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ABSTRACT. In [6], the author introduced the notion of ”distributive constant”
of a family of hypersurfaces with respect to a projective variety. Inspired
by this thought, we will prove a general form of Second Main Theorem for
meromorphic maps from p-Parabolic manifold into smooth projective variety
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proves previous results, especially for the case of the families of hypersurfaces
in subgeneral position.

AMS Subject Classification: 32H30; 32A22.

Keywords: Meromorphic mappings; p-Parabolic manifold; Nevanlinna theory;
hypersurfaces.

1. INTRODUCTION AND MAIN RESULTS

Throughout this paper, we shall use the standard notationin the value distribu-
tion theory of meromorphic maps on parabolic manifolds (see[11],[13]). To state
clearly our result, we need some notations and definitions as follows:

Definition 1. A Kaihler complex manifold (M, w) of dimension m is said to be a

p-Parabolic manifold for 1 < p < m if there exists a plurisubharmonic function
¢ such that

(i) {¢ = —o0} is a closed subset of M with strictly lower dimension;
(ii) ¢ is smooth on the open dense set M \ {—oo} with dd°¢ > 0, such that

(dd°@)P~ Aw™ P #£ 0 and (dd“¢)? Aw™ P = 0.
Accordingly, we define
7:=¢? and 0 := d°¢ A (dd°¢)P~L Aw™ P

where 7 is nonnegative and it is called a p-parabolic exhaustion on M.
Note that m-parabolicity is just the classical notion of parabolicity and the
parabolic manifold (see [11],[12]) has the affine algebraic variety as a prototype.
For any r > 0, we denote

M) :={x € M |7(x) <r?}, M(r):={zxecM]|7(x) <r?},
M{r)y := M[r]\ M(r) = {x € M | 7(z) = r*}.
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[ o=x
M(r)

where k is a constant dependent only on the structure of M. We refer the reader
to [13] and [14] for more details on p-Parabolic manifold.

Let f: M — PN (C) be a linearly nondegenerate meromorphic map defined on
a p-Parabolic manifold M of dimension m, and let f : M —s CN*! be a reduced
representation of f. Then for some global meromorphic (m—1,0)-form B on M, we
define the first B-derivative fj’g of f on local holomorphic coordinate chart (z,U,)
by

From [4], we have

df AB = frdzi A+ Adzp,
and define inductively the kth B-derivative f&) of f by
AfSVAB=FPdzy A Adzy,

for Kk = 1,...N. They are independent of the choice of the local holomorphic co-
ordinate chart, and thus they are globally well defined. As a consequence, the kth
preassociated map fi of f is defined by

For=FAfp A AFE M —s AFTICNHT
and the kth associated map fj of f is defined by

fo=[fil : M — P(NHIOVH) = P™(C),  my = (ig;ff> !

fork=1,...,N.

To establish the value distribution theory, we shall work on admissible parabolic
manifolds, which satisfy the following assumptions:

(A1): (M, 7,w) denotes a p-Parabolic manifold which possesses a globally defined
meromorphic (m—1)-form B such that, for any linearly nondegenerate meromorphic
map f: M — PN (C), the kth associated map f, is well defined for k =0,1,... N,
where we set fo:= f.

(Az): There exists a Hermitian holomorphic line bundle (£,b) that admits a
holomorphic section p such that, for some increasing function Y(7), we have

Mim_1|us B AB < Y(7)(dd°r)P~ Aw™ P,
where ip_1 = (X=L)m=1(m — 1)I(—1)(m=D(m=2)/2,

27

Remark 1.1. Let (M, 7) be a parabolic covering space of C™ with branching divisor
B of m. Then it is an important class of admissible parabolic manifold (see [11]).

We set

. . . . N+d
nl:{(lo,...,ZN)ENé\H_l|'LO+"'+ZN:d}7#7:i:( ];i; )
Let @ be a homogeneous polynomial of degree d in Clzy,...,zn] denote x =
(zg,...,zN), then we can write
Qx) = Z arx?’.

IeTy

Let D be a hypersurface with degree d in PV (C) which is define the homogeneous
polynomial @ € C[zg, ..., zy].In the case d = 1, we call D a hyperplane of PV (C).
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 3

Let wpg be the Fubini-Study metric on PV (C), then the characteristic function
of f, foraﬁxeds>0andanyr>sas

1100 = [ gy [ s @yt e

Let f: M — PN(C) be a meromorphic map such that f(M) ¢ D, then the Weil
function of f with respect to D is defined by

log IR 1 Il
Q)|

where || f]|= \/>2, | fi |? for a reduced representation f = (fo,..., fx) on the
local holomorphic coordinate chart (z,U.) and (|Q||= />_; | ar |?. The proximity
function and counting function of f with respect to D are defined respectively,

my(r,D) == /M< >)\D(f)0

Ap(f) =

and

N¢(r,s; D) ::/ oy I/M[f]ef (ddT)P~ Aw™ P,

where 011? = div(Q(f))on the local holomorphic coordinate chart (z,U.). Let m be
a positive integer, then the counting function with truncated level M is defined by

