GENERALIZATION OF DEGENERACY SECOND MAIN THEOREM FOR MEROMORPHIC MAPPINGS FROM A *p*-PARABOLIC MANIFOLD TO A PROJECTIVE ALGEBRAIC VARIETY

HONGZHE CAO, LIANG WANG

ABSTRACT. In [6], the author introduced the notion of "distributive constant" of a family of hypersurfaces with respect to a projective variety. Inspired by this thought, we will prove a general form of Second Main Theorem for meromorphic maps from p-Parabolic manifold into smooth projective variety intersecting with arbitrary families of hypersurfaces. It generalizes and improves previous results, especially for the case of the families of hypersurfaces in subgeneral position.

AMS Subject Classification: 32H30; 32A22.

Keywords: Meromorphic mappings; p-Parabolic manifold; Nevanlinna theory; hypersurfaces.

1. INTRODUCTION AND MAIN RESULTS

Throughout this paper, we shall use the standard notation in the value distribution theory of meromorphic maps on parabolic manifolds (see[11],[13]). To state clearly our result, we need some notations and definitions as follows:

Definition 1. A Kähler complex manifold (M, ω) of dimension m is said to be a p-Parabolic manifold for $1 \le p \le m$ if there exists a plurisubharmonic function ϕ such that

(i) $\{\phi = -\infty\}$ is a closed subset of M with strictly lower dimension;

(ii) ϕ is smooth on the open dense set $M \setminus \{-\infty\}$ with $dd^c \phi \ge 0$, such that

 $(dd^c\phi)^{p-1} \wedge \omega^{m-p} \neq 0$ and $(dd^c\phi)^p \wedge \omega^{m-p} \equiv 0$.

Accordingly, we define

$$\tau := e^{\phi} \text{ and } \sigma := d^c \phi \wedge (dd^c \phi)^{p-1} \wedge \omega^{m-p}$$

where τ is nonnegative and it is called a *p*-parabolic exhaustion on *M*.

Note that *m*-parabolicity is just the classical notion of parabolicity and the parabolic manifold (see [11], [12]) has the affine algebraic variety as a prototype.

For any r > 0, we denote

$$\begin{split} M[r] &:= \{ x \in M \mid \tau(x) \le r^2 \}, \quad M(r) := \{ x \in M \mid \tau(x) < r^2 \}, \\ M\langle r \rangle &:= M[r] \setminus M(r) = \{ x \in M \mid \tau(x) = r^2 \}. \end{split}$$

This work was partially supported by the NSFC (No.12061041, No.12061042).

From [4], we have

$$\int_{M\langle r\rangle}\sigma=\kappa$$

where κ is a constant dependent only on the structure of M. We refer the reader to [13] and [14] for more details on *p*-Parabolic manifold.

Let $f: M \longrightarrow \mathbb{P}^N(\mathbb{C})$ be a linearly nondegenerate meromorphic map defined on a *p*-Parabolic manifold M of dimension m, and let $\tilde{f}: M \longrightarrow C^{N+1}$ be a reduced representation of f. Then for some global meromorphic (m-1,0)-form B on M, we define the first B-derivative \tilde{f}'_B of \tilde{f} on local holomorphic coordinate chart (z, U_z) by

$$d\tilde{f} \wedge B = \tilde{f}'_B dz_1 \wedge \dots \wedge dz_m,$$

and define inductively the kth B-derivative $\tilde{f}_B^{(k)}$ of \tilde{f} by

$$d\tilde{f}_B^{(k-1)} \wedge B = \tilde{f}_B^{(k)} dz_1 \wedge \dots \wedge dz_m$$

for k = 1, ..., N. They are independent of the choice of the local holomorphic coordinate chart, and thus they are globally well defined. As a consequence, the kth preassociated map \tilde{f}_k of f is defined by

$$\tilde{f}_k := \tilde{f} \wedge \tilde{f}'_B \wedge \dots \wedge \tilde{f}^{(k)}_B : M \longrightarrow \wedge^{k+1} C^{N+1}$$

and the kth associated map f_k of f is defined by

$$f_k := [\tilde{f}_k] : M \longrightarrow \mathbb{P}(\wedge^{k+1}C^{N+1}) = \mathbb{P}^{n_k}(C), \quad n_k = \binom{N+1}{k+1} - 1$$

for k = 1, ..., N.

To establish the value distribution theory, we shall work on *admissible parabolic* manifolds, which satisfy the following assumptions:

 (\mathcal{A}_1) : (M, τ, ω) denotes a p-Parabolic manifold which possesses a globally defined meromorphic (m-1)-form B such that, for any linearly nondegenerate meromorphic map $f: M \longrightarrow \mathbb{P}^N(\mathbb{C})$, the kth associated map f_k is well defined for $k = 0, 1, \ldots N$, where we set $f_0 := f$.

 (\mathcal{A}_2) : There exists a Hermitian holomorphic line bundle $(\mathfrak{L}, \mathfrak{h})$ that admits a holomorphic section μ such that, for some increasing function $\mathcal{Y}(\tau)$, we have

$$mi_{m-1}|\mu|_{\mathfrak{h}}^2 B \wedge B \leq \mathcal{Y}(\tau)(dd^c\tau)^{p-1} \wedge \omega^{m-p},$$

where $i_{m-1} := \left(\frac{\sqrt{-1}}{2\pi}\right)^{m-1} (m-1)! (-1)^{(m-1)(m-2)/2}$.

Remark 1.1. Let (M, τ) be a parabolic covering space of C^m with branching divisor β of π . Then it is an important class of admissible parabolic manifold (see [11]).

We set

$$\mathcal{T}_d := \{(i_0,\ldots,i_N) \in \mathbb{N}_0^{N+1} \mid i_0 + \cdots + i_N = d\}, \#\mathcal{T}_d = \binom{N+d}{N}.$$

Let Q be a homogeneous polynomial of degree d in $\mathbb{C}[x_0, \ldots, x_N]$ denote $\mathbf{x} = (x_0, \ldots, x_N)$, then we can write

$$Q(\mathbf{x}) = \sum_{I \in \mathcal{T}_d} a_I \mathbf{x}^I$$

Let D be a hypersurface with degree d in $\mathbb{P}^{N}(\mathbb{C})$ which is define the homogeneous polynomial $Q \in \mathbb{C}[x_0, \ldots, x_N]$. In the case d = 1, we call D a hyperplane of $\mathbb{P}^{N}(\mathbb{C})$.

 $\mathbf{2}$

Let ω_{FS} be the Fubini-Study metric on $\mathbb{P}^{N}(\mathbb{C})$, then the characteristic function of f, for a fixed s > 0 and any r > s as

$$T_f(r,s) = \int_s^r \frac{dt}{t^{2p-1}} \int_{M[t]} f^* \omega_{FS} \wedge (dd^c)^{p-1} \wedge \omega^{m-p}.$$

Let $f: M \longrightarrow \mathbb{P}^N(\mathbb{C})$ be a meromorphic map such that $f(M) \not\subset D$, then the Weil function of f with respect to D is defined by

$$\lambda_D(f) = \log \frac{\|f\|^d \cdot \|Q\|}{|Q(\tilde{f})|},$$

where $\|\tilde{f}\| = \sqrt{\sum_{i=0}^{n} |\hat{f}_i|^2}$ for a reduced representation $\tilde{f} = (\hat{f}_0, \dots, \hat{f}_N)$ on the local holomorphic coordinate chart (z, U_z) and $\|Q\| = \sqrt{\sum_{I} |a_I|^2}$. The proximity function and counting function of f with respect to D are defined respectively,

$$m_f(r,D) := \int_{M\langle r \rangle} \lambda_D(f) \sigma$$

and

$$N_f(r,s;D) := \int_s^r \frac{dt}{t^{2p-1}} \int_{M[t]} \theta_f^D \wedge (dd^c \tau)^{p-1} \wedge \omega^{m-p},$$

where $\theta_f^D = div(Q(\tilde{f}))$ on the local holomorphic coordinate chart (z, U_z) . Let m be a positive integer, then the counting function with truncated level M is defined by

$$N_f^M(r,s;D) := \int_s^r \frac{dt}{t^{2p-1}} \int_{M[t]} \theta_f^{M,D} \wedge (dd^c \tau)^{p-1} \wedge \omega^{m-p},$$

where $\theta_f^{M,D} = \min\{M, div(Q(\tilde{f}))\}$ on the local holomorphic coordinate chart (z, U_z) .

