Arithmetic Relations for Overpartitions Modulo 27
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Abstract. Let p(n) denote the number of overpartitions of n. In this paper, we establish
the generating function of p(96n + 12) modulo 27 by using elementary dissection tech-
niques. As a consequence, we obtain infinite families of congruences p(96/n+96:+12) = 0
(mod 27), where n > 0, £ is an arbitrary odd prime and 0 < i < £ is a nonnegative integer
such that (8’%1) = —1. In this way, we find various congruences such as p(288n+204) = 0
(mod 27), p(480n +204,396) = 0 (mod 27) and p(672n + 204, 396,492) = 0 (mod 27) for
n > 0.
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1 Introduction

A partition of a positive integer n is a nonincreasing sequence of positive integers whose
sum is n. An overpartition of a positive integer n is a partition of n in which the first
occurrence of each distinct part may be overlined. Let p(n) denote the number of over-
partitions of n. By convention, we set p(0) = 1 and p(n) =0 if n < 0.

As noted by Corteel and Lovejoy [5], the generating function of p(n) is given by

S gty = LD

where o
(@;@)oe == [J(1 —ag™), gl <1
n=0

is the standard notation in g-series. Throughout this paper, f; is defined by

fr = (d"¢").

Recall that Ramanujan’s general theta function f(a,b) is defined by:

flab):= Y a®5F0" T, Jab| < 1. (1.1)

n=—oo
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And three Ramanujan’s theta functions are given by:

e(q) = fla,q) = % (1.2)
w(—Q)?=fK—q,—Q)=:§§, (1.3)
U(q) = flg:¢°) = ‘;—zj (1.4)

The arithmetic properties and the divisibility of p(n) have been widely investigated in
recent years. For powers of 2, Fortin et al. [7] and Hirschhorn and Sellers [8] independently
found 2-, 3- and 4-dissections of the generating function for p(n) and obtained a number
of congruences for p(n) modulo 4, 8 and 64. Chen et al. [3] derived several infinite
families of congruences for p(n) modulo 16 and four congruence relations for p(n) modulo
4,16,32, and 64. Mahlburg [10] showed that p(n) = 0 (mod 64) holds for a set of integers
of arithmetic density 1. Kim [9] showed that p(n) = 0 (mod 128) holds for a set of
integers of arithmetic density 1. For powers of 3, Lovejoy and Osburn [11] obtained
some infinite families of congruences for p(n) modulo 3. Xia and Yao [13] proved some
congruences for p(n) modulo 3, 9, and 27 by applying elementary generating function
dissection techniques. For powers of 5, Chen et al. [2] and Treneer [12] obtained an
infinite family of congruences for p(n) modulo 5 by utilizing half-integral weight modular
forms. Chern and Dastidar [4] proved p(80n + 8,52,68,72) = 0 (mod 25).

In this paper, we are mainly concerned with arithmetic relations for p(n) modulo 27.
We first establish the following generating function of p(96n + 12) modulo 27 by using
elementary dissection techniques due to Xia and Yao [13].

Theorem 1.1 We have

> " p(96n +12)¢" = —9¢(q)  (mod 27).

n>0

Combining the above generating function with the ¢-dissection formula of ¢(q) given
by Cui and Gu [6], we obtain infinite families of congruences modulo 27.

Corollary 1.2 Let (Z) denote the Legendre symbol. Assume that n is a nonnegative
integer and £ is an arbitrary odd prime. Then we have

p(960n + 967 +12) =0 (mod 27),

where 0 < 1 < { is a nonnegative integer such that (%) =—1.
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Setting ¢ = 3,5,7 and 11 respctively in Corollary 1.2, we find the following specific

congruences:
p(288n +204) =0 (mod 27),
p(480n + 204,396) =0 (mod 27),
B(672n + 204,396,492) = 0 (mod 27),
H(1056n + 204,492, 684,780,876) = 0 (mod 27),

where n is a nonnegative integer.

2 Some Lemmas

In order to establish the generating function of p(96n + 12) modulo 27, we need to give
some lemmas. For more details, see [1,13].

Lemma 2.1 [13, Lemma 2.2, Lemma 2.3, Lemma 2.6]

2 fafg B fofis
= 2 21)
1 5 2 r2
TRy (22)
1 14 2 r4
Aot G 2%
ho_ folwfdy  fofdfiafas
B = Ferstis a2 hofa (24)
Lemma 2.2 [13, Lemma 2.4, Lemma 2.5]
3 3 2 r3
R ks 2 &
f_:’;3 _ ]{;?]JE +3qff§67f122, (2.6)
1 2J12 2
f_; _ fﬂf?ff? B qﬁf%’ (2.7)
3 6 4J6
B
i f22f12+qf4‘ (28)
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Lemma 2.3 Ifa =0 (mod 3), then 9a = 9b (mod 27).
Lemmma 2.3 is obvious by using elementary number theory.

Lemma 2.4 For positive integers r» and s, we have

f3r5ffs (mOd 3)7
5 =f" (mod9),
2= 2" (mod 27).

r

Lemmma 2.4 is easy to be checked by the binomial theorem.

