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ABSTRACT. We consider the Cauchy problem driven by nonlinear fractional mobile–
immobile equations (Fr-MIMEs) involving time–varying delays in Hilbert spaces. Based
on fixed point arguments, smoothness of the resolvent operators, and local estimates, we
show global solvability and regularity results for both linear and semilinear problems in
which the nonlinearity terms are supposed to satisfy sublinear or superlinear growth condi-
tions. Several qualitative aspects concerning the large–time behavior of solutions, such as
dissipativity and stability, are investigated by establishing a new Halanay–type inequality.
Moreover, thanks to the technique of measure of noncompactness, the existence of decay
solutions with polynomial rates is also proved.
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1. INTRODUCTION

In the last decades, delay differential equations (DDEs) involving the fractional–order
derivative operators in both finite and infinite dimensional spaces have been widely used to
model and analyze various evolutionary processes arising in many fields in real life, such
as physics, biology, bioengineering, control theory, demography, and medicine [BDST12,
BNRV16, Ca99, CC08, El03, Er09, FWP17, Ju06, Ma06, OV20, Ni86, Wu96, ZWZ17].
In such models, the state of processes usually depends nonlinearly not only on the current
state but also on the history state, and the fractional–order derivative operators normally
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2 T.T. TUAN AND N.V. DAC

describe the anomalous diffusion in materials with memory. Some interesting mathemat-
ical questions related to DDEs, including the global existence and large–time behavior of
solutions generated by these equations, have attracted considerable attentions of many re-
searchers; see [AK15, AKQ16, AY22, CTT20, DVVW95, KT20, KT23, KWS99, LP22,
TKD23, TS20, TT20, TTG21] for example. On the other hand, another important topic in
qualitative investigations of DDEs is about the regularity of solutions. This topic naturally
emerges from both theoretical and applied issues. Some well–known situations mentioned
here include creating the algorithms to find the approximation solutions and analyzing the
numerical stability (see, e.g., [BZ13, LS23, LW22]); studying solvability and stability for
some kinds of inverse problems [DL07, KTT22, LV14, Tu23a, Tu23b] and optimal prob-
lems [BK13, Wa72].

Inspired by the facts listed above and the recent works [ADT22, DTT23], in this paper
we are primarily interested in analyzing the global existence, regulariy, stability and poly-
nomial decay of solutions to nonlinear time–delayed Fr-MIMEs in Hilbert spaces, which
states as follows

ν1u
′(t) + ν2D

α
0 u(t) +Au(t) = f(t, uρ), t > 0, (1.1)

u(s) = ξ(s), s ∈ [−q, 0], (1.2)

where ν1, ν2 > 0,
(
H, (·, ·)

)
be a separable Hilbert space, the state function u(·) takes

values in H , A is an unbounded linear operator on H , Dα
0 , α ∈ (0, 1), is the Caputo

fractional derivative of order α defined by

Dα
0 u(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αu′(s)ds, t > 0.

In Eq. (1.1), uρ(t) = u(t − ρ(t)) represents a time–varying delay term where ρ is a
continuous function on R+ such that −q ≤ t − ρ(t) ≤ t. The nonlinear function f :
R+ ×H → H is a given function and the initial datum ξ belongs to C([−q, 0], H).

Before proceeding further, let us review some related works concerning Fr-MIMEs. It is
worth mentioning that Fr-MIME is introduced for the first time in the seminal work by R.
Schumer and his coauthors [SBMB03]. As remarked in [SBMB03], Fr-MIME is employed
to describe the anomalous diffusion of solute in porous media. Subsequently, Fr-MIMEs
have received a lot of attention, and, nowadays, there is a fairly long list of publications
investigating the existence of numerical solutions for linear as well as nonlinear Fr-MIMEs
[Ba21, JXQZ20, QXCG20, YLL20, ZLL19, ZW20]. However, the theoretical studies of
solutions for Fr-MIMEs are not yet fully known. There have been some recent efforts to
address qualitative questions for Fr-MIMEs [ADT22, DTT23]. In [DTT23], the authors
have successfully established results on the existence, regularity in time, and stability in
the Lyapunov sense of solutions to the Cauchy problem governed by nonlinear Fr-MIMEs.
In addition, the global existence of decay solutions for nonlinear Fr-MIMEs with impulsive
effects has been obtained in [ADT22]. We would like to make more contributions to the
literature by considering the Fr-MIMEs with delays since the fact that there is no attempt
at solving this problem.

Regarding the initial value problem (1.1)–(1.2), the analysis of the regularity and large–
time behavior of solutions demands a few technical difficulties than the case without delays
[DTT23]. The first one comes from the appearance of delay and nonlinearity terms, and
the fact that two resolvent families Sα(·),Rα(·) that are defined by (2.14), (2.15) in the
next section no longer possess the semi-group property. The second one is the lack of
appropriate functional inequalities. In order to overcome these difficulties, we first take
the smoothness in time–space of Sα(·),Rα(·) (see Lemma 2.1 below) into account and
propose suitable assumptions on the regularity of both the initial data and the nonlinear
perturbations. And then, with these assumptions in hand, the global existence and C1–
regularity of solutions for the problem (1.1)–(1.2) are proved by blending fixed point ar-
guments and local estimates. In addition, regarding the large–time behavior of solutions,
a new Halanay–type inequality of integral form is shown for analyzing dissipativity and
stability. Finally, the boundedness of ρ and the measure of noncompactness are employed
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REGULARITY IN TIME OF SOLUTIONS 3

for the purpose of showing the existence of decay solution with polynomial rates. It should
be noticeable that the last result is better in comparison with the counter part in [ADT22]
due to the explicit rate of decay.

The present work is organized as follows. In the next section, we recall some basic facts
related to the inhomogeneous initial value problem driven by the linear part of equation
(1.1) and show important results on resolvent operators. A result on the C1–regularity of
the solution to this problem will be shown in Section 2. Section 3 is devoted to revealing the
global existence and regularity of solutions to the corresponding nonlinear problem. In the
last Section, we analyze the large–time behavior of solutions by showing the dissipativity
and stability as well as the existence of decay solutions with polynomial rates.

2. NOTATIONS AND PRELIMINARIES

In this section, our goal is to find a representation of the solution for the inhomogeneous
initial value problem associated with the problem (1.1)–(1.2) and prove the regularity of its
solution. For the sake of simplicity, we first list here some notations and conventions which
will be used throughout this work. Let (·, ·), ∥ · ∥ be the inner product and the standard
norm in H . For a < b, we denote by C

(
[a, b];H

)
the space of all continuous functions on

[a, b], taking values in H . This space is a Banach space when it is equipped with the norm

∥v∥
C
(
[a,b];H

) := sup
t∈[a,b]

∥v(t)∥.

In particular, the norms in C
(
[−q, 0];H

)
, C
(
[0, T ];H

)
will be denoted by ∥ · ∥0, ∥ · ∥∞,

respectively. For γ ∈ (0, 1), we define the Hölder space Cγ
(
[a, b];H

)
consisting of all

continuous functions v : [a, b] → H such that

sup
a≤t<t+h≤b

∥v(t+ h)− v(t)∥
hγ

<∞.

2.1. Resolvent operators. In this subsection, we find a formula for mild solutions to the
inhomogeneous initial value problem

ν1u
′(t) + ν2D

α
0 u(t) +Au(t) = F (t), 0 < t ≤ T, (2.1)

u(s) = ξ(s), s ∈ [−q, 0], (2.2)

where F ∈ L1
loc

(
R+;H

)
and F is an exponentially bounded function. For this goal, we

need the following assumption

(Ha) A : D(A) → H is densely defined, self-adjoint and positively definite operator
with a compact resolvent.

It follows from the assumption (Ha) that there exists a sequence {λn}∞n=1 satisfying

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · ,

lim
n→∞

λn = ∞ and a system of vectors {en}∞n=1 ⊂ D(A), which forms an orthonormal
basis of H such that Aen = λnen, for all n ∈ N∗.

For γ ∈ R, one can define the fractional power operator Aγ of A as follows

Aγz :=

∞∑
n=1

λγn (z, en) en, z ∈ Vγ := D(Aγ) =

{
z ∈ H :

∞∑
n=1

λ2γn |(z, en)|2 <∞

}
.

