n}. Hence the codes obtained from open convex sunflowers
always satisfy the hypothesis of Proposition 2.2. However, the converse may not be true. For example,
the realization of the code {1,2,3,4,123} is not a sunflower but the code satisfies hypothesis of
Proposition 2.2.

Example 2.6. The code C = {1,2,3,123} has a convex realization in dimension 2 (Fig. 3a). The
stimuli space of this code is X =U1 ∪U2 ∪U3. By Proposition 2.2, this code has no convex realization
in dimension 1. Thus the code C cannot have an open convex realization in dimension 1. Hence
the minimal convex embedding dimension must be 2 for the code C . Moreover, the sets Ui are open
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U1

U2 U3

(a) C = {1,2,3,123}

U1

U2 U3 U5

U4 U6
X

(b) C = { /0,1,2,3,4,6,45,56,123}.

Figure 3

(Fig. 3a) . Thus the same figure gives us an open convex realization for the code C in dimension 2.
Therefore we have the minimal open convex embedding dimension as 2 for this code.

Let us now look at the converse statement of Conjecture 2.1 which states that if the minimal convex
embedding dimension of a code is 2, then its minimal open convex embedding is also 2. Consider the
code, C = { /0,1,2,3,4,6,45,56,123}. The figure shown below (Fig. 3b) gives a convex realization of
the code in R2. Note that in the figure the right-most boundary of U4 is included. Moreover, all the other
sets are open in R2. As {1,2,3,123} ⊆ C by Proposition 2.2, C does not have a convex realization in
R. Hence the minimal convex embedding dimension for C is 2. Further, D = { /0,4,6,45,56} ⊆ C .
Jeffs [8, Example 2.1] showed that D cannot be an open convex code. Therefore C cannot have an
open convex realization. Hence C serves as a counterexample for the converse of the Conjecture 2.1.

3. Doublet maximal codes

A codeword σ is said to be maximal if it is not contained in any other codeword of C . In other words,
if there exists τ ∈ C such that σ ⊆ τ, then σ = τ. Maximal codewords play an important role. We will
see that atoms corresponding to maximal codewords have special properties. The following lemma
gives us one such.

Lemma 3.1. Let τ ∈C be a maximal codeword, and let C have a convex realization, U = {U1,U2, . . . ,Un}
in Rm, then

(1) Uτ ⊆

(⋃
i ̸∈τ

Ui

)c

(2) If all Ui’s are open in Rm (i.e., C is open convex) then A U
τ is open in Rm.

Proof. Let C be the given code with the convex realization U = {U1,U2, . . . ,Un} and let X be its
stimuli space.

(1) If τ = [n], then

(⋃
i/∈τ

Ui

)c

=U/0 = X . This implies the result is true, trivially. Let τ be some

other maximal codeword in C such that Uτ ̸⊆

(⋃
i ̸∈τ

Ui

)c

. Then there exists some x ∈Uτ and
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x ̸∈

(⋃
i̸∈τ

Ui

)c

. This implies that x ∈
⋃
i ̸∈τ

Ui. Therefore there exists k ̸∈ τ such that x ∈Uk. Define

a codeword β such that β = {i ∈ [n] | i ̸∈ τ and x ∈Ui}. Thus clearly β ̸= /0. Denote α = τ ∪β .
Since x ∈Ui for all i ∈ β we have that x ∈Uβ . This implies x ∈Uτ ∩Uβ =Uα . Also, x ̸∈

⋃
i ̸∈α

Ui,

as α contains exactly those i’s for which x ∈Ui. Therefore x ∈Uα\
⋃
i ̸∈α

Ui = A U
α . Hence as

A U
α ̸= /0, we have τ ⊊ α ∈ C (U ) = C , which contradicts the maximality of τ. Hence the

proof.

(2) We know that A U
τ =Uτ

∖⋃
i ̸∈τ

Ui =Uτ ∩

(⋃
i ̸∈τ

Ui

)c

. Using part (1) we have A U
τ =Uτ . Since

finite intersection of open (or closed) sets is open (or closed) we have the proof.
□

Remark 3.2. In the case when the code is closed convex the atom of maximal codeword will be a
closed set. The proof of this is similar to part 2 of Theorem 1.

Next, we work with codes called max intersection-complete. Cruz et al. [2] defined max intersection-
complete codes as follows.

Definition. The intersection completion of a code C is the collection of all non-empty intersections of
codewords in C :

Ĉ =

{
σ

∣∣∣ σ =
⋂

v∈C ′
v for some non-empty sub-code C ′ ⊆ C

}
.

Denote M(C ) to be the collection of all maximal codewords of C . Note that
⋃

σ∈M(C )

σ = [n]. A code

C is said to be max intersection-complete if M̂(C ) ⊆ C . For example, if M(C ) = {τ1,τ2}, then C
will be max intersection-complete, if and only if τ1 ∩ τ2 ∈ C .

Cruz et al. [2] showed that the codes that are max intersection-complete are both open convex and
closed convex. Also, they gave an upper bound for the minimal embedding dimension of such codes.
We look at the converse of the theorem, i.e., whether open convex codes are max intersection-complete?
The code C = {3,5,12,13,14,45,123,124,145}, is open convex in dimension 1, but it is not max
intersection-complete. Figure 4 has further details of this code C . We observed that having 3 maximal
codewords did break the converse. Hence we propose the following result.

Theorem 3.3. Let C be a code that contains the empty set as a codeword along with exactly two
maximal codewords. Then C is open convex if and only if C is max intersection-complete.

Proof. Let M{C }= {τ1,τ2}. We know by Theorem 1.2 of [2] that if C is max intersection-complete
then C is both open convex and closed convex. So we already have the proof for the necessary
condition. Next, the proof for sufficient condition consider C to be an open convex code. We will show
that C is max intersection-complete. Let σ = τ1∩τ2. If σ = τ1∩τ2 = /0 then M̂(C ) = { /0} ⊆C . Hence
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0 1 2 3 4 5 6 7 8 9 10 11

U1 U2U3 U4 U5

A U
145

A U
14

A U
124

A U
12

A U
123

A U
13

A U
3

A U
45 A U

5

Figure 4. This figure gives a code C = C (U ) = {3,5,12,13,14,45,123,124,145}
realized by {U1,U2,U3,U4,U5}. The code C is open convex in dimension 1 and
123,145 are maximal codewords, whose intersection is 1 and 1 doesn’t belong to C .

in this case C is max intersection-complete. Next, assume σ ̸= /0. Let U = {U1, . . . ,Un} be a collection
of open convex sets in some Rm such that, C (U ) = C . For C to be max intersection-complete, we
need to show σ ∈ C . Suppose not. Then, as σ ̸∈ C = C (U ), the atom of σ , A U

σ = /0. Therefore,

(1) Uσ

∖ ⋃
j ̸∈σ

U j = /0 =⇒ Uσ ⊆
⋃
j ̸∈σ

U j

Also, A U
τi

=Uτi
for i = 1,2 by Lemma 3.1. Next, we show that Uτ1

and Uτ2
form a separation3 of Uσ .

As τ1,τ2 ∈ C = C (U ), we have A U
τ1

̸= /0 and A U
τ2

̸= /0. Consequently, Uτ1 and Uτ2 are non-empty.

Further, as A U
τ1

∩A U
τ2

= /0 we have Uτ1
∩Uτ2

= /0. Moreover, Uσ ,Uτ1
and Uτ2

are open in Rm as they
are the finite intersection of open sets. Also, for i = 1,2 we have Uτi

=Uτi
∩Uσ as Uτi

⊆Uσ . So, Uτ1
and Uτ2

are open in Uσ . Therefore it is only left for us to prove that Uσ =Uτ1
∪Uτ2

. Observe that

Uτ1
=
⋂
j∈τ1

U j =
⋂
j∈σ

U j ∩
⋂
i∈τ1
i̸∈σ

U j =Uσ ∩Uτ1\σ .

Similarly Uτ2
=Uσ ∩Uτ2\σ . Thus, Uτ1

∪ Uτ2
=
(

Uσ ∩Uτ1\σ

)
∪
(

Uσ ∩Uτ2\σ

)
=Uσ ∩

(
Uτ1\σ ∪Uτ2\σ

)
.

Claim. Uσ ⊆
(

Uτ1\σ ∪Uτ2\σ

)
. Suppose not. Then there exists an x∈Uσ such that x ̸∈

(
Uτ1\σ ∪Uτ2\σ

)
.

So, x ̸∈Uτ1\σ and x ̸∈Uτ2\σ . But, from Equation 1, x ∈
⋃
j/∈σ

U j. Thus x ∈Uk for some k /∈ σ . Note that,

k /∈ σ =⇒ k ∈ [n]\σ =⇒ k ∈ (τ1 ∪ τ2)\σ

This implies there exists a k ∈ (τ1\σ)∪ (τ2\σ) such that x ∈Uk. But this is a contradiction to the fact
that x ̸∈Uτ1\σ and x ̸∈Uτ2\σ . Hence the supposition is wrong, implying Uσ ⊆

(
Uτ1\σ ∪Uτ2\σ

)
.

By the claim we get Uτ1
∪ Uτ2

=Uσ . This means that Uτ1
and Uτ2

form a separation of Uσ . But Uσ

is intersection of connected sets so it must be a connected set itself. Hence cannot have a separation.
Thus σ ∈ C (U ) = C . □
3A separation of X is a pair U,V of disjoint nonempty open subsets of X whose union is X . The space X is not connected if
there exist a separation.
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0 1 2 3 4 5 6 7 8 9 10 11
U2

U1 U3

U4

U5 U6

A U
45A U

23A U
2A U

12 A U
4 A U

46

X = R

A U
/0

Figure 5. This figure gives a code C = { /0,2,4,12,23,45,46}.

Remark 3.4. The above theorem holds for closed convex. Also, in the proof the only difference is that
the separation comes from closed sets.

Example 3.5. Consider the sets U = {U1,U2,U3,U4,U5,U6} in R as in Figure 5. Let C = C (U ) =
{ /0,2,4,12,23,45,46}. The code C has 4 maximal codewords. Moreover, C is max intersection-
complete as well as open convex. But the interesting fact is that one can split the nonempty codewords
into C = C1 ∪ C2, where C1 = { /0,2,12,23} and C2 = { /0,4,45,46}. The codes C1 and C2 satisfy the
hypothesis of the Theorem 3.3. This leads us to define a new class of codes called doublet maximal
codes.

Definition (doublet maximal codes). A code C is called a doublet maximal if M(C ) = {τi}i∈[p], the
collection of all maximal codewords of C , have the property that for every i ∈ [p] there exists at most
one j ̸= i such that τi ∩ τ j ̸= /0.

Example 3.6. (1) Let C1 = { /0,2,4,12,23,45,46}. This is a doublet maximal code with two pairs
of maximal codewords {12,23} and {45,46}.