Lemma 2.5 [1, p.356, Entry 3, p.357, eq.(4.3)]

9 _ (3 6 _ f6_fg2
V(g) — (@) = f(¢°.q") = Tihs
o#)  p(=a)’ _ vla)’

Lemma 2.6 [14, eq.(2.6)]
gp(q)4 + qw(q2)4 =1 (mod 3).
Lemma 2.7 We have

+9¢¢(¢)®* =0 (mod 27).

v(e’) (=%

(@) p(=q)?
Proof. Rewriting the left-hand side of (2.15), we obtain that
(=2® _ ¥(@)?
v(@®) (=4’ 8 z(—q3) D) 8
- +990(0)° = T o T 94v(a)".
3 3 Y(@)? | (=9
¥(9) #(=a) (@) w(—4%)
Using (2.13) and Lemma 2.3, we deduce that
p(=a) 99 _ ge(=¢")* v(@)°
p(=¢*) v(®) (-0 ¥
=9{p(—¢)® -1} (mod 27)
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(2.14)

(2.15)

(2.16)

(2.17)



Notice that

(@) e(=q)®
(a®)  (=¢)
Applying (2.17), (2.18) and Lemma 2.3, (2.16) becomes

=1 (mod 3). (2.18)

V(') e(=¢°) s _ s, (@) o
S~ o T =9 (et 14 S a9
By (2.12) and (1.4), we have

U(g) f3 fshs
Plugging (2.20) into the right-hand side of (2.19) and by (1.3), we yield

(@) (=) s {fl”" fi fof§ }
- +9q0(q)° =94 —x — 5 mod 27). 2.21
dp oCap P = T gy e B2
Using (2.9), it is easy to check that
A fef§
= - = =0 (mod 3). 2.22
s Y (222
Combining (2.21), (2.22) and Lemma 2.3, we complete the proof of Lemma 2.7. |

3 Proofs of Theorem 1.1 and Corollary 1.2

In this section, we give a proof of Theorem 1.1 by using elementary generating function
dissection techniques, and then give a proof of Corollary 1.2 by using Theorem 1.1 and
the ¢-dissection formula of 1(q) due to Cui and Gu [6].

Proof of Theorem 1.1. From Hirschhorn and Sellers [8, Thereom 1, eq.(2)], we have

4 £6 4 3 £3
> #onia" = 2R B ()R (31)

Plugging (2.1), (2.6) and (2.8) into the right-hand side of (3.1), we obtain that

p(an)g" = 2 (LALs g Jiloliy! (e | Juy(folS o ol
Sorend = (s vo ) Gare e (i 20 62
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Expanding the right-hand side of (3.2) and taking modulo 27, we deduce that

Zﬁ(iin) { [P f8 88 +7q o J1 fo /s 9 2f411f6f8f12}

2 L IR, 7%
N fufm}
+q{1of§2f§2f16 A e S

By Lemma 2.3 and (2.9), it is easy to check that

9 2f41f%£‘6f” =9 2%;{8: (mod 27). (3.4)

Putting (3.4) into the right-hand side of (3.3), and then extracting the terms of ¢*" on
both sides of (3.3), and setting ¢* to ¢, we derive that

R A
= 7
2 POm)" = s T4 S + 90

£°fi (f3 8

n>0

fs [ 6 1 [ fe
e () 1o () v e

Plugging (2.3) and (2.6) into the right-hand side of (3.5), we arrive at

N L AT
> poma = (g~ )

(%{l)z (mod 27).  (3.5)

1742 , 16 ¢3 2f f2N6 [
n 7qf2 f;; (fgfg +3qf4f67f12) ( /i +4qf4f8>
fafs NS5 f12 3 s 2
22 fifs
+9qg 4( +4q48> mod 27). 3.6
4 (i mod 27 30
Expanding the right-hand side of (3.6) and taking modulo 27, and then applying Lemma
2.3, we get
53 17 a7 f1 5f8 21 49 £15 33
p(6n)q { —I—q — 9¢? }—i—q{ +9 } (mod 27).
; 132 f3 fi 247 12 f210f8 f251f8 5 214
(3.7)
By (2.11), it is readily checked that
53 £17 53 18 2 2
{g {6 6 5;: 2Lf+§ = f2f122 (mod 27), (3.8)
2 [ 12 20 f5 fe fio Safels
and
37 £15 46 37 £6 £18 £6 7 6 £6
i et fs IS e e fa s/t
17 f12 . fA7 f_L = f17f§ (mod 27). (3.9)
2 Ji2 2 J6 Ji2 1 J6
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Plugging (3.8) and (3.9) into the right-hand side of (3.7), and then extracting the terms
of ¢*" on both sides of (3.7), and setting ¢ to ¢, we derive that