NM(r,s; D) ;:/ e 1/ 07" A (ddeT)P Tt Aw™ P,

where Gy’D = min{M, div(Q(f))} on the local holomorphic coordinate chart (z, U.).
From the Green—Jensen formula, the author in [4] derived the First Main Theo-
rem as follows:

Theorem 1.2. [4] Let f : M — PN(C) be a nonconstant meromorphic map
defined on a p-Parabolic manifold M, and let D be a hypersurface of degree d such
that f(M) ¢ D. Then, forr > s> 0, we have

dTy(r,s) = N¢(r, s; D) +my(r, D) —my(s, D).
Then, the defect of f with respect to the hypersurface D is defined as
. omy(r, D) : Ny(r,s; D)
0p(D) :=1 f————==1-1 —_
s(D) e dTy(r,s) irgigf dTy(r,s)

Accordingly, the defect of f with respect to the hypersurface D truncated to level
M is defined by

NM(r,s; D)
sM(D) :=1—limsup """
7D) revtoo dT(r, s)
For each 0 < k < n — 1 and a linearly non-degenerate meromorphic map on
admissible parabolic manifold, define an important auxiliary function (see [4])
Mim—1fiwhs ABAB _ |[fi—al® - [ fen ] 1

U, = _ ~ L
g (ddeT)P A wm—p A A,
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4 H.Z CAO, L. WANG

where wh ¢ is the Fubini-Study metric on P(A*F1C"*1), and A,, (1 <p < m) is
the pth symmetric polynomial of the matrix (7,;) with respect to the Kéahler metric
w. Note that A; is the trace of (7,5), while A,, is the det(7,5)(> 0). We denote

1

c, \p—1
Ricy(r,s) = /tQP /M[]HA (dd°T)P=" Aw™ P,

where 99117 is divisor zero of the holomorphic function A,, and

1 1 1 1
m(L;t, ) = 7/ log o — / log .
D=5 S TR T2 Sy F T

Definition 2. LetV C PV (C) be a projective subvariety with dimension n. Let k
be a positive integer and D;,..., D) be hypersurfaces in PV (C). Let [ > n be a
positive integer. We say that the hypersurfaces D1, ..., Dy are in weak [-subgeneral
position with respect to V' if k < [+ 1 such that either when £ = [ + 1 we have
Din---NDy 1NV =0 or when k < [+ 1; there exist hypersurfaces S1,...,Si11_k
in PY(C) such that DyN---NDNS1N--- NS NV =0.

Definition 3. Let I > n be ainteger. We say that the hypersurfaces D1, ..., Dq (¢ >
[ 4+ 1) are in [l-subgeneral position with respect to V' if for any distinct indices
1<j1 <---<jiy1 < ¢, wehave D;; N---NDj,,, NV =0. If | =n we said that
Dy,...,D, (g>1+1) arein general position in V.

Hence, if the hypersurfaces Dy,...,D, (g > 1+ 1) are in [-subgeneral position
with respect to V, then for any set of hypersurfaces {Ds}ses, S C {1,...,q}, #5 <
I + 1 are in weak [-subgeneral position with respect to V.

As we known, In 2009, Ru[9] initially established a second main theorem for al-
gebraically nondegenerate holomorphic maps from C into a projective subvariety
V c P*(C) with a family of hypersurfaces in general position w.r.t V. And then, in
[8] Ru extended his result to the case of meromorphic mappings from a parabolic
manifold. In 2019, Quang [7] initially proposed the replacing hypersurfaces method
and using the method of Ru [9] to established the second main theorem for the case
of family of hypersurfaces in N-subgeneral position w.r.t V.

Wong and Wong [14] introduced ‘p-parabolic manifolds’, and obtained certain
First and Second Main Theorems. Q. Han [4] generalized their result for alge-
braically nondegenerate meromorphic maps over p-Parabolic manifolds intersecting
with hypersurfaces in general position. Recently, Applying the method of Quang
[7], Chen-Thin [1] proved the following the second main theorem for meromor-
phic mappings from a p-Parabolic manifold to V' with a family of hypersurfaces in
N-subgeneral position w.r.t V.

Theorem 1.3. [1] Let V C PN (C) be a smooth complex projective variety of di-
mension n. Let f : M — V be an algebraically nondegenerate meromorphic
mapping from a admissible p-Parabolic manifold M. Let Dq,..., Dy be arbitrary
hypersurfaces in PN (C) which are defined by homogeneous polynomials Q1, . .., Qq
with degree di,...,dq respectively. Let I > n be a integer. Then, for any e > 0 and
r>s >0, we have

I'/M<T> II?E‘%J;{ dleDf (fo < =n+1)(n+1) +&)T¢(r.s)

+ c(m(L;t,8) + Ricy(r, s) + klogt Y(r?) + rlog™ r)
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 5

where IC is the set of all subsets K C {1,...,q}, #K < |+ 1, such that the
hypersurfaces {Dj,j € K} are in weak [-subgeneral position in V and ¢>> 1.