(2) Let C2 = { /0,2,4,12,23}. This is a doublet maximal code with one pair, {12,23} and and one
singleton, {4} as maximal codewords.

(3) Let C3 = {3,5,12,13,14,45,123,124,145}. This is a non-example. This code has 3 maximal
codewords with all pairwise intersections being non-empty. Also, from Figure 4 we can see
that this code is not max intersection-complete.

Remark 3.7. The code C1 in Example 3.6 is both open convex and max intersection-complete. Naturally,
one wants to know if this is true for all doublet maximal codes. We have successfully generalized
Theorem 3.3 to all doublet maximal codes. Before we state the generalization we introduce restriction
of a code.

Definition. Let C be a code on n neurons and Γ ⊆C . Then the restriction of the code C to Γ is defined
as,

C |Γ = {α ∈ C | α ⊆ γ for some γ ∈ Γ}.
For example let C = {3,4,12,34,123,345} and Γ = {34,123} then C |Γ = {3,12,34,123}.

Now, we give the generalization of Theorem 3.3 in the following result.

Theorem 3.8. Let C be a doublet maximal code with /0 ∈ C then C is open (or closed) convex if and
only if C is max intersection-complete.
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Proof. Let C be a doublet maximal code. Assume C to be open convex. We will show that C is
max intersection-complete. The strategy for proving the sufficient condition is to use Theorem 3.3,
iteratively. We now discuss the details. Let U = {U1, . . . ,Un} be an open convex realization of C with
Ui ⊆ Rk. Let R = {(σ ,τ) ∈ M(C )×M(C ) | σ ∩ τ ̸= /0}. Then R defines an equivalence relation on
M(C ). Let [σ ]R denote the equivalence class of σ ∈ M(C ) with respect to R. Then, by the definition
of doublet maximal codes,

∣∣ [σ ]R
∣∣ ∈ {1,2}. Let

∣∣{[σ ]R | σ ∈ M(C )}
∣∣= m. Let us choose some order

on {[σ ]R | σ ∈ M(C )} and write it as
{[

σ
1]

R , . . . , [σ
m]R
}
.We further partition U into {U1, . . . ,Um},

where

Ui =

U j

∣∣∣ j ∈
⋃

α∈[σ i]R

α

 .

Note that C (Ui) is an open convex sub-code of C with M(C (Ui)) =
[
σ

i]
R. So, C (Ui) = C |[σ i]R

.

Observe /0 ∈ C (Ui) for all i ∈ [m]. Moreover, C = ∪m
i=1C (Ui) since {U1, . . . ,Um} is a partition of U .

For all i ∈ [m], |M(C (Ui))| ∈ {1,2} and /0 ∈ C (Ui) implies that each C (Ui) satisfy the hypothesis of
Theorem 3.3. Moreover, C (Ui)’s are all open convex. Hence by Theorem 3.3, for all i ∈ [m], C (Ui) is
max intersection-complete.

Finally, we will show that C is max intersection-complete. For that, we will show that M̂(C )⊆ C .
Let M′ ⊆ M(C ). We will consider various cases for M′ and show that in each case, ∩v∈M′ v ∈ C . Note
that if |M′| ≤ 1, there is nothing to prove. Further cases are as follows:
Case 1: |M′|> 2. Then by the definition of doublet maximal code ∩v∈M′ v = /0. Since /0 ∈ C , we are
done for this case.
Case 2: |M′|= 2. Let M′ = {τ1,τ2}.Then ∩v∈M′ v = τ1 ∩ τ2. We have following two sub-cases:
Case 2a: There exists an i ∈ [m] such that τ1,τ2 ∈

[
σ

i]
R . In this case τ1 and τ2 are the only maximal

codewords of the code C (Ui). Since C (Ui) is max intersection-complete, τ1 ∩ τ2 ∈ C (Ui) ⊆ C .
Hence the case.
Case 2b: There exist i, j ∈ [m] with i ̸= j such that τ1 ∈

[
σ

i]
R and τ2 ∈

[
σ

j]
R. Since i ̸= j we have

τ1 ∩ τ2 = /0. Thus, in this case, τ1 ∩ τ2 ∈ C . Hence the case.
Therefore, for given any M′ ⊆ M(C ), ∩v∈M′ v ∈ C . Thus M̂(C )⊆ C . Hence C is max intersection-
complete.
The proof for the necessary condition comes directly from Theorem 1.2 of [2] which states that if C is
max intersection-complete then C is both open convex and closed convex. □

So far, we have studied the type of codewords in a code and captured that essence to connect it with
the topological properties of the code, like open convex and closed convex. However, in the remaining
part of the paper, we will work in the algebraic direction of codes. We will explore the algebraic tools
developed over the past decade to study codes, like neural rings and neural ring homomorphisms. Then
connect the code’s algebraic properties to the code’s properties based on the type of codewords, like
max intersection-complete. Moreover, in the remaining part of our paper, we will work with the binary
form of the codewords instead of the set form used in previous sections. The binary form makes it
easier for us to work with neural rings. Also, we will use the same binary form in section 5 where we
define specific matrices based on this form. This will help us observe some exciting results.
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4. Neural ring homomorphisms and max intersection-complete codes

4.1. Background and Preliminaries. In this section, we consider the codewords in their binary form.
For any c ∈ C we will write c = c1c2 · · ·cn, where ci is 1 if i ∈ c and 0 otherwise. This is same as
seeing C ⊂ {0,1}n. Curto and Youngs [5] gave description of neural ring homomorphisms as follows

Definition. Let C ⊂ {0,1}n and D ⊂ {0,1}m be codes, and let RC = F2[y1, . . . ,yn]/IC and RD =
F2[x1, . . . ,xm]/ID be the corresponding neural rings. A ring homomorphism φ : RD → RC is a neural
ring homomorphism if φ(x j) ∈ {yi | i ∈ [n]}∪{0,1} for all j ∈ [m], where xi = ∑

{d∈D |di=1}
ρd . A neural

ring homomorphism φ is a neural ring isomorphism if it is a ring isomorphism and its inverse is also a
neural ring homomorphism.

At the beginning of their paper, Curto and Youngs [5] discuss ring homomorphisms between two
neural rings. They proved that there is a 1-1 correspondence between code maps q : C → D and the
ring homomorphisms φ : RD →RC . The map q, associated with the ring homomorphism φ is denoted
by qφ . Later, the authors classify all the neural ring homomorphisms using the following theorem:

Theorem 4.1. [5, Theorem 3.4] A map φ : RD → RC is a neural ring homomorphism if and only if
qφ is a composition of the following elementary code maps:

(1) Permutation
(2) Adding a trivial neuron (or deleting a trivial neuron)
(3) Duplication of a neuron (or deleting a neuron that is a duplicate of another)
(4) Neuron projection (or deleting a not necessarily trivial neuron)
(5) Inclusion (of one code into another)

Moreover, φ is a neural ring isomorphism if and only if qφ is a composition of maps (1)− (3).

Lastly, Curto and Youngs [5] connected the idea of codes being open convex with neural ring
homomorphisms using the following theorem,

Theorem 4.2. [5, Theorem 4.3] Let C be a code containing the all-zeros codeword and q : C → D a
surjective code map corresponding to a neural ring homomorphism. Then if C is convex (open convex),
D is also convex (open convex) with d(D)≤ d(C )4.

Remark 4.3. We observe that the above theorem holds for closed convex codes too. The proof can be
obtained similar to the original version given by Curto and Youngs [5].

4.2. Main Theorem. Now we will try to connect neural ring homomorphisms with the max intersection-
complete property. For the remainder of the section, we assume that C is a code on n neurons and the
number of neurons of code D will be specified if and when required.

Observation 4.4. Let q : C → D be a code map corresponding to a given neural ring homomorphism
φ : RD → RC . If σ ⊆ τ in C then q(σ)⊆ q(τ) in D .

This observation is fairly computational and can be obtained by applying any of the five maps of
Theorem 4.1 to an arbitrary codeword of C .
4d(C ) is used by the authors to denote the minimal open convex embedding dimension of the code C .
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Lemma 4.5. Let q : C → D be either a permutation, or adding/ deleting a trivial or duplicate neuron,
then τ ∈ C is a maximal codeword if and only if q(τ) ∈ D is a maximal codeword.

Proof. If q is either a permutation, or adding/ deleting a trivial or duplicate neuron then the correspond-
ing neural ring homomorphism is an isomorphism. This implies that q is a bijection [5, Proposition
2.3].

Let τ ∈ C be a maximal codeword. Suppose q(τ) is not a maximal codeword in D . Then there
exists q(λ ) ∈ D such that q(τ)⊊ q(λ ). This implies τ ⊊ λ as q is a bijection. This is a contradiction
to the fact that τ is a maximal codeword in C .

Conversely, if q(τ) is maximal codeword in D . Then one can show that τ is a maximal codeword in
C using q−1 and the same idea as used in the first part of the proof. This works because q−1 is again
either a permutation, or adding / deleting a trivial or duplicate neuron and so fits the hypothesis of the
necessary conditions. □

Lemma 4.6. Let q : C → D be a projection. If σ ∈ D is a maximal codeword then there exists a
maximal codeword τ ∈ C such that q(τ) = σ .

Proof. Let us assume that q : C →D is a projection map by deleting the last (nth) neuron of codewords
of C . Then clearly q a is surjective map. Let σ = σ1σ2 · · ·σn−1 ∈D . Therefore there exists τ ∈ C such
that q(τ) = σ . Moreover, we precisely know the choices of τ. It can either be σ followed by 1 or 0.
Label α := σ1σ2 · · ·σn−10 and β := σ1σ2 · · ·σn−11. Now C may have α or β , or both as its elements.
Clearly, α ⊆ β , therefore the case in which both α and β exist in C is redundant. So, we only have the
following two cases.
Case 1: β ∈ C . In this case we claim β is a maximal codeword in C . Suppose not. Then there exists
γ ∈ C such that β ⊊ γ then by Observation 4.4 we have q(β )⊆ q(γ). But as σ = q(β ) is a maximal
codeword in D we get q(β ) = q(γ). This implies β = γ or α = γ. This is a contradiction as β ⊆ γ and
α ⊆ β and so, α ̸= γ.
Case 2: β ̸∈ C . In this case we claim that α is maximal codeword and the proof is similar to the
previous case.
Hence the proof. □

Remark 4.7. Converse of Lemma 4.6 need not hold. For example consider the code
C = {100,010,001,011,101,110} and project the code to get D = {00,10,01,11}. Clearly, 011 ∈ C
is a maximal code but q(011) = 01 ⊆ 11. This implies that 011 is no more a maximal codeword after
projection.