From the Green–Jensen formula, the author in [4] derived the First Main Theorem as follows:

Theorem 1.2. [4] Let $f : M \longrightarrow \mathbb{P}^N(\mathbb{C})$ be a nonconstant meromorphic map defined on a p-Parabolic manifold M, and let D be a hypersurface of degree d such that $f(M) \not\subset D$. Then, for r > s > 0, we have

$$dT_f(r,s) = N_f(r,s;D) + m_f(r,D) - m_f(s,D).$$

Then, the defect of f with respect to the hypersurface D is defined as

$$\delta_f(D) := \liminf_{r \to +\infty} \frac{m_f(r, D)}{dT_f(r, s)} = 1 - \limsup_{r \to +\infty} \frac{N_f(r, s; D)}{dT_f(r, s)}.$$

Accordingly, the defect of f with respect to the hypersurface D truncated to level M is defined by

$$\delta_f^M(D) := 1 - \limsup_{r \to +\infty} \frac{N_f^M(r,s;D)}{dT_f(r,s)}.$$

For each $0 \le k \le n-1$ and a linearly non-degenerate meromorphic map on admissible parabolic manifold, define an important auxiliary function (see [4])

$$\Psi_{k} = \frac{mi_{m-1}f_{k}^{*}\omega_{FS}^{k} \wedge B \wedge \overline{B}}{(dd^{c}\tau)^{p} \wedge \omega^{m-p}} = \frac{\|\tilde{f}_{k-1}\|^{2} \cdot \|\tilde{f}_{k+1}\|^{2}}{\|\tilde{f}_{k}\|^{4}} \cdot \frac{1}{A_{p}},$$

where ω_{FS}^k is the Fubini-Study metric on $\mathbb{P}(\wedge^{k+1}\mathbb{C}^{n+1})$, and A_p , $(1 \leq p \leq m)$ is the *p*th symmetric polynomial of the matrix $(\tau_{a\bar{b}})$ with respect to the Kähler metric ω . Note that A_1 is the trace of $(\tau_{a\bar{b}})$, while A_m is the det $(\tau_{a\bar{b}})(>0)$. We denote

$$Ric_p(r,s) = \int_s^r \frac{dt}{t^{2p-1}} \int_{M[t]} \theta_{A_p}^0 \wedge (dd^c \tau)^{p-1} \wedge \omega^{m-p},$$

where $\theta_{A_p}^0$ is divisor zero of the holomorphic function A_p , and

$$m(\mathfrak{L};\mathfrak{r},\mathfrak{s}) = \frac{1}{2} \int_{M\langle r\rangle} \log \frac{1}{|\mu|_{\mathfrak{h}}^2} \sigma - \frac{1}{2} \int_{M\langle s\rangle} \log \frac{1}{|\mu|_{\mathfrak{h}}^2} \sigma.$$

Definition 2. Let $V \subset \mathbb{P}^{N}(\mathbb{C})$ be a projective subvariety with dimension n. Let k be a positive integer and D_{1}, \ldots, D_{k} be hypersurfaces in $\mathbb{P}^{N}(\mathbb{C})$. Let $l \geq n$ be a positive integer. We say that the hypersurfaces D_{1}, \ldots, D_{k} are in weak l-subgeneral position with respect to V if $k \leq l+1$ such that either when k = l+1 we have $D_{1} \cap \cdots \cap D_{l+1} \cap V = \emptyset$ or when k < l+1; there exist hypersurfaces S_{1}, \ldots, S_{l+1-k} in $\mathbb{P}^{N}(\mathbb{C})$ such that $D_{1} \cap \cdots \cap D_{k} \cap S_{1} \cap \cdots \cap S_{l+1-k} \cap V = \emptyset$.

Definition 3. Let $l \ge n$ be a integer. We say that the hypersurfaces D_1, \ldots, D_q $(q \ge l+1)$ are in *l*-subgeneral position with respect to V if for any distinct indices $1 \le j_1 \le \cdots \le j_{l+1} \le q$, we have $D_{j_1} \cap \cdots \cap D_{j_{l+1}} \cap V = \emptyset$. If l = n we said that D_1, \ldots, D_q $(q \ge l+1)$ are in general position in V.

Hence, if the hypersurfaces D_1, \ldots, D_q $(q \ge l+1)$ are in *l*-subgeneral position with respect to V, then for any set of hypersurfaces $\{D_s\}_{s \in S}$, $S \subset \{1, \ldots, q\}$, $\#S \le l+1$ are in weak *l*-subgeneral position with respect to V.

As we known, In 2009, Ru[9] initially established a second main theorem for algebraically nondegenerate holomorphic maps from \mathbb{C} into a projective subvariety $V \subset \mathbb{P}^n(\mathbb{C})$ with a family of hypersurfaces in general position w.r.t V. And then, in [8] Ru extended his result to the case of meromorphic mappings from a parabolic manifold. In 2019, Quang [7] initially proposed the replacing hypersurfaces method and using the method of Ru [9] to established the second main theorem for the case of family of hypersurfaces in N-subgeneral position w.r.t V.

Wong and Wong [14] introduced '*p*-parabolic manifolds', and obtained certain First and Second Main Theorems. Q. Han [4] generalized their result for algebraically nondegenerate meromorphic maps over p-Parabolic manifolds intersecting with hypersurfaces in general position. Recently, Applying the method of Quang [7], Chen-Thin [1] proved the following the second main theorem for meromorphic mappings from a p-Parabolic manifold to V with a family of hypersurfaces in N-subgeneral position w.r.t V.

Theorem 1.3. [1] Let $V \subset \mathbb{P}^N(\mathbb{C})$ be a smooth complex projective variety of dimension n. Let $f : M \longrightarrow V$ be an algebraically nondegenerate meromorphic mapping from a admissible p-Parabolic manifold M. Let D_1, \ldots, D_q be arbitrary hypersurfaces in $\mathbb{P}^N(\mathbb{C})$ which are defined by homogeneous polynomials Q_1, \ldots, Q_q with degree d_1, \ldots, d_q respectively. Let $l \ge n$ be a integer. Then, for any $\varepsilon > 0$ and r > s > 0, we have

$$\begin{split} \| \int_{M\langle r \rangle} \max_{K \subset \mathcal{K}} \sum_{j \in K} \frac{1}{d_j} \lambda_{D_j}(f) \sigma \leq ((l-n+1)(n+1) + \varepsilon) T_f(r,s) \\ + c(m(\mathfrak{L};\mathfrak{r},\mathfrak{s}) + Ric_p(r,s) + \kappa \log^+ \mathcal{Y}(r^2) + \kappa \log^+ r) \end{split}$$

where \mathcal{K} is the set of all subsets $K \subset \{1, \ldots, q\}, \ \#K \leq l+1$, such that the hypersurfaces $\{D_i, j \in K\}$ are in weak l-subgeneral position in V and $c \gg 1$.

The notation "||" means that the inequality holds for all $r \in [0, +\infty)$ except a set of finite Lebesgue measure.

Recently, Quang [6] considered the case of arbitrary families of hypersurfaces, not required to be in subgeneral position. To do so, he introduced a notion of distributive constant Δ of a family of hypersurface $\{D_i\}_{i=1}^q$ of $\mathbb{P}^N(\mathbb{C})$ in a subvariety $V \subset \mathbb{P}^N(\mathbb{C})$ of dimension n, where $V \not\subset supp D_i (i = 1, \ldots, q)$, as follows:

$$\Delta := \max_{\Gamma \subset \{1, \dots, q\}} \frac{\#\Gamma}{n - \dim(\bigcap_{j \in \Gamma} D_j) \cap V}$$

Here, $\dim \emptyset = -\infty$.

Remark 1.4. (see [6]) (1)If $D_1, \ldots, D_q (q \ge n+1)$ are in general position with respect to V, then $\Delta = 1$.

(2) If $D_1, \ldots, D_q (q \ge l+1)$ are in weak *l*-subgeneral position with respect to V, then we may see that for every subset $\{D_{i_1}, \ldots, D_{i_k}\}$ $(1 \le k \le l)$, one has

$$\dim\left(\bigcap_{j=1}^{k} D_{i_j}\right) \cap V \le \min\{n-1.l-k\}.$$

Hence $\Delta \leq l - n + 1$.

For more general, Quang [6] gave the following definition.

Definition 4. Let k be a number field and let V be a smooth projective subvariety of $\mathbb{P}^{N}(k)$ of dimension n. Let D_{0}, \ldots, D_{l} be l hypersurfaces in $\mathbb{P}^{N}(k)$. We say that the family $\{D_{0}, \ldots, D_{l}\}$ is in $(t_{1}, t_{2}, \ldots, t_{n})$ -subgeneral position with respect to V if for every $1 \leq s \leq n$ and $t_{s} + 1$ hypersurfaces $D_{j_{0}}, \ldots, D_{j_{t_{s}}}$, we have

$$\dim(\bigcap_{i=0}^{t_s} D_{j_i}) \cap V(\bar{k}) \le n-s-1.$$

Remark 1.5. (see [6]) (1) If $\{D_0, \ldots, D_l\}$ is in (t_1, t_2, \ldots, t_n) -subgeneral position with respect to V, then its distributive constant in V satisfying

$$\Delta \le \max_{1 \le k \le n} \frac{t_k}{n - (n - k)} = \max_{1 \le k \le n} \frac{t_k}{k}.$$

(2) If D_0, \ldots, D_{q-1} $(q \ge l)$ are in *l*-subgeneral position with respect to *V* with index k (which is introduced by Q. Ji, Q. Yan and G. Yu [5] in 2019), then they are in $(1, 2, \ldots, k-1, l-n+k, l-n+k+1, \ldots, l-1, l)$ -subgeneral position with respect to *V* and hence $\Delta \le \frac{l-n+k}{k}$.