It should be noted that Vγ is a Hilbert space with the norm

∥z∥Vγ
=

( ∞∑
n=1

λ2γn |(z, en)|2
) 1

2

, z ∈ D(Aγ).
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4 T.T. TUAN AND N.V. DAC

We can identify V−γ = D(A−γ) with V∗
γ , the dual space of Vγ . Then V−γ is a Hilbert

space with the norm

∥h∥V−γ
=

( ∞∑
n=1

λ−2γ
n |⟨h, en⟩|2

) 1
2

,

where ⟨·, ·⟩ denotes the duality pairing between V−γ and Vγ . Identifying H with its dual
H∗, the following relations hold for all γ ≥ 0:

Vγ ⊂ H ≃ H∗ ⊂ V−γ .

It is worth noting that ⟨f, z⟩ = (f, z) for all f ∈ H, z ∈ Vγ .

Let

u(t) =

∞∑
n=1

un(t)en, F (t) =

∞∑
n=1

Fn(t)en, t ∈ (0, T ] ,

ξ(s) =

∞∑
n=1

ξn(s)en, s ∈ [−q, 0].

Hence, for all n = 1, 2, . . ., one has

ν1u
′
n(t) + ν2g1−α ∗ u′n(t) + λnun(t) = Fn(t), 0 < t ≤ T, (2.3)

un(s) = ξn(s), s ∈ [−q, 0], (2.4)

where the notation ‘∗’ stands for the Laplace convolution with respect to the time t, i.e.,

(m ∗ v)(t) =
∫ t

0

m(t− s)v(s)ds,

and g1−α(t) = t−α/Γ(1− α), t > 0.

To find un satisfying Eqs. (2.3)–(2.4), we consider the following scalar integral equa-
tions

s(t) + λ(ℓ ∗ s)(t) = 1, t ≥ 0, (2.5)

r(t) + λ(ℓ ∗ r)(t) = ℓ(t), t ≥ 0, (2.6)

where λ > 0 and ℓ is the unique solution of the following integral equation

ν1ℓ+ ν2g1−α ∗ ℓ = 1 on [0,∞). (2.7)

It is well known (see, e.g. [GLS90, Theorem 2.3.1]), that Eqs. (2.5) and (2.6) are uniquely
solved. In particular, see [DTT23, Sect. 2], the solution of Eq. (2.7) is given by

ℓ(t) = ν−1
1 E1−α(−ν−1

1 ν2t
1−α), (2.8)

where

E1−α(z) =

∞∑
n=0

zn

Γ((1− α)n+ 1)
, z ∈ C,

is the Mittag–Leffler function.

Throughout the paper, we denote sα(·, λ) and rα(·, λ) being the solutions of (2.5) and
(2.6), respectively. Recall that the kernel function ℓ is completely positive iff sα(·, λ), rα(·, λ)
are nonnegative for every λ > 0. In [GKMR14, Proposition 3.23, p. 47], it is shown that
ℓ is completely positive. Moreover, using the same arguments as in [DTT23, Propositions
2.1 and 2.2], we obtain the following results.

Proposition 2.1. Let ℓ, sα(·, λ), rα(·, λ) be the solution of the equation (2.7), (2.5)
and (2.6) respectively. Then the following claims hold:

(i)
1

ν1 + ν2Γ(α)t1−α
≤ ℓ(t) ≤ 1

ν1 + ν2Γ(2− α)−1t1−α
, for all t ≥ 0.

(ii) ℓ(·) is a differentiable function on (0,∞) and

0 ≤ −ℓ′(t) ≤ ν−2
1 ν2t

−α, for a.e. t > 0.
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REGULARITY IN TIME OF SOLUTIONS 5

(iii) For every λ > 0, the function sα(·, λ) is nonnegative and nonincreasing.
Moreover,

sα(t, λ)

[
1 + λ

∫ t

0

ℓ(τ)dτ

]
≤ 1, for all t ≥ 0. (2.9)

(iv) For each t > 0, the functions λ 7→ sα(t, λ) and λ 7→ rα(t, λ) are nonin-
creasing.

(v) The function rα(·, λ) is nonnegative and the following two equalities hold

sα(t, λ) = 1− λ

∫ t

0

rα(τ, λ)dτ = ν1rα(t, λ) + ν2
(
gα ∗ rα(·, λ)

)
(t), t ≥ 0.

(2.10)

In addition, for each λ > 0, the following estimates hold

λrα(t, λ) ≤
1

t
, for all t > 0 and rα(t, λ) ≤ ℓ(t), for all t ≥ 0. (2.11)

Remark 2.1. (i) In view of the representation (2.10) and the inequality (2.11), for
each λ > 0, we have

0 ≤ −s′α(t, λ) = λrα(t, λ) ≤
1

t
, for all t > 0,

and

λ

∫ t

0

rα(s, λ)ds ≤ 1,∀t ≥ 0.

(ii) Let v(t) = sα(t, λ)v0 +
(
rα(·, λ) ∗ ω

)
(t), here ω ∈ L1

loc(R
+). Then, by owing

to the same lines as ones in [DTT23, Proposition 2.3], v solves the problem

ν1v
′(t) + ν2

(
g1−α ∗ v′

)
(t) + λv(t) = ω(t), v(0) = v0. (2.12)

It follows from Remark 2.1(ii) and Eqs. (2.3)–(2.4) that un(t) = ξ(t), t ∈ [−q, 0] and

un(t) = sα(t, λn)ξn(0) + rα(·, λn) ∗ Fn(t).

We then obtain

u(t) = Sα(t)ξ(0) +

∫ t

0

Rα(t− τ)F (τ)dτ, (2.13)

where

Sα(t)v =

∞∑
n=1

sα(t, λn)vnen, (2.14)

Rα(t)v =

∞∑
n=1

rα(t, λn)vnen. (2.15)

It is easily seen that Sα(t) and Rα(t) are linear operators acting on H . Some basic prop-
erties of these operators are collected in the following lemma.

Lemma 2.1 (See [ADT22, Lemma 2.4]). Let {Sα(t)}t≥0 and {Rα(t)}t≥0 be the
families of linear operators defined by (2.14) and (2.15), respectively. Then

(i) For each v ∈ H and T > 0, Sα(·)v ∈ C([0, T ];H) and ASα(·)v ∈
C((0, T ];H). Moreover,

∥Sα(t)v∥ ≤ sα(t, λ1)∥v∥, t ∈ [0, T ], (2.16)

∥Sα(t)v∥V1
≤ ∥v∥

(1 ∗ ℓ)(t)
, t ∈ (0, T ]. (2.17)

In addition, Sα(·) is differentiable on (0,∞) and the following estimate holds

∥S ′
α(t)v∥ ≤ ∥v∥

t
,∀v ∈ H,∀t > 0. (2.18)
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6 T.T. TUAN AND N.V. DAC

(ii) Let v ∈ H,T > 0 and g ∈ C([0, T ];H). Then Rα(·)v ∈ C([0, T ];H) and
Rα ∗ g ∈ C([0, T ];V1/2). Furthermore,

∥Rα(t)v∥ ≤ rα(t, λ1)∥v∥, t ∈ [0, T ], (2.19)

∥(Rα ∗ g)(t)∥ ≤
∫ t

0

rα(t− τ, λ1)∥g(τ)∥dτ, t ∈ [0, T ], (2.20)

∥(Rα ∗ g)(t)∥V1/2
≤
(∫ t

0

rα(t− τ, λ1)∥g(τ)∥2dτ
) 1

2

, t ∈ [0, T ]. (2.21)

Moreover, Rα(·) is differentiable on (0,∞) and the following estimate holds

∥R′
α(t)v∥ ≤ (ν−1

1 t−1 + ν−2
1 ν2t

−α)∥v∥,∀v ∈ H,∀t > 0. (2.22)

Remark 2.2. (i) The first statement of Lemma 2.1 guarantees that the operator Sα(t) :
H → H is compact for any t > 0, due to the compactness of the embedding
V1 ↪→ H .

(ii) Utilizing the same arguments as in [DTT23, Lemma 2.5] and the properties of Rα

stated in Lemma 2.1, it is shown that the Cauchy operator defined by

Qα : C([0, T ];H) → C([0, T ];H),

Qα(g)(t) =
(
Rα ∗ g

)
(t), (2.23)

is compact.

