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1. Introduction and main results

Throughout this paper, we shall use the standard notationin the value distribu-
tion theory of meromorphic maps on parabolic manifolds (see[11],[13]). To state
clearly our result, we need some notations and definitions as follows:

Definition 1. A Kähler complex manifold (M,ω) of dimension m is said to be a
p-Parabolic manifold for 1 ≤ p ≤ m if there exists a plurisubharmonic function
ϕ such that
(i) {ϕ = −∞} is a closed subset of M with strictly lower dimension;
(ii) ϕ is smooth on the open dense set M \ {−∞} with ddcϕ ≥ 0, such that

(ddcϕ)p−1 ∧ ωm−p ̸≡ 0 and (ddcϕ)p ∧ ωm−p ≡ 0.

Accordingly, we define

τ := eϕ and σ := dcϕ ∧ (ddcϕ)p−1 ∧ ωm−p

where τ is nonnegative and it is called a p-parabolic exhaustion on M .
Note that m-parabolicity is just the classical notion of parabolicity and the

parabolic manifold (see [11],[12]) has the affine algebraic variety as a prototype.
For any r > 0, we denote

M [r] := {x ∈ M | τ(x) ≤ r2}, M(r) := {x ∈ M | τ(x) < r2},

M⟨r⟩ := M [r] \M(r) = {x ∈ M | τ(x) = r2}.

This work was partially supported by the NSFC (No.12061041, No.12061042).
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2 H.Z CAO, L. WANG

From [4], we have ∫
M⟨r⟩

σ = κ,

where κ is a constant dependent only on the structure of M . We refer the reader
to [13] and [14] for more details on p-Parabolic manifold.

Let f : M −→ PN (C) be a linearly nondegenerate meromorphic map defined on

a p-Parabolic manifold M of dimension m, and let f̃ : M −→ CN+1 be a reduced
representation of f . Then for some global meromorphic (m−1, 0)-form B on M , we

define the first B-derivative f̃ ′
B of f̃ on local holomorphic coordinate chart (z, Uz)

by

df̃ ∧B = f̃ ′
Bdz1 ∧ · · · ∧ dzm,

and define inductively the kth B-derivative f̃
(k)
B of f̃ by

df̃
(k−1)
B ∧B = f̃

(k)
B dz1 ∧ · · · ∧ dzm

for k = 1, . . . N. They are independent of the choice of the local holomorphic co-
ordinate chart, and thus they are globally well defined. As a consequence, the kth
preassociated map f̃k of f is defined by

f̃k := f̃ ∧ f̃ ′
B ∧ · · · ∧ f̃

(k)
B : M −→ ∧k+1CN+1

and the kth associated map fk of f is defined by

fk := [f̃k] : M −→ P(∧k+1CN+1) = Pnk(C), nk =

(
N + 1
k + 1

)
− 1

for k = 1, . . . , N.
To establish the value distribution theory, we shall work on admissible parabolic

manifolds, which satisfy the following assumptions:
(A1): (M, τ, ω) denotes a p-Parabolic manifold which possesses a globally defined

meromorphic (m−1)-form B such that, for any linearly nondegenerate meromorphic
map f : M −→ PN (C), the kth associated map fk is well defined for k = 0, 1, . . . N ,
where we set f0 := f .

(A2): There exists a Hermitian holomorphic line bundle (L, h) that admits a
holomorphic section µ such that, for some increasing function Y(τ), we have

mim−1|µ|2hB ∧B ≤ Y(τ)(ddcτ)p−1 ∧ ωm−p,

where im−1 := (
√
−1
2π )m−1(m− 1)!(−1)(m−1)(m−2)/2.

Remark 1.1. Let (M, τ) be a parabolic covering space of Cm with branching divisor
β of π. Then it is an important class of admissible parabolic manifold (see [11]).

We set

Td := {(i0, . . . , iN ) ∈ NN+1
0 | i0 + · · ·+ iN = d},#Td =

(
N + d
N

)
.

Let Q be a homogeneous polynomial of degree d in C[x0, . . . , xN ] denote x =
(x0, . . . , xN ), then we can write

Q(x) =
∑
I∈Td

aIx
I .

Let D be a hypersurface with degree d in PN (C) which is define the homogeneous
polynomial Q ∈ C[x0, . . . , xN ].In the case d = 1, we call D a hyperplane of PN (C).
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 3

Let ωFS be the Fubini-Study metric on PN (C), then the characteristic function
of f , for a fixed s > 0 and any r > s as

Tf (r, s) =

∫ r

s

dt

t2p−1

∫
M [t]

f∗ωFS ∧ (ddc)p−1 ∧ ωm−p.

Let f : M −→ PN (C) be a meromorphic map such that f(M) ̸⊂ D, then the Weil
function of f with respect to D is defined by

λD(f) = log
∥f̃∥d·∥Q∥
| Q(f̃) |

,

where ∥f̃∥=
√∑n

i=0 | f̂i |2 for a reduced representation f̃ = (f̂0, . . . , f̂N ) on the

local holomorphic coordinate chart (z, Uz) and ∥Q∥=
√∑

I | aI |2. The proximity
function and counting function of f with respect to D are defined respectively,

mf (r,D) :=

∫
M⟨r⟩

λD(f)σ

and

Nf (r, s;D) :=

∫ r

s

dt

t2p−1

∫
M [t]

θDf ∧ (ddcτ)p−1 ∧ ωm−p,

where θDf = div(Q(f̃))on the local holomorphic coordinate chart (z, Uz). Let m be
a positive integer, then the counting function with truncated level M is defined by

NM
f (r, s;D) :=

∫ r

s

dt

t2p−1

∫
M [t]

θM,D
f ∧ (ddcτ)p−1 ∧ ωm−p,

where θM,D
f = min{M,div(Q(f̃))} on the local holomorphic coordinate chart (z, Uz).

From the Green–Jensen formula, the author in [4] derived the First Main Theo-
rem as follows:

Theorem 1.2. [4] Let f : M −→ PN (C) be a nonconstant meromorphic map
defined on a p-Parabolic manifold M , and let D be a hypersurface of degree d such
that f(M) ̸⊂ D. Then, for r > s > 0, we have

dTf (r, s) = Nf (r, s;D) +mf (r,D)−mf (s,D).