Remark 4.8. In this remark we see binary representation of intersection of two codewords. We will
use this idea in our next proof. Let α,β ∈ C be two codewords and γ = τ1 ∩ τ2. Let α = α1 · · ·αn,
β = β1 · · ·βn and γ = γ1 · · ·γn be their binary representation, respectively. Then we observe that binary

representation of γ is given as: γ j =

{
1 if α j = β j = 1
0 otherwise.

Next we have the main result of this section.

Theorem 4.9. Let q : C → D be a surjective code map corresponding to a neural ring homomorphism.
Then if C is max intersection-complete, so is D .

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

26 Aug 2023 02:22:28 PDT
211116-Gupta Version 4 - Submitted to Rocky Mountain J. Math.



12

Proof. By Theorem 4.2 the surjective code map will be a composition of permutations, adding/ deleting
a trivial or duplicate neuron, or projection. So, it is sufficient to assume all of them independently and
prove the above statement. Let α,β ∈ D be maximal codewords, we need to show that α ∩β ∈ D .
Permutation: As q is a bijection, there exists unique σ ,τ ∈ C such that α = q(σ), and β = q(τ).
By Lemma 4.5, σ ,τ ∈ C are maximal codewords. This implies by hypothesis λ = σ ∩ τ ∈ C . Let
σ = σ1 · · ·σn, τ = τ1 · · ·τn and λ = λ1 · · ·λn be their binary representation, respectively. Further, let
p ∈ Sn be a permutation. Then we have α = σp(1)σp(2) · · ·σp(n) and β = τp(1)τp(2) · · ·τp(n) Then let
q(σ)∩q(τ) = α ∩β := γ = γ1γ2 · · ·γn; where

γ j =

{
1 if α j = β j = 1
0 otherwise

=

{
1 if σp( j) = τp( j) = 1

0 otherwise
= λp(i).

This implies γ = λp(1)λp(2) · · ·λp(n) = q(λ ) ∈ D .

Adding a trivial or duplicate neuron: As q is a bijection, there exists unique σ ,τ ∈ C such that
α = q(σ), and β = q(τ). By Lemma 4.5, σ ,τ ∈C are maximal codewords. This implies by hypothesis
λ = σ ∩ τ ∈ C . Let σ = σ1 · · ·σn, τ = τ1 · · ·τn and λ = λ1 · · ·λn be their binary representation,
respectively. Then α = σ1σ2 · · ·σnd and β = τ1τ2 · · ·τne, where, d,e ∈ {0,1} depending upon the map

q. It is clear that α ∩β = λ1λ2 · · ·λn f , where f =

{
1 if d = e = 1
0 otherwise

. As d,e depend on the map

q we get α ∩β = q(λ ) ∈ D .
Deleting a trivial or duplicate neuron: As q is a bijection, there exists unique σ ,τ ∈ C such that
α = q(σ), and β = q(τ). By Lemma 4.5, σ ,τ ∈C are maximal codewords. This implies by hypothesis
λ = σ ∩ τ ∈ C . Let σ = σ1 · · ·σn, τ = τ1 · · ·τn and λ = λ1 · · ·λn be their binary representation,
respectively. Then α = σ1σ2 · · ·σn−1 and β = τ1τ2 · · ·τn−1. It is clear that α ∩β = λ1λ2 · · ·λn−1 =
q(λ ) ∈ D .
Projection: We just extend the idea from deleting a trivial or duplicate neuron in view of Lemma 4.6.
That is if α and β are maximal codewords in D there exist maximal codewords σ ,τ ∈ C such that
q(σ) = α and q(τ) = β . Rest follows.

Hence the proof. □

Remark 4.10. The converse of Theorem 4.9 need not be true. For example consider the codes
C = {100,010,001} and D = {00,10,01}. Consider the projection map q : C →D ,100 7→ 10,010 7→
01 and 001 7→ 00. The map q satisfies the hypothesis of the converse. But C is not max intersection-
complete. This led us to think that converse will hold when the code map corresponds to a neural ring
isomorphism. That is in fact true and hence we have the following corollary.

Corollary 4.11. Let q : C → D be a code map corresponding to a neural ring isomorphism. Then C
is max intersection-complete if and only if D is max intersection-complete.

The proof for the sufficient condition of the corollary is exactly the proof of Theorem 4.9. Further as q
corresponds to a neural ring isomorphism, q is bijective and q−1 : D → C also corresponds to a neural
ring isomorphism. So the proof of the necessary condition of the corollary comes by considering the
map q−1 instead of q in Theorem 4.9.
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In the next section, we ask interesting questions like counting the number of possible neural ring
endomorphisms for some specific class of neural rings. Thus the next section is going to be more in an
algebraic and combinatorial direction.

5. Counting Neural ring endomorphisms

Denote NRE{RC } to be the collection of all neural ring endomorphisms on RC . Our first natural
question is the structure of NRE{RC }. We observe that NRE{RC } has a monoid structure with binary
operation as the usual function composition. The second natural question we ask is the cardinality
of NRE{RC } for a given code C on n neurons. The motivation for this question has simply been to
study the object NRE{RC } for a given code C . So, this section is devoted to finding the cardinality of
NRE{RC } for a specific class of codes C . Our specific class of interest is “circulant codes” (refer to
Section 5.2). This class is, in fact, a subclass of periodic codes introduced by Brown and Curto [1].
Calculating the cardinality of the entire class may be a larger and a difficult question; instead we will
work on a smaller subclass “circulant codes of support p” (refer to Section 5.2). We show that it is
enough to work with this subclass to be able to give the answers for the larger question. To establish
this sufficiency condition, we have the following observation.

Observation 5.1. Let C ′ be a code obtained from C after applying any of the elementary code maps
(1) to (3) of Theorem 4.1. We observe that there is a one-one correspondence between NRE{RC } and
NRE{RC ′}. Let q : C → C ′ be any of the elementary code maps (1) to (3) of Theorem 4.1. Then by
Theorem 4.1 we have that the corresponding neural ring homomorphism, αq : RC ′ → RC is in fact a
neural ring isomorphism. Define the correspondence as the conjugation by α

−1
q , i.e.,

Φ : NRE{RC }→ NRE{RC ′}

φ 7→ α
−1
q ◦φ ◦αq.

The image of a map φ ∈ NRE{RC } under the map Φ is defined by compositions of neural ring
endomorphisms and is thus again a neural ring endomorphism. The map Φ is a bijection with its
inverse being conjugation by αq. Therefore we have |NRE{RC }|= |NRE{RC ′}|. Moreover, Φ is a
monoid isomorphism since it preserves composition and identity.

We will save this observation for section 5.2 specifically remark 5.7.

5.1. Classification of ring endomorphisms on neural codes. Let C = {c1,c2, . . . ,cm} be a code
on n neurons and ci = ci1ci2 · · ·cin be the binary representation of ci, where ci j ∈ {0,1}. As dis-
cussed in the introduction, Curto et al. [4] defined the neural ring associated to a code C , as
RC = F2[x1,x2, . . . ,xn]/IC where IC = { f ∈ F2[x1,x2, . . . ,xn] | f (c) = 0 for all c ∈ C }. The elements
of RC can be expressed as polynomials, with the understanding that a polynomial is a representative
of its equivalence class mod IC . Furthermore, there is a ring isomorphism between RC and ring of
functions from C to F2. Note that the ring of functions from C to F2 is also a vector space over F2.
Thus a canonical vector space structure is induced on RC . The elements of the ring RC can thus be
seen as functions from C to F2. For all i ∈ [m], ρci : C → F2 denotes the characteristic function given
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by,

ρci(v) =

{
1 if v = ci

0 otherwise,
for any v ∈ C .

In polynomial notation,

ρci = ∏
ci j=1

x j ∏
cik=o

(1− xk).

Further, throughout this section we write ρci as just ρi. Moreover, the set of characteristic functions
{ρi | i ∈ [m]} form a basis of the vector space RC over F2. Therefore, RC is a m− dimensional vector
space over F2. Hence RC is isomorphic to m copies of F2 i.e, RC

∼= F2⊕·· ·⊕︸ ︷︷ ︸
m−times

F2 as a vector space

over F2.
Denote RH{RC } to be the collection of all ring homomorphisms that preserve unity from RC into

itself. Note that RH{RC } is a semi-group with the composition of functions as the binary operation.
In 1974, Maxson [10] explored the semi-group of endomorphisms of a ring. He proved that the
semi-group of endomorphisms of F2⊕·· ·⊕︸ ︷︷ ︸

m−times

F2 is the set of all the partial functions from [m] into itself

and the endomorphisms which preserve unity corresponds to all the functions from [m] into itself.
Observe that the cardinality of the set of all partial functions from [m] to itself is (m+ 1)m and the
cardinality of the set of all functions from [m] to itself is mm. Therefore |RH{RC }|= mm.

Let us now describe an arbitrary map φ ∈ RH{RC }. The map φ is a ring homomorphism. Moreover,
φ will also be a linear map. So, to understand the map φ it sufficient to know the value of φ on

basis elements {ρi | i ∈ [m]}. Let φ map ρi to
m

∑
j=1

ai jρ j, where ai j ∈ F2. Therefore we say that φ is

determined by these vectors ai (φ ↔{ai}i∈[m]), where ai = (ai1,ai2, . . . ,aim) ∈ Fm
2 . Since the map φ is

a ring homomorphism, it will preserve the multiplication of RC . We will now obtain conditions on
vectors ai, so that φ preserves multiplication. We use the following facts given in [5]:

(1) ρiρ j =

{
0 if i ̸= j
ρi if i = j,

(2)
m

∑
i=1

ρi = 1RC
.

We fix the notation |ai| for the number of one’s occurring in ai.

Remark 5.2. In this remark we will derive some conditions on the vectors ai defined above.

(1) φ(ρi)φ(ρ j) =
m

∑
l=1

ailρl

m

∑
k=1

a jkρk =
m

∑
r=1

bi jrρr, where bi jr = aira jr.

(2) When i ̸= j ∈ [m] we have φ(ρi)φ(ρ j) = φ(ρiρ j) = φ(0) = 0. Therefore
m

∑
k=1

bi jkρk = 0. So,

bi jk = 0 for all k, whenever i ̸= j.
(3) Suppose for some i,k ∈ [m] let aik = 1. Then for all j ̸= i ∈ [m], we have from observation (2)

0 = bi jk = aika jk. This gives a jk = 0. This means for a given coordinate k ∈ [m], we have at
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most one vector ai such that aik = 1. So, the number of ones in all ai’s together is at most m.

Therefore
m

∑
i=1

|ai| ≤ m.

