
CONSTRUCTION OF JACOBI CUSP FORMS USING ADJOINT
OPERATOR OF CERTAIN DIFFERENTIAL OPERATOR

SHIVANSH PANDEY

Abstract. In this paper we construct Jacobi cusp forms by computing the adjoint of
certain differential operator with respect to the Petersson scalar product in the case of
Jacobi forms and Hermitian Jacobi forms. Jacobi cusp forms constructed by this method
involve special values of certain Dirichlet series attached to the considered Jacobi cusp forms.

1. Introduction

Modular forms are important objects in number theory and it has wide range of applica-
tions in all other branches of Mathematics as well as in Physics. Construction of modular
forms is one of the most important problem in the theory of modular forms. It is well-known
that the derivative of a modular form is not necessarily a modular form. There are several
ways to construct modular forms using derivatives, we mention two of them here (see [26]
pp. 48 for more details). The first one is to modify the differential operator called Serre
derivative. The second one is to take an appropriate linear combination of higher order
derivatives called Rankin-Cohen brackets. The Rankin-Cohen bracket is generalization of
the product. Kohnen [15] constructed cusp forms by computing the adjoint of the product
map w.r.t. the Petersson scalar product. The Fourier coefficients of constructed cusp form
involve special values of certain Dirichlet series. Herrero [9] extended the work of Kohnen
[15] and computed the adjoint of certain linear maps constructed using Rankin-Cohen brack-
ets. The work of Herrero has been generalized by several authors for various automorphic
forms ([10, 11, 12, 14, 24]). Recently, Kumar [13] constructed cusp forms by computing the
adjoint of Serre derivative.

Jacobi forms are natural generalization of modular forms to several variable case. Jacobi
forms were first studied systematically by Eichler and Zagier in [7] and they played a key
role in the proof of Saito-Kurokawa conjecture. In the case of Jacobi forms the classical
heat operator plays an important role. One of the important uses of the heat operator is
to construct certain bilinear holomorphic differential operators on the space of Jacobi cusp
forms. For Jacobi forms, we have modified heat operator (analogue of Serre derivative)[2, 21]
and the Rankin-Cohen brackets (defined in [2, 3, 5, 17]). These operators give rise to certain
linear operators between spaces of Jacobi forms. Hermitian Jacobi forms are generalization
of Jacobi forms. These were first introduced by Haverkamp [8] and studied by Richter and
Senadheera [22].
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2 SHIVANSH PANDEY

The main aim of this paper is to extend the work of Kumar[13] in the case of Jacobi forms,
Jacobi forms of several variables and Hermitian Jacobi forms by computing the adjoint of
the modified heat operator w.r. t. the Petersson scalar product.

2. Preliminaries

In this section we recall the basic definition and some properties of Jacobi forms and
Hermitian-Jacobi forms which are required to state and prove our results.

2.1. Jacobi forms. Let C and H denote the complex plane and the complex upper half-
plane, respectively. For a complex number a, we use the following notation: e(a) :=
exp(2πia). An n×n matrix M = (mij)1≤i,j≤n is said to be half-integral matrix if mii, 2mij ∈
Z, 1 ≤ i, j ≤ n.

Let g be a fixed positive integer. The Jacobi group ΓJ
g := SL2(Z) ⋉ (Zg × Zg) acts on

H× Cg as follows; ((
a b
c d

)
, (λ, µ)

)
· (τ, z) =

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
.

Let k ∈ Z andM be a positive definite, symmetric, half-integral g×g matrix. For a complex-

valued holomorphic function ϕ defined on H×Cg and γ =

((
a b
c d

)
, (λ, µ)

)
∈ ΓJ

g , we define

the slash operator as follows:

(ϕ|k,M γ) (τ, z) := (cτ + d)−ke

(
−c

cτ + d
M [z + λτ + µ] +M [λ]τ + 2λtMz

)
ϕ(γ · (τ, z)),

where A[B] := BtAB, with A and B are matrices of appropriate size and Bt denotes the
transpose of the matrix B.

Definition 2.1. A complex-valued holomorphic function ϕ : H × Cg → C is said to be a
Jacobi form of weight k and index M if it satisfies ϕ|k,M γ = ϕ, ∀γ ∈ ΓJ

g and ϕ has a Fourier
expansion of the form

ϕ(τ, z) =
∑

n∈Z, r∈Zg ,
4n≥M−1[rt]

cϕ(n, r) e(nτ + rz).

