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Abstract

In this paper, we study the Gorenstein (L,A)-projective resolution dimension of

modules and the left global Gorenstein (L,A)-projective dimension of rings in

detail, where (L,A) represents a complete duality pair and Gorenstein (L,A)-

projective modules were introduced by Gillespie in [17]. We give some character-

izations of the (finite) Gorenstein (L,A)-projective resolution dimension of mod-

ules and reveal some connections between this dimension and other Gorenstein

homological dimensions. We find some lower and upper bounds of the (finite)

left global Gorenstein (L,A)-projective dimension of rings by some classical ho-

mological invariants and recollements of abelian categories.
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1. Introduction

The concept of G-dimension for commutative noetherian rings was introduced by Auslan-

der and Bridger in [1]. The G-dimension generalizes the projective dimension and is a refine-

ment of it. This concept has been extended to modules over any ring R by Enochs and Jenda

in [12] through the notion of Gorenstein projective modules. A left R-module M is called

Gorenstein projective if there exists an exact sequence · · · → P1 → P0 → P−1 → P−2 → · · ·
of projective left R-modules which remains exact when applying the functor HomR(−, P )

for any projective left R-module P , such that M ∼= Ker(P−1 → P−2). Then modules of

finite Gorenstein projective dimension are defined in the standard way, using resolutions by

Gorenstein projective modules. The corresponding classes of Gorenstein injective and flat

modules were defined in [12] and [14] respectively. They are key elements of Gorenstein

homological algebra. Modules of finite Gorenstein flat dimension are also defined in the

standard way, using resolutions by Gorenstein flat modules. Holm systematically studied

these Gorenstein homological dimensions in [19]. Gorenstein homological algebra has de-

veloped rapidly during the past years. The Gorenstein methods have proved to be very

useful in commutative and noncommutative algebra, as well as in representation theory and
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model category theory. This is one reason why the existence of Gorenstein resolutions and

the properties of Gorenstein modules have been studied intensively. There have been some

interesting applications of the theory of modules of finite Gorenstein dimensions.

The notion of a duality pair of R-modules was introduced by Holm and Jørgensen in [20].

A duality pair over the ring R is a pair (L,A), where L is a class of left R-modules and A is

a class of right R-modules, satisfying the conditions: L ∈ L if and only if L+ ∈ A and A is

closed under direct summands and finite direct sums, where L+ = HomZ(L,Q/Z) denotes the

character module of L. Duality pairs are related to purity and to the existence of covers and

envelopes, which implies that duality pairs are very useful in relative homological algebra.

Gillespie investigated Gorenstein homological algebra with respect to a complete duality

pair (L,A) in [17]. Several kinds of Gorenstein modules are similarly defined by means

of exact complexes of projective, injective and flat modules staying exact when applying

some functors at most. A left R-module M is called Gorenstein (L,A)-projective if there

exists a HomR(−,L)-exact exact sequence P : · · · → P1 → P0 → P−1 → P−2 → · · · of

projective left R-modules such that M ∼= Ker(P−1 → P−2). The corresponding classes of

Gorenstein (L,A)-injective and flat modules were also defined in [17]. We are interested in

Gorenstein homological algebra with respect to a complete duality pair. In fact, Gorenstein

(L,A)-projective modules are Gorenstein projective and Gorenstein (L,A)-flat modules are

Gorenstein flat. In this paper, we show that a flat module which is not projective is not

Gorenstein (L,A)-projective (see Remark 3.6). That is, the class of all Gorenstein (L,A)-

projective modules can be strictly included in the class of all Gorenstein (L,A)-flat modules.

When Gorenstein projective modules are Gorenstein flat is still open. But Gorenstein (L,A)-

projective modules are always Gorenstein (L,A)-flat, and of course, are Gorenstein flat (see

[6, Remark 3.13]).

Gorenstein homological algebra is a relative version of homological algebra. A guiding

principle in Gorenstein homological algebra is to seek analogous of results about absolute

homological dimensions. Motivated by this, we study the Gorenstein (L,A)-projective res-

olution dimension of modules and the left global Gorenstein (L,A)-projective dimension of

rings in detail. Modules of finite Gorenstein (L,A)-projective resolution dimension are de-

fined in the standard way, using resolutions by Gorenstein (L,A)-projective modules. The

Gorenstein (L,A)-projective resolution dimension is a refinement of the projective dimen-

sion. We found that it shares many properties analogous to those of the projective dimension,

as well as the Gorenstein projective dimension.

We give some characterizations of the (finite) Gorenstein (L,A)-projective resolution di-

mension of modules and reveal some connections between this dimension and other Goren-

stein homological dimensions. Projectively coresolved Gorenstein flat modules were intro-

duced and investigated by Saroch and Stovicek in [22]. A left R-module M is called projec-

tively coresolved Gorenstein flat if there exists an exact sequence · · · → P1 → P0 → P−1 →
P−2 → · · · of projective left R-modules which remains exact after tensoring by every injec-

tive right R-module such that M ∼= Ker(P−1 → P−2). We use PGF to denote the class of all
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projectively coresolved Gorenstein flat modules. The relative homological dimension based

on the class of all projectively coresolved Gorenstein flat modules was studied in [9]. Since

Gorenstein (L,A)-projective modules are both Gorenstein projective and Gorenstein flat

modules, the theory of Gorenstein (L,A)-projective resolution dimension is closely related

to the study of the classical homological invariants spliR, silpR and sfliR that were defined

by Gedrich and Gruenberg in [15], where spliR is defined as the supremum of the projective

dimension of injective modules, silpR is defined as the supremum of the injective dimension

of projective modules, and sfliR is defined as the supremum of the flat dimension of injective

modules. If the class of all Gorenstein (L,A)-flat modules is closed under extensions, then

for any R-module M , we obtain that

resdim
RGFM 6 resdim

RGPM 6 resdim
RGFM + splfR,

where resdim
RGPM denotes the Gorenstein (L,A)-projective resolution dimension of M ,

resdim
RGFM denotes the Gorenstein (L,A)-flat resolution dimension of M , and splfR de-

notes the supremum of the projective dimension of flat modules. That is, we give a lower

bound and upper bound of the Gorenstein (L,A)-projective resolution dimension of M .

