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AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING
SPACES

CHONG SHEN, QINGYU HE, XIAOYONG XI, AND DONGSHENG ZHAO

ABSTRACT. Heckmann first introduced and studied the Us-admitting spaces, which are defined similarly
to the extensively studied well-filtered spaces. In [6], he posed the problem: is the upper space of a
Us-admitting space still Us-admitting? In this paper, we prove that a T0 space is Us-admitting if and
only if its upper space is Us-admitting, thus giving a positive answer to Heckmann’s problem. We
then carry out a systematic investigation on Us-admitting spaces, using the new machinery employed
in studying the well-filtered spaces in the past few years. The main results include (i) a T0 space is
Us-admitting if and only if each closed Us-subset is the closure of a singleton; (ii) the locally finitary
compact Us-admitting spaces are exactly the quasi-continuous dcpos with the Scott topology; (iii) the
category of all Us-admitting spaces is reflective in the category of all T0 spaces; (iv) a T1 space X is
well-filtered if and only if its Xi-Zhao dcpo model D(X) is Us-admitting, which strengthens an existing
result of the third and the fourth authors. These results reveal that the Us-admitting spaces form a
well-behaved class, lying between the classes of well-filtered spaces and d-spaces.

1. Introduction

The primary motivation for the study of domains, which was initiated by Dana Scott in the late 1960s,
was to search for a denotational semantics of lambda calculus. Domain theory also provides a platform
to study the interlinks between topology and order. The Us-admitting spaces were introduced by
Heckmann in [6], to provide an alternative novel type of upper power domains. The new power domain
is defined by strongly compact sets, which contain fewer elements than the classical ones known as
compact saturated sets. The Us-admitting space is defined in a very similar manner as the well-filtered
spaces. The well-filtered spaces form a class of non-Hausdorff spaces, lying between those of sober
spaces and d-spaces. In the past few years, the research on well-filtered spaces has made significant
progress. The following are some of the newly obtained results on well-filtered spaces:

(i) well-filtered spaces can be completely determined by KF-sets [12, 20];
(ii) every core-compact well-filtered space is sober [10];

(iii) the category of well-filtered spaces is reflective in T0 spaces [15];
(iv) a space is well-filtered if and only if its upper space is well-filtered [17, 21].

The main aim of this paper is to carry out a systematic study on Us-admitting spaces using the
machinery invented in the study of well-filtered spaces.
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Here is the outline of our paper.
In Section 3, we introduce the notion of Us-set, and use it to give a characterization for Us-admitting

spaces: a T0 space X is Us-admitting if and only if every Us-set in X is the closure of a singleton.
In addition, we show that the locally finitary compact Us-admitting spaces are exactly the quasi-
continuous dcpos with the Scott topology, which strengthens an existing result in [4, Exercise 8.3.39].
Lastly, by verifying Keimel and Lawson’s K-conditions [8], we prove that the category of Us-admitting
spaces is a full reflective subcategory of the category of T0 spaces with continuous mappings.

In [6], Heckmann asked

• whether the upper power space of a Us-admitting space is again Us-admitting (see [6, Section
4.6]).

In Section 4, by employing the Us-sets introduced in Section 3, we give a positive answer to Heck-
mann’s question. More precisely, we will prove that a T0 space is Us-admitting if and only if its upper
space Ps(X) is Us-admitting.

In domain theory, one of the most important topologies on posets is the Scott topology. The Scott
topology is merely T0 in general (it is T1 if and only if it is discrete). However, for each poset P, the
subspace Max(P) of the Scott space of P, consisting of all maximal points of P, is always T1. A poset
model of a topological space X is a poset P such that Max(P) is homeomorphic to X [9]. In [23], it
was proved that for every T1 space X , one can construct a dcpo model D(X) (it is called the Xi-Zhao
model by some authors). Recently, Shen, Wu and Zhao [11] proved that D(X) is a weak domain.
In addition, several researches showed that D(X) preserves many properties of X , such as sobriety,
well-filteredness, Baire property, Choquet completeness and weak sobriety (see [1, 5, 17, 23]), et al.
In addition, Chen and Li [1] constructed a T1 space X whose dcpo model D(X) is not Us-admitting.
Therefore, one naturally has the following question:

• Under what conditions, is D(X) Us-admitting?