Here, r ∈ Zg, denotes a row vector. Further, we say ϕ is a cusp form if cϕ(n, r) = 0 whenever
4n =M−1[rt].

We denote the space of all Jacobi forms (resp. Jacobi cusp forms) of weight k and index
M on ΓJ

g by Jk,M (resp. J cusp
k,M ). Let ϕ, ψ ∈ Jk,M be such that at least one of them is cusp

form. Then the Petersson scalar product of ϕ and ψ is defined by

⟨ϕ, ψ⟩ :=
∫

ΓJ
g \H×Cg

ϕ(τ, z) ψ(τ, z) vk e(−4πM [y]v−1)dV J
g ,

where τ = u+ iv ∈ H, z = x+ iy ∈ Cg and dV J
g =

dudvdxdy

vg+2
is an invariant measure under

the action of ΓJ
g on H×Cg. The space J cusp

k,M with the Petersson scalar product defined above
forms a finite dimensional Hilbert space. For more details on the theory of Jacobi forms of
several variables, we refer to [27].
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2.2. Poincaré series. Let M be a fixed positive definite, symmetric, half-integral g × g
matrix, N ∈ Z, and R ∈ Zg be such that 4N > M−1[Rt]. The (N,R)th Poincaré series of
weight k and index M is defined by

PN,R
k,M (τ, z) :=

∑
γ∈ΓJ

1,g,∞\ΓJ
1,g

e(Nτ +Rz)|k,M γ, (1)

where ΓJ
g,∞ :=

{((
1 t
0 1

)
, (0, µ)

)
: t ∈ Z, µ ∈ Zg

}
is the stabilizer of e(Nτ +Rz) in ΓJ

g . It is

well-known that PN,R
k,M ∈ J cusp

k, M for k > g+2. The space of Jacobi cusp forms is generated by
Poincaré series. The Poincaré series has the following property which will be crucial in the
proof of our result. For more details on Poincaré series we refer to [1].

Lemma 2.2. [1] Let ϕ ∈ J cusp
k, M with Fourier expansion ϕ(τ, z) =

∑
n∈Z, r∈Zg

4n>M−1[rt]

cϕ(n, r)e(nτ +

rz). Then

⟨ϕ, PN,R
k,M ⟩ = λK,M,D cϕ(N,R), (2)

where λK,M,D = 2K(g−1)−gΓ(K)π−K(det M)K− 1
2D−K, with K = k − g

2
− 1, D = det(T ), T =(

2n r
rt 2M

)
.

2.3. Heat Operator for Jacobi forms. We now define the heat operator which acts on
the space of Jacobi forms. For a positive definite, symmetric, half-integral g × g matrix M,
we define the heat operator by

LM :=
1

(2πi)2

(
8πi|M | ∂

∂τ
−
∑

1≤i,j≤g

Mij
∂

∂zi

∂

∂zj

)
,

where τ ∈ H and zt = (z1, z2, · · · , zg) ∈ Cg and Mij is the (i, j)-th cofactor of the matrix M.

Remark 2.1. Note that for g = 1, the above heat operator is the classical heat operator
[7, 20] defined by

Lm :=
1

(2πi)2

(
8πim

∂

∂τ
− ∂2

∂z2

)
.

Also note that the action of LM on e(nτ + rz) is given by

LM(e(nτ + rz)) = (4n|M | − M̃ [rt])e(nτ + rz),

where M̃ denotes the matrix of cofactors Mij of the matrix M.

Lemma 2.3. [18] Let ϕ ∈ Jk,M . Then for k ∈ Z+, ν ≥ 0 and A =

(
∗ ∗
c d

)
∈ SL2(Z), we

have

(LMϕ)|k+2,MA = LM(ϕ|k,MA) +
2|M |(K + 1)

πi

(
c

cτ + d

)
(ϕ|k,MA). (3)

It is immediate from the above lemma that for a Jacobi form ϕ of weight k and index
m, LMϕ is not a Jacobi form of weight k+2 and index M. We now define the modified heat
operator which maps Jacobi forms to Jacobi forms as:
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Lk,M := LM −
(k − g

2
)|M |

3
E2, (4)

where E2 = 1− 24
∑∞

n=1 σ(n)q
n is the Eisenstein series . A routine calculation shows that:

Lemma 2.4. The operator Lk,M maps a Jacobi form (resp. Jacobi cusp forms) of weight k
and index m to a Jacobi form (resp. Jacobi cusp forms) of weight k + 2 and index M.