In this paper, we combine the method of Quang [7] with Ru [8] to prove the following general form of Second Main Theorem for meromorphic maps from p-Parabolic manifold into smooth projective variety intersecting with arbitrary families of hypersurfaces.

Main Theorem (I). Let $V \subset \mathbb{P}^N(\mathbb{C})$ be a smooth complex projective variety of dimension n. Let D_1, \ldots, D_q be arbitrary hypersurfaces in $\mathbb{P}^N(\mathbb{C})$ with the distributive constant Δ in V, deg $D_j = d_j$ $(1 \leq j \leq q)$. Let $f : M \longrightarrow V$ be an algebraically nondegenerate meromorphic mapping from a admissible p-Parabolic manifold M. Then, for any $\varepsilon > 0$ and r > s > 0, we have

$$\|(q - \Delta(n+1) - \epsilon)T_f(r, s) \leq \sum_{j=1}^q \frac{1}{d_j}N(r, s; D_j) + c(m(\mathfrak{L}; r, s) + Ric_p(r, s)) + \kappa \log^+ \mathcal{Y}(r^2) + \kappa \log^+ r)$$

where $c \gg 1$.

By remark 1.5(2), we get

Corollary 1.6. Let $V \subset \mathbb{P}^N(\mathbb{C})$ be a smooth complex projective variety of dimension n. Let D_1, \ldots, D_q be hypersurfaces in $\mathbb{P}^N(\mathbb{C})$ which are defined by homogeneous polynomials D_1, \ldots, D_q , deg $D_j = d_j$ $(1 \leq j \leq q)$, which are located in l-general position with index k in V. Let $f : M \longrightarrow V$ be an algebraically nondegenerate meromorphic mapping from a admissible p-Parabolic manifold M. Then, for any $\varepsilon > 0$ and r > s > 0, we have

$$\left\| \left(q - \frac{l-n+k}{k}(n+1) - \epsilon \right) T_f(r,s) \le \sum_{j=1}^q \frac{1}{d_j} N(r,s;D_j) + c(m(\mathfrak{L};r,s) + Ric_p(r,s) + \kappa \log^+ \mathcal{Y}(r^2) + \kappa \log^+ r) \right\|$$

where $c \gg 1$.

From the above corollary, set l = n and k = 1, we get again the result of Ru [8]. When k = 1, we have noticed that D_1, \ldots, D_q are located in weak l- general position in V. Thus the above corollary is the generalization of theorem 1.3.

On the Second Main Theorem with truncated level, we get the result as follows: **Main Theorem (II).** Let $V \subseteq \mathbb{P}^N(\mathbb{C})$ be a smooth complex projective variety of dimension n. Let D_1, \ldots, D_q be arbitrary hypersurfaces in $\mathbb{P}^N(\mathbb{C})$ with the distributive constant Δ in V, deg $D_j = d_j$ $(1 \leq j \leq q)$. Let $f : M \longrightarrow V$ be an algebraically nondegenerate meromorphic mapping from a admissible p-Parabolic manifold M. Then, for any $\varepsilon > 0$ and r > s > 0, we have

$$\|(q - \Delta(n+1) - \epsilon)T_f(r, s) \leq \sum_{j=1}^q \frac{1}{d_j} N^{M_0}(r, D_j) + c(m(\mathfrak{L}; r, s) + Ric_p(r, s)) + \kappa \log^+ \mathcal{Y}(r^2) + \kappa \log^+ r)$$

where $c \gg 1$ and $M_0 = \deg(V)^{n+1} e^n d^{n^2+n} \Delta^n (2n+4)^n (n+1)^n (q!)^n \epsilon^{-n}$.

Reference [4], when M is assumed to be either an affine algebraic variety or an algebraic vector bundle over an affine algebraic variety or its projectivization, it follows that

$$m(\mathfrak{L}; r, s) + Ric_p(r, s) + \kappa \log^+ \mathcal{Y}(r^2) = O(\log^+ r).$$

We naturally have a stronger estimate

$$\liminf_{r \to +\infty} \frac{m(\mathfrak{L}; r, s) + Ric_p(r, s) + \kappa \log^+ \mathcal{Y}(r^2)}{T_f(r, s)} = 0.$$

By the Main Theorem (II), we have

Corollary 1.7. Let $f : M \longrightarrow V \subseteq \mathbb{P}^N(\mathbb{C})$ be an algebraically non-degenerate meromorphic map from M, either an affine algebraic variety or an algebraic vector

bundle over an affine algebraic variety or its projectivization, to a smooth projective algebraic variety V with dim V = n - 1, and Let D_1, \ldots, D_q be arbitrary hypersurfaces in $\mathbb{P}^N(\mathbb{C})$ with the distributive constant Δ in V. Then, we have

$$\sum_{i=1}^{q} \delta_f^{M_0}(D_j) \le \Delta(n+1).$$

2. Some Lemmas

Firstly, We recall the notion of Chow weights and Hilbert weights from [9]. Let $X \subset \mathbb{P}^N(\mathbb{C})$ be a projective variety of dimension n and degree δ over \mathbb{C} . To X we associate up to a constant scalar, a unique polynomial

$$F_X(\mathbf{u}_0,\cdots,\mathbf{u}_N)=F_X(u_{00},\cdots,u_{0N};\cdots;u_{n0},\cdots,u_{nN})$$

in n + 1 blocks of variables $\mathbf{u}_i = (u_{i0}, \dots, u_{iN}), i = 0, \dots, n$, which is called the Chow form of X, with the following properties: F_X is irreducible in $\mathbb{C}[u_{00}, \dots, u_{nN}]$, F_X is homogeneous of degree δ in each block $\mathbf{u}_i, i = 0, \dots, n$, and $F_X(\mathbf{u}_0, \dots, \mathbf{u}_n) = 0$ if and only if $X \cap H_{\mathbf{u}_0} \cap \dots \cap H_{\mathbf{u}_n} \neq \emptyset$. where $H_{\mathbf{u}_i}, i = 0, \dots, n$, are the hyperplanes given by

$$\mathbf{u}_{i0}x_0 + \dots + \mathbf{u}_{iN}x_N = 0.$$

Let F_X be the Chow form associated to X. Let $\mathbf{c} = (c_0, \dots, c_N)$ be a tuple of real numbers. Let t be an auxiliary variable. We consider the decomposition

$$F_X(t^{c_0}u_{00},\ldots,t^{c_N}u_{0N};\ldots;t^{c_0}u_{n0},\ldots,t^{c_N}u_{nN}) = t^{e_0}G_0(\mathbf{u}_0,\ldots,\mathbf{u}_n) + \cdots + t^{e_r}G_r(\mathbf{u}_0,\ldots,\mathbf{u}_n).$$

with $G_0, \ldots, G_r \in \mathbb{C}[u_{00}, \ldots, u_{0N}; \ldots; u_{n0}, \ldots, u_{nN}]$ and $e_0 > e_1 > \cdots > e_r$. The Chow weight of X with respect to **c** is defined by

$$e_X(\mathbf{c}) := e_0.$$

For each subset $J = \{j_0, \ldots, j_n\}$ of $\{0, \ldots, N\}$ with $j_0 < j_1 < \cdots < j_n$, we define the bracket

$$[J] = [J](\mathbf{u}_0, \dots, \mathbf{u}_N) := \det(u_{ij_t}), i, t = 0, \dots, n,$$

where $\mathbf{u}_i = (u_{i0}, \ldots, u_{iN})$ denotes the blocks of N+1 variables. Let J_1, \ldots, J_β with $\beta = \binom{N+1}{n+1}$ be all subsets of $\{0, \ldots, N\}$ of cardinality n+1. Then the Chow form F_X of X can be written as a homogeneous polynomial of degree δ in $[J_1], \ldots, [J_\beta]$. We may see that for $\mathbf{c} = (c_0, \cdots, c_N) \in \mathbb{R}^{N+1}$ and for any J among J_1, \ldots, J_β ,

$$[J](t^{c_0}u_{00},\ldots,t^{c_N}u_{0N};\ldots;t^{c_0}u_{n0},\ldots,t^{c_N}u_{nN})$$

= $t^{\sum_{j\in J}c_j}[J](u_{00},\ldots,u_{0N};\ldots;u_{n0},\ldots,u_{nN}).$

For $\mathbf{a} = (a_0, \ldots, a_N) \in \mathbb{Z}^{N+1}$, we write $\mathbf{x}^{\mathbf{a}}$ for the monomial $x_0^{a_0} \ldots x_N^{a_N}$. Let $I = I_X$ be the prime ideal in $\mathbb{C}[x_0, \ldots, x_N]$ defining X. Let $\mathbb{C}[x_0, \ldots, x_N]_u$ denote the vector space of homogeneous polynomials in $\mathbb{C}[x_0, \ldots, x_N]$ of degreee u(including 0). Put $I_u := \mathbf{C}[x_0, \ldots, x_N]_u \cap I$ and define the Hilbert function H_X of X, for $u = 1, 2, \ldots,$

$$H_X(u) := \dim\left(\frac{\mathbb{C}[x_0,\ldots,x_N]_u}{I_u}\right).$$

By the usual theory of Hilbert polynomials,

$$H_X(u) = \delta \cdot \frac{u^N}{N!} + O(u^{N-1}).$$

The *u*-th Hilbert weight $S_X(u, \mathbf{c})$ of X with respect to the tuple $\mathbf{c} = (c_0, \ldots, c_N) \in \mathbb{R}^{n+1}$ is defined by

$$S_X(u, \mathbf{c}) := \max\left(\sum_{i=1}^{H_X(u)} \mathbf{a}_i \cdot \mathbf{c}\right),$$

where the maximum is take over all sets of monomials $\mathbf{x}^{\mathbf{a}_1}, \ldots, \mathbf{x}^{\mathbf{a}_{H_X(u)}}$ whose residue classes modulo I form a basis of $\frac{\mathbb{C}[x_0, \ldots, x_N]_u}{I_u}$.