2.2. Regularity of mild solution. In this section, we prove a result on C1−regularity of
a mild solution to (2.1)–(2.2) when ξ, F are sufficiently regular functions. Then we obtain
the strong solution whose definition can be given as follows.

Definition 1. A function u ∈ C([−q, T ];H) is said to be a strong solution to (2.1)–(2.2)
on the interval [−q, T ] iff (2.1) and (2.2) hold as an equation in H .

Our main result on regularity of mild solutions for the time–delayed linear problem
(2.1)–(2.2) is presented in the following theorem.

Theorem 2.1. Consider the initial value problem (2.1)–(2.2). Let (Ha) hold and
assume that F ∈ Cσ([0, T ];H), ξ ∈ Cσ([−q, 0];H), ξ(0) ∈ V1. Then the mild
solution u of the problem obeys

(i) u is Hölder continuous on [−q, T ] with exponent σ,
(ii) u ∈ C1((0, T ];H),

(iii) Au ∈ C((0, T ];H),
(iv) g1−α ∗ u′ ∈ C((0, T ];H) and then u is a strong solution.

Proof. Let u be the mild solution of problem (2.1)–(2.2). We have u(t) = ξ(t), t ∈ [−q, 0]
and

u(t) = Sα(t)ξ(0) +

∫ t

0

Rα(t− τ)F (τ)dτ, t ∈ [0, T ].

Denote CF , Cξ be the Hölder constants of F, ξ, respectively. We first show the proof of
the assertion (i). Let t ∈ [−q, T ] and h ∈ (0, T − t]. We estimate ∥u(t+ h)− u(t)∥ in the
following three distinct cases.

Case 1. −q ≤ t < t+ h ≤ 0. Then, by assumptions, one has

∥u(t+ h)− u(t)∥ ≤ Cξh
σ.

Case 2. −q < t ≤ 0 < t+ h. In this case |t| ≤ h and

∥u(t+ h)− u(t)∥ = ∥Sα(t+ h)ξ(0) +

∫ t+h

0

Rα(t+ h− τ)F (τ)dτ − ξ(t)∥

≤ ∥[Sα(t+ h)− I]ξ(0)∥+ ∥ξ(0)− ξ(t)∥
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REGULARITY IN TIME OF SOLUTIONS 7

+ ∥
∫ t+h

0

Rα(t+ h− τ)F (τ)dτ∥. (2.24)

Since

[Sα(t+ h)− I]ξ(0) =

∞∑
n=1

(
sα(t+ h, λn)− 1

)
ξn(0)en,

= −
∞∑

n=1

λn

∫ t+h

0

rα(t+ h− τ, λn)dτξn(0)en,

it turns out that

∥[Sα(t+ h)− I]ξ(0)∥2 = ∥
∞∑

n=1

∫ t+h

0

rα(t+ h− τ, λn)dτϕnen∥2

≤
(∫ t+h

0

ℓ(t+ h− τ)dτ

)2

∥ϕ∥2

≤
(∫ h

0

ν−1
1 dτ

)2

∥ϕ∥2

= h2ν−2
1 ∥ϕ∥2,

where ϕ := Aξ(0), thanks to Proposition 2.1(i), (v). It infers that

∥[S(t+ h)− I]ξ(0)∥ ≤ ν−1
1 ∥ϕ∥h

≤ ν−1
1 ∥ϕ∥(T + q)1−σhσ.

In addition, the second and third terms in the right hand side of (2.24) can be estimated as

∥ξ(0)− ξ(t)∥ ≤ Cξ|t|σ ≤ Cξh
σ,

and

∥
∫ t+h

0

Rα(t+ h− τ)F (τ)dτ∥ ≤
∫ h

0

rα(t+ h− τ, λ1)∥F (τ)∥dτ

≤ ν−1
1 ∥F∥∞h

≤ ν−1
1 ∥F∥∞(T + q)1−σhσ.

The estimates above follow that

∥u(t+ h)− u(t)∥ ≤
[
ν−1
1 ∥ϕ∥(T + q)1−σ + Cξ + ν−1

1 ∥F∥∞(T + q)1−σ

]
hσ.

Case 3. 0 < t ≤ T and 0 < t+ h ≤ T . Then

∥u(t+ h)− u(t)∥ ≤ ∥[Sα(t+ h)− Sα(t)]ξ(0)∥+ ∥
∫ t

0

[Rα(t+ h− τ)−Rα(t− τ)]F (τ)dτ∥

+ ∥
∫ t+h

t

Rα(t+ h− τ)F (τ)dτ∥

= T1 + T2 + T3.

We first estimate T1. Using the mean value formula, one gets

[Sα(t+ h)− Sα(t)]ξ(0) = h

∫ 1

0

S ′
α(t+ θh)ξ(0)dθ.

Then

T1 = h∥
∫ 1

0

S ′
α(t+ θh)ξ(0)dθ∥

≤ h∥ξ(0)∥
∫ 1

0

dθ

t+ θh

≤ ∥ξ∥0 ln
(
1 +

h

t

)
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8 T.T. TUAN AND N.V. DAC

≤ σ−1∥ξ∥0
(
h

t

)σ

= σ−1∥ξ∥0t−σhσ,

thanks to Lemma 2.1(i) and the fact that ln
(
1 + r

)
≤ rβ

β
for r > 0 and β ∈ (0, 1).

Regarding T2, we recall that Rα(·) is differentiable on (0,∞). By the same arguments as
above, we obtain

∥[Rα(t+ h− τ)−Rα(t− τ)]F (τ)∥ ≤ σ−1ν−1
1 ∥F (τ)∥hσ 1

(t− τ)σ
.

That leads to the estimation of T2 as follows

T2 ≤ σ−1ν−1
1 ∥F∥∞T 1−σ(1− σ)−1hσ.

Making use of Lemma 2.1(ii) and inequalites that rα(t, λ) ≤ ℓ(t) ≤ ν−1
1 for t ≥ 0, λ > 0,

we have
T3 ≤ ∥F∥∞ν−1

1 h ≤ ∥F∥∞ν−1
1 T 1−σhσ.

We now arrive at

∥u(t+h)−u(t)∥ ≤
[
σ−1∥ξ∥0t−σ+σ−1ν−1

1 ∥F∥∞T 1−σ(1−σ)−1+∥F∥∞ν−1
1 T 1−σ

]
hσ.

The proof of the assertions (ii)–(iv) can be finished by means of Lemma 2.1 and arguing
as in the proof of Theorem 4.2 in [DTT23]. The proof is complete. □

3. GLOBAL EXISTENCE AND REGULARITY OF SOLUTIONS

In this section, we show results on the global existence and regularity of mild solutions
to the nonlinear problem (1.1)–(1.2) on [−q, T ] for any T > 0 by using the fixed point
approach. We first need a definition of mild solution to our problem. From the definition
of mild solution to the initial value problem (2.1)–(2.2), we have the following one.

Definition 2. A function u ∈ C
(
[−q, T ];H

)
is said to be a mild solution of the problem

(1.1)–(1.2) on [−q, T ] iff u(t) = ξ(t) for t ∈ [−q, 0] and

u(t) = Sα(t)ξ(0) +

∫ t

0

Rα(t− τ)f
(
τ, u(τ − ρ(τ))

)
dτ,

for any t ∈ [0, T ].

For our goal, we make some notations:

• Cξ([0, T ];H) := {u ∈ C([0, T ];H) : u(0) = ξ(0)}, for given ξ ∈ C([−q, 0];H).

• u[ξ] is a function which is defined as

u[ξ](t) =

{
u(t) if t ∈ [0, T ]

ξ(t) if t ∈ [−q, 0],

here u ∈ Cξ([0, T ];H) and then we see that u[ξ] ∈ C([−q, T ];H).

• G : Cξ([0, T ];H) → Cξ([0, T ];H) is an operator defined by

G(u)(t) = Sα(t)ξ(0) +

∫ t

0

Rα(t− τ)f
(
τ, u[ξ]ρ(τ)

)
dτ.