(4) We know that
m

∑
i=1

ρi = 1RC
= φ(1RC

)= φ

(
m

∑
i=1

ρi

)
=

m

∑
i=1

φ(ρi)=
m

∑
i=1

m

∑
j=1

ai jρ j =
m

∑
j=1

m

∑
i=1

ai jρ j =

m

∑
i=1

ai1ρ1 +
m

∑
i=1

ai2ρ2 + · · ·+
m

∑
i=1

aimρm. Comparing coefficients on both sides we get
m

∑
i=1

aik = 1

for all k ∈ [m]. This means for a given coordinate k ∈ [m], we have at least one vector ai such

that aik = 1. So, the number of ones in all ai’s together is at least m. Therefore
m

∑
i=1

|ai| ≥ m.

This and observation (3) gives us
m

∑
i=1

|ai|= m.

(5) If there is a vector ai with |ai|= r. Then observation (4) guarantees that there will be at least
r−1 number of j’s such that a j is a zero vector. Furthermore, if we assume that there exists an
i ∈ [m] such that |ai|= m, i.e., ai is an all ones vector, then for all j ̸= i we have a j is a zero
vector.

We will now define three different classes of maps in RH{RC }.

Definition. (1) Basis permutation maps (BPM): We call an element φ ∈ RH{RC } a basis
permutation map if for all i ∈ [m], |ai|= 1. There are m! number of such maps. We will denote
BPM{RC } as the set of all basis permutations maps from RC into itself.

(2) Unity maps (UM): We call an element φ ∈ RH{RC } a unity map if there exists i ∈ [m] such
that |ai|= m. From Remark 5.2 all the other vectors determining φ will then be zero vectors.
Therefore there are exactly m such maps. We will denote UM{RC } as the set of all unity maps
from RC into itself.

(3) Non-BPM and non-UM: These are the maps in RH{RC } other than basis permutations and
unity maps. So, cardinality of the set containing non-BPM and non-UM is then equal to
mm −m!−m. Let ψ be a map in this class. As ψ is not a BPM there exists at least one i ∈ [m]
such that |ai| ≥ 2. Therefore at least one other vector a j associated to ψ must be a zero vector.
So, we refer to this class as non unity maps with at least one a j = 0.

Note that when m = 1, the cardinality of RH{RC } is exactly 1, which is the identity map. Clearly
by definitions, this identity map will be both BPM and unity map. Also, note that in this case there are
no non-BPM and non-UM. When m > 1, it is evident from the definition of these three classes of maps
that they form a classification of RH{RC }.

Example 5.3. Let C be a code on n neurons with |C |= 3. We know that {ρ1,ρ2,ρ3} generates RC .
We give examples of three different ring endomorphisms one from each class on RC .

(1) Let a1 = (0,1,0), a2 = (0,0,1) and a3 = (1,0,0). The map φ given by {ai}i∈[3] is a basis
permutation map. Moreover, φ maps basis as follows: ρ1 7→ ρ2, ρ2 7→ ρ3, ρ3 7→ ρ1.

(2) Let a1 = (0,0,0), a2 = (1,1,1) and a3 = (0,0,0). The map φ given by {ai}i∈[3] is a unity map.
Moreover, φ maps basis as follows: ρ1 7→ 0, ρ2 7→ ρ1 +ρ2 +ρ3 = 1RC

, ρ3 7→ 0.
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(3) Let a1 = (1,0,1), a2 = (0,0,0) and a3 = (0,1,0). The map φ given by {ai}i∈[3] is a non-BPM
and non-UM . Moreover, φ maps basis as follows: ρ1 7→ ρ1 +ρ3, ρ2 7→ 0, ρ3 7→ ρ2.

Remark 5.4. Let φ ∈ RH{RC } be a unity map. Recall that x j = ∑
ci j=1

ρi. Then φ(x j) ∈ {0,1} for all

j ∈ [n]. This is because φ(ρ j) ∈ {0,1} for all j ∈ [m]. Therefore irrespective of the code, all unity
maps are neural ring endomorphisms. In particular, |NRE{RC }| ≥ m.

In the following subsection, we will restrict ourselves to codes on n neurons with cardinality m = n.
The rationale for this restriction is our focus on a specific class called ‘circulant codes with support p’.

5.2. Circulant codes. Let D = {d1,d2, . . . ,dn} be any code on n neurons. For all i ∈ [n] let di =
di1di2 · · ·din be the binary representation of di. The correspondent matrix of the code D is defined as
an n×n matrix with entries di j. A circulant matrix of order n is a square matrix which has a property
that each row is same as its previous row, just shifted to the right by one element, and the last element
gets shifted to the first position. Any circulant matrix A has the following general form:

A =


a1 a2 · · · an
an a1 · · · an−1
...

...
. . .

...
a2 a3 · · · a1

 .

So we can observe from the general form above that one row is enough to determine the entire circulant
matrix.

Consider the codeword c1 = 10 · · ·0, i.e., 1 followed by n−1 zeros. Shift 1 to the right to generate
the next codeword. Iterate this process and get the remaining n−2 codewords. In other words ci will
be a codeword containing 1 in ith place and 0 elsewhere. Let C = {ci}n

i=1 be the code with codewords
obtained as above. The correspondent matrix of the code C is a circulant matrix. Next, consider
c′1 = 1100 · · ·0 and similarly obtain a code C ′ using the above process. The correspondent matrix of
the code C ′ is also circulant. We give a generalized definition of such codes.

Definition (Circulant code). A code C on n neurons is called circulant code if the correspondent
matrix of the code C is circulant.

Note that the definition automatically gives that |C |= n.

Definition (Circulant code with support p). A code C = {c1,c2, . . . ,cn} on n neurons is called circulant
code with support p (1 ≤ p < n) if C is a circulant code and cp = 11 · · ·10 · · ·0 with p consecutive
ones followed by n− p zeros.

Remark 5.5. Note that for a circulant code with support p, all the codewords ci have |supp(ci)|= p,
where supp(ci) is the support of the codeword ci = ci1ci2 . . .cin which is the set

{
j ∈ [n] | ci j = 1

}
.

Observe that a circulant code with support p is always a circulant code but not the other way around. For
example, consider the code C = {101,110,011} and C ′ = {110,011,101} with elements reordered.
Then C is a circulant code on n = 3 neurons with support p = 2 whereas, C ′ is no more a circulant
code with support p = 2. Also, note that we do not consider p = n as in that case C = {11 · · ·11} is a
code with cardinality 1. Furthermore, we are interested only in the codes on n neurons with cardinality
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n. An important point to note here is that we have fixed the order of the elements in a circulant code
with support p.

Example 5.6. The following are few examples of circulant codes with support p.
(1) The code {100,010,001} is a circulant code with support p = 1 on n = 3 neurons.
(2) The code {1001,1100,0110,0011} is a circulant code with support p = 2 on n = 4 neurons.

Remark 5.7. As mentioned in the beginning of this section, our aim is to investigate NRE{RD} and
give its cardinality for circulant codes. To count NRE{RD} for a circulant code D , we first convert the
given code to a circulant code with some support p and label it as C . We can do this via a permutation
map. Moreover, using Observation 5.1 we get |NRE{RD}|= |NRE{RC }|. So, it is enough to work
with circulant code with support p.

A given map φ ∈ RH{RC } belongs to NRE{RC } if for all i ∈ [n],φ(xi) ∈ {xi|i ∈ [n]}∪{0,1}. So
we need to understand what xi’s are in the circulant codes with support p. First, we note that the
number of ρ j’s in the expression of xi comes from the number of 1’s in ith column of the correspondent
matrix of the code. For a circulant code, the correspondent matrix is a circulant matrix. Also, in a
circulant matrix, the row sum and column sum for all rows and columns is a constant. Therefore we
get that in a circulant code of support p, the number of terms in xi is the same for all i ∈ [n]. In fact
each xi will be a sum of p terms. Furthermore, we can see that xi will have p consecutive terms taken
circularly. For example, we observe that when n = 6, p = 4 we get x5 = ρ5 +ρ6 +ρ1 +ρ2. We will
now introduce a notation to write this rigorously. Given any m ∈ Z define m as

m =

{
n if m = kn, where k ∈ Z
m mod n otherwise.

Note that m = n when m is a multiple of n and it is m mod n otherwise.
Therefore, for i ∈ [n] we write

xi =
p−1

∑
k=0

ρi+k.

Moreover, ρi and ρi+p−1 are respectively the first and last (or pth) term in the expression of xi.
Let C be a circulant code with support p on n neurons. In the remaining part of this section we

will count the number of neural ring endomorphisms of C for p ∈ {1,2,3,n−1}. We are still working
on remaining cases for 3 < p < n−1. We have proposed conjectures for 3 < p < n−1 towards the
end of this section. Figure 6 summarizes this section. The upcoming result talks about the count of
NRE{RC } for circulant codes with support p = 1 and p = n−1.

Proposition 5.8. If C is a circulant code with support p = 1 or n−1, then |NRE{RC }|= n!+n.

Proof. Case 1: p = 1
When p = 1 we have xi = ρi for all i. Let φ ∈ BPM{RC }. Then given any ρi there exists some ρ j
such that φ(ρi) = ρ j for i, j ∈ [n]. Therefore for all i ∈ [n] we have φ(xi) = φ(ρi) = ρ j = x j for some
j ∈ [n]. This implies that φ ∈ NRE{RC }. Moreover, we already know that UM{RC } ⊆ NRE{RC }
for any code C . So, we have BPM{RC }∪UM{RC } ⊆ NRE{RC }. It is left to show that given any
non-BPM and non-UM, it is not in NRE{RC }. Let ψ be a non-BPM and non-UM with {ai}i∈[n] as
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its representing vectors. We know that there exists j ∈ [n] such that |a j| = k, where 2 ≤ k ≤ n− 1.
Consider,

ψ(x j) = ψ(ρ j) =
n

∑
l=1

a jlρl = ∑
a jl=1

ρl.