According to Mumford,

$$S_X(u, \mathbf{c}) = e_X(\mathbf{c}) \cdot \frac{u^{N+1}}{(N+1)!} + O(u^N),$$

this implies that

$$\lim_{u \to \infty} \frac{1}{u H_X(u)} \cdot S_X(u, \mathbf{c}) = \frac{1}{(n+1)\delta} \cdot e_X(\mathbf{c}).$$

We call $\frac{1}{uH_X(u)} \cdot S_X(u, \mathbf{c})$ the *u*-th normalized Hilbert weight and $\frac{1}{(N+1)\delta} \cdot e_X(\mathbf{c})$ the normalized Chow weight of X with respect to \mathbf{c} .

The following lemmas are due to J. Evertse and R. Ferretti.

Lemma 2.1. (Theorem 4.1[2]) Let $X \subset \mathbb{P}^N(\mathbb{C})$ be an algebraic variety of dimension n and degree δ . let $u > \delta$ be an integer and let $\mathbf{c} = (c_0, \dots, c_N) \in \mathbb{R}^{N+1}_{>0}$. Then

$$\frac{1}{uH_X(u)}S_X(u,\mathbf{c}) \ge \frac{1}{(n+1)\delta}e_X(\mathbf{c}) - \frac{(2n+1)\delta}{u} \cdot \left(\max_{i=0,\dots,N} c_i\right).$$

Lemma 2.2. (see [3], [9],) Let Y be a subvariety of $\mathbb{P}^{q-1}(\mathbb{C})$ of dimension n and degree δ . Let $\mathbf{c} = (c_1, \ldots, c_q)$ be a tuple of positive reals. Let $\{i_0, \cdots, i_n\}$ be a subset of $\{1, \ldots, q\}$ such that

$$Y \cap \{y_{i_0} = \dots = y_{i_n} = 0\} = \emptyset.$$

Then

$$e_Y(\mathbf{c}) \ge (c_{i_0} + \dots + c_{i_n})\delta$$

The following general form of the second main theorem is due to Han [4].

Lemma 2.3. [4] Let $f: M \longrightarrow \mathbb{P}^{N}(\mathbb{C})$ be a linearly nondegenerate meromorphic map defined on a p-Parabolic manifold M satisfying the general condition \mathfrak{A}_{1} and \mathfrak{A}_{2} , and let $\{H_{j}\}_{j=1}^{q}$ be q arbitrary hyperplanes. Then, for r > s > 0, we have

$$\begin{split} &\| \int_{M\langle r \rangle} \max_{K \subset \mathcal{K}} \sum_{j \in K} \frac{1}{d_j} \lambda_{H_j}(f) \sigma \leq (N+1) T_f(r,s) - N_{Ramf}(r,s) \\ &+ \frac{N(N+1)}{2} (m(\mathfrak{L}; \mathfrak{r}, \mathfrak{s}) + Ric_p(r,s) + \kappa \log^+ T_f(r,s)) \\ &+ \frac{\kappa N(N+1)}{2} (\log^+ m(\mathfrak{L}; r, s) + \log^+ Ric_p(r,s) + \log^+ \mathcal{Y}(r^2) + \kappa \log^+ r). \end{split}$$

where maximum is taken over all subsets K of $\{1, \ldots, q\}$ such that the generating linear forms of the hyperplanes in each set are linearly independent and $N_{Ramf}(r,s)$ is the counting function of the ramification divisor div \tilde{f}_N .

Lemma 2.4. ([11] Lemma 13.3) Let M be a p-Parabolic manifold of dimensional m. Let $f: M \longrightarrow \mathbb{P}^{N}(\mathbb{C})$ be a meromorphic mapping which is linearly nondegenerate over \mathbb{C} . Let $\{H_j\}_{j=1}^{q}$ be a family of hyperplanes of $\mathbb{P}^{N}(\mathbb{C})$ in general position. We have

$$\sum_{j=1}^{q} \left(\theta_f^{H_j} - \theta_f^{N,H_j} \right) \le div \tilde{f}_N.$$

The following two lemmas are the important key lemmas of [6] to deal with the case of arbitrary families of hypersurfaces.

Lemma 2.5. ([6] Lemma 3.1) Let t_0, t_1, \ldots, t_n be n+1 integers such that $t_0 < t_1 < \cdots < t_n$, and let $\Delta = \max_{1 \le s \le n} \frac{t_s - t_0}{s}$. Then for every n real numbers $a_0, a_2, \ldots, a_{n-1}$ with $a_0 \ge a_1 \ge \cdots \ge a_{n-1} \ge 1$, we have

$$a_0^{t_1-t_0}a_1^{t_2-t_1}\cdots a_{n-1}^{t_n-t_{n-1}} \le (a_0a_1\cdots a_{n-1})^{\Delta}.$$

Lemma 2.6. ([6] Lemma 3.2) Let V be a projective subvariety of $\mathbb{P}^{N}(\mathbb{C})$ of dimension n. Let D_{0}, \ldots, D_{l} be l hypersurfaces in $\mathbb{P}^{N}(\mathbb{C})$ of the same degree $d \geq 1$, such that $\bigcap_{i=0}^{l} D_{i} \cap V = \emptyset$ and

$$\dim\left(\bigcap_{i=0}^{s} D_i \cap V\right) = n - u, \quad t_{u-1} \le s < t_u, \quad 1 \le u \le n,$$

where t_0, t_1, \ldots, t_n integers with $0 = t_0 < t_1 < \cdots < t_n = l$. Then there exist n + 1 hypersurfaces P_0, \ldots, P_n in $\mathbb{P}^N(\mathbb{C})$ of the forms

$$P_u = \sum_{j=1}^{t_u} c_{uj} D_j, \quad c_{uj} \in \mathbf{C}, \quad u = 0, \dots, n$$

such that $\bigcap_{u=0}^{n} P_u \cap V = \emptyset$.

3. The proof of main theorem (I)

Proof. By the First Main theorem, it is suffice to consider the case where $\Delta < \frac{q}{n+1}$. Note that $\Delta \ge 1$, hence q > n+1. If there exists $i \in \{1, \ldots, q\}$ such that $\bigcap_{j=1, j \ne i} D \cap V \ne \emptyset$, then

$$\Delta \geq \frac{q-1}{n} > \frac{q}{n+1}.$$

This is a contradiction. Therefore, $\bigcap_{j=1, j\neq i} D_j \cap V = \emptyset$ for all $i \in \{1, \ldots, q\}$. Firstly, we will prove the theorem for the case where all hypersurfaces $D_j(1 \leq j \leq q)$ are of the same degree d. Let Q_j , $1 \leq j \leq q$, be homogeneous polynomials $\operatorname{in}\mathbb{C}[x_0, \ldots, x_N]$ of degree d_j which is defined by D_j . We denote by \mathcal{I} the set of all permutations of the set $\{1, \ldots, q\}$. Denote by n_0 the cardinality of \mathcal{I} , $n_0 = q!$, and we write $\mathcal{I} = \{I_1, \ldots, I_{n_0}\}$, where $I_i = (I_i(0), \ldots, I_i(q-1)) \in \mathbb{N}^q$ and $I_1 < I_2 < \cdots < I_{n_0}$ in the lexicographic order.

For each $I_i \in \mathcal{I}$, since $\bigcap_{j=1, j \neq i} D_j \cap V = \emptyset$, there exist n+1 integers $t_{i,0}, t_{i,1}, \ldots, t_{i,n}$ with $0 = t_{i,0} < \cdots < t_{i,n} = l_i$, where $l_i \leq q-2$ such that $\bigcap_{j=0}^{l_i} D_{I_i(j)} \cap V = \emptyset$ and

$$\dim\left(\bigcap_{j=0}^{s} D_{I_i(j)}\right) \cap V = n - u, \quad \forall \ t_{i,u-1} \le s < t_{i,u}, \quad 1 \le u \le n.$$

Then $\Delta > \frac{t_{i,u}-t_{i,0}}{u}$ for all $1 \leq u \leq n$. Denote by $P_{i,0}, \ldots, P_{i,n}$ the hypersurfaces obtained in Lemma 2.6 with respect to the hypersurfaces $D_{I_i(0)}, \ldots, D_{I_i(l_i)}$. We may choose a positive constant $B \geq 1$, commonly for all $I_i \in \mathcal{I}$, such that

$$\mid P_{i,j}(\mathbf{x}) \mid \leq B \max_{1 \leq s \leq t_{i,j}} \mid Q_{I_i(j)}(\mathbf{x}) \mid$$

for all $0 \leq j \leq n$ and $\mathbf{x} = (x_0, \dots, x_N) \in \mathbb{C}^{N+1}$.