Apparently, the set Cξ([0, T ];H) is a closed subset of C([0, T ];H) and

u[ξ]ρ(t) =

{
u(t− ρ(t)) if t− ρ(t) ∈ [0, T ]

ξ(t− ρ(t)) if t− ρ(t) ∈ [−q, 0].
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REGULARITY IN TIME OF SOLUTIONS 9

The operator G will be referred to as the solution operator since the fact that u is a fixed
point of G iff u[ξ] is a mild solution of (1.1)–(1.2). This operator is continuous if f is a
continuous map.

We are now in a position to state our first main result on the global existence of solutions
to (1.1)–(1.2).

Theorem 3.1. Let (Ha) hold and suppose that

(F1) the function f is continuous and

∥f(t, v)∥ ≤ a(t)ψ(∥v∥), ∀t ∈ [0, T ], v ∈ H,

where a ∈ L1
loc(R

+) is a nonnegative function, ψ ∈ C(R+) is a nonnegative and
nondecreasing function such that

lim sup
r→0

ψ(r)

r
· sup
t∈[0,T ]

∫ t

0

rα(t− τ, λ1)a(τ)dτ < 1. (3.1)

Then there exists δ > 0 such that the problem (1.1)–(1.2) has at least one mild solution
on [−q, T ], provided ∥ξ∥0 ≤ δ. Moreover, if f satisfies

(F2) f(·, 0) = 0 and is locally Lipschitz continuous, i.e., for each r > 0, there
exists a nonnegative constant L(r) such that

∥f(t, v1)− f(t, v2)∥ ≤ L(r)∥v1 − v2∥,

for all t ∈ [0, T ], vi ∈ H with ∥vi∥ ≤ r, i ∈ {1, 2} and lim supr→0 L(r) < λ1, then
the mild solution to (1.1)–(1.2) is unique.

Proof. Since f is continuous, G is continuous as well. Let Nf be the Nemytskii operator,
that is Nf (u)(t) = f

(
t, u[ξ]ρ(t)

)
, t ∈ [0, T ]. By the representation

G(u) = Sα(·)ξ(0) +Qα ◦Nf (u),

we get G is a compact operator thanks to the compactness of Qα stated in Remark 2.2.
Therefore, we employ the Schauder fixed point theorem to get our result. For this purpose,
we show that there exists some real number R > 0 such that

G(BR) ⊂ BR,

where BR be the closed ball in Cξ([0, T ];H) centered at origin with radius R. Let

ψ∗ = lim sup
r→0

ψ(r)

r
and M = sup

t∈[0,T ]

∫ t

0

rα(t− τ, λ1)a(τ)dτ.

From (3.1), we can chose ϵ > 0 such that

(ψ∗ + ϵ)M < 1.

By definition of ψ∗, there exists R > 0 such that

ψ(r)

r
≤ ψ∗ + ϵ,∀r ∈ (0, 2R].

Taking δ =
1−M(ψ∗ + ϵ)

1 +M(ψ∗ + ϵ)
R, then δ > 0 and δ < R.

Let u ∈ BR, we have

∥G(u)(t)∥ ≤ sα(t, λ1)∥ξ(0)∥+
∫ t

0

rα(t− τ, λ1)∥f(τ, u[ξ]ρ(τ))∥dτ

≤ ∥ξ(0)∥+
∫ t

0

rα(t− τ, λ1)a(τ)ψ(∥u[ξ]ρ(τ)∥)dτ

≤ ∥ξ∥0 +
∫ t

0

rα(t− τ, λ1)a(τ)ψ
(
sup

θ∈[0,τ ]

∥u(θ)∥+ ∥ξ∥0
)
dτ
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≤ δ + (ψ∗ + ϵ)
(
R+ δ

) ∫ t

0

rα(t− τ, λ1)a(τ)dτ

≤ δ + (ψ∗ + ϵ)
(
R+ δ

)
M

≤
(
1 + (ψ∗ + ϵ)M

)
δ +M(ψ∗ + ϵ)R,

≤ R,∀t ∈ [0, T ], (3.2)

thanks to Lemma 2.1 and the formulation of δ. The inequality (3.2) implies that G(BR) ⊂
BR, provided ∥ξ∥0 ≤ δ.

We now consider G : BR → BR. Then Schauder fixed point theorem allow us to obtain
the desired result. Now assume that the locally Lipschitz condition (F2) is fulfilled. In this
case, the assumption (F1) is verified for ψ(r) = rL(r), a ≡ 1 and for

M = sup
[0,T ]

∫ t

0

rα(t− τ, λ1)a(τ)dτ = λ−1
1 ,

thank to Proposition 2.1(v). Thus, one can apply the arguments as in the case (F1) to get
the global existence of mild solutions to (1.1)–(1.2). Let ui, i ∈ {1, 2} are two solutions
of (1.1)–(1.2) on [−q, T ]. Recalling that ui(t) = ξ(t), t ∈ [−q, 0] and

ui(t) = Sα(t)ξ(0) +

∫ t

0

Rα(t− τ)f(τ, ui[ξ]ρ(τ))dτ, t ∈ [0, T ],

we deduce that

∥u1(t)− u2(t)∥ ≤
∫ t

0

rα(t− τ, λ1)L(r
∗)∥u1[ξ]ρ(τ)− u2[ξ]ρ(τ)∥dτ

≤ ν−1
1 L(r∗)

∫ t

0

sup
[0,τ ]

∥u1(θ)− u1(θ)∥dτ,

where r∗ := max{∥ui∥∞ : i = 1, 2}. Here we have used the fact that rα(t, λ1) ≤ ℓ(t) ≤
ν−1
1 for all t ≥ 0, thanks to Proposition 2.1 (i), (v). Since the last integral is nondecreasing

in t, we thus get

sup
[0,t]

∥u1(t)− u2(t)∥ ≤ ν−1
1 L(r∗)

∫ t

0

sup
[0,τ ]

∥u1(θ)− u1(θ)∥dτ.

Using the classical Gronwall inequality, we obtain sup
τ∈[0,t]

∥u1(τ)−u2(τ)∥ = 0,∀t ∈ [0, T ],

which implies u1 = u2. The proof is complete. □

Remark 3.1. Results about the global existence obtained in Theorem 3.1 require the initial
datum and coefficients to be sufficiently small. These limitations will be removed if one of
the following two cases occurs

(i) either

(F3) f is continuous such that ∥f(t, v)∥ ≤ a(t)∥v∥+ b(t), for all t ∈ [0, T ], v ∈ H , where
a, b ∈ L1

loc(R
+) are nonnegative functions

(ii) or

(F4) f is a globally Lipschitzian function, i.e., there exists a ∈ L1
loc(R

+) is a nonnegative
function such that

∥f(t, v1)− f(t, v2)∥ ≤ a(t)∥v1 − v2∥,
for all t ∈ [0, T ], vi ∈ H, i ∈ {1, 2}. More precisely, in the case (i), by the same arguments
in the proof of Theorem 3.4 in [DTT23], we can find a closed, bounded and convex set
D in Cξ([0, T ];H) such that G(D) ⊂ D. And then, the global existence of mild solutions
to the problem (1.1)–(1.2) is followed by using the same lines as used for the condition
(F1) in the proof of Theorem 3.1. Besides, in the case (ii), one can employ an appropriate
weighted norm on Cξ([0, T ];H) and prove that the solution operator G is a contraction
operator, see [DTT23, Theorem 3.2] for details.
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In the rest of this section, we deal with the regularity in time of mild solutions to the
nonlinear problem (1.1)–(1.2). For this aim, we need the following assumption on f :

(F5) f is a locally Lipschitz–Hölder function, that is, for each r > 0, there exists a non-
negative constant L(r) such that

∥f(t1, v1)− f(t2, v2)∥ ≤ L(r)
(
|t1 − t2|α + ∥v1 − v2∥

)
,

for all ti ∈ [0, T ] and vi ∈ H such that ∥vi∥ ≤ r, i ∈ {1, 2}.

The second main result in this paper is as follows.

Theorem 3.2. Assume that (Ha) and (F5) hold with lim sup
r→0

L(r) < λ1 and, addi-

tionally, ρ is a Hölder continuous with exponent α. Then there exists δ > 0 such
that if ∥ξ∥0 ≤ δ then the unique mild solution u to (1.1)–(1.2) on [−q, T ] belongs to
C1((0, T ];H), provided that ξ ∈ Cα([−q, 0];H) with ξ(0) ∈ V1.