As |a j| = k we see that ψ(x j) has k terms in its expression. Since , 2 ≤ k ≤ n−1 we have ψ(x j) ̸∈
{xi|i ∈ [n]}∪{0,1} . Therefore ψ ̸∈ NRE{RC }. Hence BPM{RC }∪UM{RC } = NRE{RC } and
the result follows.
Case 2: p = n−1

When p = n− 1 for i ∈ [n] we get xi =
n−2

∑
k=0

ρi+k. Firstly observe that if φ ∈ BPM{RC } then φ(xi)

will also have exactly n− 1 terms. Secondly, the combination of n number of ρi’s taken n− 1 at a

time without repetition is
(

n
n−1

)
= n choices. Further all these n choices are included in xi’s as

they are exactly n distinct of them. Therefore there exists j ∈ [n] such that after rearrangement of
terms in the expression of φ(xi) we get φ(xi) = x j. This implies φ ∈ NRE{RC }. Hence we have
BPM{RC }∪UM{RC } ⊆ NRE{RC }. It is once again left to show that ψ, a non-BPM and non-UM
is not in NRE{RC }. Let {ai}i∈[n] be the vectors that represent ψ. As we noticed in Case 1, there exists
j ∈ [n] such that |a j|= k (2 ≤ k ≤ n−1). Assume that there are r vectors {ar1 ,ar2 . . . ,arr} which take

the other n− k ones, i.e.,
r

∑
i=1

|ari
| = n− k. So remaining n− r− 1 vectors, say {at1 ,at2 , . . . ,atn−r−1}

are zero. From Remark 5.2 we get n − r − 1 ≥ 1, and this implies that r < n − 1. As we have
mentioned earlier that all the term combinations are present in xi. This implies there exists j ∈ [n]
such that x j = ρr1 +ρr2 + · · ·+ρrr +ρt1 +ρt2 · · ·+ρtn−r−1 . This implies ψ(x j) will have r terms in
its expression. As 0 < r < n−1 we have ψ(x j) ̸∈ {xi | i ∈ [n]}∪{0,1}. Therefore ψ ̸∈ NRE{RC }.
Hence BPM{RC }∪UM{RC }= NRE{RC } and the result follows. □

Remark 5.9. Consider the circulant code C = {1001,1100,0110,0011} on n = 4 neurons with support
p = 2. For this code we observe that x1 = ρ1 + ρ2, x2 = ρ2 +ρ3, x3 = ρ3 +ρ4 and x4 = ρ4 +ρ1.
We observe that for this code there are some maps which are BPM’s but not NRE’s. For example,
consider the map φ given on the basis: φ(ρ1) = ρ1,φ(ρ2) = ρ3,φ(ρ3) = ρ2,φ(ρ4) = ρ4. Clearly
φ ∈ BPM{RC }. However, it is not a neural ring endomorphism as φ(x1) = φ(ρ1 +ρ2) = ρ1 +ρ3 /∈
{xi|i ∈ [4]}∪{0,1}. Furthermore, for this code C , |BPM{RC }| = 24. However, we only found 8
basis permutation maps that are neural ring endomorphisms. The other interesting fact is that there
are some non-BPM and non-UM’s which are present in NRE{RC }. By brute force we computed that
there are 24 such non-BPM and non-UM and it gives us that |NRE{RC }| = 36 > 4!+4. Also, we
observe that the BPM’s in NRE{RC } is 8 = 2 ·4 = p ·n, for p = 2 and n = 4. We tried to see whether
this is true for all n, and we successfully obtained the following result:

Lemma 5.10. If C is a circulant code with support p = 2 then the total number of basis permutation
maps present in NRE{RC } is 2n.

Proof. Let φ ∈ BPM{RC }. It is enough to see the restriction of φ to basis elements to determine the
entire map. For this reason we now start counting where φ can map each ρi. We begin with ρ1. As ρ1
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∣∣∣NRE{RC }
∣∣∣

C : a circulant
code, on n

neurons with
support p

support =p

1

2

3

...

...

p

n−1

n!+n.
3n n is odd and n > 1

36 n = 4.

3n+22
(n

2

)
! n is even and n > 4.

3n n = 3d +1, d > 1

3n n = 3d +2, d > 0

270 n = 6

15n+32
(n

3

)
! n = 3d, d > 2.

GCD(p,n) = 1


3n n = pd +1

3n n = pd +2

3n n = pd + r, r > 2.

p|n
(p2 + p+3)n+ p2

(
n
p

)
!

n!+n.

Conjecture 5.25

Conjecture 5.22

Proposition 5.20
Proposition 5.21

Theorem 5.8

Theorem 5.8

Remark 5.23

Remark 5.23

Remark 5.23

Theorem 5.24

Theorem 5.15

Theorem 5.16

Remark 5.9

Figure 6. The above figure represents the count of neural ring endomorphisms for a
circulant code on n neurons with support p, where p ∈ [n−1].

can map to ρi for any i ∈ [n], we get that ρ1 has n choices. Assume that ρ1 is mapped to ρ j for some
j ∈ [n]. Since x1 = ρ1+ρ2 and φ(x1)∈ {xi | i∈ [n]} (For a map φ ∈BPM{RC } we have that φ(xi) and
xi have same number of terms, leading to φ(xi) ̸∈ {0,1}). Therefore φ(x1) = φ(ρ1+ρ2) = ρ j +φ(ρ2).
So, for φ(x1) ∈ {xi | i ∈ [n]}, we must have φ(ρ2) = ρ j+1 or ρ j−1. Therefore ρ2 has 2 choices when
ρ1 is fixed. On fixing ρ2 7→ ρ j−1 we similarly get two choices for ρ3 i.e., ρ3 7→ ρ j or ρ j−2. But as
φ(ρ1) = ρ j we cannot have φ(ρ3) = ρ j. Also, ρ3 will still have 1 choice when ρ2 7→ ρ j+1. Therefore
ρ3 has exactly one choice when ρ1 and ρ2 are fixed. So, in total we will have 2n choices. Hence the
result. □

Remark 5.11. So far (Propositions 5.8 and Lemma 5.10) we have counted the number of basis
permutation maps that are neural ring endomorphisms for a circulant code with support p = 1,2 and
n−1. We have obtained this count to be n!,2n and n! respectively. We could further see that for p = 3,
the total BPM in NRE{RC } is 2n. The pattern remains the same as p increases, which we prove in
Theorem 5.13. But we first establish a lemma that we require to prove this theorem.

Lemma 5.12. Let C be a circulant code with support p (2 < p < n− 1) on n > 2 neurons and let
φ ∈ BPM{RC }∩NRE{RC }. If φ(ρ1) = ρ j for some j ∈ [n] then φ(ρ2) ∈

{
ρ j+1,ρ j−1

}
.

Proof. Suppose not. Let φ(ρ2) = ρ j+k, where k ∈ [n]\{1,n−1}. Now,

φ(x1) = φ(ρ1 +ρ2 + · · ·+ρp) = ρ j +ρ j+k +φ(ρ3)+ · · ·+φ(ρp).
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As φ is a neural ring endomorphism φ(x1) ∈ {xi | i ∈ [n]} i.e., there exists l ∈ [n] such that φ(x1) = xl .
Therefore for all i ∈ [p]\[2] we get φ(ρi) = ρri such that ρri is present in the expression of xl and ri ̸= j
or j+ k. Suppose ρ j be the first term in the expression of xl or in other words let xl = x j. Consider,

φ(x2) =φ(x2 +ρ1 −ρ1)

= φ(ρ1 +ρ2 + · · ·+ρp +ρp+1 −ρ1) = φ(x1 +ρp+1 −ρ1)

= x j +φ(ρp+1)−ρ j

= ρ j+1 + · · ·+ρ j+k + · · ·+ρ
j+(p−1)

+φ(ρρp+1).

As φ(x2) ∈ {xi | i ∈ [n]} it must be a sum of some p number of consecutive ρi’s. This forces φ(ρp+1) =
ρ j or φ(ρp+1) = ρ j+p. But the former one is not possible as φ(ρ1) = ρ j. Therefore ρp+1 7→ ρ j+p.
Next, similarly calculating we get

φ(x3) = ρ j+1 + · · ·+ρ j+k−1 +ρ j+k+1 + · · ·+ρ j+p +φ(ρp+2).

For φ(x3) to be some xm we would require φ(ρp+2) = ρ j+k as ρ j+k is the missing term in the expression
of φ(x3). But, then we would end up getting φ(ρp+2) = φ(ρ2), which is a contradiction. Therefore
xl ̸= x j. We would get a similar contradiction even if ρ j was the last term in the expression of xl. Now
suppose that ρ j is in between term in the expression of xl, i.e., let

xl = ρl + · · ·+ρ j +ρ j+1 + · · ·+ρ j+k + · · ·+ρl+p−1.

Then,
φ(x2) = ρl + · · ·+ρ j+1 + · · ·+ρ j+k + · · ·+ρl+p−1 +φ(ρp+1).

This implies for φ(x2) ∈ {xi | i ∈ [n]}, we need φ(ρp+1) = ρ j. But this would give us φ(ρ1) = φ(ρp+1)
which is a contradiction. Hence the proof. □

Theorem 5.13. Let C be a circulant code with support p (1 ≤ p < n) on n > 2 neurons. The total

number of basis permutation maps present in NRE{RC } is given by

{
n! if p = 1 and p = n−1
2n if 1 < p < n−1

.

Proof. Case 1: p = 1 or n−1. In this case we get the result using Proposition 5.8.
Case 2: p = 2. This is Lemma 5.10.

Case 3: 2 < p < n−1. As p < n−1 and for all i ∈ [n] we have xi =
p−1

∑
k=0

ρi+k, this gives us the following

equations

x1 = ρ1 +ρ2 + · · ·+ρp,

x2 = ρ2 +ρ3 + · · ·+ρp+1,

x3 = ρ3 +ρ4 + · · ·+ρp+2.

Let φ ∈ BPM{RC } be a neural ring endomorphism. As seen in the proof of Lemma 5.10, it is enough
to see the restriction of φ to basis elements. We begin with ρ1. As ρ1 can map to ρi for any i ∈ [n],
we get that ρ1 has n choices. Assume that ρ1 is mapped to ρ j for some j ∈ [n]. By Lemma 5.12 φ

maps ρ2 to either ρ j+1 or ρ j−1. In other words φ(ρ2) is mapped to the basis element that is adjacent to

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

26 Aug 2023 02:22:28 PDT
211116-Gupta Version 4 - Submitted to Rocky Mountain J. Math.



21

φ(ρ1). Similarly ρ3 can have 2 possibilities, i.e., it can be mapped to basis elements that are adjacent to
φ(ρ2). Fix ρ2 7→ ρ j+1 , then ρ3 7→ ρ j+2 or ρ3 7→ ρ j. But the latter is not possible as φ(ρ1) = ρ j. Even
if ρ2 7→ ρ j−1 we get that ρ3 can only be mapped to ρ j−2 for the same reason. Therefore ρ3 has only
one choice to get mapped, whenever φ(ρ1) and φ(ρ2) are already fixed. Further for i ∈ [n]\[3] we see
ρi has just 1 choice for to be mapped to. So, the total choices for φ to be an neural ring endomorphism
is n×2×1×·· ·×1 = 2n. Hence the result. □

We know that |NRE{RC }| = n!+ n for circulant codes with support p = 1 and p = n− 1 by
Proposition 5.8. Now by Theorem 5.13, we get that |NRE{RC }| ≥ 3n for all circulant codes with
support p on n > 2 neurons. Further, we investigate how non basis permutation and non unity maps
behave on circulant codes with support 1 < p < n−1. Before that we will introduce some notations.
Let yi = ρi1

+ ρi2
+ · · ·+ ρik

be some combination of k number of ρ j’s. We will use ||yi|| as the
notation to indicate the number of distinct ρ j’s in the expression of yi. Therefore ||yi|| = k for the

above expression of yi. Similarly, ||xi|| = p for a circulant code of support p since xi =
p−1

∑
k=0

ρi+k.