Consider a reduced representation $\tilde{f} = (f_0, \ldots, f_n) : M \longrightarrow \mathbb{C}^{N+1}$ of f. Fix an element $I_i \in \mathcal{I}$. Denote by S(i) the set of all points $z \in M \setminus \left(\bigcup_{i=1}^q Q_i(\tilde{f})^{-1}(\{0\}) \cup I_f \right)$, where I_f is indeterminacy of f, such that

$$Q_{I_i(0)}(\tilde{f})(z) \leq |Q_{I_i(1)}(\tilde{f})(z)| \leq \cdots \leq |Q_{I_i(q-1)}(\tilde{f})(z)|.$$

Since $\bigcap_{j=0}^{l_i} D_{I_i(j)} \cap V = \emptyset$, there exists a positive constant A, which is chosen common for all I_i , such that

$$\|\tilde{f}(z)\|^d \le \max_{0\le j\le l_i} |Q_{I_i(j)}(\tilde{f})(z)|, \quad z\in S(i).$$

Therefore, for $z \in S(i)$, By Lemma 2.5, we have

$$\begin{split} \prod_{i=1}^{q} \frac{\|\tilde{f}(z)\|^{d}}{|Q_{i}(\tilde{f})(z)|} &\leq A^{q-l_{j}} \prod_{j=0}^{l_{j}-1} \frac{\|\tilde{f}(z)\|^{d}}{|Q_{I_{i}(j)}(\tilde{f})(z)|} \leq A^{q-l_{j}} \prod_{j=0}^{n-1} \left(\frac{\|\tilde{f}(z)\|^{d}}{|Q_{I_{i}(t_{j})}(\tilde{f})(z)|} \right)^{t_{i,j+1}-t_{i,j}} \\ &\leq A^{q-l_{j}} \prod_{j=0}^{n-1} \left(\frac{\|\tilde{f}(z)\|^{d}}{|Q_{I_{i}(t_{j})}(\tilde{f})(z)|} \right)^{\Delta} \\ &\leq A^{q-l_{j}} B^{n\Delta} \prod_{j=0}^{n-1} \left(\frac{\|\tilde{f}(z)\|^{d}}{|P_{i,j}(\tilde{f})(z)|} \right)^{\Delta} \end{split}$$

Since the number of hypersurfaces in the proof is finite, we may choose a positive constant c such that for all $1 \leq j \leq q$ and all $\mathbf{x} = (x_0, \ldots, x_N) \in \mathbb{C}^{N+1}$, we have

 $Q_j(\mathbf{x}) \le c \|\mathbf{x}\|^d.$

Thus $|P_{i,n}(\tilde{f})(z)| \leq B \max_{1 \leq s \leq t_{i,n}} |D_{I_i(n)}(\mathbf{x})| \leq Bc \|\tilde{f}(z)\|^d$. It yields that

(1)
$$\prod_{i=1}^{q} \frac{\|\tilde{f}(z)\|^{d}}{|Q_{i}(\tilde{f})(z)|} \leq A^{q-l_{j}} B^{(n+1)\Delta} c^{\Delta} \prod_{j=0}^{n} \left(\frac{\|\tilde{f}(z)\|^{d}}{|P_{i,j}(\tilde{f})(z)|} \right)^{\Delta}$$

Consider the mapping Φ from V into $\mathbb{P}^{l-1}(\mathbb{C})$ $(l = n_0(n+1))$, which maps a point $\mathbf{x} = (x_0 : \cdots : x_N) \in V$ to the point $\Phi(\mathbf{x}) \in \mathbb{P}^{l-1}(\mathbb{C})$ given by

$$\Phi(\mathbf{x}) = (P_{1,0}(x) : \dots : P_{1,n}(x) : P_{2,0}(x) \cdots : P_{2,n}(x) : \dots : P_{n_0,0}(x) : \dots : P_{n_0,n}(x))$$

where $x = (x_0, \ldots, x_N)$. Let $Y = \Phi(V)$. Since $\bigcap_{j=0}^n P_{1,j} \cap V = \emptyset$, Φ is a finite morphism on V and Y is a complex projective subvariety of $\mathbb{P}^{l-1}(\mathbb{C})$ with dim Y =n and $\delta := degY \leq d^n \text{deg}V$ (see,[10]). For $\mathbf{a} = (a_1, \ldots, a_l) \in \mathbb{Z}_{\geq 0}^l$ and $\mathbf{y} =$ (y_1, \ldots, y_l) , we denote $\mathbf{y}^{\mathbf{a}} := y_1^{a_1} \cdots y_l^{a_l}$. Let u be a positive integer and set

$$n_u := H_Y(u) - 1, \quad \xi_u := \binom{l+u-1}{u} - 1.$$

Follow from [9], consider the Veronese embedding

$$\Phi_u: \mathbb{P}^{l-1}(\mathbb{C}) \longrightarrow \mathbb{P}^{\xi_u}(\mathbb{C}): [\mathbf{y}] \longrightarrow [\mathbf{y}^{\mathbf{a}_0}: \cdots: \mathbf{y}^{\mathbf{a}_{\xi_u}}].$$

where $\mathbf{y}^{\mathbf{a}_0}, \ldots, \mathbf{y}^{\mathbf{a}_{\xi_u}}$ are the monomials of degree u in y_1, \ldots, y_l in some order. Denote by Y_u the smallest linear subvariety of $\mathbb{P}^{\xi_u}(\mathbb{C})$ containing $\Phi_u(Y)$. Then, clearly, a linear form $\sum_{i=0}^{\xi_u} \gamma_i z_i$ vanishes identically on Y_u if and only if $\sum_{i=0}^{\xi_u} \gamma_i \mathbf{y}^{\mathbf{a}_i}$, as a polynomial of degree u, vanishes identically on Y. In other words, there is an isomorphism

$$\mathbb{C}[y_1,\ldots,y_l]_u/\mathfrak{I}_u(Y)\simeq (Y_u)^{\vee}: \mathbf{y}_i^{\mathbf{a}}\to z_i.$$

where $\mathfrak{I}(Y)$ is the prime ideal in $\mathbb{C}[y_1, \ldots, y_l]$ define Y, $\mathbb{C}[y_1, \ldots, y_l]_u$ is the vector space of homogeneous polynomials in $\mathbb{C}[y_1, \ldots, y_l]$ of degree u (including 0), $(Y_u)^{\vee}$ is the vector space of linear forms in $\mathbb{C}[z_0, \ldots, z_{\xi_u}]$ modulo the linear forms vanishing identically on Y_u . Hence Y_u is an n_u -dimensional linear subspace of $\mathbb{P}^{\xi_u}(\mathbb{C})$. Thus, there are linear forms $L_0, \ldots, L_{\xi_u} \in \mathbb{C}[w_0, \ldots, w_{n_u}]$ such that the map

$$\Psi_u: \mathbf{w} \in \mathbb{P}^{n_u}(\mathbb{C}) \longrightarrow [L_0(\mathbf{w}): \dots: L_{\xi_u}(\mathbf{w})] \in Y_u$$

is a linear isomorphism from $\mathbb{P}^{n_u}(\mathbb{C})$ to Y_u . Therefore, $\Psi_u^{-1} \circ \Phi_u : Y \longrightarrow \mathbb{P}^{n_u}(\mathbb{C})$ is an injective map such that

$$\Psi_u^{-1} \circ \Phi_u(\mathbf{y}) = [\mathbb{L}_0([\mathbf{y}^{\mathbf{a}_0} : \dots : \mathbf{y}^{\mathbf{a}_{\xi_u}}]) : \dots : \mathbb{L}_{n_u}([\mathbf{y}^{\mathbf{a}_0} : \dots : \mathbf{y}^{\mathbf{a}_{\xi_u}}])]$$

for all $\mathbf{y} \in Y$, where $\mathbb{L}_0, \ldots, \mathbb{L}_{n_u}$ are linear forms independent in $\mathbb{P}^{\xi_u}(\mathbb{C})$. Then $\{\mathbb{L}_0([\mathbf{y}^{\mathbf{a}_0} \cdots : \mathbf{y}^{\mathbf{a}_{\xi_u}}]), \ldots, \mathbb{L}_{n_u}([\mathbf{y}^{\mathbf{a}_0} : \cdots : \mathbf{y}^{\mathbf{a}_{\xi_u}}])\}$ is a base of $\mathbb{C}[y_1, \ldots, y_l]_u/\mathfrak{I}_u(Y)$. Denote $\phi_i = \mathbb{L}_0([\mathbf{y}^{\mathbf{a}_0} \cdots : \mathbf{y}^{\mathbf{a}_{\xi_u}}]), i = 0, \ldots, n_u$. We consider $F = \Psi_u^{-1} \circ \Phi_u \circ \Phi \circ f$: $M \longrightarrow \mathbb{P}^{n_u}(\mathbb{C})$ with the following reduced representation

$$\tilde{F} = (\phi_0(\Phi \circ \tilde{f}), \dots, \phi_{n_u}(\Phi \circ \tilde{f}))$$

on each local chart (z, U_z) . Furthermore, F is linearly nondegenerate, since f is algebraically nondegenerate.