Furthermore, we give a corresponding version of bounds of the left global Gorenstein (L,A)-

projective dimension of rings (see Theorem 4.4). If a ring is of finite left global Gorenstein

(L,A)-projective dimension, then this dimension equals both spliR and silpR, as well as the

left global projectively coresolved Gorenstein flat dimension of rings, and every Gorenstein

projective module is Gorenstein flat over the ring (see Propositions 4.7 and 4.9).

Recollements of abelian categories provide a very useful framework for investigating homo-

logical connections among categories. Psaroudakis studied how various homological invari-

ants and dimensions of categories involved in a recollement of abelian categories are related

in [21]. He gave a series of bounds among the global, finitistic and representation dimensions

of the categories linked by recollements of abelian categories. Zhang and Zhu investigated

the Gorenstein global dimension with respect to recollements of abelian categories and gave

some upper bounds of Gorenstein global dimensions of categories involved in a recollement

of abelian categories by the classical homological invariants in [23]. In this paper, we dis-

cuss the finiteness of the left global Gorenstein (L,A)-projective dimensions and the left

global projectively coresolved Gorenstein flat dimensions of rings by recollement situations

and the classical homological invariants. Associated to some results in [23], we give some

upper bounds of these global dimensions of rings from categories involved in a recollement

of abelian categories by the classical homological invariants.

This paper is organized as follows. In section 2, we give some basic notions and facts. In

section 3, we deeply study the Gorenstein (L,A)-projective resolution dimension of mod-

ules. We give some characterizations of the finiteness of the Gorenstein (L,A)-projective

resolution dimension of modules and show some connections between this dimension and

other Gorenstein homological dimensions. In sections 4 and 5, we investigate the left global

Gorenstein (L,A)-projective dimension of rings and find some lower and upper bounds of

the finiteness of this dimension.
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2. Preliminaries

We recall some notions and basic facts which we need in the later sections.

X -resolution dimension. Let H be an abelian category, X a class of objects of H which

can be also regarded as a full subcategory of H, and M an object in H. The class X is thick

if it is closed under extensions, kernels of epimorphisms, cokernels of monomorphisms and

direct summands. We denote X⊥ = {H ∈ H|Ext1
H(X,H) = 0, ∀ X ∈ X}. Recall that a

morphism ϕ : X →M is an X -precover (or a right X -approximation) of M if X ∈ X and if

for every morphism α : X0 → M with X0 ∈ X there exists β : X0 → X such that α = ϕβ.

If, in addition, β is an automorphism of X in the case where X0 = X and α = ϕ, then

ϕ is called an X -cover. Recall that an X -precover ϕ of M is special if ϕ is surjective and

Kerϕ ∈ X⊥. X is precovering if every object of H has an X -precover. X is covering if every

object of H has an X -cover. X is special precovering if every object of H has an special

X -precover.

In addition, let H have enough projective objects. Assume that X is precovering and

contains the class of all projective objects of H. The X -resolution dimension of M is defined

as the smallest non-negative integer n such that there is an exact sequence 0 → Xn →
Xn−1 → · · · → X0 → M → 0 with each Xi ∈ X . If such n does not exist, we say that the

X -resolution dimension of M is infinite. We denote by X ∧ the class of objects in H having

finite X -resolution dimension.

Recollement of abelian categories. Let B, C and D be abelian categories. A recolle-

ment between B, C and D is a diagram (for example, see [21, Definition 2.1] or an earlier

reference)

B i // C

q

||

p

bb
e // D

l

||

r

bb

denoted by (B, C,D), satisfying the following conditions:

(R1) (q, i, p) is an adjoint triple,

(R2) (l, e, r) is an adjoint triple,

(R3) the functors i, l and r are fully faithful,

(R4) Imi = Kere.

Unless stated otherwise, we assume in the following that R is an associative ring with an

identity, and all modules are left R-modules. We use R-Mod to denote the category of all

left R-modules and Rop to denote the opposite ring of R. We treat right R-modules as left

modules over the opposite ring Rop. P denotes the class of all projective left R-modules

and F denotes the class of all flat left R-modules. We use pdR, idR, and fdR to stand

for projective, injective, and flat dimension respectively. For other notions and results not

specified in this paper, we refer readers to [7, 13].

Duality pair. A duality pair (L,A) is called perfect (see [20]) if L contains the R-module

RR, and is closed under coproducts and extensions. {L,A} is a symmetric duality pair over
4
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the ring R (see [17]) if (L,A) and (A,L) are duality pairs. A duality pair (L,A) is complete

(see [17]) if {L,A} is a symmetric duality pair and (L,A) is a perfect duality pair over R.

Throughout this paper, (L,A) stands for a complete duality pair.

Gorenstein (L,A)-projective and (L,A)-flat modules. We use GP to denote the

class of all Gorenstein (L,A)-projective modules (see [17]). It is clear that all kernels,

images and cokernels of the aforementioned P are in GP . Also, it is clear that P ⊆ GP
and ExtiR(N,L) = 0 for any N ∈ GP , any L ∈ L and any i > 1. It follows from [17] that

GP is closed under direct sums, extensions, direct summands and kernels of epimorphisms.

Since the existence of the perfect duality pair (L,A) implies that P ⊆ F ⊆ L by [17,

Proposition 2.3], any Gorenstein (L,A)-projective module is Ding projective, and of course,

it is Gorenstein projective (see [10, 12]). We use DP and GP(R) to denote the classes of all

Ding projective and all Gorenstein projective R-modules, respectively.

An R-module M is called Gorenstein (L,A)-flat if there exists an A⊗R−-exact exact

sequence

F : · · · → F1 → F0 → F−1 → F−2 → · · ·
with each Fi ∈ F such that M ∼= Ker(F−1 → F−2). GF denotes the class of all Gorenstein

(L,A)-flat modules (see [17]). It is clear that all kernels, images and cokernels of F are in

GF , F ⊆ GF , and TorRi (A,M) = 0 for any A ∈ A and any i > 1. By [17, Proposition

2.3 and Remark], one knows that A contains the classes of all injective Rop-modules and

FP-injective Rop-modules. So any Gorenstein (L,A)-flat module is Ding flat, and of course,

it is Gorenstein flat (see [16, 14]).