Then, the defect of f with respect to the hypersurface D is defined as

δf (D) := lim inf
r→+∞

mf (r,D)

dTf (r, s)
= 1− lim sup

r→+∞

Nf (r, s;D)

dTf (r, s)
.

Accordingly, the defect of f with respect to the hypersurface D truncated to level
M is defined by

δMf (D) := 1− lim sup
r→+∞

NM
f (r, s;D)

dTf (r, s)
.

For each 0 ≤ k ≤ n − 1 and a linearly non-degenerate meromorphic map on
admissible parabolic manifold, define an important auxiliary function (see [4])

Ψk =
mim−1f

∗
kω

k
FS ∧B ∧B

(ddcτ)p ∧ ωm−p
=

∥f̃k−1∥2 · ∥f̃k+1∥2

∥f̃k∥4
· 1

Ap
,

6 Aug 2022 19:50:06 PDT
220806-HongzheCao Version 1 - Submitted to Rocky Mountain J. Math.



4 H.Z CAO, L. WANG

where ωk
FS is the Fubini-Study metric on P(∧k+1Cn+1), and Ap, (1 ≤ p ≤ m) is

the pth symmetric polynomial of the matrix (τab̄) with respect to the Kähler metric
ω. Note that A1 is the trace of (τab̄), while Am is the det(τab̄)(> 0). We denote

Ricp(r, s) =

∫ r

s

dt

t2p−1

∫
M [t]

θ0Ap
∧ (ddcτ)p−1 ∧ ωm−p,

where θ0Ap
is divisor zero of the holomorphic function Ap, and

m(L; r, s) =
1

2

∫
M⟨r⟩

log
1

|µ|2h
σ − 1

2

∫
M⟨s⟩

log
1

|µ|2h
σ.

Definition 2. LetV ⊂ PN (C) be a projective subvariety with dimension n. Let k
be a positive integer and D1, . . . , Dk be hypersurfaces in PN (C). Let l ≥ n be a
positive integer. We say that the hypersurfaces D1, . . . , Dk are in weak l-subgeneral
position with respect to V if k ≤ l + 1 such that either when k = l + 1 we have
D1 ∩ · · · ∩Dl+1 ∩V = ∅ or when k < l+1; there exist hypersurfaces S1, . . . , Sl+1−k

in PN (C) such that D1 ∩ · · · ∩Dk ∩ S1 ∩ · · · ∩ Sl+1−k ∩ V = ∅.

Definition 3. Let l ≥ n be a integer. We say that the hypersurfacesD1, . . . , Dq (q ≥
l + 1) are in l-subgeneral position with respect to V if for any distinct indices
1 ≤ j1 ≤ · · · ≤ jl+1 ≤ q, we have Dj1 ∩ · · · ∩Djl+1

∩ V = ∅. If l = n we said that
D1, . . . , Dq (q ≥ l + 1) are in general position in V .

Hence, if the hypersurfaces D1, . . . , Dq (q ≥ l + 1) are in l-subgeneral position
with respect to V , then for any set of hypersurfaces {Ds}s∈S , S ⊂ {1, . . . , q}, #S ≤
l + 1 are in weak l-subgeneral position with respect to V .

As we known, In 2009, Ru[9] initially established a second main theorem for al-
gebraically nondegenerate holomorphic maps from C into a projective subvariety
V ⊂ Pn(C) with a family of hypersurfaces in general position w.r.t V . And then, in
[8] Ru extended his result to the case of meromorphic mappings from a parabolic
manifold. In 2019, Quang [7] initially proposed the replacing hypersurfaces method
and using the method of Ru [9] to established the second main theorem for the case
of family of hypersurfaces in N-subgeneral position w.r.t V .

Wong and Wong [14] introduced ‘p-parabolic manifolds’, and obtained certain
First and Second Main Theorems. Q. Han [4] generalized their result for alge-
braically nondegenerate meromorphic maps over p-Parabolic manifolds intersecting
with hypersurfaces in general position. Recently, Applying the method of Quang
[7], Chen-Thin [1] proved the following the second main theorem for meromor-
phic mappings from a p-Parabolic manifold to V with a family of hypersurfaces in
N-subgeneral position w.r.t V .

Theorem 1.3. [1] Let V ⊂ PN (C) be a smooth complex projective variety of di-
mension n. Let f : M −→ V be an algebraically nondegenerate meromorphic
mapping from a admissible p-Parabolic manifold M . Let D1, . . . , Dq be arbitrary
hypersurfaces in PN (C) which are defined by homogeneous polynomials Q1, . . . , Qq

with degree d1, . . . , dq respectively. Let l ≥ n be a integer. Then, for any ε > 0 and
r > s > 0, we have

∥
∫
M⟨r⟩

max
K⊂K

∑
j∈K

1

dj
λDj (f)σ ≤((l − n+ 1)(n+ 1) + ε)Tf (r.s)

+ c(m(L; r, s) +Ricp(r, s) + κ log+ Y(r2) + κ log+ r)
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 5

where K is the set of all subsets K ⊂ {1, . . . , q}, #K ≤ l + 1, such that the
hypersurfaces {Dj , j ∈ K} are in weak l-subgeneral position in V and c ≫ 1.

The notation ”∥” means that the inequality holds for all r ∈ [0,+∞) except a
set of finite Lebesgue measure.

Recently, Quang [6] considered the case of arbitrary families of hypersurfaces,
not required to be in subgeneral position. To do so, he introduced a notion of
distributive constant ∆ of a family of hypersurface {Di}qi=1 of PN (C) in a subvariety
V ⊂ PN (C)of dimension n, where V ̸⊂ suppDi(i = 1, . . . , q), as follows:

∆ := max
Γ⊂{1,...,q}

#Γ

n− dim(
⋂

j∈Γ Dj) ∩ V

Here, dim ∅ = −∞.

Remark 1.4. (see [6]) (1)If D1, . . . , Dq(q ≥ n + 1) are in general position with
respect to V , then ∆ = 1.
(2)If D1, . . . , Dq(q ≥ l + 1) are in weak l-subgeneral position with respect to V ,
then we may see that for every subset {Di1 , . . . , Dik} (1 ≤ k ≤ l), one has

dim(

k⋂
j=1

Dij ) ∩ V ≤ min{n− 1.l − k}.