Now, for every fixed $i \in \{1, \ldots, n_0\}$ and a point $z \in S(i)$, we define

$$\mathbf{c} = (c_{1,0,z}, \dots, c_{1,n,z}, c_{2,0,z}, \dots, c_{2,n,z}, c_{n_0,0,z}, \dots, c_{n_0,n,z}) \in \mathbb{Z}^d$$

where

$$c_{i,j,z} := \log \frac{\|f(z)\|^d \|P_{i,j}\|}{\|P_{i,j}(\tilde{f})(z)\|} \text{ for } i = 1, \dots, n_0 \text{ and } j = 0, \dots, n_0$$

Then $c_{i,j,z} \ge 0$ for all *i* and *j*. By the definition of the Hilbert weight, there are $\mathbf{a}_{1,z}, \ldots, \mathbf{a}_{H_Y(u),z} \in \mathbb{N}^l$ with

$$\mathbf{a}_{i,z} = (a_{i,1,0,z}, \dots, a_{i,1,n,z}, \dots, a_{i,n_0,0,z}, \dots, a_{i,n_0,n,z})$$

where $a_{i,j,s,z} \in \{1, \ldots, \xi_u\}$, such that the residue classes modulo $(I_Y)_u$ of $\mathbf{y}^{\mathbf{a}_{1,z}}, \ldots, \mathbf{y}^{\mathbf{a}_{H_Y(u),z}}$ form a basic of $\mathbb{C}[y_1, \ldots, y_l]_u / \mathfrak{I}_u(Y)$ and

$$S_Y(u, \mathbf{c}_z) = \sum_{i=1}^{H_Y(u)} \mathbf{a}_{i,z} \cdot \mathbf{c}_z.$$

Since $\mathbf{y}^{\mathbf{a}_{i,z}}, 1 \leq i \leq H_Y(u)$ are basis of $\mathbb{C}[y_1, \ldots, y_l]_u / \mathfrak{I}_u(Y)$, then there exist $H_Y(u)$ independent linear forms $\mathcal{L}_z = \{L_{j,z}, 1 \leq j \leq H_Y(u)\}$ such that

$$\mathbf{y}^{\mathbf{a}_{j,z}} = L_{j,z}(\phi_0, \dots, \phi_{n_u}), \ 1 \le j \le H_Y(u).$$

We denote $\mathcal{L} = \bigcup_z \mathcal{L}_z$, then \mathcal{L} is finite since $\#\mathcal{L} \leq {\binom{\xi_u+1}{n_u+1}}$. We have

$$\log \prod_{i=1}^{H_Y(u)} |L_{i,z}(\tilde{F}(z))| = \log \prod_{i=1}^{H_Y(u)} \prod_{\substack{1 \le t \le n_0 \\ 0 \le j \le n}} |P_{t,j}(\tilde{f}(z))|^{a_{i,j,z}} = -S_Y(u, \mathbf{c}_z) + du H_Y(u) \log \|\tilde{f}(z)\| + O(u H_Y(u)).$$

It implies that

$$\log \prod_{i=1}^{H_Y(u)} \frac{\|\tilde{F}(z)\| \|L_{i,z}\|}{\|L_{i,z}(\tilde{F}(z))\|} = S_Y(u, \mathbf{c}_z) - du H_Y(u) \log \|\tilde{f}(z)\| + H_Y(u) \log \|\tilde{F}(z)\| + O(u H_Y(u)).$$

Thus

(2)
$$S_Y(u, \mathbf{c}_z) \leq \max_{\mathcal{J} \subset \mathcal{L}} \log \prod_{L \in \mathcal{J}} \frac{\|\tilde{F}(z)\| \|L\|}{\|L(\tilde{F}(z))\|} + du H_Y(u) \log \|\tilde{f}(z)\| - H_Y(u) \log \|\tilde{F}(z)\| + O(u H_Y(u)).$$

where the maximum is taken over all subsets $\mathcal{J} \subset \mathcal{L}$ with $\#\mathcal{J} = H_Y(u)$ and $\{L \mid L \in \mathcal{J}\}$ is linearly independent. From Lemma 2.1, we have

(3)
$$\frac{1}{uH_Y(u)}S_Y(u, \mathbf{c}_z) \ge \frac{1}{(n+1)\delta}e_Y(\mathbf{c}_z) - \frac{(2n+1)\delta}{u} \max_{\substack{1 \le i \le n_0\\0 \le j \le n}} c_{i,j,z}.$$

Combining (2) and (3), we get

$$\begin{aligned} &(4) \\ &\frac{1}{(n+1)\delta}e_{Y}(\mathbf{c}_{z}) \leq \frac{1}{uH_{Y}(u)} \left(\max_{\mathcal{J} \subset \mathcal{L}} \log \prod_{L \in \mathcal{J}} \frac{\|\tilde{F}(z)\| \|L\|}{|L(\tilde{F}(z))|} - H_{Y}(u) \log \|\tilde{F}(z)\| \right) \\ &+ d \log \|\tilde{f}(z)\| + \frac{(2n+1)\delta}{u} \sum_{\substack{1 \leq i \leq n_{0} \\ 0 \leq j \leq n}} \log \frac{\|\tilde{f}(z)\|^{d} \|P_{i,j}\|}{|P_{i,j}(\tilde{f})(z)|} + O(\frac{1}{u}). \end{aligned}$$

Since $\{P_{i,0} = \cdots = P_{i,n} = 0\} \cap V = \emptyset$ for $1 \le i \le n_0$, by Lemma 2, we get

(5)
$$e_Y(\mathbf{c}_z) \ge (c_{i,0,z} + \dots + c_{i,n,z}) \cdot \delta = \left(\sum_{0 \le j \le n} \log \frac{\|\tilde{f}(z)\|^d \|P_{i,j}\|}{\|P_{i,j}(\tilde{f})(z)\|}\right) \cdot \delta.$$

From (1),(4) and (5), we obtain

$$\begin{aligned} & (6) \\ & \frac{1}{\Delta} \log \prod_{i=1}^{q} \frac{\|\tilde{f}(z)\|^{d}}{|Q_{i}(\tilde{f})(z)|} \leq \frac{n+1}{uH_{Y}(u)} \left(\max_{\mathcal{J} \subset \mathcal{L}} \log \prod_{L \in \mathcal{J}} \frac{\|\tilde{F}(z)\| \|L\|}{|L(\tilde{F}(z))|} - H_{Y}(u) \log \|\tilde{F}(z)\| \right) \\ & + d(n+1) \log \|\tilde{f}(z)\| + \frac{(2n+1)(n+1)\delta}{u} \sum_{\substack{1 \leq i \leq n_{0} \\ 0 \leq j \leq n}} \log \frac{\|\tilde{f}(z)\|^{d} \|P_{i,j}\|}{|P_{i,j}(\tilde{f})(z)|} + O(\frac{1}{u}). \end{aligned}$$

6 Aug 2022 19:50:06 PDT 220806-HongzheCao Version 1 - Submitted to Rocky Mountain J. Math.

By Lemma 2.3, for any $\epsilon' > 0$, r > s > 0 large enough, we have

(7)
$$\|\int_{M\langle r\rangle} \max_{\mathcal{J}\subset\mathcal{L}} \log \prod_{L\in\mathcal{J}} \frac{\|\tilde{F}(z)\|\|L\|}{|L(\tilde{F}(z))|} \sigma \leq (H_Y(u) + \epsilon')T_F(r.s) - N_{RamF}(r,s) + (\frac{H_Y(u)(H_Y(u) - 1)}{2} + \epsilon')(m(\mathfrak{L}; r, s) + Ric_p(r, s) + \kappa \log^+ \mathcal{Y}(r^2) + \kappa \log^+ r).$$

where maximum is taken over all subsets $\mathcal{J} \subset \mathcal{L}$ with $\#\mathcal{J} = H_Y(u)$ and $\{L \mid L \in \mathcal{J}\}$ are linearly independent.

However, In order to take integration over $M\langle r \rangle$, we now encounter a problem, that is, the functions $\log \|\tilde{F}(z)\|$ and $\log \|\tilde{f}(z)\|$ are usually not globally defined. Hence, we use the concept of 'reduced representation sections' of F and f (see [11]) to avoid this difficulty. We only do this for F in detail, as the case for f is similar (ref. [4]).