2.4. Hermitian-Jacobi forms. Hermitian Jacobi forms are well studied in [8, 22]. In this
section we recall the definition and basic properties of Hermitian-Jacobi forms.

Let O be ring of integers of Q(i), i.e. O = Z[i]. O× = {±1,±i} be the set of units in
O. Let O♯ = i

2
O. We define Γ(O) := {ϵM |ϵ ∈ O×,M ∈ SL2(Z)} and the Hermitian-Jacobi

group by
ΓJ(O) := Γ(O)⋉O2 = {γ = (ϵM,X)|M ∈ Γ(O), X ∈ O2}.

The Hermitian-Jacobi group acts on H× C2 by

γ · (τ, z, w) =
(
aτ + b

cτ + d
, ϵ
z + λτ + µ

cτ + d
, ϵ
w + λτ + µ

cτ + d

)
,

where γ =

(
ϵ

(
a b
c d

)
, [λ, µ]

)
.

Let k ∈ Z and m be a positive integer. For a complex-valued holomorphic function

ϕ, δ ∈ {+,−} and γ =

(
ϵ

(
a b
c d

)
, [λ, µ]

)
, we define the slash operator as follows:

ϕ|k,m,δγ := σ(ϵ)ϵ−k(cτ+d)−kem
(
−c(z +λτ +µ)(w +λτ +µ)

cτ + d
+λλτ +λz +λw

)
ϕ(γ ·(τ, z, w)),

where σ(ϵ) =

{
1, if δ = +

ϵ2 if δ = −.

Definition 2.5. A holomorphic function ϕ : H× C2 → C is said to be a Hermitian Jacobi
form of weight k, index m and parity δ on ΓJ(O) if for each γ ∈ ΓJ(O) we have ϕ |k,m,δ γ = ϕ
and ϕ has Fourier expansion of the form

ϕ(τ, z, w) =
∑

n∈Z,r∈O♯

nm−|r|2⩾0

cϕ(n, r)e(nτ + rz + rw).

If cϕ(n, r) = 0 whenever nm− |r|2 = 0, we say ϕ is a Hermitian Jacobi cusp forms.

We denote the space of all Hermitian-Jacobi forms (resp. Hermitian-Jacobi cusp forms)
of weight k, index m and parity δ on ΓJ(O) by Jk,m,δ(O) (resp. J cusp

k,m,δ(O)). We define the

Petersson scalar product on J cusp
k,m,δ(O)

⟨ϕ, ψ⟩ :=
∫
ΓJ (O)\H×C2

ϕ(τ, z, w)ψ(τ, z, w)vke
−πm

v
|w−z|2dVJ ,

where τ = u + iv, z = x1 + iy1, w = x2 + iy2 and dVJ =
dudvdx1dy1dx2dy2

v4
is an invariant

measure under the action of ΓJ(O) on H× C2.
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CONSTRUCTION OF JACOBI CUSP FORMS USING ADJOINT OPERATOR 5

Definition 2.6. For fixed m ∈ N, N ∈ N and R ∈ O♯ with |R|2 < mN, the (N,R)th

Poincaré series of weight k, index m and parity δ is defined as

PN,R
k,m,δ(τ, z, w) :=

∑
γ∈ΓJ

∞(O)\ΓJ (O)

e(Nτ +Rz +Rw)|k,m,δγ(τ, z, w), (5)

where ΓJ
∞(O) :=

{((
1 t
0 1

)
, (0, µ)

)
|t, µ ∈ O

}
is the stabilizer of e(Nτ + RZ + Rw) in ΓJ .

It is well-known that PN,R
k,m,δ ∈ J cusp

k,m,δ for k > 4.

The space of Hermitian-Jacobi cusp forms is generated by Poincaré series. The Poincaré
series has the following property which will be crucial in the proof of our result.