In the last section, we present a sufficient and necessary condition for D(X) to be Us-admitting,
answering the above question:

• a T1 space X is well-filtered if and only if D(X) is Us-admitting,

which improves an existing result in [17].
The results presented in this paper demonstrate that Us-admitting spaces behave well and enjoy rich

properties similar to those of sober spaces and well-filtered spaces.

2. Preliminaries

In this section, we introduce some basic concepts and results that will be used later. For more details,
we refer the readers to [3, 4].

Let P be a poset. For any subset A of a poset P, we use the following standard notations:

↑A = {y ∈ P : ∃x ∈ A,x ≤ y}; ↓A = {y ∈ P : ∃x ∈ A,y ≤ x}.

For each x ∈ X , we write ↑x = ↑{x} and ↓x = ↓{x}. A subset A of P is called a lower (resp., upper) set
if A = ↓A (resp., A = ↑A).
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A nonempty subset D of P is directed if every two elements in D have an upper bound in D. P is
called a directed complete poset, or a dcpo for short, if for any directed subset D ⊆ P, the supremum∨

D of D exists.
For x,y ∈ P, x is way-below y, denoted by x ≪ y, if for any directed subset D of P with

∨
D existing,

y ≤
∨

D implies x ≤ d for some d ∈ D. Denote ↠x = {y ∈ P : x ≪ y} and ↞x = {y ∈ P : y ≪ x}. A
poset P is continuous, if for any x ∈ P, the set ↞x is directed and x =

∨

↞x. A continuous dcpo is also
called a domain. An element x is compact in P if x ≪ x. We use K(P) to denote the set of all compact
elements of P. We call P algebraic if for each x ∈ P, the set ↓x∩K(P) is directed whose supremum is
x.

A subset U of P is Scott open if (i) U = ↑U and (ii) for any directed subset D of P for which
∨

D
exists,

∨
D ∈ U implies D∩U ̸= /0. All Scott open subsets of P form a topology, called the Scott

topology on P, denoted by σ(P). The space ΣP = (P,σ(P)) is called the Scott space of P.
Let X be a T0 space. A subset A of X is called saturated if A equals the intersection of all open sets

containing it. The specialization order ≤ on X is defined by x ≤ y if and only if x ∈ cl({y}), where cl
is the closure operator. It is important to note that a subset A of X is saturated if and only if A = ↑A
with respect to the specialization order.

Remark 2.1 ([3, 4]). (1) For a poset P, the specialization order of (P,σ(P)) coincides with the order
of P. If P is continuous, then { ↠x : x ∈ P} forms a base for σ(P).

(2) Every open (resp., closed) set is an upper (resp., lower) set. In particular, cl({x}) = ↓x holds for
every x ∈ X in the specialization order.

(3) For each subset K of X , K is compact if and only if ↑K is compact .

Definition 2.2 ([6]). A subset K of a T0 space X is strongly compact if for each open set O with K ⊆ O,
there is a finite set F ⊆ X such that K ⊆ ↑F ⊆ O.

Proposition 2.3 ([6]). Let X be a T0 space, and A,B ⊆ X.

(1) Every finite set is strongly compact, and every strongly compact set is compact.
(2) The set A is strongly compact if and only if ↑A is so.
(3) If A and B are strongly compact, then so is A∪B.
(4) The continuous image of a strongly compact set is also strongly compact.

For a T0 space X , A ⊆ X , and F ⊆ 2X , we shall use the following notations:

O(X), the family of all open subsets of X ;
C (X), the family of all closed subsets of X ;
Qs(X), the family of all strongly compact saturated subsets of X ;
Q∗

s (X), Qs(X)\{ /0};
M (F ), the family {C ∈ C (X) : ∀F ∈ F ,C∩F ̸= /0};
m(F ), the family of all minimal members in (M (F ),⊆).

Definition 2.4 ([3, 4]). Let X be a T0 space. A nonempty subset A of X is called irreducible if for any
closed sets F1, F2 of X , A ⊆ F1 ∪F2 implies A ⊆ F1 or A ⊆ F2. The space X is called sober if every
irreducible closed subset of X is the closure of a (unique) point.
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The following results on irreducible sets are well-known and will be used in the sequel.