Set $\{\tilde{F}_{\alpha}, U_{\alpha}\}$ to be a system of local reduced representations of \tilde{F} such that, on $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have

$$\tilde{F}_{\alpha} = h_{\alpha\beta}\tilde{F}_{\beta}$$

for a non-vanishing holomorphic function $h_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathbb{C}^*$. Then, $\{h_{\alpha\beta}\}$ forms a basic cocycle so that there exists a holomorphic line bundle \mathbb{H}_F on M, with a holomorphic frame atlas $\{s_F^{\alpha}, U_{\alpha}\}$ such that, on $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have

$$s_F^{\alpha} = h_{\beta\alpha} s_F^{\beta}$$

which is called the hyperplane section bundle of F. Now, define a holomorphic section

$$\tilde{F}^{\star}_{\alpha}(z) := (z, \tilde{F}_{\alpha}(z)) \in \Gamma(U_{\alpha}, M \times \mathbb{C}^{n_u+1}).$$

Hence, there is a global holomorphic section $\chi \in \Gamma(M, (M \times \mathbb{C}^{n_u+1}) \otimes \mathcal{H}_F)$, called the standard reduced representation section of F, such that $\chi \mid_{U_{\alpha}} = \tilde{F}_{\alpha}^* \otimes s_{\alpha}^F$.

Set ζ_1 to be the standard Hermitian metric along the fibres of the trivial bundle $M \times \mathbb{C}^{n_u+1}$ and \wp_1 to be a Hermitian metric along the fibres of \mathcal{H}_F . Then, we can apply our Green–Jensen formula to the function $\log \|\chi\|_{\zeta_1 \otimes \wp_1}$ to get

(8)
$$T_F(r,s) - T_{\mathcal{H}_F}(r,s) = \int_{M\langle r \rangle} \log \|F\|_{\zeta_1} \otimes \|s^F\|_{\wp_1} \sigma - \int_{M\langle s \rangle} \log \|F\|_{\zeta_1} \otimes \|s^F\|_{\wp_1} \sigma$$

where $T_{\mathcal{H}_F}(r,s)$ is defined via the pull-back of the first Chern form on (\mathcal{H}_F, \wp_1) . Analogously,

(9)
$$T_f(r,s) - T_{\mathcal{H}_f}(r,s) = \int_{M\langle r \rangle} \log \|f\|_{\zeta_2} \otimes \|s^f\|_{\wp_2} \sigma - \int_{M\langle s \rangle} \log \|f\|_{\zeta_2} \otimes \|s^f\|_{\wp_2} \sigma.$$

The construction of F leads to

$$(||F||_{\zeta_1})|_{U_{\alpha}} = (||f||_{\zeta_2})|_{U_{\alpha}}.$$

Thus $T_{\mathcal{H}_F}(r,s) = duT_{\mathcal{H}_f}(r,s)$. Combining with (8) and (9), yields

$$T_F(r,s) = duT_f(r,s).$$

Taking integral of (6) and combining it with (7), we have

$$\begin{aligned} &(10) \\ \|\frac{1}{d} \sum_{j=1}^{q} m_{f}(r, D_{j}) \leq \Delta(n+1) T_{f}(r, s) - \frac{\Delta(n+1)}{u d H_{Y}(u)} N_{RamF}(r, s) + \epsilon' \frac{\Delta(n+1)}{H_{Y}(u)} T_{f}(r, s) \\ &+ \frac{\Delta(n+1)}{u d H_{Y}(u)} \left(\frac{H_{Y}(u) (H_{Y}(u) - 1)}{2} + \epsilon' \right) (m(\mathfrak{L}; r, s) + Ric_{p}(r, s) + \kappa \log^{+} \mathcal{Y}(r^{2}) \\ &+ \kappa \log^{+} r) + \frac{\Delta(2n+1)(n+1)\delta}{u d} \sum_{\substack{1 \leq i \leq n_{0} \\ 0 \leq j \leq n}} m_{f}(r, P_{i,j}) + O(1). \end{aligned}$$

Using the First Main Theorem, for r large enough, we assume $T_f(r, s) \ge 1$, then

$$\sum_{\substack{1 \le i \le n_0 \\ 0 \le j \le n}} m_f(r, P_{i,j}) \le d \left((n+1)n_0 T_f(r, s) + \frac{1}{d} \sum_{\substack{1 \le i \le n_0 \\ 0 \le j \le n}} m_f(s, P_{i,j}) \right)$$
$$\le d \left((n+1)n_0 + \frac{1}{d} \sum_{\substack{1 \le i \le n_0 \\ 0 \le j \le n}} m_f(s, P_{i,j}) \right) T_f(r, s)$$

Now we choose $u \ge u_0$ large enough and ϵ' , such that

(11)
$$\frac{\Delta(2n+1)(n+1)\delta}{u_0} \left((n+1)n_0 + \frac{1}{d} \sum_{\substack{1 \le i \le n_0 \\ 0 \le j \le n}} m_f(s, P_{i,j}) \right) < \frac{\epsilon}{4}$$
$$\epsilon' \frac{\Delta(n+1)}{H_Y(u_0)} < \frac{\epsilon}{4}.$$

Denote $c = \max\{1, \frac{\Delta(n+1)}{udH_Y(u_0)} \left(\frac{H_Y(u_0)(H_Y(u_0)-1)}{2} + \epsilon'\right)\}$. Using First Main Theorem and combining (10) and (11), notice $N_{RamF}(r, s) \ge 0$, then

(12)
$$\|(q - \Delta(n+1) - \epsilon)T_f(r,s) \leq \sum_{j=1}^q \frac{1}{d}N(r,s;D_j) + c(m(\mathfrak{L};r,s) + Ric_p(r,s) + \kappa \log^+ \mathcal{Y}(r^2) + \kappa \log^+ r).$$

Now, for the general case where $D_i(1 \leq i \leq q)$ is of the degree d_i , then all $D^{\frac{d}{d_i}}$ are of the same degree $d(1 \leq i \leq q)$, where d is the l.c.m of $d_j, j = 1, \ldots, q$. Applying the above result, the theorem is proved.

4. The proof of main theorem (II)

Proof. We can replace $D_i(1 \le i \le q)$ by $D^{\frac{d}{d_i}}$ if necessary, where d is the l.c.m of $d_j, j = 1, \ldots, q$, we may assume that D_1, \ldots, D_q have the same degree of d.

From (10), we need estimate the quantity $N_{RamF}(r, s)$. Without loss of generality, we may assume that $z \in S(1)$, where $I_1 = (1, \ldots, q)$ and moreover

$$\theta_f^{D_1} \ge \theta_f^{D_2} \ge \dots \ge \theta_f^{D_q}$$

6 Aug 2022 19:50:06 PDT 220806-HongzheCao Version 1 - Submitted to Rocky Mountain J. Math.

where $\theta_f^{D_j}(z) = div(Q_j(\tilde{f}))(z), \ j = 1, \dots, q$. Since $\bigcap_{j=1}^{l_1+1} D_j \cap V = \emptyset$, then $div(Q_j(\tilde{f}))(z) = 0$ for $j \ge l_1 + 1$. Set

$$c_{i,j} = \max\{0, div(P_{i,j}(f))(z) - n_u\}$$

and

$$\mathbf{c} = (c_{1,0}, \dots, c_{1,n}, \dots, c_{n_0,0}, \dots, c_{n_0,n}) \in \mathbb{Z}_{\geq 0}^l$$

Then there are

$$\mathbf{a}_{i} = (a_{i,1,0}, \dots, a_{i,1,n}, \dots, a_{i,n_{0},0}, \dots, a_{i,n_{0},n}) \in \{1, \dots, \xi_{u}\}$$

such that $\mathbf{y}^{\mathbf{a}_1}, \dots, \mathbf{y}^{\mathbf{a}_{H_Y(u)}}$ is a basic of $\mathbb{C}[y_1, \dots, y_l]_u / \mathfrak{I}_u(Y)$ and

$$S_Y(u, \mathbf{c}) = \sum_{i=1}^{H_Y(u)} \mathbf{a}_i \cdot \mathbf{c}.$$

Similarly as above, we write $\mathbf{y}^{\mathbf{a}_i} = L_i(\phi_1, \dot{\phi}_{H_Y(u)})$, where $L_1, \ldots, L_{H_Y(u)}$ are independent linear forms in variables $y_{i,j}(1 \le i \le n_0, \ 0 \le j \le n)$. For any divisor ν on M, we denote ν^u by a divisor such that $\nu^u(z) = \min u, \nu(z)$. Then we see

$$div(L_i(\tilde{F}))(z) - div^{n_u}(L_i(\tilde{F}))(z) \ge \sum_{\substack{1 \le j \le n_0 \\ 0 \le s \le n}} a_{i,j,s}(div(P_{j,s}(\tilde{f})) - div^{n_u}(P_{j,s}(\tilde{f})))$$
$$= \sum_{\substack{1 \le j \le n_0 \\ 0 \le s \le n}} a_{i,j,s} \max\{0, div(P_{j,s}(\tilde{f}))(z) - n_u\} = \mathbf{a}_i \cdot \mathbf{c}.$$

Using Lemma 2.4, we get

$$S_Y(u, \mathbf{c}) \le \sum_{i=1}^{H_Y(u)} div(L_i(\tilde{F}))(z) - div^{n_u}(L_i(\tilde{F}))(z) \le div\tilde{F}_{n_u}(z).$$