We already know by definition that any φ ∈ RH{RC } is in NRE{RC } if for all i ∈ [n] we have
φ(xi) ∈ {x j | j ∈ [n]}∪{0,1}. With the notation ||.|| the necessary condition for φ ∈ RH{RC } to be
in NRE{RC } is: for all i ∈ [n] we must have ||φ(xi)|| ∈ {0,n, ||x j||} for some j ∈ [n]. Further, the
necessary condition for a map φ ∈ RH{RC } on circulant codes C with support p to be in NRE{RC }

will be ||φ(xi)|| ∈ {0,n, p} for all i ∈ [n]. Note that for all i ∈ [n] we have φ(ρi) =
n

∑
j=1

ai jρ j = ∑
ai j=1

ρ j.

Thus ||φ(ρi)||= |ai|. Also, ||φ(xi)||=
p−1

∑
k=0

∥∥∥φ

(
ρi+k

)∥∥∥= p−1

∑
k=0

∣∣∣ai+k

∣∣∣.
We have already seen that |NRE{RC }| ≥ 3n as it consists of 2n basis permutation maps (Refer Lemma
5.10) and n unity maps. In the next theorem we will show that |NRE{RC }|= 3n for circulant code
with support p = 2 when n is odd. But we first establish a lemma that we require to prove this theorem.

Lemma 5.14. Let C be a circulant code with support p = 2 and let φ be a non-BPM and non-UM with
{ai}i∈[n] as the corresponding vectors of φ . Suppose φ ∈ NRE{RC } then |ai| ∈ {0,2} for all i ∈ [n].

Proof. First we claim that for all i, we have |ai| ≤ 2. Suppose not. Then there exists j such that
|a j|= k > 2. Also as φ is a non unity map we have k < n. We know that x j = ρ j+ρ j+1 . By the necessary
condition for φ ∈ NRE{RC }, we have that ||φ(x j)||= 0,2 or n. But ||φ(ρ j)||= |a j|= k > 2. So, the

only possibility is that ||φ(x j)||= n. Therefore |a j+1|= ||φ(ρ j+1)||= n−k. Also, as |a j|+
∣∣∣a j+1

∣∣∣= n,

we get that |ai|= 0, for all ai ̸= a j and ai ̸= a j+1. As |a j−1|= 0, we have φ

(
ρ j−1

)
= 0. So,

φ

(
x j−1

)
= φ

(
ρ j−1 +ρ j

)
= φ

(
ρ j−1

)
+φ(ρ j) = φ (ρ j) .

Therefore
∥∥∥φ

(
x j−1

)∥∥∥= ||φ(ρ j)||= k ̸= 0,2 or n as 2 < k < n. This is a contradiction to the necessary
condition of φ ∈ NRE{RC }. Hence the claim.

Further we show for all i ∈ [n], |ai| ≠= 1 Suppose, there exists j ∈ [n] such that |a j| = 1. As
|a j|= ||φ(ρ j)||= 1, gives us ||φ(x j)|| ≠ 0. Also, for all i ∈ [n], |ai| ≤ 2 so we have ||φ(x j)||= |a j|+
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|a j+1 | = 1+ |a j+1 | ≤ 1+2 = 3. Therefore ||φ(x j)|| ̸= n, since n > 3. Thus the necessary condition
gives us that ||φ(x j)||= 2. So, ||φ(ρ j+1)||= 1. Iteratively, for all i ∈ [n] that ||φ(ρi)||= 1 = |ai|. This
implies that φ ∈ BPM{RC }, which is a contradiction. Hence the proof. □

Theorem 5.15. Let C be a circulant code with support p = 2. If n is odd then |NRE{RC }|= 3n.
Proof. Clearly n cannot be 1 as p = 2.
Case 1: n = 3
As p = 2 = n−1 in this case. By Proposition 5.8 we already know that NRE{RC }= n!+n = 3!+3 =
3 ·n. Hence the proof.
Case 2: n > 3
In this case, we are only left to show that there are no more neural ring endomorphisms.

Let φ be a non-BPM and non-UM with {ai}i∈[n] as the vectors that represent it. Suppose φ is a

neural ring endomorphism. By Lemma 5.14 we have that |ai| ∈ {0,2} for all i ∈ [n]. So,
n

∑
i=1

|ai| is an

even number. From Remark 5.2,
n

∑
i=1

|ai|= n. This forces n to be even. This is a contradiction to the

hypothesis that n is odd. Therefore φ ̸∈ NRE{RC }. Hence the proof. □

In the view of Theorem 5.15 we further count the cardinality of NRE{RC } when n is even. In
Remark 5.9 we have seen that for of a circulant code C with support p = 2 on n = 4 neurons we have
|NRE{RC }|= 36. We will now look for n ≥ 6 in the following theorem.

Theorem 5.16. Let C be a circulant code with support p = 2. If n > 4 is even then |NRE{RC }|=
3n+22

(n
2

)
!.

Proof. Let n = 2k for some k > 2. We first count the total number of non-BPM and non-UM that are
in NRE{RC }. Let φ be a non-BPM and non-UM with {ai}i∈[n] as its representing vectors. By Lemma
5.14 for all i ∈ [n] we have |ai| ∈ {0,2} Suppose if |ai|= 2 = |ai+1|, then ||φ(xi)||= 4. This contradicts
the necessary condition of neural ring endomorphism as n > 4. This implies no two consecutive
ai’s have the same value, i.e., |ai| ̸= |ai+1| for any i ∈ [n]. Thus if |a1| = 2 then for all m ∈ [k] we
get |a2m−1|= 2 and |a2m|= 0. Similarly, if |a2|= 2 for all m ∈ [k] we get |a2m|= 2 and |a2m−1|= 0.
Therefore when φ ∈ NRE{RC } there are broadly two types of choices for the vectors that can represent
it. Let us fix one type of choice and count how many such neural ring endomorphisms it corresponds
to. By the choice of all |ai| we see that for all i ∈ [n], ||φ(xi)||= 2. This implies for all i ∈ [n] there
exists j ∈ [n] such that φ(xi) = x j.

Assume |a1|= 2. Consider,

φ(x1) = φ(ρ1 +ρ2) =
n

∑
j=1

a1 jρ j +
n

∑
j=1

a2 jρ j =
n

∑
j=1

a1 jρ j = φ(ρ1).

Let φ(x1) = xi (say) for some i∈ [n]. Then φ(ρ1) = xi and clearly ρ1 has n choices. Similarly, whenever
|al|= 2 we get that ρl 7→ x j = ρ j +ρ j+1. In general, φ maps every basis element to 0 or a consecutive5

sum of basis elements. In this case as |a2m−1|= 2 and |a2m|= 0 for all m ∈ [k] we have φ(ρ2m) = 0 for

5We consider ρn +ρ1 as a consecutive sum
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all m ∈ [k]. So, we need to only figure out φ(ρ2m−1). As we have already fixed when m = 1, we look at
m = 3, i.e., we need to find where ρ3 is mapped by φ . Let, if possible ρ3 7→ xi+r where 0 < r < n and
r is odd. Firstly, note that as φ(ρ1) = xi = ρi +ρi+1 and xi+1 = ρi+1 +ρi+2, xi+(n−1) = ρi+(n−1)+ρi

we have r /∈ {1,n−1}. So now as r ≥ 3 we observe that the number of ρ j’s that are in between ρi+1
and ρi+r is r−2. Note that once the φ(ρ2m−1) is chosen for all m ∈ [k−1]\[2] there will still be one
ρl in between ρi+1 and ρi+r as r−2 is odd. In other words this process will exhaust all the sum of
consecutive basis. Now we have to map ρn−1 as |an−1|= 2. But there is no more sum of consecutive
basis left, meaning there is no choice for φ(ρn−1). Therefore ρ3 cannot map to xi+r when r is odd.

Thus φ : ρ3 7→ xi+r for some even r ≥ 2. This clearly gives
n
2
−1 = k−1 choices for ρ3 to be mapped

by φ . Similarly we observe that ρ5 will have k−2 choices. At the end we see that ρn−1 has only 1
choice. Thus in total we get n(k−1)! as the number of possible φ that can neural ring endomorphism
when |a1|= 2.

Similarly, we get n(k−1)! as the number of possible φ that can neural ring endomorphism when
|a2| = 2. Therefore total number of non-BPM and non-UM that are in NRE{RC } is 2n(k− 1)! =
2n
(n

2
−1
)

! = 22
(n

2

)
!. By Lemma 5.10 we already know the count of BPM that are in NRE{RC } to

be 2n. Finally adding the n unity maps we get the result. □

Combining the results of Theorem 5.15 and 5.16 together, we have

|NRE{RC }|=

{
3n if n is odd and n > 1

3n+22
(n

2

)
! if n is even and n > 4,

where C is a circulant code with support p = 2.
Theorem 5.15 and 5.16 gave us a hint that GCD(p,n) could play a vital role in deciding the count

of NRE{RC }. With brute force we found that for a circulant code with support p = 3 on n = 3k+1
and n = 3k+2, the non-BPM and non-UM that are in NRE{RC } is zero. This leads us to think that
the non-BPM and non-UM in NRE{RC } is zero when GCD(p,n) = 1. We show this statement has an
affirmative answer (Proposition 5.20 and Proposition 5.21). But we first prove a couple of lemmas that
we require in the proof of the above statement. We will also introduce some new notations to help us
simplify these propositions’ proof.

Lemma 5.17. Let C be a circulant code with support p > 1 with GCD(p,n) = 1 and φ ∈ RH{RC }
be a non-BPM and non-UM. For all i ∈ [n] if ||φ(xi)|| ∈ {0, p,n} then ||φ(xi)|| ≠ n.

Proof. Let φ be a non-BPM and non-UM such that for all i ∈ [n], ||φ(xi)|| ∈ {0, p,n}. Let {ai}i∈[n]
be the vectors that represent φ . Suppose there exists j ∈ [n] such that ||φ(x j)|| = n. Without loss of
generality let us assume j = 1. As x1 = ρ1 + · · ·+ρp we get n = ||φ(x1)|| = |a1|+ |a2|+ · · ·+ |ap|.
This implies for all k ∈ [n]\[p] we have |ak|= 0. Let l ∈ [p] be the smallest such that |al| ̸= 0. Hence
n = ||φ(x1)||= |al|+ · · ·+ |ap|.
Consider,

||φ(x1)||− ||φ(xl)||=
(
|a1|+ · · ·+ |al|+ · · ·+ |ap|

)
−
(
|al|+ · · ·+ |ap|+ |ap+1|+ · · ·+ |al+p−1|

)
=|a1|+ · · ·+ |al−1|− (|ap+1|+ · · ·+ |al+p−1|)
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=|a1|+ · · ·+ |al−1| (Since |ak|= 0 for all k ∈ [n]\[p])
=0 (Since l is the smallest integer such that |al| ̸= 0).