Remark 2.1. It is known that P and F are special precovering. Since (L,A) is a perfect

duality pair, it follows from [20, Theorem 3.1] that L is covering. By [22, Theorem 4.9], PGF
is special precovering. By [17, Theorem 4.9], GP is special precovering. By [17, Proposition

5.2], if GF is closed under extensions, then GF is special precovering. According to these

facts, we can study the corresponding resolution dimensions.

3. The GP-resolution dimension of modules

The goal of this section is to investigate the GP-resolution dimension of modules. We

give some homological characterizations of the finiteness of the GP-resolution dimension

and discuss connections between it and some known dimensions.

The canonical example of a complete duality pair is the level duality pair (L,A) over any

ring, given in [5], where L represents the class of level modules and A represents the class

of absolutely clean Rop-modules. To describe it, we recall that an Rop-module F is said to

be of type FP∞ if it has a projective resolution

· · · → P2 → P1 → P0 → F → 0

with each Pi finitely generated. An Rop-module A is called absolutely clean if Ext1
R(F,A) = 0

for any Rop-module F of type FP∞. An R-module L is called level if TorR1 (F,L) = 0 for any

Rop-module F of type FP∞. In this case, GP is exactly the class of Gorenstein AC-projective
5
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modules in [5], denoted by GacP , and GF is exactly the class of Gorenstein AC-flat modules

in [4]. The results in the paper are valid in particular for the level duality pair.

At first, we give some characterizations of the finiteness of the GP-resolution dimension.

The following proposition is an extension of [6, Proposition 3.6].

Proposition 3.1. The following conditions are equivalent for an R-module M and a non-

negative integer n.

(1) resdim
RGPM 6 n.

(2) There exists an exact sequence of R-modules 0 → Gn → Gn−1 → · · · → G1 → G0 →
M → 0 with each Gi ∈ GP.

(3) For any exact sequence of R-modules 0 → Kn → Gn−1 → · · · → G1 → G0 → M → 0

with each Gi ∈ GP, one gets Kn ∈ GP.

(4) For each exact sequence of R-modules 0 → Kn → Pn−1 → · · · → P1 → P0 → M → 0

with each Pi ∈ P, one gets Kn ∈ GP.

(5) There exists an exact sequence of R-modules 0 → Kn → Pn−1 → · · · → P1 → P0 →
M → 0 with each Pi ∈ P and Kn ∈ GP.

(6) There exists an exact sequence of R-modules 0→ K → P →M → 0 with P ∈ P and

resdim
RGPK 6 n− 1.

Proof. (1) ⇒ (2) and (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (1) are straightforward.

(2) ⇒ (3) It follows using the arguments appearing in [6, proof of Proposition 3.6]. �

The following two propositions concerning some properties of GP can be proved as for

GP(R).

Proposition 3.2. Let (Mi)i∈I be a family of R-modules, I a set and M = ⊕i∈IMi. Then

resdim
RGPM = sup{resdim

RGPMi | i ∈ I}. In particular, GP∧ is closed under finite direct

sums and direct summands.

Proposition 3.3. Let 0→ A→ B → C → 0 be an exact sequence of R-modules. Then the

following conditions hold.

(1) resdim
RGPB 6 max{resdim

RGPA, resdim
RGPC}.

(2) resdim
RGPA 6 max{resdim

RGPB, resdim
RGPC}.

(3) resdim
RGPC 6 1 + max{resdim

RGPA, resdim
RGPB}.

Moreover, GP∧ is a thick class.

Proposition 3.4. Let M be an R-module and n a non-negative integer. Consider the fol-

lowing conditions.

(1) resdim
RGPM 6 n.

(2) Extn+i
R (M,L) = 0 for any i > 1 and any L ∈ L.

(3) Extn+i
R (M,F ) = 0 for any i > 1 and any F ∈ F .

(4) Extn+i
R (M,P ) = 0 for any i > 1 and any P ∈ P.

(5) Extn+i
R (M,H) = 0 for any i > 1 and any H ∈ L∧.

(6) Extn+i
R (M,J) = 0 for any i > 1 and any J ∈ F∧.
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(7) Extn+i
R (M,Q) = 0 for any i > 1 and any Q ∈ P∧.

(8) There exists an exact sequence of R-modules 0 → Kn → Pn−1 → · · · → P1 → P0 →
M → 0 with each Pi ∈ P and Kn ∈ GP.

Then (1) ⇔ (8), (8) ⇒ (2) ⇒ (3) ⇒ (4) and (2) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (4) hold. Assume

that M is of finite GP-resolution dimension. One gets that (4) ⇒ (8).

Proof. (1)⇔ (8) It immediately follows from Proposition 3.1.

(8) ⇒ (2) and (2) ⇒ (5) follow by dimension shifting.

(7) ⇒ (4) is obvious.

(2)⇒ (3)⇒ (4) and (5) ⇒ (6)⇒ (7) are clear since P ⊆ F ⊆ L by [17, Proposition 2.3].

(4) ⇒ (8) Pick a partial projective resolution of M ,

0→ K → Pn−1 → Pn−2 → · · · → P1 → P0 →M → 0

with each Pi ∈ P . By dimension shifting and by assumption, one gets that ExtiR(K,P ) = 0

for any i > 1 and any P ∈ P . Since M is of finite GP-resolution dimension and P ⊆ GP , one

obtains that K ∈ GP∧ by Proposition 3.3. Assume that resdim
RGPK = m. By Proposition

3.1, there exists an exact sequence of R-modules 0 → Gm → Gm−1
fm−1→ Gm−2 → · · · →

G1
f1→ G0

f0→ K → 0 with each Gi ∈ GP . Let Kj = Kerfj for 0 6 j 6 m − 1. Obviously,

Km−1 = Gm. Since ExtkR(Gi, P ) = 0 for any k > 1 and any P ∈ P , by dimension shifting,

one gets that Ext1
R(Kj, P ) = 0 for 0 6 j 6 m− 1. Consider the exact sequence

0→ Gm → Gm−1 → Km−2 → 0.