RS LTRSS
2“2” C= gt e T

21

fé <f1>+qff21126 <f1>31 9 L(i>2fi12 (mod 27).  (3.10)

fofiNfs YN TAVH
Putting (2.2)-(2.5) into the right-hand side of (3.10), we are led to
_ w_ [f§ f2f16f224_ fofd frafas 08 (12, B 3 fifis
S st = 5 (et - et o (7 - ) (i)
21 14 f f f5 f f
=94 (4t i+ 4 8) <f218‘“16+2 ];*2]3:) (mod 27). (3.11)

Expanding the right-hand side of (3.11) and taking modulo 27, and then applying Lemma
2.3, we obtain that

Zﬁ(mn)an{ f16f224 2f417fﬁ6f16 +9 2f48f16 +9 4f4f8f16}

2
f42f8f48+ 4 2 fsfh 2218 f3

f415fgf§) f82f12f48 26 2f4 }
B -9 —9q d27). (3.12
o { 32 fiafts  fifiefo 21313 Fipz (mod 27). (3.12)

n>0

By (2.11), we have
SRR BIPS
[2 [0t [T
Plugging (3.13) into the right-hand side of (3.12), and then extracting the terms of ¢?**!
on both sides of (3.12), and setting ¢ to ¢, we find that

) _BIPR fifda g £ B
4 = _ _
%¥@”+mm I N G TS

(mod 27). (3.13)

SN L fifefa S50 1N fEAE L
T <f3) 9 ) 9 (mod 2),

i S fshe f4f8<f{1
(3.14)

Substituting (2.3) and (2.5) into the right-hand side of (3.14) implies that

] L IBE S L BN RN et
;pmnﬂm DEIE <f12 5 f4f§> <f214f§‘+4q 50> B fsfro
N BIP (R SR
4 4q d 27).
BT <f%4fs+ T o) 12 (f214f8+ i) (mod 20
(3.15)
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Expanding the right-hand side of (3.15) and taking modulo 27, and then applying Lemma
2.3, we deduce that

AT N }
24 12 + 9q
2 P2in+12)¢" {f6f8f12 e TR
382 [0 }
4 9 —9q d 27). 3.16
”{ I f212f8 gy twed2n). (316)

Extracting the terms of ¢** on both sides of (3.16), and setting ¢* to ¢, we derive that
I3 B 5 f3° 17

p(48n + 12)¢" = — -9 + 9q
2 P A00" = BE = g, e TR
hy et 21 15
= 9= (—=) +9 mod 27).
(B -5 o) rwib() woa)
(3.17)
Plugging (2.7), (2.6) and (2.3) into the right-hand side of (3.17) yields that
 (Rfif B fhe ¢ 1218 fifeft
5(48n + 12)¢" = 2 2ifia _ JoJ1a) _ 1 1J6 4 g, at6]ip
D opisn 120" = i (B8 —apge) — e 0 )
39, f1 4 14 2 ¢4
a2 fifs 5 f4f8 2
9/2 ( 4f8+4 210)+9f f4< i e ) (mod 27).
(3.18)
Expanding the right-hand side of (3.18) and taking modulo 27, we obtain that
29f2 f5f 42 f f
ﬁ48n+12q”z{2 12 7176 _ 9 — 9¢*= — 9¢" }
2 PUS 12" = e g O M T R
31 £6 3
— q{f28 ffj + 3f4";12} (mod 27). (3.19)
f4 6 f2
By (2.11), it is easy to check that
29 £2 2 42
ot _ Jalia (mod 27). (3.20)

fifs" — fife
Putting (3.20) into the right-hand side of (3.19), and then extracting the terms of ¢*" on
both sides of (3.19), and setting ¢? to g, we derive that

) RROBE B
2 P00+ 120" = g = = s — 90y — 90
:f_f{ff’fﬁ BE o B i } .
AT T 9<flf4+ 7)) (mod2m),

(3.21)
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By (1.2), (1.3) and (1.4), we have

{@/J(cf':))) ~p(=¢°)

>~ p(96n + 12)g" = (g) +9qv(q)* — 9 (o) + q¢<q2>4)2} (mod 27).

= (@) (=)
(3.22)
Combining Lemma 2.3, Lemma 2.6 and Lemma 2.7, we conclude that
> 5960 +12)¢" = —9¥(q) (mod 27), (3.23)
n>0
which completes the proof of Theorem 1.1. |

Proof of Corollary 1.2. Recall the ¢-dissection formula of ¢(q) given by Cui and Gu [6,
Theorem 2.1], namely, for any odd prime ¢,

£-3
2

K24k Crekt1)e 2 (2k+1)e 21 2
V)= g2 fl¢ 2 ¢ 2 )+q-= (") (3.24)
k=0

Notice that i = WT““ (mod ¢),0 < k< E2ori= FT_I (mod /) if and only if 8 4+ 1 =

(2k +1)? (mod ) or 8 +1 =0 (mod ¢). That is to say, there are no terms of ¢""** such
that 0 < i < £ and (%#1) = —1 on both sides of (3.24). Hence extracting such terms of
¢ on both sides of (3.23), we obtain that

p(960n + 967 +12) =0 (mod 27).

This completes the proof of Corollary 1.2. |
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