Lemma 2.5. Let X be a T0 space and Y a subspace of X. The following statements are equivalent for
a subset A ⊆ Y :
(1) A is an irreducible subset of Y ;
(2) A is an irreducible subset of X;
(3) clX(A) is an irreducible subset of X.

Definition 2.6 ([3, 4]). A T0 space X is called well-filtered if for any filtered family F of compact
saturated sets in X and U ∈ O(X),

⋂
F ⊆U implies K ⊆U for some K ∈ F .

Definition 2.7 ([16]). A T0 space X is called a d-space, if X is a dcpo and every open subset of X is
Scott open in the specialization order.

Remark 2.8. (1) Every sober space is well-filtered, and every well-filtered space is a d-space [3, 4].
(2) A T0 space is a d-space if and only if for each directed set D in X with respect to the specialization

order, there is x ∈ X such that cl(D) = ↓x [20, Proposition 3.3].

The following result, derived from the Topological Rudin Lemma (see Lemma 3.1 in [7]), will be
used in the paper.

Lemma 2.9 ([7]). Let X be a T0 space, C a closed subset of X and F a filtered family of compact
saturated sets in X. Every closed set C ∈ M (F ) contains a subset A ∈ m(F ). In addition, every
member in m(F ) is irreducible.

3. The reflectivity of Us-admitting spaces

The notion of Us-admitting space introduced by Heckmann [6] is originally defined for Scott spaces of
dcpos. It can be generalized to T0 spaces naturally.

Definition 3.1 ([6]). A T0 space is called Us-admitting if for any filtered family F of strongly compact
saturated sets and any open set U in X ,

⋂
F ⊆U implies K ⊆U for some K ∈ F .

It is an immediate conclusion that every well-filtered space is Us-admitting.

Proposition 3.2. If X is a Us-admitting space, then (Q∗
s (X),⊇) is a dcpo.

Proof. Suppose F is a filtered family of Q∗
s (X). It suffices to prove

⋂
F ∈ Q∗

s (X). If
⋂

F = /0,
then since X is Us-admitting, we have that K = /0 for some K ∈ F , contradicting the fact that
F ⊆ Qs(X)\{ /0}. Hence,

⋂
F is nonempty. In addition, if W is an open neighborhood of

⋂
F , then

since X is Us-admitting, there is K0 ∈ F such that K0 ⊆W , since K0 is strongly compact, there is a
finite subset F of X such that K0 ⊆ ↑F ⊆ W . Hence,

⋂
F ⊆ K0 ⊆ ↑F ⊆ W . Thus,

⋂
F is strongly

compact, and it is saturated since all members of F are saturated. Therefore,
⋂

F ∈ Q∗
s (X). □

It is easy to verify that in a T1 space, the strongly compact sets are exactly the finite sets. Thus, we
have the following.

Proposition 3.3. Every T1 space is Us-admitting.
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AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 5

It is known that every locally compact well-filtered space is sober, as proven in [4, Proposition 8.3.8];
every first-countable well-filtered space is sober, as proved in [18, Theorem 4.2] or [19, Theorem 6.7].
However, it should be noted that these two conclusions on well-filtered spaces cannot be generalized to
Us-admitting spaces, as demonstrated by the following example.

Example 3.4. Let Nco f be the set of natural numbers equipped with the cofinite topology (the open sets
are empty set and the complement of finite sets). Then, Nco f is a locally compact and first-countable
T1 space, hence is Us-admitting by Proposition 3.3. But Nco f is not sober since N itself is irreducible
closed but does not equal to the closure of some singleton.

Definition 3.5 ([4, Exercise 5.1.42]). A topological space X is locally finitary compact (also called
multi-continuous in [6]) if for every x ∈ X and every open neighborhood U of x, there is a finite subset
F of X such that x ∈ (↑F)o ⊆ ↑F ⊆U .

Proposition 3.6. Every locally finitary compact Us-admitting space is sober.

Proof. Assume that X is a locally finitary compact and Us-admitting space. Let A be an irreducible
closed subset of X and

FA := {↑F : F is a finite subset of X ,(↑F)o ∩A ̸= /0}.