Proof. It is easy to check out that, under the assumptions of Theorem 3.2, the assumptions
(F2) of Theorem 3.1 also hold. Therefore, due to Theorem 3.1, for each ξ ∈ C([−q, 0];H)
with ∥ξ∥0 ≤ δ, the problem (1.1)–(1.2) admits a unique mild solution u on [−q, T ] satis-
fying ∥u∥ ≤ R, where R, δ are choosen in Theorem 3.1.

We denote F̃ (t) = f(t, u[ξ]ρ(t)), t ∈ [0, T ], where u is a mild solution of the problem
(1.1)–(1.2) associated with ξ. Recalling that u(t) = ξ(t), t ∈ [−q, 0] and

u(t) = Sα(t)ξ(0) +

∫ t

0

Rα(t− τ)F̃ (τ)dτ, t ∈ [0, T ].

Clearly, F̃ is continuous on [0, T ] and

∥F̃ (t)∥ ≤ L(δ +R)(δ +R) ≤ 2RL(2R),∀t ∈ [0, T ].

Now, using the same lines as the ones in the proof of claim 1 in Theorem 2.1 with some
minor modifications, it is shown that the mild solution u is Hölder continuous on [−q, T ]
with exponent α.

We now show that F̃ is Hölder continuous on [0, T ]. Indeed, let γ1, γ2 be Hölder con-
stants of u, ρ, respectively. For t ∈ (0, T ] and h ∈ (0, T − t], we first have

∥F̃ (t+ h)− F̃ (t)∥ = ∥f
(
t+ h, u[ξ]ρ(t+ h)

)
− f

(
t, u[ξ]ρ(t)

)
∥

≤ L(2R)
(
hα + ∥u[ξ]ρ(t+ h)− u[ξ]ρ(t)∥

)
. (3.3)

On the other hand

∥u[ξ]ρ(t+ h)− u[ξ]ρ(t)∥ = ∥u(t+ h− ρ(t+ h))− u(t− ρ(t))∥

≤ γ1
(
h+ ρ(t)− ρ(t+ h)

)α
≤ γ1

(
h+ γ2h

α
)α

≤ γ1
(
hαT 1−α + γ2h

α
)α

≤ γ1
(
T 1−α + γ2

)α
hα. (3.4)

From (3.3)–(3.4), we get
∥F̃ (t+ h)− F̃ (t)∥ ≤ γ3h

α,

where γ3 = L(2R)
(
1 + γ1(T

1−α + γ2)
α
)
. Due to this and Theorem 2.1 we get the

conclusion of this theorem. □

Remark 3.2. Let us point out that if the nonlinearity f enjoys global Lipschitz-Hölder
condition, i.e.

∥f(t1, v1)− f(t2, v2)∥ ≤ Lf

(
|t1 − t2|α + ∥v1 − v2∥

)
, (3.5)

for all ti ∈ [0, T ], vi ∈ H, i ∈ {1, 2}, then the C1−regularity of mild solution for the
problem (1.1)–(1.2) can be proved by relaxing both assumptions Lf ∈ [0, λ1) and the
smallness of initial condition. In this case, the existence and uniqueness of mild solution
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12 T.T. TUAN AND N.V. DAC

is guaranteed by Remark 3.1 and the C1−regularity is proved by employing the same
arguments as in the proof of Theorem 3.2.

4. LARGE–TIME BEHAVIOR OF SOLUTIONS

In this section, our aim is to determine the large–time behavior of the solution of equa-
tion (1.1). To accomplish this goal, we establish a Halanay–type inequality in order to
prove the existence of an absorbing set, the dissipativity and stability (in the Lyapunov
sense) in the case the nonlinear function f satisfies the global Lipschitz condition. More-
over, in the case the nonlinear function f obeys a sublinear growth condition, we establish
sufficient conditions to ensure the existence of polynomial decay solutions for the problem
(1.1)–(1.2).

4.1. Dissipativity and stability. In this subsection, we deal with the dissipativity and sta-
bility of solutions to Eq. (1.1). The following Halanay–type inequality plays an important
role in our argument.

Lemma 4.1. Let z be a continuous and nonnegative function satisfying

z(t) ≤ sα(t, λ)z0 +

∫ t

0

rα(t− τ, λ)[p(τ) + κ sup
θ∈[τ−ρ(τ),τ ]

z(θ)] dτ, t > 0, (4.1)

z(s) = ψ(s), s ∈ [−q, 0], (4.2)

where κ ∈
(
0, λ
)
, ψ ∈ C([−q, 0],R+) and p ∈ L1

loc(R
+) which is nondecreasing.

Then
z(t) ≤ λ

λ− κ

[
z0 + rα(·, λ) ∗ p(t)

]
+
κ

λ
sup

θ∈[−q,0]

ψ(θ),∀t > 0. (4.3)

Furthermore, if rα(·, λ) ∗ p is bounded on [0,∞) and lim
t→∞

(t− ρ(t)) = ∞ then

lim sup
t→∞

z(t) ≤ λ

λ− κ
sup
t≥0

rα(·, λ) ∗ p(t). (4.4)

In particular, if p = 0 then z(t) → 0 as t→ ∞.

Proof. By the inequality (4.1), Proposition 2.1(v) and Remark 2.1(ii), it follows that

z(t) ≤ z0 + rα(·, λ) ∗ p(t) + κ sup
θ∈[−q,t]

z(θ)

∫ t

0

rα(τ, λ)dτ

= z0 + rα(·, λ) ∗ p(t) +
κ

λ
sup

θ∈[−q,t]

z(θ)
(
1− sα(t, λ)

)
≤ z0 + rα(·, λ) ∗ p(t) +

κ

λ
sup

θ∈[−q,t]

z(θ). (4.5)

Observe that, due to p(·) is nondecreasing, the function t 7→ z0 + rα(·, λ) ∗ p(t) is non-
decreasing. Based on this fact, the inequality (4.5) and Lemma 2.3 in [PL21], we get the
inequality (4.3) as desired.

Let us now assume that rα(·, λ) ∗ p is bounded on [0,∞) and lim
t→∞

(t − ρ(t)) = ∞.

Using the inequality (4.3), we know that z(·) is bounded by

z̄ :=
λ

λ− b

[
z0 + sup

t≥0
rα(·, λ) ∗ p(t)

]
+
κ

λ
sup

θ∈[−q,0]

ψ(θ),

and thus the limit ϑ = lim
t→∞

sup
ζ∈[t,∞)

z(ζ) exists. Since t − ρ(t) → ∞ as t → ∞, then for

any ϵ > 0 one can find T ∗ > 0 such that

sup
ζ∈[t−ρ(t),t]

z(ζ) ≤ sup
ζ∈[t−ρ(t),∞]

z(ζ) ≤ ϑ+ ϵ, ∀t ≥ T ∗.
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On the other hand, since for each λ > 0, sα(t, λ) → 0 as t→ ∞ and rα(·, λ) ∈ L1(R+),
then one can choose t > T ∗ large enough such that

sα(t, λ) ≤ ϵ and
∫ t

t−T∗
rα(τ, λ)dτ ≤ ϵ.

From these observations above and the inequality (4.1), there holds that

z(t) ≤ sα(t, λ)z0 + rα(·, λ) ∗ p(t) + κ

(∫ T∗

0

+

∫ t

T∗

)
rα(t− τ, λ) sup

θ∈[τ−ρ(τ),τ ]

z(θ)dτ

≤ sα(t, λ)z0 + rα(·, λ) ∗ p(t) + κz̄

∫ T∗

0

rα(t− τ, λ)ds+ κ(ϑ+ ϵ)

∫ t

T∗
rα(t− τ, λ)ds

≤ ϵz0 + rα(·, λ) ∗ p(t) + κz̄

∫ t

t−T∗
rα(τ, λ)ds+ κ(ϑ+ ϵ)

∫ t

0

rα(t− τ, λ)ds

≤ ϵz0 + rα(·, λ) ∗ p(t) + κz̄ϵ+
κ(ϑ+ ϵ)

λ
. (4.6)

Inspired by (4.6), one has

ϑ = lim
t→∞

sup
θ∈[t,∞)

z(θ) ≤ ϑκ

λ
+ sup

t≥0
rα(·, λ) ∗ p(t) +

(
z0 + κz̄ +

κ

λ

)
ϵ.