The following proof follows the arguments in [6, proof of (4)⇒ (1) in Proposition 3.1]. Since

Gm ∈ GP , there exists an exact sequence

0→ Gm → P → G
′

m → 0

with P ∈ P and G
′
m ∈ GP . Consider the following pushout diagram

0

��

0

��
0 // Gm

��

// Gm−1

��

// Km−2
// 0

0 // P

��

// X

��

// Km−2
// 0

G
′
m

��

G
′
m

��
0 0

Since Gm−1, G
′
m ∈ GP , X ∈ GP . Because Ext1

R(Km−2, P ) = 0, the exact sequence 0→ P →
X → Km−2 → 0 splits. That is, X ∼= P ⊕Km−2. Since GP is closed under direct summands,

7
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Km−2 ∈ GP . By continuing this process, one obtains K ∈ GP , and this completes the

proof. �

The following proposition is attributed to [6, Proposition 3.1], since it is basically an

extension of the equivalence (1) ⇔ (4) of the cited result.

Proposition 3.5. Let M be an R-module. Consider the following conditions.

(1) M ∈ GP.

(2) Ext1
R(M,L) = 0 for any L ∈ L.

(3) Ext1
R(M,F ) = 0 for any F ∈ F .

(4) Ext1
R(M,P ) = 0 for any P ∈ P.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) holds. Assume that resdim
RGPM 6 1. One gets that (4) ⇒

(1) holds.

By [6, Proposition 3.4], we know that

GP ∩ P∧ = GP ∩ F∧ = GP ∩ L∧ = GP ∩ L = GP ∩ F = P ,

which is useful in the sequel. In fact, for a Gorenstein (L,A)-projective module M , either

resdim
RLM = fdRM = pdRM =∞ or M ∈ P .

Remark 3.6. (1) If M ∈ F , then pdRM = resdim
RGPM . In particular, if M ∈ F , then

M ∈ P if and only if M ∈ GP .

(2) If M is flat but not projective, then resdim
RGPM > 0. By [6, Remark 3.13], we know

that Gorenstein (L,A)-projective modules are Gorenstein (L,A)-flat over any ring. Note

that a flat R-module which is not projective is not Gorenstein (L,A)-projective. That is,

GP can be strictly included in GF .

(3) GP∧ ∩ F∧ = P∧.
(4) Let L be closed under kernels of epimorphisms. If M ∈ L, then pdRM = resdim

RGPM .

In particular, if M ∈ L, then M ∈ P if and only if M ∈ GP . By [5, Proposition 2.10], one

gets that the class of all level R-modules is closed under kernels of epimorphisms. Let M be

a level R-module. Then pdRM = resdim
RGacPM . Further, M ∈ P if and only if M ∈ GacP .

The following result is inspired by [9, Theorem 10]. It further gives some homological

characterizations of the finiteness of the GP-resolution dimension.

Theorem 3.7. The following conditions are equivalent for an R-module M and a non-

negative integer n.

(1) resdim
RGPM = n.

(2) There exists an exact sequence 0→ K → G
π→M → 0, where G ∈ GP, pdRK = n− 1

and π is a special GP-precover of M . If n = 0, this is understood to mean K = 0. If n = 1,

we also require that the exact sequence be non-split.

(3) There exists an exact sequence 0→M → K → G→ 0 with G ∈ GP and pdRK = n.

(4) There exists a projective R-module P , such that the R-module M
′

= M ⊕ P fits into

an exact sequence 0 → G → M
′ → K → 0, where G ∈ GP and pdRK = n, which remains

exact after applying the functor HomR(−, H) for any R-module H ∈ GP⊥.
8
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(5) There exists a projective R-module P , such that the R-module M
′

= M ⊕ P fits into

an exact sequence 0 → G → M
′ → K → 0, where G ∈ GP and pdRK = n, which remains

exact after applying the functor HomR(−, L) for any R-module L ∈ L∧.

(6) There exists a projective R-module P , such that the R-module M
′

= M ⊕ P fits into

an exact sequence 0 → G → M
′ → K → 0, where G ∈ GP and pdRK = n, which remains

exact after applying the functor HomR(−, F ) for any R-module F ∈ F∧.

(7) There exists a projective R-module P , such that the R-module M
′

= M ⊕ P fits into

an exact sequence 0 → G → M
′ → K → 0, where G ∈ GP and pdRK = n, which remains

exact after applying the functor HomR(−, Q) for any R-module Q ∈ P∧.

(8) There exists a Gorenstein (L,A)-projective R-module T , such that the R-module M
′
=

M ⊕ T fits into an exact sequence 0→ G→ M
′ → K → 0, where G ∈ GP and pdRK = n.

If n = 1, we also require that the exact sequence remain exact after applying the functor

HomR(−, P ) for any R-module P ∈ P.

Proof. (1) ⇒ (2) ⇒ (3) It can be deduced from Auslander-Buchweitz approximation theory

in [2].

(3) ⇒ (4) By (3), there exists an exact sequence 0 → M → K → G → 0 with G ∈ GP
and pdRK = n. We also have an exact sequence 0 → G

′ → P → G → 0 with P ∈ P and

G
′ ∈ GP . Consider the following pullback diagram

0

��

0

��

G
′

��

G
′

��
0 // M // M

′

��

// P

��

// 0

0 // M // K

��

// G

��

// 0

0 0

Since P ∈ P , the exact sequence 0→M →M
′ → P → 0 splits. That is, M

′ ∼= M⊕P . Thus

we obtain an exact sequence 0 → G
′ → M ⊕ P → K → 0 with G

′ ∈ GP and pdRK = n.

For any R-module H ∈ GP⊥, apply the functor HomR(−, H) to the above pullback diagram.
9
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Then we have the following commutative exact diagram

0

��

0

��
0 // HomR(G,H)

��

// HomR(K,H)

��

// HomR(M,H) // 0

0 // HomR(P,H)

γ

��

α // HomR(M
′
, H)

β
��

// HomR(M,H) // 0

HomR(G
′
, H)

��

HomR(G
′
, H)

0

Since βα = γ is an epimorphism, β is also an epimorphism.