Claim: FA is a filtered family.
(i) Since A ̸= /0, there is x ∈ A, and since X is locally finitary compact, there is a finite subset F of X

such that x ∈ (↑F)o, so x ∈ (↑F)o ∩A ̸= /0. It follows that ↑F ∈ FA. Thus, FA ̸= /0.
(ii) Let F1,F2 be two finite subsets of X such that (↑F1)

o ∩A ̸= /0 and (↑F2)
o ∩A ̸= /0. Since A is

irreducible, there is x ∈ (↑F2)
o ∩ (↑F2)

o ∩A ̸= /0. Since X is locally finitary compact, there exists a
finite subset F3 of X such that x ∈ (↑F3)

o ⊆ ↑F3 ⊆ (↑F2)
o ∩ (↑F2)

o. Note that x ∈ (↑F3)
o ∩A ̸= /0, so

↑F3 ∈ FA. Hence, FA is a filtered family.

Since X is Us-admitting, there is x0 ∈ A∩
⋂

FA ̸= /0. We show that A = cl({x0}). It is clear that
cl({x0}) ⊆ A. Now suppose x ∈ A. For each open neighborhood U of x, since X is locally finitary,
there is a finite subset F of X such that x ∈ (↑F)o ⊆ ↑F ⊆U , which implies that x ∈ (↑F)o ∩A ̸= /0, so
↑F ∈ FA. It follows that x0 ∈

⋂
FA ⊆ ↑F ⊆U . This implies that x ∈ cl({x0}). Then, A ⊆ cl({x0}).

Thus A = cl({x0}). Therefore, X is sober. □

A remarkable result in domain theory is that locally finitary compact sober spaces are exactly the
Scott space of quasi-continuous dcpos [4, Exercise 8.3.39]. Thus, by Proposition 3.6 we have the
following corollary.

Corollary 3.7. The locally finitary compact Us-admitting spaces are exactly the quasi-continuous
dcpos with their Scott topology.

Definition 3.8. A nonempty subset A of a T0 space X is called a Us-set, if there is a filtered subfamily
F of Qs(X) such that cl(A) ∈ m(F ).

It should be noted that the Us-sets defined above will play a crucial role in all the proofs in rest of
this section.
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AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 6

Remark 3.9. Let X be a T0 space, and A ⊆ X .
(1) It is clear that A is a Us-set if and only if cl(A) is a Us-set.
(2) Every Us-set is irreducible by Lemma 2.9.
(3) If A is directed with respect to the specialization order of X , then it is easy to verify that F = {↑x :

x ∈ A} is a filtered family of strongly compact saturated sets in X such that cl(A) ∈ m(F ), so A
is a Us-set. Hence, every (closure of a) directed set is a Us-set. In particular, every (closure of a)
singleton is a Us-set.

Lemma 3.10. Let X be a T0 space, and A ⊆ X. Then
⋂

x∈A ↑x =
⋂

x∈cl(A) ↑x.

Proof. For each y ∈ X , we have the following:

y ∈
⋂

x∈A ↑x ⇔ ∀x ∈ A,x ≤ y
⇔ A ⊆ ↓y
⇔ cl(A)⊆ ↓y
⇔ ∀x ∈ cl(A),x ≤ y
⇔ y ∈

⋂
x∈cl(A) ↑x,

which implies that
⋂

x∈A ↑x =
⋂

x∈cl(A) ↑x. □

Theorem 3.11. For every T0 space X, the following statements are equivalent:
(1) X is Us-admitting;
(2) for each Us-set A ⊆ X, there exists x ∈ X such that cl(A) = cl({x});
(3) for each closed Us-set A ⊆ X, there exists x ∈ X such that A = cl({x});
(4) for each Us-set A ⊆ X and U ∈ O(X),

⋂
a∈A ↑a ⊆U implies ↑a ⊆U for some a ∈ A;

(5) for each closed Us-set A ⊆ X and U ∈ O(X),
⋂

a∈A ↑a ⊆U implies ↑a ⊆U for some a ∈ A.

Proof. (1) ⇒ (2): Let A be a Us-set in X . Then, there exists a filtered family F of Qs(X) such that
cl(A) ∈ m(F ). Since X is Us-admitting, it follows that (

⋂
F )∩ cl(A) ̸= /0. Take x ∈ (

⋂
F )∩ cl(A).

Then, cl({x}) is a subset of cl(A) such that cl({x}) ∈ M (F ). Since cl(A) ∈ m(F ), we deduce that
cl(A) = cl({x}).

