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SOME OSCILLATION CRITERIA FOR NONLOCAL FRACTIONAL PROPORTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS

RAZIYE MERT AND SELAMI BAYEĞ

ABSTRACT. In this paper, we investigate the oscillation of a class of generalized proportional fractional
integrodifferential equations with forcing term. We present sufficient conditions to prove some oscillation
criteria in both of the Riemann-Liouville and Caputo cases. Besides, we present some numerical examples
for applicability of our results.

1. Introduction

Fractional calculus, dealing with derivatives and integrals to an arbitrary order, has been applied
successfully in the modelling of many problems in science and engineering. For the advantages of
the fractional differential equations over the models of integer order, we refer the reader to [1, 2]. Up
to a recent time, when we take into account the high importance of oscillation theory, the number of
published works about fractional differential and difference equations is still limited, see for example
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. There is also very little research on the oscillation theory of
fractional integro-differential equations, see [5, 6, 7, 8]. This work investigates the oscillatory behavior
of solutions to a fractional Volterra integro-differential equation using the method introduced in [5].
We believe that our study will inspire further research on fractional integro-differential equations.

To the best of our knowledge, the results of Grace et al. in [9] are considered as the first about the
study of oscillation theory for fractional differential equations, the results in [16] are the first in the
frame of discrete fractional calculus, and the article in [17] is the first in the q-fractional case.

In [4], Jarad et al. have introduced a nonlocal fractional proportional derivative or generalized
proportional fractional (GPF) derivatives in the both Riemann-Liouville and Caputo senses. The GPF
derivatives and integrals possess kernels involving exponential functions. The advantage of such newly
defined derivatives is that their corresponding proportional fractional integrals possess a semi-group
property in the fractional index α used to replace the iterated number n, and they result in the existing
Riemann-Liouville and Caputo fractional derivatives for the particular case ν = 1.

In this paper, motivated by [5], we study the oscillation of GPF integro-differential equation of the
form

(1)
{

Dα,ν
a x(t) = r(t)−

∫ t
a Ψ(t,s)Λ(s,x(s))ds, t ≥ a ≥ 0,0 < α < 1,0 < ν ≤ 1,

limt→a+ I1−α,ν
a x(t) = b1 ,

...

...
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SOME OSCILLATION CRITERIA FOR NONLOCAL FRACTIONAL PROPORTIONAL INTEGRO-DIFFERENTIAL EQUATIONS2

where r (the forcing term), Ψ, and Λ are continuous functions, b1 ∈ R, and Dα,ν
a and I1−α,ν

a denotes
the left GPF derivative and integral operators in the Riemann-Liouville setting, respectively.

Throughout this article, we only consider those solutions of Eq. (1) which are nontrivial and
continuable in any neighborhood of infinity. Such a solution is said to be oscillatory if it has arbitrarily
large zeros on (0,∞); otherwise, it is called nonoscillatory. Eq. (1) itself is said to be oscillatory if all
of its solutions are oscillatory. Or simply, the solution is called nonoscillatory, if it does not change its
sign after some time.

2. Preliminaries

In this section, we recall some definitions and essential lemmas that will be used to proceed in proving
the main results in this paper.

Definition 2.1. [4] For ν ∈ (0,1], α ∈ C with Re(α)> 0, the left GPF integral of θ is defined by

(2) Iα,ν
a θ(t) :=

1
ναΓ(α)

∫ t

a
e

ν−1
ν

(t−s)(t − s)α−1
θ(s)ds = ν

−αe
ν−1

ν
t Iα

a (e
1−ν

ν
t
θ(t)),

where Iα
a is the Riemann-Liouville fractional integral operator ( see [1] ).

Definition 2.2. [4] For ν ∈ (0,1], α ∈C with Re(α)≥ 0, the left GPF derivative of Riemann-Liouville
type of θ of order α is defined by

Dα,ν
a θ(t) := Dn,ν In−α,ν

a θ(t)

=
Dn,ν

t

νn−αΓ(n−α)

∫ t

a
e

ν−1
ν

(t−s)(t − s)n−α−1
θ(s)ds,(3)

where n = [Re(α)]+1.