(4) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (8) It follows from P∧ ⊆ F∧ ⊆ L∧ ⊆ GP⊥ and P ⊆ GP .

(8)⇒ (1) Firstly, assume that n = 1. Then pdRK = 1. Note that resdim
RGPK 6 pdRK =

1. By Proposition 3.3 and the exact sequence 0 → G → M
′ → K → 0, we can get

resdim
RGPM

′
6 1. By Proposition 3.2, we can get resdim

RGPM = resdim
RGPM

′
6 1.

Assume that resdim
RGPM = 0, namely, M ∈ GP . Then M

′ ∈ GP . Since the exact sequence

0 → G → M
′ → K → 0 remains exact after applying the functor HomR(−, P ) for any

R-module P ∈ P , we can get that Ext1
R(K,P ) = 0. By Proposition 3.5, K ∈ GP . By

Remark 3.6, K ∈ P . Then pdRK = 0. This is a contradiction. Thus resdim
RGPM = 1.

Then assume that n > 1. Similarly, we get that resdim
RGPM = resdim

RGPM
′
6 n.

Next, assume that resdim
RGPM 6 n − 1. Then resdim

RGPM
′
6 n − 1. By Proposition

3.4, ExtnR(M
′
, P ) = 0 for any P ∈ P . By the exact sequence 0 → G → M

′ → K → 0 and

dimension shifting, we have ExtnR(K,P ) = 0. Since pdRK = n, there exists an exact sequence

0→ Pn → Pn−1 → · · · → P1 → P0 → K → 0 with each Pi ∈ P . Let N = Im(Pn−1 → Pn−2).

By dimension shifting, we obtain that Ext1
R(N,P ) ∼= ExtnR(K,P ) = 0. Consider the exact

sequence 0 → Pn → Pn−1 → N → 0. Then the exact sequence splits. Thus N ∈ P . This

implies that pdRK 6 n − 1. This is a contradiction. Therefore, resdim
RGPM = n. This

completes the proof. �

Remark 3.8. By Remark 3.6, we know that GP can be strictly included in GF . Assume

that GF is closed under extensions. By [17, Proposition 5.2], we get that GF is closed

under kernels of epimorphisms. On the one hand, any Gorenstein (L,A)-flat R-module is

Gorenstein flat. On the other hand, we know that any Gorenstein flat R-module with finite

projective dimension is flat by [13, Corollary 10.3.4]. So any Gorenstein (L,A)-flat R-module

with finite projective dimension is flat. Based on these facts, the conditions in Theorem 3.7

are equivalent for any Gorenstein (L,A)-flat R-module M , with the additional fact that the

R-module K in (2), (3), (4), (5), (6), (7) and (8) is flat.
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Proposition 3.9. Let M be an R-module. Consider the following conditions.

(1) M ∈ GP.

(2) Ext1
R(M,H) = 0 for any H ∈ L∧.

(3) Ext1
R(M,J) = 0 for any J ∈ F∧.

(4) Ext1
R(M,Q) = 0 for any Q ∈ P∧.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) holds. Assume that M ∈ GP∧. One gets that (4) ⇒ (1).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) It follows from Proposition 3.4.

(4) ⇒ (1) Since M ∈ GP∧, by Theorem 3.7, there exists an exact sequence 0 → K →
G → M → 0 with G ∈ GP and K ∈ P∧. By assumption, Ext1

R(M,K) = 0. Then the

sequence splits. Hence M is a direct summand of G. So M ∈ GP . �

Proposition 3.10. Let M be an R-module of finite GP-resolution dimension. Then the

following conditions are equivalent.

(1) M ∈ P∧.

(2) Ext1
R(G,M) = 0 for any G ∈ GP.

(3) Ext1
R(Q,M) = 0 for any Q ∈ PGF .

Proof. (1) ⇒ (2) It follows from Proposition 3.4.

(2) ⇒ (1) Since M is of finite GP-resolution dimension, by Theorem 3.7, there exists an

exact sequence 0→ M → K → G→ 0 with G ∈ GP and K ∈ P∧. Since Ext1
R(G,M) = 0,

the exact sequence splits. Hence M is a direct summand of K. Then M ∈ P∧.
(1)⇔ (3) Note that GP ⊆ PGF by [5, Theorem A.6]. Then M is of finite PGF -resolution

dimension. It is obtained from [9, Proposition 14]. �

We use GpdRM , DpdRM and PGF-dimRM to denote the Gorenstein projective, Ding

projective and projectively coresolved Gorenstein flat dimensions of M , respectively.

Proposition 3.11. Let M be an R-module.

(1) If resdim
RGPM <∞, then GpdRM = DpdRM = resdim

RGPM = PGF-dimRM .

(2) If pdRM <∞, then GpdRM = DpdRM = resdim
RGPM = PGF-dimRM = pdRM .

Proof. (1) Assume that resdim
RGPM = n < ∞. Since GP ⊆ DP ⊆ GP(R), we get that

GpdRM 6 DpdRM 6 resdim
RGPM = n. Suppose that GpdRM 6 n− 1. By [19, Theorem

2.20], ExtiR(M,P ) = 0 for any i > n and any P ∈ P . By Proposition 3.4, resdim
RGPM 6

n− 1. This is a contradiction. So GpdRM = n. Thus GpdRM = DpdRM = resdim
RGPM .

We know that GP ⊆ PGF . Then PGF-dimRM 6 resdim
RGPM = n. By [9, Corollary 13],

GpdRM = PGF-dimRM . So GpdRM = DpdRM = resdim
RGPM = PGF-dimRM .

(2) Assume that pdRM = n < ∞. Note that resdim
RGPM 6 pdRM = n. Sup-

pose that resdim
RGPM 6 n − 1. It is clear from Proposition 3.4 and Thoerem 3.7 that

pdRM 6 n − 1. This is a contradiction. So resdim
RGPM = n. By (1), we obtain that

GpdRM = DpdRM = resdim
RGPM = PGF-dimRM = pdRM . �

We give the following result, which follows the definitions of the classes GP(R), DP , GP
and PGF .
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Corollary 3.12. P∧ ∩ GP(R) = P∧ ∩ DP = P∧ ∩ GP = P∧ ∩ PGF = P.