” ||77

The notation means that the inequality holds for all r € [0, +00) except a
set of finite Lebesgue measure.

Recently, Quang [6] considered the case of arbitrary families of hypersurfaces,
not required to be in subgeneral position. To do so, he introduced a notion of
distributive constant A of a family of hypersurface {D;}?_, of PV (C) in a subvariety
V C PV (C)of dimension n, where V' ¢ suppD;(i = 1,...,q), as follows:

A #l
= max
rc{L,...qt n — dim((;cp D) NV

Here, dim ) = —oo0.

Remark 1.4. (see [6]) (1)If Dq,...,D4(¢ > n + 1) are in general position with
respect to V, then A = 1.

(2)If D1,...,D4(q > 1 + 1) are in weak l-subgeneral position with respect to V,
then we may see that for every subset {D;,,...,D;, } (1 <k <lI), one has

dim(( | D;;) NV < min{n — 1.l — k}.

.

j=1

Hence A <l —n+1.
For more general, Quang [6] gave the following definition.

Definition 4. Let k be a number field and let V' be a smooth projective subvariety
of PN (k) of dimension n. Let Dy, ..., D; be | hypersurfaces in PV (k). We say that
the family {Do,...,D;} is in (t1,ta,...,t,)-subgeneral position with respect to V'
if for every 1 < s <n and ts + 1 hypersurfaces D, ..., Dj, , we have

ts
dim(ﬂ D;)NV(k)<n-—s—1.
i=0

Remark 1.5. (see [6]) (1) If {Dy,...,D;}isin (¢1,1a, ..., t,)-subgeneral position with
respect to V, then its distributive constant in V satisfying
t t
A < max L E—————.LY
1<k<nn— (n—k)  1<k<n k
(2)If Do, ..., Dg—1 (g > 1) are in I-subgeneral position with respect to V' with index
k (which is introduced by Q. Ji, Q. Yan and G. Yu [5] in 2019), then they are in
(1,2,...,k—1,l—-n+kl—n+k+1,...,1—1,1)-subgeneral position with respect
to V and hence A < %

In this paper, we combine the method of Quang [7] with Ru [8] to prove the
following general form of Second Main Theorem for meromorphic maps from p-
Parabolic manifold into smooth projective variety intersecting with arbitrary fam-
ilies of hypersurfaces.

Main Theorem (I). Let V. C PN (C) be a smooth complex projective variety
of dimension n. Let Dy,..., Dy be arbitrary hypersurfaces in PN (C) with the dis-
tributive constant A in 'V, degD; =d; (1< j <gq). Let f: M — V be an
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6 H.Z CAO, L. WANG

algebraically nondegenerate meromorphic mapping from a admissible p-Parabolic
manifold M. Then, for any ¢ >0 and r > s > 0, we have

q
1
(g —A(n+1) —e)T¢(r,s) < Z EN(T, s;D;) 4+ c¢(m(&;r, s) + Ricy(r, s)
j=1"
+ klog™ Y(r?) + klog™ 7)

where ¢ > 1.
By remarkl.5 (2), we get

Corollary 1.6. Let V. .C PN(C) be a smooth complex projective variety of dimen-
sionn. Let Dy, ..., Dy be hypersurfaces in PN (C) which are defined by homogeneous
polynomials D1,...,D,, degD; = d; (1 <j < q), which are located in l-general
position with index k in V. Let f : M — V be an algebraically nondegenerate
meromorphic mapping from a admissible p-Parabolic manifold M. Then, for any
e>0andr > s >0, we have

l—n+k 1 :
H@—7;OHJM%)DRQSE:dNM&Dﬂ+WM&n®+M%MQ
g=1

+ klogt Y(r?) + klog™ r)
where ¢ > 1.

From the above corollary, set | = n and k = 1, we get again the result of Ru
[8]. When k = 1, we have noticed that Dy, ..., D, are located in weak I- general
position in V. Thus the above corollary is the generalization of theorem 1.3.

On the Second Main Theorem with truncated level, we get the result as follows:
Main Theorem (II). Let V. C PN (C) be a smooth complex projective variety
of dimension n. Let D1, ..., D, be arbitrary hypersurfaces in PV (C) with the dis-
tributive constant A in'V, degD; =d; (1 < j <gq). Let f: M — V be an
algebraically nondegenerate meromorphic mapping from a admissible p-Parabolic
manifold M. Then, for any e >0 and r > s > 0, we have

(g = An+1) = Ty (r5) <37 T NYo(r, Dj) + (&7, ) + Ricy r,)

g=1"
+ rlog™ Y(r?) + klog™ 7)
where ¢ > 1 and My = deg(V)"FLemd™ T A" (2n + 4)" (n 4+ 1) (¢!)"e ™.
Reference [4], when M is assumed to be either an affine algebraic variety or an

algebraic vector bundle over an affine algebraic variety or its projectivization, it
follows that

m(L;r,s) + Ricy(r,s) + klog™ Y(r?) = O(log™ r).
We naturally have a stronger estimate
. ; + 2
i inf m(L;r, s) + Ricy(r, s) + klog™ Y(r?)
r—+o00 Tf (T, S)
By the Main Theorem (II), we have

=0.