Hence ∆ ≤ l − n+ 1.

For more general, Quang [6] gave the following definition.

Definition 4. Let k be a number field and let V be a smooth projective subvariety
of PN (k) of dimension n. Let D0, . . . , Dl be l hypersurfaces in PN (k). We say that
the family {D0, . . . , Dl} is in (t1, t2, . . . , tn)-subgeneral position with respect to V
if for every 1 ≤ s ≤ n and ts + 1 hypersurfaces Dj0 , . . . , Djts

, we have

dim(

ts⋂
i=0

Dji) ∩ V (k̄) ≤ n− s− 1.

Remark 1.5. (see [6]) (1) If {D0, . . . , Dl} is in (t1, t2, ..., tn)-subgeneral position with
respect to V , then its distributive constant in V satisfying

∆ ≤ max
1≤k≤n

tk
n− (n− k)

= max
1≤k≤n

tk
k
.

(2)If D0, . . . , Dq−1 (q ≥ l) are in l-subgeneral position with respect to V with index
k (which is introduced by Q. Ji, Q. Yan and G. Yu [5] in 2019), then they are in
(1, 2, . . . , k− 1, l− n+ k, l− n+ k+1, . . . , l− 1, l)-subgeneral position with respect
to V and hence ∆ ≤ l−n+k

k .

In this paper, we combine the method of Quang [7] with Ru [8] to prove the
following general form of Second Main Theorem for meromorphic maps from p-
Parabolic manifold into smooth projective variety intersecting with arbitrary fam-
ilies of hypersurfaces.

Main Theorem (I). Let V ⊂ PN (C) be a smooth complex projective variety
of dimension n. Let D1, . . . , Dq be arbitrary hypersurfaces in PN (C) with the dis-
tributive constant ∆ in V , degDj = dj (1 ≤ j ≤ q). Let f : M −→ V be an
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6 H.Z CAO, L. WANG

algebraically nondegenerate meromorphic mapping from a admissible p-Parabolic
manifold M . Then, for any ε > 0 and r > s > 0, we have

∥(q −∆(n+ 1)− ϵ)Tf (r, s) ≤
q∑

j=1

1

dj
N(r, s;Dj) + c(m(L; r, s) +Ricp(r, s)

+ κ log+ Y(r2) + κ log+ r)

where c ≫ 1.
By remark1.5 (2), we get

Corollary 1.6. Let V ⊂ PN (C) be a smooth complex projective variety of dimen-
sion n. Let D1, . . . , Dq be hypersurfaces in PN (C) which are defined by homogeneous
polynomials D1, . . . , Dq, degDj = dj (1 ≤ j ≤ q), which are located in l-general
position with index k in V . Let f : M −→ V be an algebraically nondegenerate
meromorphic mapping from a admissible p-Parabolic manifold M . Then, for any
ε > 0 and r > s > 0, we have

∥
(
q − l − n+ k

k
(n+ 1)− ϵ

)
Tf (r, s) ≤

q∑
j=1

1

dj
N(r, s;Dj) + c(m(L; r, s) +Ricp(r, s)

+ κ log+ Y(r2) + κ log+ r)

where c ≫ 1.

From the above corollary, set l = n and k = 1, we get again the result of Ru
[8]. When k = 1, we have noticed that D1, . . . , Dq are located in weak l- general
position in V . Thus the above corollary is the generalization of theorem 1.3.

On the Second Main Theorem with truncated level, we get the result as follows:
Main Theorem (II). Let V ⊆ PN (C) be a smooth complex projective variety
of dimension n. Let D1, . . . , Dq be arbitrary hypersurfaces in PN (C) with the dis-
tributive constant ∆ in V , degDj = dj (1 ≤ j ≤ q). Let f : M −→ V be an
algebraically nondegenerate meromorphic mapping from a admissible p-Parabolic
manifold M . Then, for any ε > 0 and r > s > 0, we have

∥(q −∆(n+ 1)− ϵ)Tf (r, s) ≤
q∑

j=1

1

dj
NM0(r,Dj) + c(m(L; r, s) +Ricp(r, s)

+ κ log+ Y(r2) + κ log+ r)

where c ≫ 1 and M0 = deg(V )n+1endn
2+n∆n(2n+ 4)n(n+ 1)n(q!)nϵ−n.

Reference [4], when M is assumed to be either an affine algebraic variety or an
algebraic vector bundle over an affine algebraic variety or its projectivization, it
follows that

m(L; r, s) +Ricp(r, s) + κ log+ Y(r2) = O(log+ r).

We naturally have a stronger estimate

lim inf
r→+∞

m(L; r, s) +Ricp(r, s) + κ log+ Y(r2)

Tf (r, s)
= 0.

By the Main Theorem (II), we have

Corollary 1.7. Let f : M −→ V ⊆ PN (C) be an algebraically non-degenerate
meromorphic map from M , either an affine algebraic variety or an algebraic vector
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bundle over an affine algebraic variety or its projectivization, to a smooth projective
algebraic variety V with dimV = n− 1, and Let D1, . . . , Dq be arbitrary hypersur-
faces in PN (C) with the distributive constant ∆ in V . Then, we have

q∑
i=1

δM0

f (Dj) ≤ ∆(n+ 1).

2. Some lemmas

Firstly, We recall the notion of Chow weights and Hilbert weights from [9].
Let X ⊂ PN (C) be a projective variety of dimension n and degree δ over C. To

X we associate up to a constant scalar, a unique polynomial

FX(u0, · · · ,uN ) = FX(u00, · · · , u0N ; · · · ;un0, · · · , unN )

in n + 1 blocks of variables ui = (ui0, · · · , uiN ), i = 0, . . . , n, which is called the
Chow form ofX, with the following properties: FX is irreducible in C[u00, . . . , unN ],
FX is homogeneous of degree δ in each block ui, i = 0, . . . , n, and FX(u0, . . . ,un) =
0 if and only if X∩Hu0

∩· · ·∩Hun
̸= ∅. where Hui

, i = 0, . . . , n, are the hyperplanes
given by

ui0x0 + · · ·+ uiNxN = 0.