This inequality entails

ϑ ≤ λ

λ− κ
sup
t≥0

rα(·, λ) ∗ a(t) +
λ

λ− κ

(
v0 + κz̄ +

κ

λ

)
ϵ. (4.7)

Since ϵ is an arbitrarily positive number, we conclude follows from (4.7) that

lim sup
t→∞

z(t) ≤ ϑ ≤ λ

λ− κ
sup
t≥0

rα(·, λ) ∗ p(t).

The last inequality settles the stated results in the lemma. □

We will prove both stability and dissipativity of solutions of our system–essentially
based on the Halanay–type inequality in Lemma 4.1.

Theorem 4.1. Assume that the hypothesis (F2) of Theorem 3.1 hold for any T > 0.
Then the zero solution of (1.1) is asymptotically stable.

Proof. TakeR,ψ∗, δ, and ϵ as in the proof of Theorem 3.1 in which for every ξ ∈ C([−q, 0], H)
with ∥ξ∥0 ≤ δ, there exists a unique mild solution to (1.1)–(1.2) such that ∥u(t)∥ ≤ R for
all t ≥ 0. Due to

∥u[ξ]ρ(t)∥ ≤ ∥ξ∥0 + ∥u∥∞ ≤ 2R, for all t ∈ [0, T ],

it holds that

∥u(t)∥ ≤ ∥Sα(t)ξ(0)∥+
∫ t

0

∥Rα(t− τ)∥op∥f(τ, u[ξ]ρ(τ))∥dτ

≤ sα(t, λ1)∥ξ(0)∥+
∫ t

0

rα(t− τ, λ1)L(2R)∥u[ξ]ρ(τ)∥dτ

≤ sα(t, λ1)∥ξ(0)∥+
∫ t

0

rα(t− τ, λ1)(ψ
∗ + ϵ) sup

θ∈[τ−ρ(τ),τ ]

∥u(θ)∥dτ.

Applying the Halanay–type inequality in Lemma 4.1 with v(t) = ∥u(t)∥, t ≥ −q, λ = λ1,
we obtain

∥u(t)∥ ≤ λ1
λ1 − ψ∗ − ϵ

∥ξ(0)∥+ ψ∗ + ϵ

λ1
∥ξ∥0,∀t ≥ 0, (4.8)

lim
t→∞

∥u(t)∥ = 0. (4.9)

The inequalities (4.8), (4.9) guarantee the stability and attractivity of the zero solution,
respectively. We thus finish the proof of this theorem. □
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Considering the case when f is globally Lipschitzian, we have a stronger result.

Theorem 4.2. Assume that the hypothesis (F4) holds for any T > 0 and for a ∈
L∞(R+;R+). If ∥a∥L∞(R+) < λ1, then every mild solution of (1.1)–(1.2) is asymp-
totically stable.

Proof. Let u and v be solutions of (1.1)–(1.2). Then, by the formula of solutions and by
Lemma 2.1, we get that

∥u(t)− v(t)∥ ≤ ∥Sα(t)[u(0)− v(0)]∥

+

∫ t

0

Rα(t− τ)∥op∥f(τ, u[ξ]ρ(τ))− f(τ, v[ξ]ρ(τ))∥dτ

≤ sα(t, λ1)∥u(0)− v(0)∥+
∫ t

0

rα(t− τ, λ1)a(τ)∥u[ξ]ρ(τ)− v[ξ]ρ(τ)∥dτ

≤ sα(t, λ1)∥u(0)− v(0)∥

+

∫ t

0

rα(t− τ, λ1)∥a∥L∞(R+) sup
[τ−ρ(τ),τ ]

∥u(θ)− v(θ)∥dτ.

Applying Lemma 4.1 leads to

∥u(t)− v(t)∥ ≤ λ1∥u(0)− v(0)∥
λ1 − ∥a∥L∞(R+)

+
∥a∥L∞(R+)

λ1
∥u(0)− v(0)∥0,∀t ≥ 0,

lim
t→∞

∥u(t)− v(t)∥ = 0,

from which we obtain the conclusion of this theorem. □

In the next theorem, we establish a result on the dissipativity of solutions of our sys-
tem.

Theorem 4.3. Let the hypothesis (F3) hold for any T > 0 with a ∈ L∞(R+;R+)
satisfying ∥a∥L∞(R+) < λ1 and b ∈ L1

loc(R
+;R+) is nondecreasing such that

rα(·, λ1) ∗ b is a bounded function on R+. Then there exists an absorbing set for
solutions of (1.1)–(1.2) with arbitrary initial data. Moreover, if b = 0, then the zero
solution of (1.1) is asymptotically stable.

Proof. Let u be a solution of (1.1)–(1.2). Using Lemma 2.1 and the estimate of f , we
obtain

∥u(t)∥ ≤ sα(t, λ1)∥ξ(0)∥+
∫ t

0

rα(t− τ, λ1)[b(τ) + a(τ)∥u[ξ]ρ(τ)∥]dτ

≤ sα(t, λ1)∥ξ(0)∥+
∫ t

0

rα(t− τ, λ1)[b(τ) + ∥a∥L∞(R+)∥u[ξ]ρ(τ)∥] dτ.

Using Lemma 4.1 again, we arrive at

lim sup
t→∞

∥u(t)∥ ≤ λ1
λ1 − ∥a∥L∞(R+)

sup
t≥0

rα(·, λ1) ∗ b(t).

Put

R = ϵ+
λ1

λ1 − ∥a∥L∞(R+)
sup
t≥0

rα(·, λ1) ∗ b(t)

for some ϵ > 0, then the ball BR is an absorbing set for solutions of (1.1)–(1.2). Finally, if
b = 0, then (1.1) admits the zero solution and it holds that

∥u(t)∥ ≤ λ1
λ1 − ∥a∥L∞(R+)

∥ξ(0)∥+
∥a∥L∞(R+)

λ1
∥ξ∥0,∀t ≥ 0,

lim
t→∞

∥u(t)∥ = 0,

thanks to Proposition 4.1 again, which ensures the asymptotic stability of the zero solution.
□
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4.2. Existence of polynomial decay mild solutions. We start this section by recalling
some facts and basic results on measure of noncompactness, and fixed point theorem for
condensing maps which are employed to prove the existence of decay solutions.

Let E be a Banach space. Denote by B(E) the collection of nonempty bounded sub-
sets of E. We will use the following definition of the measure of noncompactness (see,
e.g. [KOZ01]).

Definition 3. A function ψ : B(E) → R+ is called a measure of noncompactness (MNC)
on E if

ψ(co D) = ψ(D) for every D ∈ B(E),

where co D is the closure of convex hull of D. An MNC ψ is said to be:

(i) monotone if for each D0, D1 ∈ B(E) such that D0 ⊆ D1, we have ψ(D0) ≤
ψ(D1);

(ii) nonsingular if ψ({a} ∪D) = ψ(D) for any a ∈ E,D ∈ B(E);
(iii) invariant with respect to the union with a compact set, if ψ(K ∪D) = ψ(D) for

every relatively compact set K ⊂ E and D ∈ B(E);
(iv) algebraically semi-additive if ψ(D0 +D1) ≤ ψ(D0) + ψ(D1) for any D0, D1 ∈

B(E);
(v) regular if ψ(D) = 0 is equivalent to the relative compactness of D.

A typical example on MNC satisfying all properties stated in Definition 3 is the Haus-
dorff MNC χ(·) defined by

χ(D) = inf{ε > 0 : D has a finite ε− net}.

Definition 4. A continuous map F : Z ⊆ E → E is said to be condensing with respect to
an MNC ψ (ψ−condensing) if for any bounded set D ⊂ Z, the relation

ψ(D) ≤ ψ(F(D))

implies the relative compactness of D.

Let ψ be a monotone and nonsingular MNC in E. We have the following fixed point
principle.

Theorem 4.4 (See [KOZ01, Corollary 3.3.1]). Let M be a bounded convex closed
subset of E and let F : M → M be a ψ-condensing map. Then Fix(F) := {x ∈
E : x = F(x)} is a nonempty and compact set.