Corollary 1.7. Let f : M — V C PN(C) be an algebraically non-degenerate
meromorphic map from M, either an affine algebraic variety or an algebraic vector
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 7

bundle over an affine algebraic variety or its projectivization, to a smooth projective
algebraic variety V. with dimV =n — 1, and Let Dy, ..., Dy be arbitrary hypersur-
faces in PN (C) with the distributive constant A in V. Then, we have

iayo(pj) <A(n+1).

2. SOME LEMMAS

Firstly, We recall the notion of Chow weights and Hilbert weights from [9].
Let X C PV (C) be a projective variety of dimension n and degree § over C. To
X we associate up to a constant scalar, a unique polynomial

Fx(ug, - ,un) = Fx(uoo, - ,UoN; - ;Un0, " ,UnN)

in n + 1 blocks of variables u; = (w0, ,u;n), ¢ = 0,...,n, which is called the
Chow form of X, with the following properties: F is irreducible in Clugp, - . . , unn],
Fx is homogeneous of degree § in each block u;, ¢ =0,...,n, and Fx(ug,...,u,) =
0 if and only if XNHy,N---NHy, # 0. where Hy,, i = 0,...,n, are the hyperplanes
given by
oz + -+ uyen = 0.

Let Fx be the Chow form associated to X. Let ¢ = (co,--- ,cn) be a tuple of

real numbers. Let ¢ be an auxiliary variable. We consider the decomposition
Fx(tCOUOO, ce ,tcNUON; ce ;tcouno, [N ,tCNunN)
=t*Go(ug,...,uy) + -+t G.(ug,...,uy).

with G07...,GT S (C[uoo,...,u()N;...;un07...,unN] and eg > e; > --- > e,.. The
Chow weight of X with respect to c is defined by

ex(c) := ep.
For each subset J = {jo,...,jn} of {0,..., N} with jo < j1 < -+ < jp, we define
the bracket
[J] = [J](uo, ... ,un) = det(u;j,),4,t =0,...,n,
where u; = (wo, . .., u;n) denotes the blocks of N +1 variables. Let J1,. .., Jz with
8= (N'H) be all subsets of {0,..., N} of cardinality n + 1. Then the Chow form

n+1
Fx of X can be written as a homogeneous polynomial of degree ¢ in [J1],...,[J3].
We may see that for ¢ = (co, -+ ,cy) € RVT! and for any J among Jy, ..., Js,
[J}(tco’u,oo, e 7tcN’LLON; ‘e ;tcouno7 N ,tcNunN)
:tZJEJ ¢ [J](’u,oo, o, UON S - - -3 UnQy - - - ,unN).

For a = (ag,...,an) € ZN T, we write x* for the monomial z3° ... 2% . Let I =
Ix be the prime ideal in C[zo, ...,z n] deffning X. Let C[zo,...,zn], denote the
vector space of homogeneous polynomials in Clz, ..., zy] of degreee u(including
0). Put I, := Clzg,...,zn]u NI and define the Hilbert function Hx of X, for
u=12...,

Hy (u) = dim <C[‘T°’ quN]“) .
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8 H.Z CAO, L. WANG

By the usual theory of Hilbert polynomials,

N
Hy(u) =6 - % +O@WN ).

The u-th Hilbert weight Sx (u, c) of X with respect to the tuple ¢ = (cg,...,cn) €
R™*1! is defined by

Hx (u)
Sx (u,c¢) := max a;-c|,
i=1
where the maximum is take over all sets of monomials x®!,...,x%#x® whose

. . (C Py LT
residue classes modulo I form a basis of SlZornlu

According to Mumford,

uN+H1 N
Sx(u,c) = eX(c).m +O0w™),
this implies that
1
lim ———— - S = .
ey X we) = Gy ex(©
We call m - Sx(u,c) the u-th normalized Hilbert weight and m ~ex(c)

the normalized Chow weight of X with respect to c.
The following lemmas are due to J. Evertse and R. Ferretti.

Lemma 2.1. (Theorem 4.1[2]) Let X C PN (C) be an algebraic variety of dimension
n and degree §. let u > 0 be an integer and let ¢ = (co, -+ ,cN) € Rggl. Then

1 1 (2n+1)6

- > - S Sl e/ )

() X (00 2 iy ex (© u Q-%{‘??TN Cl)

Lemma 2.2. (see [3], [9],) Let Y be a subvariety of P4=1(C) of dimension n and
degree §. Let c = (c1,...,¢q) be a tuple of positive reals. Let {ig, - ,in} be a subset
of {1,...,q} such that

Yﬂ{y,;o ==Y, :0}:0
Then
ey(c) > (ci, + - +¢,)0.
The following general form of the second main theorem is due to Han [4].