Let FX be the Chow form associated to X. Let c = (c0, · · · , cN ) be a tuple of
real numbers. Let t be an auxiliary variable. We consider the decomposition

FX(tc0u00, . . . , t
cNu0N ; . . . ; tc0un0, . . . , t

cNunN )

=te0G0(u0, . . . ,un) + · · ·+ terGr(u0, . . . ,un).

with G0, . . . , Gr ∈ C[u00, . . . , u0N ; . . . ;un0, . . . , unN ] and e0 > e1 > · · · > er. The
Chow weight of X with respect to c is defined by

eX(c) := e0.

For each subset J = {j0, . . . , jn} of {0, . . . , N} with j0 < j1 < · · · < jn, we define
the bracket

[J ] = [J ](u0, . . . ,uN ) := det(uijt), i, t = 0, . . . , n,

where ui = (ui0, . . . , uiN ) denotes the blocks of N+1 variables. Let J1, . . . , Jβ with

β =
(
N+1
n+1

)
be all subsets of {0, . . . , N} of cardinality n + 1. Then the Chow form

FX of X can be written as a homogeneous polynomial of degree δ in [J1], . . . , [Jβ ].
We may see that for c = (c0, · · · , cN ) ∈ RN+1 and for any J among J1, . . . , Jβ ,

[J ](tc0u00, . . . , t
cNu0N ; . . . ; tc0un0, . . . , t

cNunN )

=t
∑

j∈J cj [J ](u00, . . . , u0N ; . . . ;un0, . . . , unN ).

For a = (a0, . . . , aN ) ∈ ZN+1, we write xa for the monomial xa0
0 . . . xaN

N . Let I =
IX be the prime ideal in C[x0, . . . , xN ] deffning X. Let C[x0, . . . , xN ]u denote the
vector space of homogeneous polynomials in C[x0, . . . , xN ] of degreee u(including
0). Put Iu := C[x0, . . . , xN ]u ∩ I and define the Hilbert function HX of X, for
u = 1, 2, . . . ,

HX(u) := dim

(
C[x0, . . . , xN ]u

Iu

)
.
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8 H.Z CAO, L. WANG

By the usual theory of Hilbert polynomials,

HX(u) = δ · u
N

N !
+O(uN−1).

The u-th Hilbert weight SX(u, c) of X with respect to the tuple c = (c0, . . . , cN ) ∈
Rn+1 is defined by

SX(u, c) := max

HX(u)∑
i=1

ai · c

 ,

where the maximum is take over all sets of monomials xa1 , . . . ,xaHX (u) whose

residue classes modulo I form a basis of C[x0,...,xN ]u
Iu

.
According to Mumford,

SX(u, c) = eX(c).
uN+1

(N + 1)!
+O(uN ),

this implies that

lim
u→∞

1

uHX(u)
· SX(u, c) =

1

(n+ 1)δ
· eX(c).

We call 1
uHX(u) · SX(u, c) the u-th normalized Hilbert weight and 1

(N+1)δ · eX(c)

the normalized Chow weight of X with respect to c.
The following lemmas are due to J. Evertse and R. Ferretti.

Lemma 2.1. (Theorem 4.1[2]) Let X ⊂ PN (C) be an algebraic variety of dimension

n and degree δ. let u > δ be an integer and let c = (c0, · · · , cN ) ∈ RN+1
≥0 . Then

1

uHX(u)
SX(u, c) ≥ 1

(n+ 1)δ
eX(c)− (2n+ 1)δ

u
·
(

max
i=0,...,N

ci

)
.

Lemma 2.2. (see [3], [9],) Let Y be a subvariety of Pq−1(C) of dimension n and
degree δ. Let c = (c1, . . . , cq) be a tuple of positive reals. Let {i0, · · · , in} be a subset
of {1, . . . , q} such that

Y ∩ {yi0 = · · · = yin = 0} = ∅.
Then

eY (c) ≥ (ci0 + · · ·+ cin)δ.

The following general form of the second main theorem is due to Han [4].

Lemma 2.3. [4] Let f : M −→ PN (C) be a linearly nondegenerate meromorphic
map defined on a p-Parabolic manifold M satisfying the general condition A1 and
A2, and let {Hj}qj=1 be q arbitrary hyperplanes. Then, for r > s > 0, we have

∥
∫
M⟨r⟩

max
K⊂K

∑
j∈K

1

dj
λHj (f)σ ≤ (N + 1)Tf (r.s)−NRamf (r, s)

+
N(N + 1)

2
(m(L; r, s) +Ricp(r, s) + κ log+ Tf (r, s))

+
κN(N + 1)

2
(log+ m(L; r, s) + log+ Ricp(r, s) + log+ Y(r2) + κ log+ r).

where maximum is taken over all subsets K of {1, . . . , , q} such that the generating
linear forms of the hyperplanes in each set are linearly independent and NRamf (r, s)

is the counting function of the ramification divisor divf̃N .
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 9

Lemma 2.4. ([11] Lemma 13.3) Let M be a p-Parabolic manifold of dimensional
m. Let f : M −→ PN (C) be a meromorphic mapping which is linearly nondegener-
ate over C. Let {Hj}qj=1 be a family of hyperplanes of PN (C) in general position.
We have

q∑
j=1

(
θ
Hj

f − θ
N,Hj

f

)
≤ divf̃N .

The following two lemmas are the important key lemmas of [6] to deal with the
case of arbitrary families of hypersurfaces.

Lemma 2.5. ([6] Lemma 3.1) Let t0, t1, . . . , tn be n+1 integers such that t0 < t1 <
· · · < tn, and let ∆ = max1≤s≤n

ts−t0
s .Then for every n real numbers a0, a2, . . . an−1

with a0 ≥ a1 ≥ · · · ≥ an−1 ≥ 1, we have

at1−t0
0 at2−t1

1 · · · atn−tn−1

n−1 ≤ (a0a1 · · · an−1)
∆.