Definition 2.3. [4] For ν ∈ (0,1], α ∈ C with Re(α)≥ 0, the left derivative of Caputo type of θ of
order α is defined by

(4) CDα,ν
a θ(t) :=

1
νn−αΓ(n−α)

∫ t

a
e

ν−1
ν

(t−s)(t − s)n−α−1Dn,ν
θ(s)ds,

where n = [Re(α)]+1.

Lemma 2.4. [4] Let Re(α) > 0, n = −[−Re(α)], θ ∈ L1(a,b), Iα,ν
a θ(t) ∈ ACn[a,b], and ν ∈ (0,1].

Then

(5) Iα,ν
a Dα,ν

a θ(t) = θ(t)− e
ν−1

ν
(t−a)

n

∑
j=1

(I j−α,ν
a θ)(a+)

να− jΓ(α +1− j)
(t −a)α− j.

Lemma 2.5. [4] For ν ∈ (0,1] and n = [Re(α)]+1, we have

(6) Iα,ν
a

CDα,ν
a θ(t) = θ(t)−

n−1

∑
j=0

D j,νθ(a)
ν j j!

(t −a) je
ν−1

ν
(t−a).
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Proposition 2.6. [4] Let α,ρ ∈ C such that Re(α)≥ 0 and Re(ρ)> 0. Then, for any ν ∈ (0,1], we
have

(a)

(7) Iα,ν
a (e

ν−1
ν

t(t −a)ρ−1) =
Γ(ρ)

Γ(ρ +α)να
e

ν−1
ν

t(t −a)α+ρ−1, Re(α)> 0,

(b)

(8) Dα,ν
a (e

ν−1
ν

t(t −a)ρ−1) =
ναΓ(ρ)

Γ(ρ −α)
e

ν−1
ν

t(t −a)ρ−1−α , Re(α)≥ 0.

Proposition 2.7. [4] Let α,ρ ∈ C such that Re(α)> 0 and Re(ρ)> 0. Then, for any ν ∈ (0,1] and
n = [Re(α)]+1, we have

(9) CDα,ν
a (e

ν−1
ν

t(t −a)ρ−1) =
ναΓ(ρ)

Γ(ρ −α)
e

ν−1
ν

t(t −a)ρ−1−α , Re(ρ)> n.

Lemma 2.8. [3] If S and T are nonnegative, then

(10) Sσ +(σ −1)T σ −σST σ−1 ≥ 0, σ > 1,

and

(11) Sσ − (1−σ)T σ −σST σ−1 ≤ 0, σ < 1,

with equality holds if and only if S = T.

3. Oscillation criteria for the GPF integro-differential equations in the Riemann-Liouville
setting

Throughout this paper, we assume that the following conditions are satisfied without further mention:
(O1) r : (a,∞)→ R,Ψ : (a,∞)× (a,∞)→ R are continuous with Ψ(t,s)≥ 0 for t > s;
(O2) there exist ξ1,ξ2 : (a,∞)→ [0,∞), which are continuous functions such that Ψ(t,s)≤ ξ1(t)ξ2(s)

for all t ≥ s;
(O3) Λ : (a,∞)×R→ R with Λ(t,x) := g1(t,x)−g2(t,x) is continuous such that g1,g2 : (a,∞)×

R→ R are continuous and that xgi(t,x)> 0, (i = 1,2) for t ≥ a and x ̸= 0;
(O4) there exist real constants ρ,ε and q1,q2 : (a,∞)→ (0,∞) continuous such that

g1(t,x)≥ q1(t)xρ and g2(t,x)≤ q2(t)xε , t ≥ a , x ̸= 0.