Lemma 2.3. [4] Let f : M — PN(C) be a linearly nondegenerate meromorphic
map defined on a p-Parabolic manifold M satisfying the general condition 2, and
Ao, and let {Hj};’-zl be q arbitrary hyperplanes. Then, for r > s > 0, we have

1
I max > <A, (o < (N + DTy(r.5) = Niamy (1 5)
M (r) KCK S d;
N(N+1
+“LEi‘lﬁnﬁhns)+1%q4ﬁ8%+“bg+rﬂ“s»
N(N +1
%(lof m(&;r, s) +log™ Ricy(r, s) +log™ Y(r®) + rlog™ 7).
where mazimum is taken over all subsets K of {1,...,,q} such that the generating

linear forms of the hyperplanes in each set are linearly independent and Nprgm (7, s)
is the counting function of the ramification divisor divfy.
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Lemma 2.4. ([11] Lemma 13.3) Let M be a p-Parabolic manifold of dimensional

m. Let f : M — PN(C) be a meromorphic mapping which is linearly nondegener-

ate over C. Let {Hj}?zl be a family of hyperplanes of PN (C) in general position.

We have

q
(077 =07 < divfy.

=1

J

The following two lemmas are the important key lemmas of [6] to deal with the
case of arbitrary families of hypersurfaces.

Lemma 2.5. ([6] Lemma 3.1) Let to,t1,...,t, be n+1 integers such that tg < t; <
coe < tp, and let A = maxi<s<n ta=to Then for every n real numbers ag, as, . ..Gn_1
with ag > a1 > -+ > an_1 > 1, we have

t1—to to—t1 tn—tn—1

L < (agar -+ an—1)"

Lemma 2.6. ([6] Lemma 3.2) Let V be a projective subvariety of PN (C) of dimen-
sion n. Let Dy, ..., Dy be l hypersurfaces in PV (C) of the same degree d > 1, such

that (Y,_y Di NV =0 and

S

dim <ﬂDiﬂV> =n—u, ty18<t,, 1<uln,
i=0

where tg,t1,...,t, integers with 0 =tg <ty < --- <t, =1. Then there exist n + 1

hypersurfaces Py, ..., P, in PN (C) of the forms

tu
Pu:ZCuijv CquC7 u=0,...,n

j=1

such that (o_q P. NV =0.

3. THE PROOF OF MAIN THEOREM (I)

Proof. By the First Main theorem, it is suffice to consider the case where
A < —L-. Note that A > 1, hence ¢ > n + 1. If there exists ¢ € {1,...,q} such

n+1
that DNV #({, then

=15
Axil, 9
n n+1
This is a contradiction. Therefore, ﬂj:1’j¢i D;NV ={foralli e {1,...,q}. Firstly,
we will prove the theorem for the case where all hypersurfaces D;(1 < j < q)
are of the same degree d. Let @;, 1 < j < g, be homogeneous polynomials
inClzo, . .., zn] of degree d; which is defined by D;. We denote by Z the set of all
permutations of the set {1,...,¢}. Denote by ng the cardinality of Z, ng = ¢!, and
we write Z = {I1,...,I,}, where I; = (I;(0),...,i(¢g—1)) e Nl and [; < I <
-+ < I, in the lexicographic order.
For each I; € 7, since ﬂj:l,j;ﬁi D;NV = 0, there exist n+1 integers t; o, ti1,-- -, tin

with 0 =¢;0 <--- <t =1{;, where [; < ¢ — 2 such that ﬂé:o DpynVv = ¢ and

S
dim ﬁDli(j) NV=n—-u Vi, 1<s<tu 1Zuln.
j=0
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10 H.Z CAO, L. WANG

Then A > ’“u L0 for all 1 < u < n. Denote by P;o,...,P; the hypersurfaces
obtained in Lemma 2.6 with respect to the hypersurfaces Dy, oy, ..., Dr, ;). We
may choose a positive constant B > 1, commonly for all I; € Z, such that

| Pij(x) < B mmax | Q) |,

for all 0 < j <n and x = (z¢,...,2n) € CN+L

Consider a reduced representation f = (fo,..., fn) : M — CN*1 of f. Fix an
element I; € Z. Denote by S(4) the set of all points z € M\ (ngl Qi) 1({opu If) ,where
I is indeterminacy of f, such that

| Qr0)(N2) 1] Qry(NE) IS+ < Qrg-1(H() |-

Since ﬂé": oDr1,;jy NV = 0, there exists a positive constant A, which is chosen
common for all I;, such that

IF ()% < Jnax | Qu(NE) | = e 8.