Lemma 2.7. Let ϕ ∈ J cusp
k,m,δ(O) with Fourier expansion ϕ(τ, z) =

∑
n∈Z,r∈O♯,
nm−|r|2>0

cϕ(n, r)e(nτ +

rz + rw). Then

⟨ϕ, PN,R
k,m,δ⟩ =

mk−3Γ(k − 2)

(4π)k−2(Nm− |R|2)k−2
cϕ(N,R). (6)

2.5. Heat Operator for Hermitian-Jacobi forms. For a natural number m we define
the heat operator

Lm :=
1

(2πi)2

(
8πim

∂

∂τ
− 4

∂2

∂w∂z

)
.

The operator Lm does not map Hermitian-Jacobi forms to Hermitian-Jacobi forms. There-
fore, we modify this heat operator to obtain an operator Lk,m which maps Hermitian-Jacobi
forms to Hermitian-Jacobi forms. The modified heat operator Lk,m is defined as

Lk,m := Lm − k − 1

3
mE2. (7)

The operator Lk,m satisfies the following functional equation

Lk,mϕ |k+2,m,δ M = Lk,m(ϕ |k,m,−δ),M ∈ SL2(Z).
The above equation implies that the operator maps a Hermitian Jacobi (resp. Hermitian
Jacobi cusp) to a Hermitian Jacobi form with opposite parity (Hermitian Jacobi cusp form).

3. Main Results

The modified heat operator Lk,M defined in (4) is a C-linear map between finite dimen-
sional Hilbert spaces J cusp

k,M and J cusp
k+2,M . Therefore it has an adjoint map L∗

k,M : J cusp
k+2,M → J cusp

k,M

such that
⟨L∗

k,M(ϕ), ψ⟩ = ⟨ϕ, Lk,M(ψ)⟩ ∀ϕ ∈ J cusp
k+2,M and ψ ∈ J cusp

k,M .

The next theorem gives us the image of a Jacobi cusp form ϕ under the map L∗
k,M .

Theorem 3.1. Let k > 4 and m be natural number. Let ϕ ∈ J cusp
k+2,M with Fourier expansion

ϕ(τ, z) =
∑

n,r∈Zg ,
4n>M−1[rt]>0

cϕ(n, r)q
NζR. Then the image of ϕ under L∗

k,M is given by

L∗
k,M(ϕ)(τ, z) =

∑
N,R∈Zg ,

4N−M−1[Rt]>0

a(N,R)qnζr,
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where

a(N,R) =
|M | 5−g

2 (K + 1)(K)(4N |M | − M̃ [R])K

π22(g−1)(k− g
2
−1)

[(4N |M | − M̃ [R]− K|M |
3

)
(4N |M | − M̃ [R])+2

cϕ(N,R)

+8(K + 1)|M |
∑
n⩾1

cϕ(n+N,R)σ(n)

(4(n+N)|M | − M̃ [R])K+2

]
,

where K = k − g
2
− 1.

We now state the above result in the case of g = 1.

Corollary 3.2. Let k > 4 and m be natural number. Let ϕ ∈ J cusp
k+2,m with Fourier expansion

ϕ(τ, z) =
∑

n,r∈Z,
4mn−r2>0

cϕ(n, r)q
nζr. Then the image of ϕ under L∗

k,m is given by

L∗
k,m(ϕ)(τ, z) =

∑
N,R∈Z,

4mN−R2>0

a(N,R)qNζR,

where

a(N,R) =
(4mN −R2)k−

3
2m2(k − 1

2
)(k − 3

2
)

π2

[
(4Nm−R2)− 2k−1

6
m

(4Nm−R2)k+
1
2

cϕ(N,R)

+ 4m(2k − 1)
∑
n⩾1

cϕ(n+N,R)σ(n)

(4(n+N)m−R2)k+
1
2

]
.

(8)

Next, we consider the modified heat operator Lk,m defined in (7). The operator Lk,m

is a C-linear map between finite dimensional Hilbert spaces J cusp
k,m,−δ(O) and J cusp

k+2,m,δ(O).

Therefore it has an adjoint map L∗
k,m : J cusp

k+2,m,δ(O) → J cusp
k,m,−δ(O) such that

⟨L∗
k,m(ϕ), ψ⟩ = ⟨ϕ,Lk,m(ψ)⟩ = ∀ϕ ∈ J cusp

k+2,m,δ(O) and ψ ∈ J cusp
k,m,δ(O).

The next theorem gives us the image of a Jacobi cusp form ϕ under the map L∗
k,m.