So, we get ||φ(xl)||= n. Next, we have |al+1|+ · · ·+ |ap|< n as |al| ̸= 0. Moreover, 0 < |al+1|+ · · ·+
|ap|< n, if not |al|= n and that is not possible as φ is not a unity map. Consider,

||φ(xl+1)||=|al+1|+ · · ·+ |ap|+ · · ·+ |al+p|
=|al+1|+ · · ·+ |ap| (Since |ak|= 0 for all k ∈ [n]\[p])

=⇒ 0 < ||φ(xl+1)||< n (Since 0 < |al+1|+ · · ·+ |ap|< n)

Also, by the hypothesis ||φ(xl+1)|| ∈ {0, p,n}. Hence ||φ(xl+1)||= p and n− p= ||φ(xl)||−||φ(xl+1)||=
|al| − |al+p|. Now, if l + p ∈ [n]\[p], then |al+p| = 0. Or if l + p ∈ [p] we observe that l + p =

l + p−n < l as p < n. Thus if |al+p| ̸= 0, it contradicts the minimality of l. Both the cases results in
|al+p|= 0 and this implies |al|= n− p. Let m ∈ [p]\[l] be the smallest such that |am| ≠ 0. Note that as

|al|= n− p and
p

∑
i=1

|ai|= n we get 0 < |am| ≤ p. Suppose |am|= k < p then

||φ(xm+1)||=|am+1|+ · · ·+ |ap|+ · · ·+ |am+p|

=n−
m

∑
i=1

|ai|

=n− (n− p+ k) = p− k ̸∈ {0, p,n}.

Therefore it ensures |am|= p. Thus |ai|= 0 for all i ∈ [n]\{l,m}.
Note that,

xm+n−p = ρm+n−p + · · ·+ρ1 + · · ·+ρl + · · ·+ρm+n−1

=⇒ ||φ(xm+n−p)||= |am+n−p|+ · · ·+ |al|+ · · ·+ |am+n−1|= |al|= n− p.

Also, for ||φ(xm+n−p)|| ∈ {0, p,n} we must have n = p or 2p, or p = 0. But as GCD(p,n) = 1 and
p > 1 none of them is possible. Therefore it is a contradiction to the hypothesis. Hence ||φ(xi)|| ≠ n
for any i ∈ [n]. □

Lemma 5.18. Let C be a circulant code with support p > 1 with GCD(p,n) = 1 and φ ∈ RH{RC }
be a non-BPM and non-UM. For all i ∈ [n] if ||φ(xi)|| ∈ {0, p,n} then ||φ(xi)||= p.

Proof. Let φ be a non-BPM and non-UM such that for all i ∈ [n], ||φ(xi)|| ∈ {0, p,n}. Let {ai}i∈[n]
be the vectors that represent φ . By Lemma 5.17 we already know that ||φ(xi)|| ≠ n. It is only left to
show that 0 is also not possible. Let if possible there exists j ∈ [n] such that ||φ(x j)|| = 0. In fact,
there exists k ∈ [n−1] such that ||φ(x j+k)|| ̸= 0. Thus ||φ(x j+k)||= p, as it cannot be n using Lemma
5.17. Choose the smallest k such that ||φ(x j+k)|| = p, i.e., ||φ(x j+m)|| = 0 for all m < k. Also, as

x j+k−1 =
p−1

∑
m=0

ρ j+k−1+m we have 0 = ||φ(x j+k−1)||=
p−1

∑
m=0

|a j+k−1+m|. Therefore |a j+k−1+m|= 0 for all

m ∈ {0}∪ [p−1]. Consider

x j+k = ρ j+k + · · ·+ρ j+k+p−1 = x j+k−1 −ρ j+k−1 +ρ j+k+p−1.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

26 Aug 2023 02:22:28 PDT
211116-Gupta Version 4 - Submitted to Rocky Mountain J. Math.



25

So, p= ||φ(x j+k)||= ||φ(x j+k−1)||−|a j+k−1|+ |a j+k+p−1|= |a j+k+p−1|. Next, we choose the smallest
l > 0 such that ||φ(x j+k+l)|| = p and repeating the process as above we get |a j+k+l+p−1| = p and
other |ai|’s corresponding to ρi’s that are in the expression of x j+k+l are 0. Therefore for all i ∈ [n] we

get |ai| ∈ {0, p}. As
n

∑
i=0

|ai|= n and
n

∑
i=0

|ai|= d p, this implies p|n and GCD(p,n) = p ̸= 1. This is a

contradiction to our hypothesis that GCD(p,n) = 1. Hence the result. □

In other words Lemma 5.18 says that if φ a non-BPM and non-UM satisfies the necessary condition to
be a neural ring endomorphism then ||φ(xi)||= p for all i ∈ [n].

Observation 5.19. Consider C to be a circulant code with p > 1 and GCD(n, p) = 1 with n = pd + r,
where 0 < r < p. Let φ ∈ RH{RC } be a non-BPM and non-UM such that for all i, ||φ(xi)|| ∈ {0, p,n}.
Then by Lemma 5.18 for all i ∈ [n] we get ||φ(xi)||= p. Let {ai}i∈[n] be the vectors that represent φ .
In this observation we organize these vectors into batches of p’s. Then we relabel the set {ai}i∈[n] to
write them as {β11, . . . ,β1p︸ ︷︷ ︸,β21 . . . ,β2p︸ ︷︷ ︸, . . . ,βd1 . . .βd p︸ ︷︷ ︸,β(d+1)1, . . .β(d+1)r}, where βi j = a(i−1)p+ j for

i ∈ [d], j ∈ [p] and β(d+1) j = ad p+ j for all j ∈ [r]. Considering the vectors {βi j}’s instead of {ak}’s
will help us simplify writing the proofs of the next two results. We will now observe some facts about
βi j’s and use these facts directly in the proofs.

(1)
p

∑
j=1

|β1 j|=
p

∑
j=1

|a j|= ||φ(x1)||= p.

(2) Similarly, for all i ∈ [d],
p

∑
j=1

|βi j|= p.

(3) Note that, ||φ(x2)||= |a2|+ · · ·+ |ap+1|= |β12|+ · · ·+ |β1p|+ |β21|.
(4) Since, ||φ(x1)||= ||φ(x2)||= p and ||φ(x1)||− ||φ(x2)||= |β11|− |β21|. Hence, |β11|= |β21|.
(5) Similarly using ||φ(x1)||= ||φ(x3)||= p we get |β12|= |β22|.
(6) Extending the above observation, for all j ∈ [p] we get |β1 j|= |β2 j|.
(7) Similarly, for all i ∈ [d] we get |β11|= |βi1|.
(8) Furthermore, for all i ∈ [d] and j ∈ [p] that |β1 j|= |βi j|
(9) Also, when i = d +1, |β1 j|= |β(d+1) j| for all j ∈ [r].

(10) Consider,
n

∑
i=1

|ai|=
d

∑
i=1

p

∑
j=1

|βi j|+
r

∑
j=1

|β(d+1) j|= pd +
r

∑
j=1

|β(d+1) j|,

and
n

∑
i=1

|ai|= n =⇒
r

∑
j=1

|β(d+1) j|= n− pd = r.

(11) Thus,
r

∑
j=1

|βi j|= r for all i ∈ [d +1]. (Using 5, 6 and 7)

(12) Since, ||φ(x1)||= ||φ(xn)||= p and ||φ(xn)||−||φ(x1)||= |β(d+1)r|−|β1p|. Hence, |β(d+1)r|=
|β1p|.

(13) Similarly using ||φ(x1)||= ||φ(xn− j)||= p for all j ∈ 0∪ [r−1] we get |β(d+1)(r− j)|= |β1(p− j)|.
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In the next two propositions we will show that the count of NRE{RC } is 3n for any circulant code C
with support 2 < p < n−1 with GCD(p,n) = 1 for n = pd +1 and pd +2.

Proposition 5.20. Let C be a circulant code with support 2 < p < n− 1. If GCD(p,n) = 1 and
n = pd +1 then |NRE{RC }|= 3n.

Proof. Let φ ∈ RH{RC } be a non-BPM and non-UM with {ai}i∈[n] as its representing vectors. Label
the vectors {ai}i∈[n] as in Observation 5.19 and rewrite them as {βi j}i∈[d], j∈[p] ∪{β(d+1) j} j∈[r]. Let
if possible φ ∈ NRE{RC }. Then by Lemma 5.18 for all i ∈ [n] we get ||φ(xi)|| = p. Now using
Observation 5.19 we will list some facts on βi j’s which help us prove this theorem,

(1)
r

∑
j=1

|β(d+1) j|= r, and as r = 1 we have |β(d+1)1|= 1.

(2) For all i ∈ [d] we have |βi1|= |β(d+1)1|= 1.
(3) Also, for all i ∈ [d] we have |βip|= |β(d+1)1|= 1.
(4) Consider,

p = ||φ(xn)||= |β(d+1)1|+ |β11|+ · · ·+ |β1(p−1)|

= 1+1+
p−1

∑
j=2

|β1 j| =⇒
p−1

∑
j=2

|β1 j|= p−2.

(5) Also,

p = ||φ(xn−1)||= |βd p|+ |β(d+1)1|+ |β11|+
p−1

∑
j=2

|β1 j|− |β1(p−1)|

= 1+1+1+ p−2−|β1(p−1)| =⇒ |β1(p−1)|= 1.

(6) Further, from Observation 5.19 |β1(p−1)|= |βi(p−1)|, for all i ∈ [d]. Thus |βi(p−1)|= 1.
(7) Similar to the discussion done for ||φ(xn)|| in point (4), we repeat it for ||φ(xn−1)|| to get

p−2

∑
j=2

|β1 j| = p− 3. Repeating the calculations done in point (5), now for φ(xn−2), and using

p−2

∑
j=2

|β1 j|= p−3, we get |β1(p−2)|= 1.

(8) Similar to point (6), we get |βi(p−2)|= 1 for all i ∈ [d].
(9) Iteratively, we will get |βi(p− j)|= 1 for all j ∈ [p−1].

From the above points we get that all |βi j|’s are one. Since we obtained the βi j’s after re-labeling
the vectors ak’s, so automatically |ak|= 1 for all k ∈ [n]. But this is a contradiction to the fact that φ

is a non-BPM and non-UM. Therefore φ ̸∈ NRE{RC }. This implies that none of the non-BPM and
non-UM are in NRE{RC }. Moreover, by Theorem 5.13 we already know the count of BPM that are in
NRE{RC } is 2n. Finally adding the n unity maps we get the result. □

Proposition 5.21. Let C be a circulant code with support 2 < p < n− 1. If GCD(p,n) = 1 and
n = pd +2 then |NRE{RC }|= 3n.
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Proof. Let φ ∈ RH{RC } be a non-BPM and non-UM with {ai}i∈[n] as its representing vectors. Label
the vectors {ai}i∈[n] as in Observation 5.19 and rewrite them as {βi j}i∈[d], j∈[p]∪{β(d+1) j} j∈[r]. Let if
possible φ ∈ NRE{RC }. Then by Lemma 5.18 for i ∈ [n] we get ||φ(xi)||= p. By Observation 5.19,

(2) |βip|= |β(d+1)2| and |βi(p−1)|= |β(d+1)1| for all i ∈ [d].