Lemma 2.6. ([6] Lemma 3.2) Let V be a projective subvariety of PN (C) of dimen-
sion n. Let D0, . . . , Dl be l hypersurfaces in PN (C) of the same degree d ≥ 1, such

that
⋂l

i=0 Di ∩ V = ∅ and

dim

(
s⋂

i=0

Di ∩ V

)
= n− u, tu−1 ≤ s < tu, 1 ≤ u ≤ n,

where t0, t1, . . . , tn integers with 0 = t0 < t1 < · · · < tn = l. Then there exist n+ 1
hypersurfaces P0, . . . , Pn in PN (C) of the forms

Pu =

tu∑
j=1

cujDj , cuj ∈ C, u = 0, . . . , n

such that
⋂n

u=0 Pu ∩ V = ∅.

3. The proof of main theorem (I)

Proof. By the First Main theorem, it is suffice to consider the case where
∆ < q

n+1 . Note that ∆ ≥ 1, hence q > n + 1. If there exists i ∈ {1, . . . , q} such

that
⋂

j=1,j ̸=i D ∩ V ̸= ∅, then

∆ ≥ q − 1

n
>

q

n+ 1
.

This is a contradiction. Therefore,
⋂

j=1,j ̸=i Dj∩V = ∅ for all i ∈ {1, . . . , q}. Firstly,
we will prove the theorem for the case where all hypersurfaces Dj(1 ≤ j ≤ q)
are of the same degree d. Let Qj , 1 ≤ j ≤ q, be homogeneous polynomials
inC[x0, . . . , xN ] of degree dj which is defined by Dj . We denote by I the set of all
permutations of the set {1, . . . , q}. Denote by n0 the cardinality of I, n0 = q!, and
we write I = {I1, . . . , In0}, where Ii = (Ii(0), . . . , Ii(q − 1)) ∈ Nq and I1 < I2 <
· · · < In0 in the lexicographic order.

For each Ii ∈ I, since
⋂

j=1,j ̸=i Dj∩V = ∅, there exist n+1 integers ti,0, ti,1, . . . , ti,n

with 0 = ti,0 < · · · < ti,n = li, where li ≤ q − 2 such that
⋂li

j=0 DIi(j) ∩ V = ∅ and

dim

 s⋂
j=0

DIi(j)

 ∩ V = n− u, ∀ ti,u−1 ≤ s < ti,u, 1 ≤ u ≤ n.
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10 H.Z CAO, L. WANG

Then ∆ >
ti,u−ti,0

u for all 1 ≤ u ≤ n. Denote by Pi,0, . . . , Pi,n the hypersurfaces
obtained in Lemma 2.6 with respect to the hypersurfaces DIi(0), . . . , DIi(li). We
may choose a positive constant B ≥ 1, commonly for all Ii ∈ I, such that

| Pi,j(x) |≤ B max
1≤s≤ti,j

| QIi(j)(x) |,

for all 0 ≤ j ≤ n and x = (x0, . . . , xN ) ∈ CN+1.

Consider a reduced representation f̃ = (f0, . . . , fn) : M −→ CN+1 of f . Fix an

element Ii ∈ I. Denote by S(i) the set of all points z ∈ M\
(⋃q

i=1 Qi(f̃)
−1({0}) ∪ If

)
,where

If is indeterminacy of f , such that

| QIi(0)(f̃)(z) |≤| QIi(1)(f̃)(z) |≤ · · · ≤| QIi(q−1)(f̃)(z) | .

Since
⋂li

j=0 DIi(j) ∩ V = ∅, there exists a positive constant A, which is chosen
common for all Ii, such that

∥f̃(z)∥d ≤ max
0≤j≤li

| QIi(j)(f̃)(z) |, z ∈ S(i).

Therefore, for z ∈ S(i), By Lemma 2.5, we have

q∏
i=1

∥f̃(z)∥d

| Qi(f̃)(z) |
≤ Aq−lj

lj−1∏
j=0

∥f̃(z)∥d

| QIi(j)(f̃)(z) |
≤ Aq−lj

n−1∏
j=0

(
∥f̃(z)∥d

| QIi(tj)(f̃)(z) |

)ti.j+1−ti,j

≤ Aq−lj

n−1∏
j=0

(
∥f̃(z)∥d

| QIi(tj)(f̃)(z) |

)∆

≤ Aq−ljBn∆
n−1∏
j=0

(
∥f̃(z)∥d

| Pi,j(f̃)(z) |

)∆

Since the number of hypersurfaces in the proof is finite, we may choose a positive
constant c such that for all 1 ≤ j ≤ q and all x = (x0, . . . , xN ) ∈ CN+1, we have

Qj(x) ≤ c∥x∥d.

Thus | Pi,n(f̃)(z) |≤ B max
1≤s≤ti,n

| DIi(n)(x) |≤ Bc∥f̃(z)∥d. It yields that

(1)

q∏
i=1

∥f̃(z)∥d

| Qi(f̃)(z) |
≤ Aq−ljB(n+1)∆c∆

n∏
j=0

(
∥f̃(z)∥d

| Pi,j(f̃)(z) |

)∆

.

Consider the mapping Φ from V into Pl−1(C) (l = n0(n + 1)), which maps a
point x = (x0 : · · · : xN ) ∈ V to the point Φ(x) ∈ Pl−1(C) given by

Φ(x) = (P1,0(x) : · · · : P1,n(x) : P2,0(x) · · · : P2,n(x) : · · · : Pn0,0(x) : · · · : Pn0,n(x)),

where x = (x0, . . . , xN ). Let Y = Φ(V ). Since
⋂n

j=0 P1,j ∩ V = ∅, Φ is a finite

morphism on V and Y is a complex projective subvariety of Pl−1(C) with dimY =

n and δ := degY ≤ dn ˙degV (see,[10]). For a = (a1, . . . , al) ∈ Zl
≥0 and y =

(y1, . . . , yl), we denote ya := ya1
1 · · · yal

l . Let u be a positive integer and set

nu := HY (u)− 1, ξu :=

(
l + u− 1

u

)
− 1.