Theorem 3.1. Assume that conditions (O1)-(O3) are satisfied with g2 = 0. If for every constant k > 0

(12) limsup
t→∞

Iα,ν
a [r(t)− kξ1(t)] = ∞

and

(13) liminf
t→∞

Iα,ν
a [r(t)+ kξ1(t)] =−∞,

then every solution of Eq. (1) is oscillatory.
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Proof. Assume that x(t) is a nonoscillatory solution of Eq. (1) with g2 = 0. Without loss of generality,
let’s say that x(t)> 0 for t ≥ T1 for some sufficiently large T1 > a. Hence, (O3) implies that g1(t,x(t))>
0 for t ≥ T1. Now, from Eq. (1), we have

Dα,ν
a x(t) = r(t)−

∫ t

a
Ψ(t,s)Λ(s,x(s))ds

= r(t)−
∫ T1

a
Ψ(t,s)g1(s,x(s))ds−

∫ t

T1

Ψ(t,s)g1(s,x(s))ds.(14)

Letting κ := min{Λ(t,x(t)) : t ∈ [a,T1]} ≤ 0 and k :=−κ
∫ T1

a ξ2(s)ds ≥ 0, it follows from (14) that

Dα,ν
a x(t)≤ r(t)+ kξ1(t).

Using the monotonicity property of Iα,ν
a , we see that

Iα,ν
a Dα,ν

a x(t)≤ Iα,ν
a [r(t)+ kξ1(t)],

and hence, from (5),

(15) x(t)≤ b1

να−1Γ(α)
e

ν−1
ν

(t−a)(t −a)α−1 + Iα,ν
a [r(t)+ kξ1(t)].

In view of (13), it follows from (15) that

liminf
t→∞

x(t) =−∞,

which contradicts the assumption that x(t) > 0 eventually. The proof is similar if x(t) is eventually
negative. □

Theorem 3.2. Assume that conditions (O1)-(O4) are satisfied with ρ > 1 and ε = 1. If further, in
addition to the conditions presented in Theorem 3.1, we assume that

(16)
∫

∞

a

e
ν−1

ν
(t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s,u)q

1
1−ρ

1 (u)q
ρ

ρ−1
2 (u)duds < ∞,

then every solution of Eq. (1) is oscillatory.

Proof. Assume that x(t) is a nonoscillatory solution of Eq. (1) with x(t)> 0 for t ≥ T1. From conditions
(O3)-(O4) with ρ > 1 and ε = 1, we have

Dα,ν
a x(t)≤ r(t)+ kξ1(t)+

∫ t

T1

Ψ(t,s)[q2(s)x(s)−q1(s)xρ(s)]ds,

for some k > 0. If in (10), we let σ = ρ, S = q
1
ρ

1 x, and T =

(
1
ρ

q2q
−1
ρ

1

) 1
ρ−1

, then we get

(17) q2x−q1xρ ≤ (ρ −1)ρ
ρ

1−ρ q
1

1−ρ

1 q
ρ

ρ−1
2 ,

and hence

(18) Dα,ν
a x(t)≤ r(t)+ kξ1(t)+

∫ t

T1

Ψ(t,s)(ρ −1)ρ
ρ

1−ρ q
1

1−ρ

1 (s)q
ρ

ρ−1
2 (s)ds.
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Applying the operator Iα,ν
a to (18), we see that

x(t) ≤ b1

να−1Γ(α)
e

ν−1
ν

(t−a)(t −a)α−1 + Iα,ν
a [r(t)+ kξ1(t)]

+
∫ t

a

e
ν−1

ν
(t−s)(t − s)α−1

ναΓ(α)

∫ s

T1

Ψ(s,u)(ρ −1)ρ
ρ

1−ρ q
1

1−ρ

1 (u)q
ρ

ρ−1
2 (u)duds.

(19)

By applying the limit inferior on both sides of (19) as t → ∞, and using (13) and (16), we get

liminf
t→∞

x(t) =−∞,

which contradicts the assumption that x(t)> 0 eventually. This completes the proof. □

Theorem 3.3. Assume that conditions (O1)-(O4) are satisfied with ρ = 1 and ε < 1. Further, if in
addition to the conditions of Theorem 3.1, we suppose that

(20)
∫

∞

a

e
ν−1

ν
(t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s,u)q

ε
ε−1
1 (u)q

1
1−ε

2 (u)duds < ∞,

then every solution of Eq. (1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of Eq. (1). Say that x(t) > 0 for t ≥ T1. From
conditions (O3)-(O4) with ρ = 1 and ε < 1, we have

Dα,ν
a x(t)≤ r(t)+ kξ1(t)+

∫ t

T1

Ψ(t,s)[q2(s)xε(s)−q1(s)x(s)]ds,

for some k > 0. If we take in (11), σ = ε, S = q
1
ε

2 x, and T =

(
1
ε
q1q

−1
ε

2

) 1
ε−1

, then we get

(21) q2xε −q1x ≤ (1− ε)ε
ε

1−ε q
ε

ε−1
1 q

1
1−ε

2 ,

and hence

Dα,ν
a x(t)≤ r(t)+ kξ1(t)+

∫ t

T1

Ψ(t,s)(1− ε)ε
ε

1−ε q
ε

ε−1
1 (s)q

1
1−ε

2 (s)ds.