(2) ⇔ (3): It is trivial by Remark 3.9(1).

(2) ⇒ (4): Since A is a Us-set, there exists x ∈ X such that cl(A) = ↓x, which follows that

↑x =
⋂

a∈↓x

↑a =
⋂

a∈cl(A)

↑a ⊆
⋂
a∈A

↑a ⊆U.

This shows that U is an open neighborhood of x, and since x ∈ cl(A), U ∩A ̸= /0. Take a0 ∈U ∩A, so
↑a0 ⊆U . This gives (4).

(4) ⇔ (5): It is straightforward by Lemma 3.10.

(5) ⇒ (1): Suppose F is a filtered family of Qs(X) and U ∈ O(X) such that
⋂

F ⊆U . We need to
show that K ⊆U for some K ∈ F . Assume, on the contrary, that K ⊈U . Then K∩ (X \U) ̸= /0, for all
K ∈ F . By Lemma 2.9, there exists a closed subset A ⊆ X \U such that A ∈ m(F ). It follows that A
is a Us-set in X , and since A∩U = /0, it holds that ↑a ⊈U for all a ∈ A. Thus by (5),

⋂
a∈A ↑a ⊈U , so

there is y ∈
⋂

a∈A ↑a such that y /∈U . In addition, for each K ∈ F , there is a ∈ A∩K ̸= /0, and since K
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AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 7

is saturated, we deduce that y ∈ ↑a ⊆ K, so y ∈
⋂

F ⊆U , which contradicts the fact that y /∈U . This
implies that K ⊆U for some K ∈ F . Hence, X is Us-admitting. □

By Remarks 2.8, 3.9 and Theorem 3.11, we immediately deduce the following.

Proposition 3.12. Every Us-admitting space is a d-space.

As a summary of Remark 2.8, Propositions 3.3 and 3.12, we have the following relations:

T2 +3

��

T1 +3

��

T0

sober +3 well-filtered +3 Us-admitting +3 d-space

KS

Proposition 3.13. Let X be a T0 space. Then, for each closed set C and each strongly compact set K in
X, C∩K is strongly compact.

Proof. Let U ∈ O(X) such that C ∩K ⊆ U . Then K ⊆ U ∪ (X \C) ∈ O(X). Since K is strongly
compact, there is a finite subset F of X such that K ⊆ ↑F ⊆U ∪ (X \C). Let G = F ∩C. We have the
following two claims.

(i) C ∩K ⊆ ↑G. In fact, let x ∈ C ∩K. Since K ⊆ ↑F , there is a ∈ F such that a ≤ x. Then,
a ∈ ↓x ⊆ ↓C =C, so a ∈ F ∩C = G. Thus, x ∈ ↑a ⊆ ↑G.

(ii) ↑G ⊆U . To verify this, it suffices to prove that G ⊆U because U is an upper set. Let x ∈ G. As
G = F ∩C, x ∈ F ⊆ ↑F ⊆U ∪ (X \C), and from x ∈C, we deduce that x ∈U . Thus, G ⊆U .

Thus, G is a finite set satisfying that C∩K ⊆ ↑G ⊆U . Therefore, C∩K is strongly compact. □

Theorem 3.14. Let f : X −→ Y be a continuous mapping between T0 spaces X and Y . Then, for each
Us-set A in X, f (A) is a Us-set in Y .

Proof. Since A is a Us-set in X , there is a filtered family F of Qs(X) such that clX(A) ∈ m(F ).
For each K ∈ F , let K̂ = ↑ f (K ∩ clX(A)). By Proposition 3.13 and the fact that clX(A) ∈ m(F ), the
intersection K ∩ clX(A) is a nonempty strongly compact set. Since f is continuous, by Proposition 2.3,
the family F̂ =

{
K̂ : K ∈ F

}
is a filtered family of Qs(Y ). To prove f (A) is a Us-set in Y , it suffices

to prove clY ( f (A)) ∈ m(F̂ ). In fact, we have the following.
(i) For each K ∈ F , since f (K ∩ clX(A))⊆ f (clX(A))⊆ clY ( f (A)), it follows that