6 Aug 2022 19:50:06 PDT
220806-HongzheCao Version 1 - Submitted to Rocky Mountain J. Math.



GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 11

Follow from [9], consider the Veronese embedding

Φu : Pl−1(C) −→ Pξu(C) : [y] −→ [ya0 : · · · : yaξu ].

where ya0 , . . . ,yaξu are the monomials of degree u in y1, . . . , yl in some order.
Denote by Yu the smallest linear subvariety of Pξu(C) containing Φu(Y ). Then,

clearly, a linear form
∑ξu

i=0 γizi vanishes identically on Yu if and only if
∑ξu

i=0 γiy
ai ,

as a polynomial of degree u, vanishes identically on Y . In other words, there is an
isomorphism

C[y1, . . . , yl]u/Iu(Y ) ≃ (Yu)
∨ : ya

i → zi.

where I(Y ) is the prime ideal in C[y1, . . . , yl] define Y , C[y1, . . . , yl]u is the vector
space of homogeneous polynomials inC[y1, . . . , yl] of degree u (including 0), (Yu)

∨ is
the vector space of linear forms in C[z0, . . . , zξu ] modulo the linear forms vanishing
identically on Yu. Hence Yu is an nu-dimensional linear subspace of Pξu(C). Thus,
there are linear forms L0, . . . , Lξu ∈ C[w0, . . . , wnu

] such that the map

Ψu : w ∈ Pnu(C) −→ [L0(w) : · · · : Lξu(w)] ∈ Yu

is a linear isomorphism from Pnu(C) to Yu. Therefore, Ψ−1
u ◦ Φu : Y −→ Pnu(C)

is an injective map such that

Ψ−1
u ◦ Φu(y) = [L0([y

a0 : · · · : yaξu ]) : · · · : Lnu
([ya0 : · · · : yaξu ])]

for all y ∈ Y , where L0, . . . ,Lnu
are linear forms independent in Pξu(C). Then

{L0([y
a0 · · · : yaξu ]), . . . ,Lnu

([ya0 : · · · : yaξu ])} is a base of C[y1, . . . , yl]u/Iu(Y ).
Denote ϕi = L0([y

a0 · · · : yaξu ]), i = 0, . . . , nu. We consider F = Ψ−1
u ◦Φu ◦Φ ◦ f :

M −→ Pnu(C) with the following reduced representation

F̃ = (ϕ0(Φ ◦ f̃), . . . , ϕnu
(Φ ◦ f̃))

on each local chart (z, Uz). Furthermore, F is linearly nondegenerate, since f is
algebraically nondegenerate.

Now, for every fixed i ∈ {1, . . . , n0} and a point z ∈ S(i), we define

c = (c1,0,z, . . . , c1,n,z, c2,0,z, . . . , c2,n,z, cn0,0,z, . . . , cn0,n,z) ∈ Zl

where

ci,j,z := log
∥f̃(z)∥d∥Pi,j∥
| Pi,j(f̃)(z) |

for i = 1, . . . , n0 and j = 0, . . . , n.

Then ci,j,z ≥ 0 for all i and j. By the definition of the Hilbert weight, there are
a1,z, . . . ,aHY (u),z ∈ Nl with

ai,z = (ai,1,0,z, . . . , ai,1,n,z, . . . , ai,n0,0,z, . . . , ai,n0,n,z),

where ai,j,s,z ∈ {1, . . . , ξu}, such that the residue classes modulo (IY )u of ya1,z , . . . ,yaHY (u),z

form a basic of C[y1, . . . , yl]u/Iu(Y ) and

SY (u, cz) =

HY (u)∑
i=1

ai,z · cz.

Since yai,z , 1 ≤ i ≤ HY (u) are basis of C[y1, . . . , yl]u/Iu(Y ), then there exist HY (u)
independent linear forms Lz = {Lj,z, 1 ≤ j ≤ HY (u)} such that

yaj,z = Lj,z(ϕ0, . . . , ϕnu
), 1 ≤ j ≤ HY (u).

We denote L = ∪zLz, then L is finite since #L ≤
(
ξu+1
nu+1

)
. We have
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12 H.Z CAO, L. WANG

log

HY (u)∏
i=1

| Li,z(F̃ (z)) |= log

HY (u)∏
i=1

∏
1≤t≤n0
0≤j≤n

| Pt,j(f̃(z)) |ai,j,z

= −SY (u, cz) + duHY (u) log ∥f̃(z)∥+O(uHY (u)).

It implies that

log

HY (u)∏
i=1

∥F̃ (z)∥∥Li,z∥
| Li,z(F̃ (z)) |

=SY (u, cz)− duHY (u) log ∥f̃(z)∥

+HY (u) log ∥F̃ (z)∥+O(uHY (u)).

Thus

SY (u, cz) ≤max
J⊂L

log
∏
L∈J

∥F̃ (z)∥∥L∥
| L(F̃ (z)) |

+ duHY (u) log ∥f̃(z)∥

−HY (u) log ∥F̃ (z)∥+O(uHY (u)).

(2)

where the maximum is taken over all subsets J ⊂ L with #J = HY (u) and
{L | L ∈ J } is linearly independent. From Lemma 2.1, we have

(3)
1

uHY (u)
SY (u, cz) ≥

1

(n+ 1)δ
eY (cz)−

(2n+ 1)δ

u
max

1≤i≤n0
0≤j≤n

ci,j,z.

Combining (2) and (3), we get

1

(n+ 1)δ
eY (cz) ≤

1

uHY (u)

(
max
J⊂L

log
∏
L∈J

∥F̃ (z)∥∥L∥
| L(F̃ (z)) |

−HY (u) log ∥F̃ (z)∥

)

+ d log ∥f̃(z)∥+ (2n+ 1)δ

u

∑
1≤i≤n0
0≤j≤n

log
∥f̃(z)∥d∥Pi,j∥
| Pi,j(f̃)(z) |

+O(
1

u
).

(4)

Since {Pi,0 = · · · = Pi,n = 0} ∩ V = ∅ for 1 ≤ i ≤ n0, by Lemma 2, we get

(5) eY (cz) ≥ (ci,0,z + · · ·+ ci,n,z) · δ =

 ∑
0≤j≤n

log
∥f̃(z)∥d∥Pi,j∥
| Pi,j(f̃)(z) |

 · δ.