4. The left global Gorenstein (L,A)-projective dimension of rings

In this section, we use classical homological invariants to characterize the left global Goren-

stein (L,A)-projective dimension of rings and give a lower and upper bound of it, in terms

of the left global Gorenstein (L,A)-flat dimension and the invariant splfR.

At first, we compare the GP-resolution dimension of Gorenstein (L,A)-flat modules with

the projective dimension of flat modules. We use splfR to denote the supremum of the

projective dimension of flat modules. We have the following equality.

Proposition 4.1. For any ring R, sup{resdim
RGPM |M ∈ GF} = splfR. Moreover, F ⊆

P∧ if and only if GF ⊆ GP∧.

Proof. By Remark 3.6, the projective dimension of a flat R-module equals its GP-resolution

dimension. Since F ⊆ GF , splfR 6 sup{resdim
RGPM |M ∈ GF}. If splfR = ∞, then

sup{resdim
RGPM |M ∈ GF} = ∞. Now, let splfR = n < ∞. By [17, Proposition 2.3], A

contains the class of all injective Rop-modules. For a Gorenstein (L,A)-flat R-module M , by

[5, Theorem A.6] and [18, Remark 38], there exists an exact sequence 0→M → F → G→ 0

with F ∈ F and G ∈ GP . Then pdRF 6 n. Naturally, resdim
RGPF 6 n. By Proposition

3.3, one gets that resdim
RGPM 6 n. Thus sup{resdim

RGPM |M ∈ GF} 6 splfR = n.

Therefore, sup{resdim
RGPM |M ∈ GF} = splfR.

We let F ⊆ P∧, and M ∈ GF . By [18, Remark 38] again, there exists an exact sequence

0 → F → G → M → 0 with F ∈ F and G ∈ GP . Note that F ⊆ P∧ ⊆ GP∧. By

Proposition 3.3, M ∈ GP∧. That is, F ⊆ P∧ implies GF ⊆ GP∧. Next, we let GF ⊆ GP∧.
Since F ⊆ GF , F ⊆ GP∧. By Remark 3.6, F ⊆ P∧. Then GF ⊆ GP∧ implies F ⊆ P∧.
This completes the proof. �

Proposition 4.2. The following conditions are equivalent for a non-negative integer n.

(1) splfR 6 n.

(2) Every Gorenstein (L,A)-flat R-module has GP-resolution dimension at most n.

(3) Every flat R-module has GP-resolution dimension at most n.

If any of the previous conditions holds,

sup{resdim
RGPM |M ∈ F} = sup{resdim

RGPN |N ∈ GF} = splfR 6 n.

Proof. (1) ⇒ (2) It immediately follows from Proposition 4.1.

(2) ⇒ (3) It is clear.

(3)⇒ (1) Let M ∈ F and resdim
RGPM 6 n. By Remark 3.6, pdRM 6 n. Thus splfR 6 n.

In the case, one easily gets that sup{resdim
RGPM |M ∈ F} = sup{resdim

RGPN |N ∈
GF} = splfR 6 n. �

Proposition 4.3. Assume that GF is closed under extensions, and let M be an R-module.

One gets that

resdim
RGFM 6 resdim

RGPM 6 resdim
RGFM + splfR.
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Proof. Since GP ⊆ GF , resdim
RGFM 6 resdim

RGPM . Next, we show that resdim
RGPM 6

resdim
RGFM + splfR. If splfR = ∞ or resdim

RGFM = ∞, then the result obviously holds.

Now, set splfR = n <∞ and resdim
RGFM = m <∞. Then there exists an exact sequence

0 → Gm → Gm−1 → · · · → G1 → G0 → M → 0 with each Gi ∈ GF . Pick a partial

projective resolution of M , 0→ K → Pm−1 → · · · → P1 → P0 →M → 0 with each Pi ∈ P .

Then we have the following commutative diagram

0 // K

��

// Pm−1

��

// · · · // P1

��

// P0

��

// M // 0

0 // Gm
// Gm−1

// · · · // G1
// G0

// M // 0.

By taking the mapping cone, we obtain an exact sequence

0→ K → Gm ⊕ Pm−1 → · · · → G1 ⊕ P0 → G0 ⊕M →M → 0.

Therefore, we have the other exact sequence 0 → K → Gm ⊕ Pm−1 → · · · → G1 ⊕ P0 →
G0 → 0. Since Pi ∈ P , Gi ∈ GF and P ⊆ GF , Gi+1 ⊕ Pi ∈ GF . By assumption and

[17, Proposition 5.2], we know that GF is closed under kernels of epimorphisms. Thus

K ∈ GF . By Proposition 4.2, resdim
RGPK 6 n. Thus there exists an exact sequence

0 → Cn → Cn−1 → · · · → C1 → C0 → K → 0 with each Ci ∈ GP . Thus we have an exact

sequence

0→ Cn → Cn−1 → · · · → C1 → C0 → Pm−1 → Pm−2 → · · · → P1 → P0 →M → 0.

By Proposition 3.1, resdim
RGPM 6 m+ n. Namely, resdim

RGPM 6 resdim
RGFM + splfR,

as desired. �

In the following, we define the left global X -resolution dimension, denoted by X -lgl.dimR,

of the ring R, by letting

X -lgl.dimR = sup{resdim
RXM |M an R-module}.

The left global Gorenstein (L,A)-projective dimension, the left global Gorenstein (L,A)-

flat dimension, and the left global projectively coresolved Gorenstein flat dimension of R are

defined by setting X = GP , X = GF and X = PGF , respectively.

By Proposition 4.3, we can give a lower and upper bound of the left global Gorenstein

(L,A)-projective dimension of R, in terms of the left global Gorenstein (L,A)-flat dimension

of R and the invariant splfR.

Theorem 4.4. Suppose GF is closed under extensions. Then

GF-lgl.dimR 6 GP-lgl.dimR 6 GF-lgl.dimR + splfR.