Therefore, for z € S(i), By Lemma 2.5, we have

Hiagai =" Liame = Eiaw, uo
~ A
= e Ok
A RG]
: ];[0 <| le(tj)(f)(z) |>

A
< g0ty b e )
H <|P”< NE |

Since the number of hypersurfaces in the proof is finite, we may choose a positive
constant ¢ such that for all 1 < j < g and all x = (x0,...,zy) € CN*!, we have

Qj(x) < cllx|1”.
Thus | P (f)(2) |< B max | Dy,(ny(x) |< Be|| f(2)]|. It yields that

1<s<t;,
eIk 7L <z>|| B
Consider the mapping ® from V into P'~1(C) (I = ng(n + 1)), which maps a
point x = (z¢ : ---: ) € V to the point ®(x) € P'~1(C) given by
O(x) = (Pro(x): - Pip(x): Pag(z) - : Pay(x) -t Ppyo(z) -1 Poynlx)),

where x = (z0,...,2n). Let Y = ®(V). Since (;_oP1; NV = 0, @ is a finite
morphism on V and Y is a complex projective subvariety of P!~1(C) with dimY =
nand § := degY < d"degV (see,[10]). For a = (a1,...,a;) € ZL; and y =

(y1,-..,y), we denote y* :=y{"* ---y;"". Let u be a positive integer and set
l+u—1
ny = Hy(u) — 1, &, = ( " )1.
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 11

Follow from [9], consider the Veronese embedding
D, : PHC) — PE(C) : [y] — [y i - yReu).

where y?0,... y®u are the monomials of degree u in yp,...,y; in some order.
Denote by Y,, the smallest linear subvariety of P%:(C) containing ® (Y) Then
clearly, a linear form ZZ o Viz: vanishes identically on Y, if and only if ZZ 0 VY
as a polynomial of degree u, vanishes identically on Y. In other words, there is an
isomorphism

Clyty - /T (Y) = (Y)Y 1 ¥2 — 2.
where J(Y) is the prime ideal in Clyi, ..., y;] define Y, Clyy, ...,y is the vector
space of homogeneous polynomials inC[yy, . . ., 3] of degree u (including 0), (Y,,)V is
the vector space of linear forms in C|z, ..., z¢,] modulo the linear forms vanishing
identically on Y. Hence Y,, is an n,-dimensional linear subspace of P%«(C). Thus,
there are linear forms Ly, ..., L¢, € Clwp,...,wy,] such that the map

U, :weP™(C) — [Lo(w):--: Lg, (W)] €Y,

is a linear isomorphism from P« (C) to Y,,. Therefore, ¥, ;1o ®, : ¥ —s P (C)
is an injective map such that

Totod,(y) = [Lo([y2 : - s y2ee]) s oov Ly, ([y20 - - - : y2eu])]
for all y € Y, where Lo,...,L,, are linear forms independent in P*«(C). Then
{Lo([y? - : y2&u]), ..., Ly, ([y? : --- : y2u])} is a base of Cly1, ..., yi]u/Tu(Y).

Denote ¢; = Lo([y2® -+ - : y2«]), i =0,...,n,. We consider F =¥ lod,odof:
M — P™(C) with the following reduced representation
= (Go(®@0 ), b, (Do f))

on each local chart (z,U.). Furthermore, F is linearly nondegenerate, since f is
algebraically nondegenerate.

Now, for every fixed i € {1,...,n0} and a point z € S(i), we define
€= (CL02, -+ Clinyzr C2,0,25 -+ C2m,2s Crg 0,25 - - > Cngomyz) € 2
where
Cijz = lo W fori=1,....ngand j=0,...,n.

| Pii(F)(2) |

Then ¢; ;. > 0 for all 4 and j. By the definition of the Hilbert weight, there are
a1z, a5, (1), € N' with

Az = (ai,l,o,z, e @iz e Qing 0,25 - - - 7ai,no,n,z)7

where a; j 5. € {1,...,&.}, such that the residue classes modulo (Iy ), of y2t=, ..., y?H#y (.=
form a basic of Cly1,. .., y]u/Ju(Y) and

Hy (u)

UCZ E a; »Cz.

Since y®i=, 1 < i < Hy (u) are basis of (C[ s U)u/Tu(Y), then there exist Hy (u)
independent linear forms £, = {L; ,,1 < ( )} such that
yajyz :Lj,z(¢07‘~~7¢nu) < >~ HY(’LL)

We denote £ = U, L,, then L is finite since #L (S“ill) We have
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12 H.Z CAO, L. WANG

Hy(u Hy u)

og [T 120.Pe) =t TT TT 1Pt o

=1 1<t<ng
0<j<n

= —Sy(u, ¢z) + duHy (u) log || f(2)]| + O(uHy ().
It implies that

Hy u)

)Lz MLl 7
lo =Sy (u,c,) — duHy (u)lo z
o8 I | (pi) =S (wes) —dutly() og /)]

+ Hy (u) log [|F(2)]| + O(uHy (u)).
Thus

IF@)ILI ;
Sy (u,c,) <maxlo —F——— +duHy(u)lo z
o vc.) <magion [T (7550 + dutty (o) g | 2]
— Hy (u)log ||F(2)|| + O(uHy (u)).

where the maximum is taken over all subsets J C L with #J = Hy(u) and
{L| L € J} is linearly independent. From Lemma 2.1, we have