Theorem 3.3. Let k > 4 and m be natural number. Let ϕ ∈ J cusp
k+2,m,δ(O) with Fourier

expansion ϕ(τ, z) =
∑

n∈Z,r∈O♯,
4mn−|r|2>0

cϕ(n, r)e(nτ + rz + rw). Then the image of ϕ under L∗
k,m is

given by

L∗
k,m(ϕ)(τ, z) =

∑
N∈Z,R∈O,

4mN−|R|2>0

a(N,R)e(Nτ +Rz +Rw),

where

a(N,R) =
(mN − |R|2)k−2m2(k − 1)(k − 2)

(4π)2

[
(4Nm− 4|R|2)− k−1

3
m

(Nm− |R|2)k
cϕ(N,R)

+ 8m(k − 1)
∑
n⩾1

cϕ(n+N,R)

((n+N)m− |R|2)k

]
.

(9)
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4. Proof of Theorems

First we state a lemma which we shall use to prove Theorem 3.1.

Lemma 4.1. Let ϕ ∈ J cusp
k+2,M . Then the sum∑

γ∈ΓJ
g,∞\ΓJ

g

∫
ΓJ
g \H×Cg

| ϕ(τ, z)Lk,M (e2πi(Nτ+Rz) |k,M γ)vk+2e
−4πM [y]

v | dVJ

converges.

Proof. For a proof we refer to [10]. □

4.1. Proof of Theorem 3.1. Let L∗
k,M(ϕ)(τ, z) =

∑
n,r∈Zg ,

4n>M−1[rt]>0

a(n, r)e(nτ+rz). By Lemma 2.2

and property of adjoint map we have

a(N,R) =
1

λK,M,D

⟨ϕ, Lk,M(PN,R
k,M )⟩. (10)

We now compute ⟨ϕ, Lk,M(PN,R
k,M )⟩. A simple calculation using Lemma 4.1 and usual Rankin’s

unfolding argument shows that

⟨ϕ, Lk,M(PN,R
k,M )⟩ = (4N |M | − M̃ [Rt]−

(k − g
2
)

3
)I1 + 8(k − g

2
)mI2, (11)

where I1 =
∫
ΓJ
g,∞\H×Cg ϕ(τ, z)e(Nτ +Rz) vk+2e

−4πM [y]
v dVJ and

I2 =
∫
ΓJ
g,∞\H×Cg ϕ(τ, z)

(∑
j≥1 σ(j)e(jτ)

)
e(Nτ +Rz) vk+2e

−4πM [y]
v dVJ .

We put τ = u + iv and z = x + iy, where x = (x1, x2, ..., xg) and y = (y1, y2, ..., yg). A
fundamental domain for action of ΓJ

g,∞ on H × Cg is given by {(τ, z) ∈ H × Cg : 0 ⩽ u ⩽
1, v > 0, xi ∈ [0, 1], y ∈ Rg}. Integrating over this region we get

I1 =
|M |k+1−gΓ(k − g

2
+ 1)

2gπk− g
2
+1

cϕ(N,R)

(4N |M | − M̃ [Rt])k−
g
2
+1
,

and

I2 =
|M |k+1−gΓ(k − g

2
+ 1)

2gπk− g
2
+1

∑
n⩾1

cϕ(n+N,R)σ(n)

(4(n+N)|M | − M̃ [Rt])k−
g
2
+1
.

Substituting values of I1 and I2 in (11), finally from (10) we have the Fourier coefficient of
the adjoint map of the heat operator

a(N,R) =
|M | 5−g

2 (K + 1)K(4N |M | − M̃ [R])K

π22(g−1)K

[(4N |M | − M̃ [R]− K|M |
3

)
(4N |M | − M̃ [R])K+2

cϕ(N,R)

+8(K + 1)|M |
∑
n⩾1

cϕ(n+N,R)σ(n)

(4(n+N)|M | − M̃ [R])K+2

]
.
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4.2. Another proof of Theorem 3.1. We give another proof of Theorem 3.1 using Zagier’s
technique by representing Lk,m(P

N,R
k,m ) in terms of Poincaré series. For simplicity we prove

the theorem for g = 1. For g > 1 proof is similar. First we state a lemma which we will use
in the proof.