We know that GP ⊆ PGF . In the following, in order to use classical homological invariants

to characterize those rings over which all modules are of finite GP-resolution dimension, we

give some conditions such that GP = PGF .
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Lemma 4.5. Suppose that every Rop-module in A is of finite injective or finite flat dimen-

sion. Then GP = PGF .

Proof. The containment GP ⊆ PGF is known. On the other hand, it can be proved s-

traightforwardly from the assumption and [5, Theorem A.6] that the converse containment

holds. �

In the following, we characterize the finiteness of GP-lgl.dimR by the invariants spliR,

silpR and sfliR.

Proposition 4.6. Consider the following conditions.

(1) GP-lgl.dimR <∞.

(2) resdim
RGPM <∞ for any R-module M .

(3) resdim
RPGFM <∞ for any R-module M .

(4) spliR = silpR <∞ and sfliR = sfliRop <∞.

(5) spliR <∞ and sfliRop <∞.

Then (1) ⇔ (2), (2) ⇒ (3) and (3) ⇔ (4) ⇔ (5) hold. Assume that every Rop-module in

A is of finite injective or finite flat dimension. Then (3) ⇒ (2). In this case,

GP-lgl.dimR = PGF-lgl.dimR <∞.

Proof. (1) ⇒ (2) It is clear.

(2) ⇒ (1) Assume that GP-lgl.dimR =∞. Then for any non-negative integer n, there is

an R-module Mn such that resdim
RGPMn > n. Let M = ⊕Mn. By Proposition 3.2,

resdim
RGPM = sup{resdim

RGPMn} =∞.

This is a contradiction. So GP-lgl.dimR <∞.

(2) ⇒ (3) Since GP ⊆ PGF , resdim
RPGFM 6 resdim

RGPM <∞ for any R-module M .

(3) ⇔ (4) ⇔ (5) It immediately follows from [9, Theorem 21].

(3) ⇒ (2) It is immediate from Lemma 4.5.

In this case, we get that GP-lgl.dimR = PGF -lgl.dimR <∞. �

Proposition 4.7. If GP-lgl.dimR <∞, then GP-lgl.dimR = PGF-lgl.dimR = spliR = silpR.

Proof. Since GP-lgl.dimR < ∞, one gets that resdim
RGPM < ∞ for any R-module M . By

Proposition 3.11, one obtains that GpdRM = PGF-dimRM = resdim
RGPM < ∞. Then

sup{GpdRM |M a left R-module} = PGF -lgl.dimR = GP-lgl.dimR < ∞. Since GP-

lgl.dimR < ∞ again, one has that spliR = silpR < ∞ by Proposition 4.6. It follows

from [3, Theorem 3.3] that sup{GpdRM |M a left R-module} = max{spliR, silpR}. Thus

GP-lgl.dimR = PGF -lgl.dimR = spliR = silpR. �

Corollary 4.8. If GF is closed under extensions and GP-gl.dimR <∞, then spliR = silpR 6
GF-gl.dimR+splfR.

Proposition 4.9. If GP-gl.dimR < ∞, then every Gorenstein projective module is Goren-

stein flat.
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Proof. Since GP-gl.dimR < ∞, by Proposition 4.6, sfliR = sfliRop < ∞. So it immediately

follows from [11, Theorem 5.3 and Corollary 5.5] that every Gorenstein projective module is

Gorenstein flat. �

5. Recollement situation of the finite left global Gorenstein

(L,A)-projective dimension

By [22, Theorem 4.4], we know that PGF ⊆ GP(R), that is, PGF is a special class of

Gorenstein projective modules. Of course, so is GP . Indeed, we know that recollements of

abelian categories provide a very useful framework for investigating homological connections

among categories. In this section, we will discuss the finiteness of the left global Goren-

stein (L,A)-projective dimension and the finiteness of the left global projectively coresolved

Gorenstein flat dimension by recollement situations and invariants.

Throughout this section, we assume that S and T are associative rings with an identity.

RP denotes the class of all projective left R-modules.

SP denotes the class of all projective left S-modules.

RI denotes the class of all injective left R-modules.

SI denotes the class of all injective left S-modules.

GwgldimT denotes the Gorenstein weak global dimension of a ring T .

By [8], we know that the Gorenstein weak global dimension of a ring is a left-right symmet-

ric invariant. Let (R-Mod, S-Mod, T -Mod) be a recollement of categories of corresponding

modules.

R-Mod
i // S-Mod

q

ww

p

ff
e // T -Mod

l

ww

r

ff

We also need the following notions.

pgl.dimSR = sup{pdSi(M) |M a left R-module}
igl.dimSR = sup{idSi(M) |M a left R-module}
pgl.dim

SRP = sup{pdSi(P ) |P ∈ RP}
igl.dim

SRI = sup{idSi(I) | I ∈ RI}
Motivated by [23, Theorem 3.5], we give the following result about the left global GP-

resolution dimension of rings by recollement situations.

Proposition 5.1. Let (R-Mod, S-Mod, T -Mod) be a recollement of categories of correspond-

ing modules.

R-Mod
i // S-Mod

q

ww

p

ff
e // T -Mod

l

ww

r

ff
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(1) If GP-lgl.dimS <∞ and GP-lgl.dimT <∞, then

GP-lgl.dimT 6 min{sup{idT e(I) | I ∈ SI}, sup{pdT e(P ) |P ∈ SP}}+ GP-lgl.dimS

6 min{sup{idT e(I) | I ∈ SI}, sup{pdT e(P ) |P ∈ SP}}+GwgldimS + splfS,

PGF-lgl.dimT 6 min{sup{idT e(I) | I ∈ SI}, sup{pdT e(P ) |P ∈ SP}}+ PGF-lgl.dimS

6 min{sup{idT e(I) | I ∈ SI}, sup{pdT e(P ) |P ∈ SP}}+GwgldimS + splfS.

(2) If the functor e preserves both projective and injective objects, GP-lgl.dimS < ∞ and

GP-lgl.dimT <∞, then

GP-lgl.dimS 6 min{pgl.dimSR, igl.dimSR}+ GP-lgl.dimT + 1

6 min{pgl.dimSR, igl.dimSR}+GwgldimT + splfT + 1,

PGF-lgl.dimS 6 min{pgl.dimSR, igl.dimSR}+ PGF-lgl.dimT + 1

6 min{pgl.dimSR, igl.dimSR}+GwgldimT + splfT + 1.