Consider,

0 = ||φ(xn−3)||− ||φ(xn−2)||

= |βd p|+ |β(d+1)1|+ |β(d+1)2|+
p−3

∑
j=1

|β1 j|−
(
|β(d+1)1|+ |β(d+1)2|+

p−3

∑
j=1

|β1 j|+ |β1(p−2)|
)

= |βd p|− |β1(p−2)|. =⇒ |β1(p−2)|= |βd p|

Furthermore, using Equation (2), |β1(p−2)|= |βd p|= |β(d+1)2|. Similarly using ||φ(xn−4)||−||φ(xn−3)||=

0 we get |β1(p−3)|= |βd(p−1)|= |β(d+1)1|. Once again using Observation 5.19,
2

∑
j=1

|β(d+1) j|= 2. There-

fore, we have there possibilities: |β(d+1)1| = |β(d+1)2| = 1 or |β(d+1)1| = 2 and |β(d+1)2| = 0 or
|β(d+1)1|= 0 and |β(d+1)2|= 2. Accordingly, we get the following two cases.

Case 1: |β(d+1)1|= |β(d+1)2|= 1
In this case |β1(p−2)|= |β(d+1)2|= 1 and |β1(p−3)|= |β(d+1)1|= 1. On extending we get |β1(p− j)|= 1
for all j ∈ [p]. This implies |β1 j|= 1 for all j ∈ [p]. Therefore by observation 5.19 for all i ∈ [d] and
j ∈ [p] we get |βi j| = 1. Moreover, as |β(d+1)1| = |β(d+1)2| = 1 we have all |βi j|’s as one. Since we
obtained the βi j’s after re-labeling the vectors ak’s, thus automatically |ak| = 1 for all k ∈ [n]. This
implies φ is a BPM and that is a contradiction as we have chosen φ to be a non-BPM and non-UM .
Hence this case cannot occur.

Case 2: |β(d+1)1|= 2, |β(d+1)2|= 0 or |β(d+1)1|= 0, |β(d+1)2|= 2.
We will work with |β(d+1)1| = 2, |β(d+1)2| = 0 and the other case is similar to this. In this case we
get |β1(p−2)|= |β(d+1)2|= 0 and |β1(p−3)|= |β(d+1)1|= 2. On extending we get |β1(p− j)| ∈ {0,2} for

all j ∈ [p]. This implies |β1 j| ∈ {0,2} for all j ∈ [p], and p = ||φ(x1)|| =
p

∑
j=1

|β1 j| = 2k for some k.

This implies 2|p and in turn 2|GCD(p,n). Therefore we get GCD(p,n)≥ 2 which is a contradiction.
Hence this case cannot occur either.

Thus φ cannot be in NRE{RC }. By Theorem 5.13 we already know the count of BPM that are in
NRE{RC } to be 2n. Finally adding the n unity maps we get the result. □

Combining the results of Propositions 5.20 and 5.21 for a circulant code C with support 2< p< n−1
we get that |NRE{RC }|= 3n for n = pd + r where r ∈ {1,2} and GCD(p,n) = 1. Our next aim was
to generalize the above Propositions 5.20 and 5.21 for any r such that n = pd + r and 0 < r < p. At
this moment we do not have the proof of the generalization, but we strongly believe in the following
conjecture.
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Conjecture 5.22. Let C be a circulant code with support 2 < p < n− 1. If GCD(p,n) = 1 and
n = pd + r with 2 < r < p, then |NRE{RC }|= 3n.

Remark 5.23. Note that, if the circulant code with support p = 3 is such that GCD(n,3) = 1 then
n = 3d + 1 or n = 3d + 2 for some suitable choice of d. So, if n > 4, Propositions 5.20 and 5.21
gives us that |NRE{RC }| = 3n. Moreover, by Proposition 5.8 if n = 4 as p = 3 = n− 1 we get
|NRE{RC }|= n!+n = 28. Note that when p = 3 we are now only left with n = 3d case. By brute
force we counted that |NRE{RC }|= 270 where C is a circulant code on n = 6 neurons with support
p = 3. In the next theorem we will work with n = 3d where d > 2.

Theorem 5.24. Let C be a circulant code on n neurons with support p = 3. If n = 3d, where d > 2
then |NRE{RC }|= 15n+32

(n
3

)
!.

Proof. Let us first count the total number of non-BPM and non-UM that are in NRE{RC }. Let φ be a
non-BPM and non-UM with {ai}i∈[n] as its representing vectors. As observed in the proof of Theorem
5.16 we have cases in which there exists i ∈ [3] such that |ai|= 3 and for all j ∈ [3]\{i}, |a j|= 0. Also,
as there is another partition of 3 which is not all ones (namely 3 = 2+1) we get more cases which
will corresponds to |a1|= 2, |a2|= 1, |a3|= 0 and its possible permutations. Thus in total we will have
these 2 broader class of cases. Let us fix one type of choice and count how many such neural ring
endomorphisms it corresponds to. By the choice of all |ai| we see that for all i ∈ [n], ||φ(xi)||= 3. This
implies for all i ∈ [n] there exists j ∈ [n] such that φ(xi) = x j.

Case 1: (|a1|, |a2|, |a3|) = (3,0,0) or (|a1|, |a2|, |a3|) = (0,3,0) or (|a1|, |a2|, |a3|) = (0,0,3).
Let us consider the sub-case when (|a1|, |a2|, |a3|) = (3,0,0).
This case is similar to case 1 as in the proof of Theorem 5.16. Firstly it is clear that φ(ρ1) has n choices
and φ(ρ2) = φ(ρ3) = 0. Next, for φ(ρ4) we have to choose from all the triplets that are left. So we
get
(n

3
−1
)

choices. Further completing the process we get the total maps that are in NRE{RC } as

n×
(n

3
−1
)
×
(n

3
−2
)
×1 = 3

(n
3

)
!.

The other 2 subcases will be similar to the above case. Hence Case 1 gives us 32
(n

3

)
! non-BPM and

non-UM maps that are in NRE{RC }.

Case 2: For some i, j ∈ [3], i ̸= j let |ai|= 2 and |a j|= 1
Then by permuting i, j ∈ [3] we get 6 sub-cases. Consider the sub-case when (|a1|, |a2|, |a3|)= (2,1,0).
In this sub-case firstly we get that φ(ρ1) can take any consecutive sum of basis elements and so it has
n choices. Let φ(ρ1) = ρl +ρl+1. Next as φ(x1) ∈ {xk} it ensures that φ(ρ2) can either be ρl+n−1 or
ρl+2. We already know that φ(ρ3) = 0. Further we observe that this process fixes a unique choice for
remaining φ(ρk) for k ∈ [n]\[3]. Hence this sub-case gives us 2n non-BPM and non-UM that are in
NRE{RC }.
The remaining 5 sub-cases will be similar to the above sub-case. Hence we get 12n non-BPM and
non-UM that are in NRE{RC }.

As described in the previous proofs we get 3n BPM and UM maps that are in NRE{RC }. Hence the
result. □
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Looking at the pattern from Theorems 5.16 and 5.24 we end our paper with the following conjecture.

Conjecture 5.25. Let C be a circulant code with support p. If 3< p< n−1 and p|n then |NRE{RC }|=

(p2 + p+3)n+ p2
(

n
p

)
!.

References

[1] L. S. Brown and C. Curto. Periodic neural codes and sound localization in barn owls. Involve, a Journal of Mathematics,
15(1):1–37, 2022.

[2] J. Cruz, C. Giusti, V. Itskov, and B. Kronholm. On open and closed convex codes. Discrete & computational geometry,
61(2):247–270, 2019.

[3] C. Curto, E. Gross, J. Jeffries, K. Morrison, M. Omar, Z. Rosen, A. Shiu, and N. Youngs. What makes a neural code
convex? SIAM Journal on Applied Algebra and Geometry, 1(1):222–238, 2017.

[4] C. Curto, V. Itskov, A. Veliz-Cuba, and N. Youngs. The neural ring: an algebraic tool for analyzing the intrinsic
structure of neural codes. Bulletin of mathematical biology, 75(9):1571–1611, 2013.

[5] C. P. Curto and N. Youngs. Neural ring homomorphisms and maps between neural codes. In Topological Data Analysis,
pages 163–180. Springer, 2020.

[6] M. Franke and S. Muthiah. Every binary code can be realized by convex sets. Advances in Applied Mathematics,
99:83–93, 2018.

[7] R. A. Jeffs. Sunflowers of convex open sets. Advances in Applied Mathematics, 111:101935, 2019.
[8] R. A. Jeffs. Morphisms of neural codes. SIAM Journal on Applied Algebra and Geometry, 4(1):99–122, 2020.
[9] R. A. Jeffs, M. Omar, and N. Youngs. Homomorphisms preserving neural ideals. Journal of Pure and Applied Algebra,

222(11):3470–3482, 2018.
[10] C. J. Maxson. Endomorphism semigroups of sums of rings. Canadian Mathematical Bulletin, 17(2):247–250, 1974.
[11] E. Miller and B. Sturmfels. Combinatorial commutative algebra, volume 227. Springer Science & Business Media,

2004.
[12] J. O’Keefe. Place units in the hippocampus of the freely moving rat. Experimental neurology, 51(1):78–109, 1976.

NEHA GUPTA, ASSISTANT PROFESSOR, DEPARTMENT OF MATHEMATICS, SHIV NADAR UNIVERSITY, DELHI NCR,
INDIA

Email address: neha.gupta@snu.edu.in

SUHITH K N, RESEARCH SCHOLAR, DEPARTMENT OF MATHEMATICS, SHIV NADAR UNIVERSITY, DELHI NCR,
INDIA, SUHITH’S RESEARCH IS PARTIALLY SUPPORTED BY INSPIRE FELLOWSHIP FROM DST GRANT IF190980

Email address: sk806@snu.edu.in

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

26 Aug 2023 02:22:28 PDT
211116-Gupta Version 4 - Submitted to Rocky Mountain J. Math.


	1. Introduction
	2. Convex codes in dimension 1 and 2
	3. Doublet maximal codes
	4. Neural ring homomorphisms and max intersection-complete codes
	4.1. Background and Preliminaries
	4.2. Main Theorem

	5. Counting Neural ring endomorphisms
	5.1. Classification of ring endomorphisms on neural codes
	5.2. Circulant codes

	References