Let D be a bounded set in BC
(
[0,∞);H

)
, a space of bounded continuous functions

on [0,∞) taking values in H . We denote

BCξ = {v ∈ BC([0,∞);H) : v(0) = ξ(0) },

where ξ is given in (1.2), which becomes a closed subset of BC
(
[0,∞);H

)
with sup-

norm denoted by ∥ · ∥BC . Now let πT : BC
(
[0,∞);H

)
→ C

(
[0, T ];H

)
be the restriction

operator on BC
(
[0,∞);H

)
, i.e. πT (u) is the restriction of u ∈ BC

(
[0,∞);H

)
to the

interval [0, T ]. Consider

d∞(D) = lim
T→∞

sup
u∈D

sup
t≥T

∥u(t)∥, (4.10)

χ∞(D) = sup
T>0

χT (πT (D)) (4.11)

where χT (·) is the Hausdorff MNC in C
(
[0, T ], H

)
. Then the following MNC defined in

[KL17, Lemma 2.1] (see also [HKK17, Lemma 4.1])

χ∗(D) = d∞(D) + χ∞(D), (4.12)

satisfies all properties stated in Definition 4. In addtion, if χ∗(D) = 0 then D is relatively
compact in BC

(
[0,∞);H

)
.
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16 T.T. TUAN AND N.V. DAC

Let
Bγ

R(η) = BR ∩ {y ∈ BCξ : sup
t≥0

tγ∥y(t)∥ ≤ η}

where BR is the ball in BCξ centered at the origin with radius R > 0, γ and η are positive
numbers. It is easy to see that Bγ

R(η) is nonempty, closed and convex in BCξ.

Before stating our main results in this part, we will show in the following two lemmas
that there exists a such Bγ

R(η) which is invariant under the solution operator for 0 < γ <
min{β1(1− α), β2α}, for some β1, β2 ∈ (0, 1].

Lemma 4.2. Let (Ha) hold and f satisfies (F3) for all T > 0 with b ≡ 0. Then there
exists R > 0 such that G(BR) ⊂ BR provided that

sup
t≥0

∫ t

0

(t− τ)−β1(1−α)a(τ) dτ < ν1−β1

1 νβ1

2 Γ(2− α)−β1 , (4.13)

for some β1 ∈ (0, 1].

Proof. Assume to the contrary that for each n ∈ N∗, we have un ∈ BCξ such that
∥un∥BC ≤ n but ∥G(un)∥BC > n. From the formulation of G, we first obtain the follow-
ing bounds

∥G(un)(t)∥ ≤ sα(t, λ1)∥ξ(0)∥+
∫ t

0

rα(t− τ, λ1)∥f(τ, un[ξ]ρ(τ))∥dτ

≤ ∥ξ(0)∥+
∫ t

0

rα(t− τ, λ1)a(τ)∥un[ξ]ρ(τ)∥dτ

≤ ∥ξ∥0 +
∫ t

0

rα(t− τ, λ1)a(τ)
(
∥un(τ)∥+ ∥ξ∥0

)
dτ

≤ ∥ξ∥0 +
∫ t

0

rα(t− τ, λ1)a(τ)(∥ξ∥0 + ∥un∥BC)dτ.

Taking Proposition 2.1(i), (v) into account and combining with the fact that 1 + r ≥
rβ1 ,∀r ≥ 0, β1 ∈ (0, 1], we get the following inequalities

rα(t, λ1) ≤
1

ν1(1 + ν−1
1 ν2Γ(2− α)t1−α)

≤ νβ1−1
1 ν−β1

2 Γ(2− α)β1t−β1(1−α). (4.14)

Thus

∥G(un)(t)∥ ≤ ∥ξ∥0 + (∥ξ∥0 + n)

∫ t

0

rα(t− τ, λ1)a(τ) dτ

≤ ∥ξ∥0 + (∥ξ∥0 + n)νβ1−1
1 ν−β1

2 Γ(2− α)β1

∫ t

0

(t− τ)−β1(1−α)a(τ) dτ

≤ ∥ξ∥0 + (∥ξ∥0 + n)νβ1−1
1 ν−β1

2 Γ(2− α)β1 sup
t≥0

∫ t

0

(t− τ)−β1(1−α)a(τ) dτ.

From the last inequality and the fact that ∥G(un)∥BC > n, we conclude that

1 <
∥G(un)∥BC

n
≤

∥ξ∥0
(
1 + νβ1−1

1 ν−β1

2 Γ(2− α)β1 supt≥0

∫ t

0
(t− τ)−β1(1−α)a(τ) dτ

)
n

+ νβ1−1
1 ν−β1

2 Γ(2− α)β1 sup
t≥0

∫ t

0

(t− τ)−β1(1−α)a(τ) dτ. (4.15)

Letting n→ ∞ in the inequality (4.15), we get a contradiction to (4.13). □
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Lemma 4.3. Let the hypotheses of Lemma 4.2 hold and 0 ≤ ρ(t) ≤ q for all t ≥ 0.
Then there exists η > 0 such that G(Bγ

R(η)) ⊂ Bγ
R(η) provided that (4.13) and

sup
t≥0

∫ t/2

0

(t− τ)γ−β1(1−α)a(τ) dτ <∞, (4.16)

and

2γνβ1−1
1 ν−β1

2 Γ(2− α)β1 sup
t≥0

∫ t

t/2

(t− τ)γ−β1(1−α)a(τ)dτ < 1 (4.17)

are satisfied, where 0 < γ < min{β1(1− α), β2α} for some β2 ∈ (0, 1].

Proof. Assume to the contrary that for each n = 1, 2, . . ., there exists un ∈ Bγ
R(n) with

sup
t≥0

tγ∥G(un)(t)∥ > n. (4.18)

Then one has

tγ∥G(un)(t)∥

≤ tγsα(t, λ1)∥ξ(0)∥+ tγ
∫ t

0

rα(t− τ, λ1)∥f(τ, un[ξ]ρ(τ))∥dτ

≤ tγsα(t, λ1)∥ξ∥0 + tγ
∫ t

0

rα(t− τ, λ1)a(τ)∥un[ξ]ρ(τ)∥dτ

≤ I1(t) + I2(t) + I3(t), (4.19)

here

I1(t) = tγsα(t, λ1)∥ξ∥0,

I2(t) = tγ
∫ t/2

0

rα(t− τ, λ1)a(τ)∥un[ξ]ρ(τ)∥dτ,

I3(t) = tγ
∫ t

t/2

rα(t− τ, λ1)a(τ)∥un[ξ]ρ(τ)∥dτ.

We now derive estimates for I1, I2, I3. Clearly, I1(0) = 0. For t > 0, using Proposition
2.1(i), (iii), we first obtain∫ t

0

ℓ(τ) dτ ≥
∫ t

0

dτ

ν1 + ν2Γ(α)τ1−α

≥
∫ t

0

dτ

ν1 + ν2Γ(α)t1−α

=
t

ν1 + ν2Γ(α)t1−α
.

Therefore

I1(t) ≤
tγ∥ξ∥0

1 + λ1
∫ t

0
ℓ(τ) dτ

≤ ∥ξ∥0λ−β2

1 tγ
(∫ t

0

ℓ(τ) dτ
)−β2

≤ ∥ξ∥0λ−β2

1 tγ−β2α(ν1t
α−1 + ν2Γ(α))

β2

<∞, (4.20)

since
lim
t→∞

tγ−β2α(ν1t
α−1 + ν2Γ(α))

β2 = 0.

For I2(t), exploiting the inequality (4.14), we have

I2(t) ≤ tγ
∫ t/2

0

rα(t− τ, λ1)a(τ)
(
sup

θ∈[0,τ ]

∥un(θ)∥+ ∥ξ∥0
)
dτ
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≤ νβ1−1
1 ν−β1

2 Γ(2− α)β1(R+ ∥ξ∥0)tγ
∫ t/2

0

(t− τ)−β1(1−α)a(τ)dτ,

due to the fact that un ∈ BR. Since 0 ≤ τ ≤ t
2 , we get t− τ ≥ 2−1t. Therefore, we arrive

at

I2(t) ≤ 2γνβ1−1
1 ν−β1

2 Γ(2− α)β1(R+ ∥ξ∥0)
∫ t/2

0

(t− τ)γ−β1(1−α)a(τ)dτ

≤ 2γνβ1−1
1 ν−β1

2 Γ(2− α)β1(R+ ∥ξ∥0) sup
t≥0

∫ t/2

0

(t− τ)γ−β1(1−α)a(τ)dτ

<∞, (4.21)

thanks to (4.16).