(3) If GP-lgl.dimR <∞, GP-lgl.dimS <∞, and one of the following conditions holds,

(a) pgl.dim
SRP 6 1 and igl.dim

SRI <∞;

(b) pgl.dim
SRP <∞ and igl.dim

SRI 6 1,

then

GP-lgl.dimR 6 GP-lgl.dimS and PGF-lgl.dimR 6 PGF-lgl.dimS.

Proof. (1) By [23, Proposition 3.4], we get that

spliT 6 sup{pdT e(P ) |P ∈ SP}+ spliS and silpT 6 sup{idT e(I) | I ∈ SI}+ silpS.

By assumption and Proposition 4.7, we have that

GP-lgl.dimS = PGF -lgl.dimS = spliS = silpS,

GP-lgl.dimT = PGF -lgl.dimT = spliT = silpT.

Then

spliT 6 min{sup{idT e(I) | I ∈ SI}, sup{pdT e(P ) |P ∈ SP}}+ spliS.

By Proposition 3.11 and [8, Theorem 3.3], we know that

GP-lgl.dimS 6 GwgldimS + splfS.

So we obtain inequalities of (1).

(2) Since the functor e preserves both projective and injective objects, by [23, Proposition

3.4], we get that

spliS 6 pgl.dimSR + spliT + 1 and silpS 6 igl.dimSR + silpT + 1.

Since GP-lgl.dimS <∞ and GP-lgl.dimT <∞, we have that

GP-lgl.dimS = PGF -lgl.dimS = spliS = silpS,

GP-lgl.dimT = PGF -lgl.dimT = spliT = silpT
16
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by Proposition 4.7. Then

spliS 6 min{pgl.dimSR, igl.dimSR}+ spliT + 1.

By Proposition 3.11 and [8, Theorem 3.3], we know that

GP-lgl.dimT 6 GwgldimT + splfT.

So we obtain inequalities of (2).

(3) By assumption, it follows from Proposition 3.11 and [23, Theorem 3.5]. �

In the following, we apply Proposition 5.1 to some rings and Morita rings.

Example 5.2. Let R be a ring and e an idempotent element of R. By [21, Example 2.7],

we have a recollement

R/ReR-Mod
inc // R-Mod

R/ReR⊗R−

vv

HomR(R/ReR,−)

hh

e(−)
// eRe-Mod

Re⊗eRe−

ww

HomeRe(eR,−)

ff

where the category R/ReR-Mod of modules over R/ReR is the kernel of the functor e(−) : R-

Mod→ eRe-Mod. Based on this recollement, the inequalities from Proposition 5.1 can be

obtained under the corresponding assumptions of finiteness for the relative global dimensions

of the rings.

Example 5.3. Let R, S be rings, M an S-R-bimodule and N an R-S-bimodule. Let

φ : M ⊗R N → S be an S-S-bimodule homomorphism and let ψ : N ⊗S M → R be an

R-R-bimodule homomorphism. Then the above data allow one to define the Morita ring

(see [21, Example 2.8]):

Λ(φ,ψ) =

(
R RNS

SMR S

)
where the addition of elements of Λ(φ,ψ) is componentwise and multiplication is given by(

r n

m s

)(
r′ n′

m′ s′

)
=

(
rr′ + ψ(n⊗m′) rn′ + ns′

mr′ + sm′ ss′ + φ(m⊗ n′)

)
.

Then Λ(φ,ψ) is a ring with an identity. We assume that φ(m ⊗ n)m
′

= mψ(n ⊗ m
′
) and

nφ(m ⊗ n
′
) = ψ(n ⊗ m)n

′
for all m, m

′ ∈ M and n, n
′ ∈ N . This condition ensures

that Λ(φ,ψ) is an associative ring. One knows that e1 =

(
1R 0

0 0

)
and e2 =

(
0 0

0 1S

)
are

idempotent elements of Λ(φ,ψ). So one obtains tow recollements of categories of modules

Λ/Λe1Λ-Mod
inc // Λ(φ,ψ)-Mod

Λ/Λe1Λ⊗Λ−

uu

HomΛ(Λ/Λe1Λ,−)

ii

e1(−)
// e1Λe1-Mod

Λe1⊗e1Λe1
−

vv

Home1Λe1
(e1Λ,−)

ii
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Λ/Λe2Λ-Mod
inc // Λ(φ,ψ)-Mod

Λ/Λe2Λ⊗Λ−

uu

HomΛ(Λ/Λe2Λ,−)

ii

e2(−)
// e2Λe2-Mod

Λe2⊗e2Λe2
−

vv

Home2Λe2
(e2Λ,−)

ii

where α : Λ/Λe1Λ-Mod → S/Imφ-Mod, β : e1Λe1-Mod → R-Mod, γ : Λ/Λe2Λ-Mod →
R/Imψ-Mod, and η : e2Λe2-Mod → S-Mod are equivalences of categories. Naturally, one

can get the following two recollements of categories of modules by above equivalences

S/Imφ-Mod
inc◦α−1

// Λ(φ,ψ)-Mod

α◦Λ/Λe1Λ⊗Λ−

uu

α◦HomΛ(Λ/Λe1Λ,−)

ii

β◦e1(−)
// R-Mod

Λe1⊗e1Λe1
−◦β−1

vv

Home1Λe1
(e1Λ,−)◦β−1

hh

R/Imψ-Mod
inc◦γ−1

// Λ(φ,ψ)-Mod

γ◦Λ/Λe2Λ⊗Λ−

uu

γ◦HomΛ(Λ/Λe2Λ,−)

ii

η◦e2(−)
// S-Mod

Λe2⊗e2Λe2
−◦η−1

vv

Home2Λe2
(e2Λ,−)◦η−1

hh

The inequalities from Proposition 5.1 can be obtained within these particular contexts under

the corresponding assumptions of finiteness for the relative global dimensions of the rings.
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