Lemma 4.2. The series vk+2e−2pim y2

v

∑
n∈Z, γ∈ΓJ

∞\ΓJ

σ(n)e2πi((n+N)τ+rz)|k+2,mγ is absolutely

uniformly convergent on subsets Vϵ,C = {(τ, z) ∈ H × C|v ⩾ ϵ, |yv−1 ⩽ C, |x| ⩽ 1
ϵ
, u ⩽ 1

ϵ
}

for given ϵ > 0 and C > 0.

For a proof we refer to [4]. Now we prove the theorem. We first prove the following
identity:

Lk,m(P
N,R
k,m ) = (4Nm−R2 − 2k − 1

6
)PN,R

k+2,m + 4(2k − 1)m
∑
n⩾1

σ(n)P n+N,R
k+2,m . (12)

By definition Lk,m(P
N,R
k,m ) equals

Lk,m(
∑

γ∈ΓJ
∞\ΓJ

e2πi(Nτ+Rz)|k,mγ) =
∑

γ∈ΓJ
∞\ΓJ

Lk,m(e
2πi(Nτ+Rz)|k,mγ)

= (4Nm−R2 − (2k − 1)m

6
)PN,R

k+2,m + 4(2k − 1)m
∑
n⩾1

σ(n)

 ∑
γ∈ΓJ

∞\ΓJ

e2πi((N+n)τ+Rz)|k+2,mγ


= (4Nm−R2 − (2k − 1)m

6
)PN,R

k+2,m + 4(2k − 1)m
∑
n⩾1

σ(n)P n+N,R
k+2,m ,

where in rearranging the sum we have used Lemma 4.2. Now theorem follows by taking
inner product of a Jacobi cusp form ϕ ∈ J cusp

k+2,m with both sides of eq.(12).

4.3. Proof of Theorem 3.3. Detailed proof of Theorem 3.3 is omitted. Key points in the
proof are Rankin unfolding arguments for Hermitian Jacobi forms setup and the fact that a
fundamental domain for action of ΓJ

∞(O) on H × C2 is given by ([0, 1] × [0,∞]) × ([0, 1] ×
[0, 1])(R× R). One can calculate analogous integrals I1 and I2 as in case of Jacobi forms of
matrix index to obtain the proof of Theorem 3.3.

5. Applications

As a consequence of Theorem 3.2 we get the following corollary.

Corollary 5.1. Let ϕ10,1=
∑

n,r∈Z,
4mn−r2>0

Cϕ10,1(n, r)q
nζr∈J cusp

10,1 and ϕ12,1=
∑

n,r∈Z,
4mn−r2>0

Cϕ12,1(n, r)q
n

∈ J cusp
12,1 . Then we have the following identity:

−1

6

||ϕ12,1||2

||ϕ10,1||2
Cϕ10,1(N,R) =

323(DN,R)
17
2

4π

[
(DN,R − 19

6
)

(DN,R)
21
2

Cϕ12,1(N,R) + 76Lϕ12,1(N,R;
21

2
)

]
,

where DN,R = 4N −R2 and Lϕ(N,R; s) =
∑

n⩾1

Cϕ(n+N,R)

(Dn+N,R)s
.
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Proof: We know that J cusp
10,1 and J cusp

12,1 are one dimensional and L10,1(ϕ10,1) ∈ J cusp
12,1 . Hence

by comparing Fourier coefficients we get L10,1(ϕ10,1) = −1
6
ϕ12,1. Now let L∗

10,1(ϕ12,1) = αϕ10,1,
we have

α||ϕ10,1||2 = ⟨αϕ10,1, ϕ10,1⟩ = ⟨L∗
10,1(ϕ12,1), ϕ10,1⟩ = ⟨ϕ12,1,L10,1(ϕ10,1)⟩ = −1

6
||ϕ12,1||2.

Now from Theorem 3.2 we get the desired identity.

Remark 5.1. One can obtain similar type of identities by computing the adjoint map between
certain spaces of Hermitian Jacobi cusp forms.

Remark 5.2. Observe that J4,1 and J6,1 are one dimensional spaces generated by E4,1 and
E6,1 respectively. Comparing the constant term we get L4,1(E4,1) = −7

6
E6,1. Hence we get

relation between generalized class numbers

1

ζ(−5)
[(4n−r2)H(3, 4n−r2)−7

6
H(3, 4n−r2)−28

∑
n1+n2=n,
4n2−r2⩾0

σ(n1)H(3, 4n2−r2)]=
1

ζ(−9)
H(5, 4n−r2).
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