Since $\bigcap_{j=0}^{n} P_{1,j} \cap V = \emptyset$, then by Lemma 2.2, we have

$$e_Y(\mathbf{c}) \ge \delta \cdot \sum_{j=0}^n c_{1,j} = \delta \cdot \sum_{j=0}^n \max\{0, div(P_{1,j}(\tilde{f}))(z) - n_u\}.$$

On the other hand, by Lemma2.1, we obtain

$$S_{Y}(u, \mathbf{c}) \geq \frac{uH_{Y}(u)}{(n+1)\delta} e_{Y}(\mathbf{c}) - (2n+1)\delta H_{Y}(u) \max_{\substack{1 \leq i \leq n_{0} \\ 0 \leq j \leq n}} c_{i,j}$$
$$\geq \frac{uH_{Y}(u)}{n+1} \sum_{j=0}^{n} \max\{0, div(P_{1,j}(\tilde{f}))(z) - n_{u}\}$$
$$- (2n+1)\delta H_{Y}(u) \max_{\substack{1 \leq i \leq n_{0} \\ 0 \leq j \leq n}} div(P_{i,j}(\tilde{f}))(z).$$

Thus

(13)
$$div\tilde{F}_{n_{u}}(z) \geq \frac{uH_{Y}(u)}{n+1} \sum_{j=0}^{n} \max\{0, div(P_{1,j}(\tilde{f}))(z) - n_{u}\} - (2n+1)\delta H_{Y}(u) \max_{\substack{1 \leq i \leq n_{0} \\ 0 \leq j \leq n}} div(P_{i,j}(\tilde{f}))(z).$$

Since $div(P_{1,j}(\tilde{f}))(z) \ge div(Q_{I_1(t_{1,j})}(\tilde{f}))(z)$ for all $0 \le j \le n$ and $I_1(t_{1,j}) = t_{1,j} + 1$, $P_{1,0} = D_1$, therefore

$$\Delta \sum_{j=0}^{n} \max\{0, div(P_{1,j}(\tilde{f}))(z) - n_u\} \ge \Delta \sum_{j=0}^{n} \max\{0, div(Q_{I_1(t_{1,j})}(\tilde{f}))(z) - n_u\}$$
$$\ge \sum_{j=0}^{n} (t_{1,j+1} - t_{1,j}) \max\{0, div(Q_{I_1(t_{1,j})}(\tilde{f}))(z) - n_u\}$$
$$\ge \sum_{i=0}^{l} \max\{0, div(Q_{I_1(j)}(\tilde{f}))(z) - n_u\} = \sum_{i=1}^{q} \max\{0, div(Q_j(\tilde{f}))(z) - n_u\}.$$

Combining this inequality and (13), we have

$$\begin{split} div\tilde{F}_{n_{u}}(z) &\geq \frac{uH_{Y}(u)}{(n+1)\Delta} \sum_{i=1}^{q} \max\{0, div(Q_{j}(\tilde{f}))(z) - n_{u}\} \\ &- (2n+1)\delta H_{Y}(u) \max_{\substack{1 \leq i \leq n_{0} \\ 0 \leq j \leq n}} div(P_{i,j}(\tilde{f}))(z) \\ &\geq \frac{uH_{Y}(u)}{(n+1)\Delta} \sum_{i=1}^{q} \left(div(Q_{j}(\tilde{f}))(z) - \min\{n_{u}, div(Q_{j}(\tilde{f}))(z)\} \right) \\ &- (2n+1)\delta H_{Y}(u) \max_{\substack{1 \leq i \leq n_{0} \\ 0 \leq j \leq n}} div(P_{i,j}(\tilde{f}))(z). \end{split}$$

Thus

(14)
$$\frac{\Delta(n+1)}{udH_Y(u)}N_{RamF}(r,s) \ge \sum_{j=1}^q \frac{1}{d} \left[N(r,s;D_j) - N^{n_u}(r,s;D_j) \right] \\ - \frac{\Delta(n+1)(2n+1)\delta}{ud} \max_{\substack{1\le i\le n_0\\ 0\le j\le n}} N(r,s;P_{i,j}).$$

By (10), (14) and the First Main Theorem, we get

$$\begin{aligned} \| & (q - \Delta(n+1))T_{f}(r,s) \\ \leq & \sum_{j=1}^{q} \frac{1}{d} N^{n_{u}}(r,s;D_{j}) + \left(\epsilon' \frac{\Delta(n+1)}{H_{Y}(u)} + \frac{\Delta(2n+1)(n+1)l\delta}{u}\right) T_{f}(r,s) \\ & + \frac{\Delta(n+1)}{udH_{Y}(u)} \left(\frac{H_{Y}(u)(H_{Y}(u)-1)}{2} + \epsilon'\right) (m(\mathfrak{L};r,s) + Ric_{p}(r,s) + \kappa \log^{+}\mathcal{Y}(r^{2}) \\ & + \kappa \log^{+}r) + O(1). \end{aligned}$$

We now choose u is the smallest integer such that

$$u > \Delta(2n+1)(n+1)l\delta\epsilon^{-1}$$

and

$$\epsilon' = \frac{H_Y(u)}{\Delta(n+1)} \left(\epsilon - \frac{\Delta(2n+1)(n+1)l\delta}{u}\right) > 0.$$

6 Aug 2022 19:50:06 PDT 220806-HongzheCao Version 1 - Submitted to Rocky Mountain J. Math.

Hence

$$\| (q - \Delta(n+1) - \epsilon)T_f(r, s) \leq \sum_{j=1}^q \frac{1}{d} N^{n_u}(r, s; D_j)$$
$$+ c(m(\mathfrak{L}; r, s) + Ric_p(r, s) + \kappa \log^+ \mathcal{Y}(r^2) + \kappa \log^+ r)$$

where $c \ge \{1, \frac{\Delta(n+1)}{udH_Y(u)} \left(\frac{H_Y(u)(H_Y(u)-1)}{2} + \epsilon'\right)\}$ and

$$n_u = \begin{pmatrix} H_Y(u) - 1 \le \delta(n+u) \\ n \le d^n \deg(V) e^n (1+\frac{u}{n})^n \end{pmatrix}$$
$$\le d^n \deg(V) e^n (\Delta(2n+4)l\delta\epsilon^{-1})^n$$
$$\le \deg(V)^{n+1} e^n d^{n^2+n} \Delta^n (2n+4)^n l^n \epsilon^{-n} = M_0$$

The theorem is proved.

References

- W. Chen, N.Van Thin A general form of the Second Main Theorem for meromorphic mappings from a p-Parabolic manifold to a projective algebraic variety[J]. Indian Journal of Pure and Applied Mathematics, 2021: 1-14.
- J. Evertse and R. Ferretti, Diophantine inequalities on projective varieties, Internat. Math. Res. Notices 25 (2002) 1295–1330.
- [3] J. Evertse and R. Ferretti, A generalization of the subspace theorem with polynomials of higher degree, Developments in Mathematics 16, 175–198, Springer-Verlag, New York (2008).
- [4] Q. Han, A defect relation for meromorphic maps on generalized p-parabolic manifolds intersecting hypersurfaces in complex projective algebraic varieties[J]. Proceedings of the Edinburgh Mathematical Society, 2013, 56(2): 551-574.
- [5] Q.Ji, Q.Yan and G.Yu, Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position, Math. Annalen 373 (2019) 1457–1483.
- [6] S.Quang, Generalizations of degeneracy second main theorem and Schmidt's subspace theorem[J]. arXiv preprint arXiv:2012.07204, 2020.
- [7] S.Quang, Degeneracy second main theorems for meromorphic mappings into projective varieties with hypersurfaces, Trans. Amer. Math. Soc. 371 (2019), 2431-2453.
- [8] M.Ru, Some generalizations of the second main theorem intersecting hypersurfaces[J]. Methods and Applications of Analysis, 2014, 21(4): 503-526.
- [9] M.Ru, Holomorphic curves into algebraic varieties, Ann. Math. 169 (2009) 255–267.
- [10] M.Sombra, Bounds for the Hilbert function of polynomial ideals and for the degrees in the Nullstellensatz, Algorithms for algebra (Eindhoven, 1996). J. Pure Appl. Algebra 117/118, 565-599, 1997.
- [11] W.Stoll The ahlfors—Weyl theory of meromorphic maps on parabolic manifolds[M]//Value distribution theory. Springer, Berlin, Heidelberg, 1983: 101-219.
- [12] W.Stoll, Value distribution on parabolic spaces, Lecture Notes in Mathematics, Volume 600 (Springer, 1977).
- [13] P. M. Wong and W. Stoll, Second main theorem of Nevalinna theory for nonequidimensional meromorphic maps[J]. American Journal of Mathematics, 1994, 116(5): 1031-1071.
- [14] P. Wong and P. P. W. Wong, The second main theorem on generalized parabolic manifolds[J]. Some topics on value distribution and differentiability in complex and p-adic analysis, 2008.

Hongzhe Cao,

DEPARTMENT OF MATHEMATICS, NANCHANG UNIVERSITY, NANCHANG, JIANGXI, 330031, P. R. CHINA

Email address: hongzhecao@ncu.edu.cn

LIANG WANG,

Department of Mathematics, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China

 $Email \ address: \ {\tt 285497907@qq.com}$