The rest of the proof is similar to that in Theorem 3.2, and hence we omit it. □

Theorem 3.4. Assume that conditions (O1)-(O4) are satisfied with ρ > 1 and ε < 1. Further, if
in addition to the conditions of Theorem 3.1, we assume that there exists a continuous function
ς : R→ (0,∞) such that

(22)
∫

∞

a

e
ν−1

ν
(t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s,u)q

1
1−ρ

1 (u)ς
ρ

ρ−1 (u)duds < ∞

and

(23)
∫

∞

a

e
ν−1

ν
(t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s,u)ς

ε
ε−1 (u)q

1
1−ε

2 (u)duds < ∞,

then every solution of Eq. (1) is oscillatory.
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Proof. Assume that x(t) is a nonoscillatory solution of Eq. (1) with x(t) > 0 for t ≥ T1. Using the
same procedure as above, from conditions (O3)-(O4) with ρ > 1 and ε < 1, we see that

Dα,ν
a x(t) ≤ r(t)+ kξ1(t)+

∫ t

T1

Ψ(t,s)[ς(s)x(s)−q1(s)xρ(s)]ds

+
∫ t

T1

Ψ(t,s)[q2(s)xε(s)− ς(s)x(s)]ds,

for some k > 0. Taking q2(s) = ς(s) in (17) and q1(s) = ς(s) in (21), we get

Dα,ν
a x(t) ≤ r(t)+ kξ1(t)+

∫ t

T1

Ψ(t,s)(ρ −1)ρ
ρ

1−ρ q
1

1−ρ

1 (s)ς
ρ

ρ−1 (s)ds

+
∫ t

T1

Ψ(t,s)(1− ε)ε
ε

1−ε ς
ε

ε−1 (s)q
1

1−ε

2 (s)ds.

The rest of the proof is similar to that in Theorem 3.2. □

The following example clarifies Theorem 3.1.

Example 3.5. Consider the integro-differential equation with Riemann-Liouville GPF derivative

(24)

 D1/3,1/2
0 x(t) =

e−tt2/3

3√2Γ(5/3)
− (t3 +2t2 +2t)e−t +2t − t

∫ t

0
sx(s)ds,

limt→0+ I2/3,1/2
0 x(t) = 0 .

Comparing with Eq. (1) with g2 = 0, we have

α =
1
3
,ν =

1
2
,a = b1 = 0,g1(t,x) = x,r(t) =

e−tt2/3

3√2Γ(5/3)
− (t3 +2t2 +2t)e−t +2t,Ψ(t,s) = ts.

Conditions (O1)–(O3) are satisfied and condition (13) does not hold. We have

(25) r(t)≥ e−tt2/3

3√2Γ(5/3)
− (t3 +2t2 +2t)e−t , t ≥ 0.

Applying the operator I1/3,1/2
0 to (25), we see that

(26) I1/3,1/2
0 r(t)≥ te−t − 6 3√2

Γ(13/3)
t10/3e−t − 4 3√2

Γ(10/3)
t7/3e−t − 2 3√2

Γ(7/3)
t4/3e−t .

Taking limit inferior on both sides of (26) as t → ∞, one can easily see that the right hand side is zero,
so we get

(27) liminf
t→∞

I1/3,1/2
0 r(t)≥ 0.

Using Proposition 2.6 (b), it is easy to verify that x(t) = te−t is a nonoscillatory solution of Eq. (24).
Here,

lim
t→0+

I2/3,1/2
0 (e−tt) = lim

t→0+

3√4
Γ(8/3)

t5/3e−t = 0.

Note that here κ = k = 0.
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The following example clarifies Theorem 3.2.