1 1 (2n+1)6
- > L S
O ) 2 (o) T T,
)<j<n

Combining (2) and (3), we get

(4)
1 1 17 (= ||||L|| -
2) S — Hy (u)log | F
e ) U (m ngl oy @l F@I
P (2n +1)0 LF )11 Pl 1
raog 7o) + ZE 5 g LI o)
u 1§;n0 | P (f)(2) | u
0<j<n
Since {P;o=---=PF;,, =0} NV =0 for 1 <1i < ng, by Lemma 2, we get

(5)  ev(c) > (cooe +o b cins) G = ( ) 1og'ﬂz)”w) ¥

0<j<n | Pi,j(f)(z) \

From (1),(4) and (5),we obtain

0
O P ,
logH [T < i (m s 11T Hy(u)lognF(zM)
+d<n+1>loguf<z>u+w > o w+0(1).
u 1<i<ng | Pij(f)(2) | u
0<j<n
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 13

By Lemma 2.3, for any ¢ > 0, r > s > 0 large enough, we have

@
”/M<T>%1?’51°21}7Lp<z>> < (Hy (u) + )T (r5) = Npar ()

n (Hy(u)(h;y(u) -1

+€)(m(L;7,8) + Ricy(r,s) + xlogt Y(r?) + klog™ r).

where maximum is taken over all subsets J C £ with #J = Hy(u) and {L | L €
J} are linearly independent.

However,In order to take integration over M(r), we now encounter a problem,
that is, the functions log||F(z)|| and log||f(z)|| are usually not globally defined.
Hence, we use the concept of ‘reduced representation sections’ of F' and f (see [11])
to avoid this difficulty. We only do this for F' in detail, as the case for f is similar
(vef. [4]).

Set {Fa, Ua} to be a system of local reduced representations of F such that, on
Uy NUg # 0, we have
Fy = hasFps

for a non-vanishing holomorphic function hyg : Uy NUg — C*. Then, {h,s} forms
a basic cocycle so that there exists a holomorphic line bundle Hr on M, with a
holomorphic frame atlas {s%, U, } such that, on U, N Ug # 0, we have

s = hgasf;,

which is called the hyperplane section bundle of F. Now, define a holomorphic
section

FX(2) := (2, Fa(2)) € I'(Ug, M x C"=7F1),
Hence, there is a global holomorphic section x € I'(M, (M x C**1) @ H), called
the standard reduced representation section of F, such that y |y, = F}f @ sZ.
Set (1 to be the standard Hermitian metric along the fibres of the trivial bundle
M x C™*1 and p; to be a Hermitian metric along the fibres of Hp. Then, we can
apply our Green-Jensen formula to the function log || x||¢, e, to get

(8) TF(T,S)—THF(T’S)Z/M 10g||F||<1®HSF||mG—/M log || Flle, ® 15" |, 0

(r (s)

where Ty, (r, s) is defined via the pull-back of the first Chern form on (Hg, p1)-
Analogously,

(9) Ty(r,s) — To, (1, s) = /

M{(r)

log | £llc, ® [Is [l .0 = /M log||fllc, ® lls” [lgo0-

s)
The construction of F' leads to
UFle) lva= (Iflle2) o -
Thus Ty, (r, s) = duTp,(r, s). Combining with (8) and (9), yields

Tp(r,s) = duTy(r,s).
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14 H.Z CAO, L. WANG

Taking integral of (6) and combining it with (7), we have

(10)

Hé j;mf(r, Dj) < A(?’L + 1)Tf(7“, 8) — mNRamF(ﬁ S) + G/WTJC(T, S)
A(n+1) (Hy(u)(Hy(u)—1) ' _ ,
wdHy () ( 5 +€> (m(€;7,8) + Ricy(r, s) + xlogt Y(r?)

+Kb§%y+A@n+i§n+1ﬁ S g, Py) + O(1).
OSSiJSSHT?

Using the First Main Theorem, for r large enough, we assume T¢(r,s) > 1, then

1
> my(rPig) <d | (n+ DneTy(rs) + 5 > my(s, Piy)
1<i<ng 1<i<ng
0<j<n 0<j<n

<d (n+1n0+f Z myg(s, Py ;) | Ty (r,s)
1<1<’ﬂ0
0<j<n

Now we choose u > ug large enough and €, such that

A@n +1)(n +1)6 1 ’
w0 (n+1)no + - > my(s, Piy) <7

(11) 1<i<ng
0<j<n

,A(n+1) <€
€2 < -
Hy (ug) 4

Denote ¢ = max{1

, uﬁl({nj(il) (HY (uo)(gy (wo)=1) e’)}. Using First Main Theorem

and combining (10) and (11), notice Nrgmp(r,s) > 0, then
@ .
2) g —An+1)—e)Tf(r,s) ZE (r,s;D;) + c(m(L;7,s) + Ricy(r, s)
12 =1
+ klogt Y(r?) + klog™ 7).