From (1),(4) and (5),we obtain

1

∆
log

q∏
i=1

∥f̃(z)∥d

| Qi(f̃)(z) |
≤ n+ 1

uHY (u)

(
max
J⊂L

log
∏
L∈J

∥F̃ (z)∥∥L∥
| L(F̃ (z)) |

−HY (u) log ∥F̃ (z)∥

)

+ d(n+ 1) log ∥f̃(z)∥+ (2n+ 1)(n+ 1)δ

u

∑
1≤i≤n0
0≤j≤n

log
∥f̃(z)∥d∥Pi,j∥
| Pi,j(f̃)(z) |

+O(
1

u
).

(6)
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 13

By Lemma 2.3, for any ϵ′ > 0, r > s > 0 large enough, we have

∥
∫
M⟨r⟩

max
J⊂L

log
∏
L∈J

∥F̃ (z)∥∥L∥
| L(F̃ (z)) |

σ ≤ (HY (u) + ϵ′)TF (r.s)−NRamF (r, s)

+ (
HY (u)(HY (u)− 1)

2
+ ϵ′)(m(L; r, s) +Ricp(r, s) + κ log+ Y(r2) + κ log+ r).

(7)

where maximum is taken over all subsets J ⊂ L with #J = HY (u) and {L | L ∈
J } are linearly independent.

However,In order to take integration over M⟨r⟩, we now encounter a problem,

that is, the functions log ∥F̃ (z)∥ and log ∥f̃(z)∥ are usually not globally defined.
Hence, we use the concept of ‘reduced representation sections’ of F and f (see [11])
to avoid this difficulty. We only do this for F in detail, as the case for f is similar
(ref. [4]).

Set {F̃α, Uα} to be a system of local reduced representations of F̃ such that, on
Uα ∩ Uβ ̸= ∅, we have

F̃α = hαβF̃β

for a non-vanishing holomorphic function hαβ : Uα ∩Uβ → C∗. Then, {hαβ} forms
a basic cocycle so that there exists a holomorphic line bundle HF on M , with a
holomorphic frame atlas {sαF , Uα} such that, on Uα ∩ Uβ ̸= ∅, we have

sαF = hβαs
β
F ,

which is called the hyperplane section bundle of F . Now, define a holomorphic
section

F̃ ⋆
α(z) := (z, F̃α(z)) ∈ Γ (Uα,M × Cnu+1).

Hence, there is a global holomorphic section χ ∈ Γ (M, (M ×Cnu+1)⊗HF ), called

the standard reduced representation section of F, such that χ |Uα
= F̃ ⋆

α ⊗ sFα .
Set ζ1 to be the standard Hermitian metric along the fibres of the trivial bundle

M ×Cnu+1 and ℘1 to be a Hermitian metric along the fibres of HF . Then, we can
apply our Green–Jensen formula to the function log ∥χ∥ζ1⊗℘1to get

(8) TF (r, s)−THF
(r, s) =

∫
M⟨r⟩

log ∥F∥ζ1 ⊗∥sF ∥℘1
σ−

∫
M⟨s⟩

log ∥F∥ζ1 ⊗∥sF ∥℘1
σ

where THF
(r, s) is defined via the pull-back of the first Chern form on (HF , ℘1).

Analogously,

(9) Tf (r, s)− THf
(r, s) =

∫
M⟨r⟩

log ∥f∥ζ2 ⊗ ∥sf∥℘2σ −
∫
M⟨s⟩

log ∥f∥ζ2 ⊗ ∥sf∥℘2σ.

The construction of F leads to

(∥F∥ζ1) |Uα
= (∥f∥ζ2) |Uα

.

Thus THF
(r, s) = duTHf

(r, s). Combining with (8) and (9), yields

TF (r, s) = duTf (r, s).
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14 H.Z CAO, L. WANG

Taking integral of (6) and combining it with (7), we have

∥1
d

q∑
j=1

mf (r,Dj) ≤ ∆(n+ 1)Tf (r, s)−
∆(n+ 1)

udHY (u)
NRamF (r, s) + ϵ′

∆(n+ 1)

HY (u)
Tf (r, s)

+
∆(n+ 1)

udHY (u)

(
HY (u)(HY (u)− 1)

2
+ ϵ′

)
(m(L; r, s) +Ricp(r, s) + κ log+ Y(r2)

+ κ log+ r) +
∆(2n+ 1)(n+ 1)δ

ud

∑
1≤i≤n0
0≤j≤n

mf (r, Pi,j) +O(1).

(10)

Using the First Main Theorem, for r large enough, we assume Tf (r, s) ≥ 1, then

∑
1≤i≤n0
0≤j≤n

mf (r, Pi,j) ≤d

(n+ 1)n0Tf (r, s) +
1

d

∑
1≤i≤n0
0≤j≤n

mf (s, Pi,j)



≤ d

(n+ 1)n0 +
1

d

∑
1≤i≤n0
0≤j≤n

mf (s, Pi,j)

Tf (r, s)

Now we choose u ≥ u0 large enough and ϵ′, such that

∆(2n+ 1)(n+ 1)δ

u0

(n+ 1)n0 +
1

d

∑
1≤i≤n0
0≤j≤n

mf (s, Pi,j)

 <
ϵ

4
,

ϵ′
∆(n+ 1)

HY (u0)
<

ϵ

4
.

(11)

Denote c = max{1, ∆(n+1)
udHY (u0)

(
HY (u0)(HY (u0)−1)

2 + ϵ′
)
}. Using First Main Theorem

and combining (10) and (11), notice NRamF (r, s) ≥ 0, then

∥(q −∆(n+ 1)− ϵ)Tf (r, s) ≤
q∑

j=1

1

d
N(r, s;Dj) + c(m(L; r, s) +Ricp(r, s)

+ κ log+ Y(r2) + κ log+ r).

(12)

Now, for the general case where Di(1 ≤ i ≤ q) is of the degree di, then all

D
d
di are of the same degree d(1 ≤ i ≤ q), where d is the l.c.m of dj , j = 1, . . . , q.

Applying the above result, the theorem is proved.