Example 3.6. Consider the integro-differential equation with Riemann-Liouville GPF derivative
(28) D1/2,1/2

0 x(t) =
4
√

2
3
√

π
e−tt3/2 + t

(
4+ e−t (−4− t (4+ t (2+ t)))

)
− t

∫ t

0
s
[

x(s)− x(s)
s

]
ds,

limt→0+ I1/2,1/2
0 x(t) = 0 .

Comparing with Eq. (1), we have

α = ν =
1
2
,a = b1 = 0,g1(t,x) = x,g2(t,x) =

x
t
,

r(t) =
4
√

2
3
√

π
e−tt3/2 + t

(
4+ e−t (−4− t (4+ t (2+ t)))

)
,

Ψ(t,s) = ts.

Conditions (O1)-(O4) are satisfied with ε = 1, ρ = 2 and q1(t) = t−3, q2(t) = t. However, condition
(16) is not satisfied since

lim
b→∞

∫ b

0

√
2
π

es−t
√

t − s

(∫ s

0
su4du

)
ds = lim

b→∞

√
2
π

5

∫ b

0

s6es−t
√

t − s
ds = ∞.

Using Proposition 2.6 (b), it is easy to verify that x(t) = t2e−t is a nonoscillatory solution of Eq. (28).
Here,

lim
t→0+

I1/2,1/2
0 (t2e−t) =

16
√

2
15
√

π
lim

t→0+
t5/2e−t = 0.

4. Oscillation criteria for the GPF integro-differential equations in the Caputo setting

In this section, we study the oscillation of the GPF integro-differential equations in the Caputo setting
of the form

(29)
{ CDα,ν

a x(t) = r(t)−
∫ t

a Ψ(t,s)Λ(s,x(s))ds,
Dk,νx(a) = bk ∈ R, k = 0,1, ...,n−1,

where n = ⌈α⌉, CDα,ν
a is defined by Eq. (4), Dk,ν = DνDν . . .Dν︸ ︷︷ ︸

k-times

, and Dν is the proportional derivative.

Below, we provide corresponding results for Eq. (29). Since the arguments resemble the case of
Riemann-Liouville, we will only prove the first of the following theorems.

Theorem 4.1. Assume that conditions (O1)-(O3) are satisfied with g2 = 0. If for every constant k > 0

(30) limsup
t→∞

t1−nIα,ν
a [r(t)− kξ1(t)] = ∞

and

(31) liminf
t→∞

t1−nIα,ν
a [r(t)+ kξ1(t)] =−∞,

then every solution of Eq. (29) is oscillatory.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

17 Oct 2023 03:14:42 PDT
230411-Mert-2 Version 4 - Submitted to Rocky Mountain J. Math.



SOME OSCILLATION CRITERIA FOR NONLOCAL FRACTIONAL PROPORTIONAL INTEGRO-DIFFERENTIAL EQUATIONS8

Proof. Assume that x(t) is a nonoscillatory solution of Eq. (29) with g2 = 0. Without loss of generality,
assume that x(t)> 0 for t ≥ T1. Proceeding as in the proof of Theorem 3.1, we get

(32) CDα,ν
a x(t)≤ r(t)+ kξ1(t).

Applying the operator Iα,ν
a to (32), we see from (6) that

t1−nx(t) ≤ t1−ne
ν−1

ν
(t−a)

n−1

∑
j=0

D j,νx(a)
ν j j!

(t −a) j + t1−n Iα,ν
a [r(t)+ kξ1(t)]

≤ e
ν−1

ν
(t−a)

(
t −a

t

)n−1 n−1

∑
j=0

|D j,νx(a)|
ν j j!

(t −a) j−n+1 + t1−n Iα,ν
a [r(t)+ kξ1(t)]

≤
n−1

∑
j=0

|D j,νx(a)|
ν j j!

(T2 −a) j−n+1 + t1−n Iα,ν
a [r(t)+ kξ1(t)], t ≥ T2 > T1.