Regarding I3(t), we see that un ∈ BR and ∥un[ξ]ρ(t)∥ ≤ ∥ξ∥0 + sup
θ∈[0,t]

∥un(θ)∥ for

t ≥ 0. Then

tγ∥un[ξ]ρ(t)∥ ≤ (q + ϵ)γ(∥ξ∥0 +R),

for any fixed ϵ > 0 and t ∈ [0; q + ϵ].

In addition, we have tγ∥un(t)∥ ≤ n and 0 ≤ ρ(t) ≤ q for all t ≥ 0. Consequently, for
t ≥ q + ϵ, one has

tγ∥un[ξ]ρ(t)∥ = tγ∥un(t− ρ(t))∥
≤ (t− ρ(t))γ∥un(t− ρ(t))∥+ ργ(t)∥un(t− ρ(t))∥
≤ n+ qγR.

We obtain

tγ∥un[ξ]ρ(t)∥ ≤ n+ qγR+ (q + ϵ)γ(∥ξ∥0 +R),∀t ≥ 0.

Combining with the formulation of I3(t) deduces

I3(t) = tγ
∫ t

t/2

τ−γrα(t− τ, λ1)a(τ)τ
γ∥un[ξ]ρ(τ)∥dτ

≤ 2γ [n+ qγR+ (q + ϵ)γ(∥ξ∥0 +R)]

∫ t

t/2

rα(t− τ, λ1)a(τ)dτ

≤ C1(n+ C2)

∫ t

t/2

(t− τ)γ−β1(1−α)a(τ)dτ (4.22)

where C1 = 2γνβ1−1
1 ν−β1

2 Γ(2− α)β1 and C2 = qγR+ (q + ϵ)γ(∥ξ∥0 +R).

By (4.19) and (4.22), we get

1

n
tγ∥G(un)(t)∥ ≤ I1(t) + I2(t)

n
+
C

n
+ C1 sup

t≥0

∫ t

t/2

(t− τ)γ−β1(1−α)a(τ)dτ,

here C = C1C2 sup
t≥0

∫ t

t/2
(t− τ)γ−β1(1−α)a(τ)dτ .

From (4.20), (4.21) and the assumption (4.17), we take the last inequality into account
to get

lim
n→∞

1

n
sup
t≥0

tγ∥G(un)(t)∥ < 1,

which is a contradiction to (4.18). The proof is complete. □

The main result of this section is stated in the following theorem.

Theorem 4.5. Let the hypotheses of Lemma 4.3 hold. Then there exists a mild solu-
tion of the system (1.1)–(1.2) which decays with the polynomial rate.
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Proof. Lemma 4.3 allows us to consider

G : Bγ
R(η) → Bγ

R(η).

We now prove that G is χ∗− condensing. Let D ⊂ Bγ
R(η), we have

χ∗ (G(D)) = d∞ (G(D)) + χ∞ (G(D)) .

Firstly, we estimate the term d∞ (G(D)). For any element u ∈ G(D) and T > 0, one has
∥u(t)∥ ≤ t−γη for all t ≥ T . That implies

sup
t≥T

∥u(t)∥ ≤ T−γη.

Then

d∞ (G(D)) = lim
T→∞

sup
u∈G(D)

sup
t≥T

∥u(t)∥

= 0.

Secondly, the term χ∞ (G(D)) is taken into account. For each T > 0, we have

χT (πT (G(D))) ≤ χT (πT (Qα ◦Nf (D))) ,

where Nf (D) := {f(·, v(· − ρ(·)) | v ∈ D}. Since Nf (D) is a bounded set and Qα is a
compact operator, we get χT (πT (Qα ◦Nf (D))) = 0. Consequently, we have

χ∞ (G(D)) = 0.

Finally, we see that if χ∗(D) ≤ χ∗ (G(D)) then χ∗(D) = 0, so D is relatively compact.
That means G is χ∗− condensing. By Theorem 4.4, G possesses a fixed point. The proof
is complete. □
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[FWP17] M. FEČKAN, J.R. WANG, M. POSPÍŠIL, Fractional–Order Equations and Inclusions, De Gruyter,
Berlin, Boston, 2017. 1

[GLS90] G. GRIPENBERG, S.-O. LONDEN, O. STAFFANS, Volterra Integral and Functional Equations,
Encycl. Math. Appl., vol. 34, Cambridge University Press, Cambridge, 1990. 4

[GKMR14] R. GORENFLO, A.A. KILBAS, F. MAINARDI, S.V. ROGOSIN, Mittag-Leffler Functions, Related
Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. 4

[HKK17] L.V. HIEN, T.D. KE, C.T. KINH, Globally attracting solutions to impulsive fractional differen-
tial inclusions of Sobolev type, Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 5, 1295–1318
15

[JXQZ20] H. JIANG, D. XU, W. QIU, J. ZHOU, An ADI compact difference scheme for the two-
dimensional semilinear time-fractional mobile–immobile equation, Comput. Appl. Math. 39
(2020), no. 4, Paper No. 287, 17 pp. 2

[Ju06] G. JUMARIE, New stochastic fractional models for Malthusian growth, the Poissonian birth pro-
cess and optimal management of populations, Math. Comput. Modelling 44 (2006), no. 3-4, 231–
254. 1

[KOZ01] KAMENSKII M., OBUKHOVSKII V., ZECCA P.: Condensing Multivalued Maps and Semilinear
Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applica-
tions, vol. 7, Walter de Gruyter, Berlin, New York, 2001. 15

[KL17] T.D. KE, D. LAN, Fixed point approach for weakly asymptotic stability of fractional differential
inclusions involving impulsive effects, J. Fixed Point Theory Appl. 19 (2017), no. 4, 2185–2208.
15

[KT23] T.D. KE, N.N. THANG, An optimal Halanay inequality and decay rate of solutions to some
classes of nonlocal functional differential equations, J. Dynam. Differential Equations (2023), pp
1–18. Doi: 10.1007/s10884-023-10323-w. 2

[KT20] T.D. KE, L.T.P. THUY, Dissipativity and stability for semilinear anomalous diffusion equations
involving delays, Math. Methods Appl. Sci. 43 (2020), no. 15, 1–17. 2

[KTT22] T.D. KE, L.T.P. THUY, P.T. TUAN, An inverse source problem for generalized Rayleigh–Stokes
equations involving superlinear perturbations, J. Math. Anal. Appl. 507 (2022), no. 2, Paper No.
125797, 24 pp. 2

[KWS99] T. KRISZTIN, H.-O. WALTHER, J. WU, Shape, Smoothness and Invariant Stratification of an
Attracting Set for Delayed Monotone Positive Feedback, Fields Institute Monographs, vol. 11,
American Mathematical Society, Providence, RI, 1999. 2

[LP22] D. LAN, V.N. PHONG, Decay solutions to retarded fractional evolution inclusions with superlin-
ear perturbations, Fixed Point Theory 23 (2022), no. 1, 293–309. 2

[LS23] W. LI, A. SALGADO, Time fractional gradient flows: theory and numerics, Math. Models Meth-
ods Appl. Sci. 33 (2023), no. 2, 377–453. 2

[LW22] L. LI, D. WANG, Numerical stability of Grünwald–Letnikov method for time fractional delay
differential equations, BIT 62 (2022), no. 3, 995–1027. 2

[LV14] A. LORENZI, I. VRABIE, An identification problem for a semilinear evolution delay equation, J.
Inverse Ill-Posed Probl. 22 (2014), no. 2, 209–244. 2

[Ma06] R. MAGIN, Fractional Calculus in Bioengineering, Univ. of Illinois at Chicago Press, 2006. 1
[Ni86] R.R. NIGMATULLIN, The realization of the generalized transfer equation in a medium with fractal

geometry, Physica Status Solidi (b) 133 (1986), no. 1, pp. 425–430. 1
[NWLF22] Y. NIU, J. WANG, Y. LIU, H. LI, Z. FANG, Local discontinuous Galerkin method based on a

family of second-order time approximation schemes for fractional mobile/immobile convection-
diffusion equations, Appl. Num. Math. 179 (2022), 149–169.
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