4. The proof of main theorem (II)

Proof. We can replace Di(1 ≤ i ≤ q) by D
d
di if necessary, where d is the l.c.m

of dj , j = 1, . . . , q, we may assume that D1, . . . , Dq have the same degree of d.
From (10), we need estimate the quantity NRamF (r, s). Without loss of gener-

ality, we may assume that z ∈ S(1), where I1 = (1, . . . , q) and moreover

θD1

f ≥ θD2

f ≥ · · · ≥ θ
Dq

f
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GENERALIZATIONS OF DEGENERACY SECOND MAIN THEOREM 15

where θ
Dj

f (z) = div(Qj(f̃))(z), j = 1, . . . , q. Since
⋂l1+1

j=1 Dj ∩ V = ∅, then

div(Qj(f̃))(z) = 0 for j ≥ l1 + 1. Set

ci,j = max{0, div(Pi,j(f̃))(z)− nu}

and

c = (c1,0, . . . , c1,n, . . . , cn0,0, . . . , cn0,n) ∈ Zl
≥0.

Then there are

ai = (ai,1,0, . . . , ai,1,n, . . . , ai,n0,0, . . . , ai,n0,n) ∈ {1, . . . , ξu}.

such that ya1 , . . . ,yaHY (u) is a basic of C[y1, . . . , yl]u/Iu(Y ) and

SY (u, c) =

HY (u)∑
i=1

ai · c.

Similarly as above, we write yai = Li(ϕ1, ϕ̇HY (u)), where L1, . . . , LHY (u) are inde-
pendent linear forms in variables yi,j(1 ≤ i ≤ n0, 0 ≤ j ≤ n). For any divisor ν on
M , we denote νu by a divisor such that νu(z) = minu, ν(z). Then we see

div(Li(F̃ ))(z)−divnu(Li(F̃ ))(z) ≥
∑

1≤j≤n0
0≤s≤n

ai,j,s(div(Pj,s(f̃))− divnu(Pj,s(f̃)))

=
∑

1≤j≤n0
0≤s≤n

ai,j,s max{0, div(Pj,s(f̃))(z)− nu} = ai · c.

Using Lemma 2.4, we get

SY (u, c) ≤
HY (u)∑
i=1

div(Li(F̃ ))(z)− divnu(Li(F̃ ))(z) ≤ divF̃nu
(z).

Since
⋂n

j=0 P1,j ∩ V = ∅, then by Lemma 2.2, we have

eY (c) ≥ δ ·
n∑

j=0

c1,j = δ ·
n∑

j=0

max{0, div(P1,j(f̃))(z)− nu}.

On the other hand, by Lemma2.1, we obtain

SY (u, c) ≥
uHY (u)

(n+ 1)δ
eY (c)− (2n+ 1)δHY (u) max

1≤i≤n0
0≤j≤n

ci,j

≥uHY (u)

n+ 1

n∑
j=0

max{0, div(P1,j(f̃))(z)− nu}

− (2n+ 1)δHY (u) max
1≤i≤n0
0≤j≤n

div(Pi,j(f̃))(z).

Thus

divF̃nu(z) ≥
uHY (u)

n+ 1

n∑
j=0

max{0, div(P1,j(f̃))(z)− nu}

− (2n+ 1)δHY (u) max
1≤i≤n0
0≤j≤n

div(Pi,j(f̃))(z).
(13)
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16 H.Z CAO, L. WANG

Since div(P1,j(f̃))(z) ≥ div(QI1(t1,j)(f̃))(z) for all 0 ≤ j ≤ n and I1(t1,j) = t1,j +
1, P1,0 = D1, therefore

∆

n∑
j=0

max{0, div(P1,j(f̃))(z)− nu} ≥ ∆

n∑
j=0

max{0, div(QI1(t1,j)(f̃))(z)− nu}

≥
n∑

j=0

(t1,j+1 − t1,j)max{0, div(QI1(t1,j)(f̃))(z)− nu}

≥
l1∑
i=0

max{0, div(QI1(j)(f̃))(z)− nu} =

q∑
i=1

max{0, div(Qj(f̃))(z)− nu}.

Combining this inequality and (13), we have

divF̃nu(z) ≥
uHY (u)

(n+ 1)∆

q∑
i=1

max{0, div(Qj(f̃))(z)− nu}

− (2n+ 1)δHY (u) max
1≤i≤n0
0≤j≤n

div(Pi,j(f̃))(z)

≥ uHY (u)

(n+ 1)∆

q∑
i=1

(
div(Qj(f̃))(z)−min{nu, div(Qj(f̃))(z)}

)
− (2n+ 1)δHY (u) max

1≤i≤n0
0≤j≤n

div(Pi,j(f̃))(z).

Thus

∆(n+ 1)

udHY (u)
NRamF (r, s) ≥

q∑
j=1

1

d
[N(r, s;Dj)−Nnu(r, s;Dj)]

− ∆(n+ 1)(2n+ 1)δ

ud
max

1≤i≤n0
0≤j≤n

N(r, s;Pi,j).

(14)

By (10), (14) and the First Main Theorem, we get

∥ (q −∆(n+ 1))Tf (r, s)

≤
q∑

j=1

1

d
Nnu(r, s;Dj) +

(
ϵ′
∆(n+ 1)

HY (u)
+

∆(2n+ 1)(n+ 1)lδ

u

)
Tf (r, s)

+
∆(n+ 1)

udHY (u)

(
HY (u)(HY (u)− 1)

2
+ ϵ′

)
(m(L; r, s) +Ricp(r, s) + κ log+ Y(r2)

+ κ log+ r) +O(1).

We now choose u is the smallest integer such that

u > ∆(2n+ 1)(n+ 1)lδϵ−1

and

ϵ′ =
HY (u)

∆(n+ 1)

(
ϵ− ∆(2n+ 1)(n+ 1)lδ

u

)
> 0.
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Hence

∥ (q −∆(n+ 1)−ϵ)Tf (r, s) ≤
q∑

j=1

1

d
Nnu(r, s;Dj)

+ c(m(L; r, s) +Ricp(r, s) + κ log+ Y(r2) + κ log+ r).

where c ≥ {1, ∆(n+1)
udHY (u)

(
HY (u)(HY (u)−1)

2 + ϵ′
)
} and

nu =

(
HY (u)− 1 ≤ δ(n+ u

n) ≤ dn deg(V )en(1 + u
n )

n

)
≤dn deg(V )en(∆(2n+ 4)lδϵ−1)n

≤deg(V )n+1endn
2+n∆n(2n+ 4)nlnϵ−n = M0.

The theorem is proved.
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