(33)

Now, from (31), it follows that
liminf

t→∞
t1−nx(t) =−∞,

which is a contradiction to that x(t)> 0 eventually. Hence, the proof is complete. □

Theorem 4.2. Assume that conditions (O1)-(O4) are satisfied with ρ > 1 and ε = 1. In addition to the
conditions of Theorem 4.1, if

(34) lim
t→∞

t1−n
∫ t

a

e
ν−1

ν
(t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s,u)q

1
1−ρ

1 (u)q
ρ

ρ−1
2 (u)duds < ∞,

then every solution of Eq. (29) is oscillatory.

Theorem 4.3. Assume that conditions (O1)-(O4) are satisfied with ρ = 1 and ε < 1. In addition to the
conditions of Theorem 4.1, if

(35) lim
t→∞

t1−n
∫ t

a

e
ν−1

ν
(t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s,u)q

ε
ε−1
1 (u)q

1
1−ε

2 (u)duds < ∞,

then every solution of Eq. (29) is oscillatory.

Theorem 4.4. Assume that conditions (O1)-(O4) are satisfied with ρ > 1 and ε < 1. In addition to the
conditions of Theorem 4.1, assume that there exists a continuous function ς : R→ (0,∞) such that

(36) lim
t→∞

t1−n
∫ t

a

e
ν−1

ν
(t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s,u)q

1
1−ρ

1 (u)ς
ρ

ρ−1 (u)duds < ∞

and

(37) lim
t→∞

t1−n
∫ t

a

e
ν−1

ν
(t−s)(t − s)α−1

ναΓ(α)

∫ s

a
Ψ(s,u)ς

ε
ε−1 (u)q

1
1−ε

2 (u)duds < ∞,

then every solution of Eq. (29) is oscillatory.

The following example clarifies Theorem 4.1.
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Example 4.5. Consider the integro-differential equation with Caputo GPF derivative

(38)

 CD3/2,1/2
0 x(t) =

√
2
π

e−t√t − (t4 +3t3 +6t2 +6t)e−t +6t − t
∫ t

0
sx(s)ds,

x(0) = 0, x′(0) = 0.

Comparing with Eq. (29) with g2 = 0, we have

α =
3
2
,ν =

1
2
,a = b0 = b1 = 0,r(t) =

√
2
π

e−t√t − (t4 +3t3 +6t2 +6t)e−t +6t,

g1(t,x) = x, and Ψ(t,s) = ts. Conditions (O1)–(O3) are satisfied, and condition (31) does not hold.
We have

(39) r(t)≥
√

2
π

e−t√t − (t4 +3t3 +6t2 +6t)e−t , t ≥ 0.

Applying the operator I3/2,1/2
0 to (39), we see that

I3/2,1/2
0 r(t)≥ t2e−t − 48

√
2

Γ(13/2)
t11/2e−t − 36

√
2

Γ(11/2)
t9/2e−t − 24

√
2

Γ(9/2)
t7/2e−t − 12

√
2

Γ(7/2)
t5/2e−t

=−

√
2
π

e−tt2
(
1024t7/2 +4224t5/2 +12672t3/2 +22176t1/2 −3465

)
3465

,

and hence

t−1I3/2,1/2
0 r(t)≥−

√
2
π

e−tt
(
1024t7/2 +4224t5/2 +12672t3/2 +22176t1/2 −3465

)
3465

.

(40)

If we apply limit inferior on both sides of (40) as t → ∞, then we get

(41) liminf
t→∞

t−1I3/2,1/2
0 r(t)≥ 0.

Using Proposition 2.7, one can easily prove that x(t) = t2e−t is a nonoscillatory solution of Eq. (38).

5. Conclusion

Local fractional proportional derivatives, say of order ν ∈ [0,1], were used in [4] to generate nonlocal
fractional proportional derivatives by adding a second index α instead of the number n which represents
the number of iterations in the fractionalizing process. The produced nonlocal fractional proportional
operator aDα,ν , either in the Riemann-Liouville or the Caputo sense, includes the exponential function
in the kernel. In this work, we have investigated and analyzed such a kernel to study the oscillation
of certain nonlocal fractional proportional integro-differential equations. The case in which ν = 1
reduces to the Caputo and Riemann-Liouville fractional operator ones and hence the results in [5] are
recovered. We have presented some examples to illustrate the applicability of our results.
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