Now, for the general case where D;(1 < i < q) is of the degree d;, then all

D are of the same degree d(1 < i < q), where d is the L.em of d;,j = 1,...,q.
Applying the above result, the theorem is proved.

4. THE PROOF OF MAIN THEOREM (II)

Proof. We can replace D;(1 <i < q) by D‘% if necessary, where d is the l.c.m

of dj,j =1,...,q, we may assume that Dy,..., D, have the same degree of d.
From (10), we need estimate the quantity Nprgmp(r,s). Without loss of gener-
ality, we may assume that z € S(1), where I; = (1,...,q) and moreover

D D D
gfl ngzz...zgfq
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 15

where 077 (2) = div(Q;(f))(2), j = 1,...,q. Since N}{}'D; NV = 0, then
div(Q;(f))(2) = 0 for j > 1y + 1. Set

¢ij = max{0, div(P;;(f))(2) = nu}
and
C=1(C1,0y--+Clns-+1Cng,0s---sCnom) € leo-
Then there are
A = (A 1,0y Qi ey Qing,0s---sTimgm) € {1, ..., &}
such that y2t ... y®#v® is a basic of C[y1,...,y]«/Tu(Y) and

Hy u)

=2 A

Similarly as above, we write y? = L;(¢1, ¢HY(U))’ where L1, ..., Ly, () are inde-
pendent linear forms in variables y; ;(1 < i < ng, 0 < j <n). For any divisor v on
M, we denote v* by a divisor such that v*(z) = minw,v(z). Then we see

div(Li(F))(2)~div™ (Li(F))(2) > Z @i j.s (div(Pjs(f)) = div™ (P;s(f)))

Z ausmax{O dw( P o(f)(2) —n.} =a; -c.

1<j<ng
0<s<n

Using Lemma 2.4, we get

Sy (u,c) < Z dw(Ll(F‘))(z) — div™ (Ll(ﬁ'))(z) < dianu(z).

i=1

Since (\j_o P1,; NV = 0, then by Lemma 2.2, we have

c)>6- chyj =4 Zmax{O,div(Pl,j(f))(z) — Ny}
j=0 j=0

On the other hand, by Lemma2.1, we obtain

Sy (u, c) 2mey(c) —(2n+1)0Hy (u )1(21]&2? Cij
u]fy
_:‘ﬁi;jf*jizlnax{o div(Py;()(2) — nu}
— (2n+1)0Hy (u) max div(P; S
0<j<n
Thus
= UHY
divF,, (z) > | ZmaX{O div(P1;(£))(2) = nu}
(13) =0 .
~ (0 DHy () max div(P(7)(2).
0<j<n

6 Aug 2022 19:50:06 PDT
220806-HongzheCao Version 1 - Submitted to Rocky Mountain J. Math.



16 H.Z CAO, L. WANG

Since div(Pyj(f))(z) > div(Qh(tl,j)(f))(z) for all 0 < j < m and I1(t1;) = t1,; +
1, P1 o = Dy, therefore

A max{0, div( Py (1)(2) = ma} > &S mas{0, div(@Qr, 1., () (2) — m}
=0 =0

>N (tj41 — t1;) max{0, div(Qr, 1, ) () (2) — nu}

-

o

(

J

> " max{0, div(Qr, ;) (/) (2) = nu} = Y max{0,div(Q;(f))(2) — nu}.

i=1

[

(=)

1=

Combining this inequality and (13), we have

divf, () 2 Zmax{o aiv(Q; (D)) ~ )
e Dot maxdiv(P,(7)(2)
0<j<n
> Z (div(Q; (P)(2) — min{n. div(@; (P)(2)))
ot 1o () max div(Py()().
0<j<n
Thus
mNRamF r,s 22% (r,s;Dj;) — N™(r,s; Dj)]
(14) -
An+1)2n+1)8
TTw g

By (10), (14) and the First Main Theorem, we get
I (g = A+ 1))Ti(r,s)

1 A +1)  ARn+1)(n+ 1)1
Z_:g “(r,8;Dj;) +( }(Iy(u))+ ( i( ) )Tf(r,s)
+ faf(;[:(ii <HY( )(HQY(U) —1) + 6') (m(L;r,s) + Ricy(r,s) + klog™ y(rz)

+ rlog®r) +0O(1).
We now choose w is the smallest integer such that
u>A@2n+1)(n+ 1)l5e!

and

, Hy(u) (EA(2n+1)(n+1)lé> o

u

A(n+1)
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 17

Hence
1
I (¢g—An+1)—€)Ty(r,s) Sza u(r,s;D;)

+ c(m(L; 7, 5) + Ricy(r,s) + klogt Y(r?) + klogt r).

where ¢ > {1, uﬁgj&)) (Hy(u)(f;y(u)—l) + e’)} and

. ( Hy(u)—1<d§(n+u >
Y \n) < drdeg(V)er(1+ )

<d™deg(V)e" (A(2n + 4)16e1)"
< deg(V)”He"danr"A"(Qn +4)""e™ = M.

The theorem is proved.
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