/0 ̸= f (K ∩ clX(A))⊆ clY ( f (A))∩↑ f (K ∩ clX(A)) = clY ( f (A))∩ K̂,

so clY ( f (A)) ∈ M (F̂ ).
(ii) Now assume C is a closed subset of clY ( f (A)) such that C ∈ M (F̂ ). Then for each K ∈ F ,

it holds that C ∩ ↑ f (K ∩ clX(A)) ̸= /0, and since C is a lower set, we deduce that C ∩ f (K ∩
clX(A)) ̸= /0, which implies that ( f−1(C)∩ clX(A))∩K ̸= /0. Since clX(A) ∈ m(F ), it follows
that f−1(C)∩ clX(A) = clX(A), so clX(A) ⊆ f−1(C). Then we have that f (clX(A)) ⊆ C, so
clY ( f (A)) = clY ( f (clX(A)))⊆C. This implies that clY ( f (A)) ∈ m(F̂ ).

Therefore, f (A) is a Us-set in Y . □
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AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 8

Proposition 3.15. Let X be a T0 space, and A ⊆ Y ⊆ X. If A is a Us-set in the subspace Y , then A is
also a Us-set in X.

Proof. Suppose A is a Us-set in Y . Consider the embedding e : Y −→ X , x 7→ x. Since e is continuous,
by Theorem 3.14, e(A) = A is a Us-set in X . □

Proposition 3.16. Let X be a sober space, Y be a Us-admitting subspace of X, and A ⊆ Y . If A is a
Us-set in Y , then there exists a unique x ∈ Y such that clX(A) = clX({x}).

Proof. Since A is a Us-set in Y and Y is a Us-admitting space, by Theorem 3.11, there exists a
unique y ∈ Y such that clY (A) = clY ({y}). By Remark 3.9, A is an irreducible set in Y , hence is also
irreducible in X . Since X is sober, there exists x ∈ X such that clX(A) = clX({x}). It remains to prove
x = y. First, we have that y ∈ clY (A) = clX(A)∩Y ⊆ clX({x}), so clX({y}) ⊆ clX({x}). In addition,
since A ⊆ clY ({y}) = clX({y})∩Y ⊆ clX({y}), we have that clX({x}) = clX(A) ⊆ clX({y}). Thus
clX({x}) = clX({y}). Since X is T0, we have that x = y ∈ Y . □

Assume K is a full subcategory of the category Top0 of T0 spaces with continuous mappings. Recall
that K is reflective in Top0 if for each X ∈ Top0, there exists a Xk ∈ K and a continuous mapping
ηX : X −→ Xk such that for any continuous mapping f : X −→ Y to a space Y ∈ K, there exists a
unique continuous mapping g : Xk −→ Y such that f = g◦ηX :

X
ηX //

f
&&

Xk

g

��
Y.

Let K be a full subcategory of Top0. In the paper [8], Keimel and Lawson proved that if K satisfies
the following four conditions, then K is a reflective subcategory of Top0:

(K1) K contains all sober spaces;
(K2) if X ∈ K and the space Y is homeomorphic to X , then Y ∈ K;
(K3) if {Xi : i ∈ I} is a family of subspaces of a sober space such that each Xi ∈ K, then the subspace⋂

i∈I Xi ∈ K;
(K4) if X −→Y is a continuous mapping between sober spaces X and Y , then for any subspace Z of Y ,

Z ∈ K implies f−1(Z) ∈ K.

It is well-known that the categories of sober spaces and d-spaces are reflective in Top0. Recently,
Wu, Xi, Xu and Zhao [15] firstly proved that the category of well-filtered spaces satisfies (K1)–(K4);
therefore, it is reflective in Top0. Moreover, Keimel and Lawson’s K-conditions are also proved to
be necessary under some condition, see [2, 13, 14] for more details. Next, by verifying conditions
(K1)–(K4), we will show that the category of Us-admitting spaces is also reflective in Top0.

First, by Remark 2.8, every sober space is Us-admitting, hence the category of Us-admitting spaces
satisfies (K1). In addition, one can easily check that (K2) is also satisfied.

Lemma 3.17 (K3). Let X be a sober space, and {Xi : i ∈ I} be a family of Us-admitting subspaces of
X. Then,

⋂
i∈I Xi is a Us-admitting subspace of X.
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AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 9

Proof. Let X0 =
⋂

i∈I Xi ̸= /0, and A be a Us-set in X0. By Remark 3.9, A is irreducible in X0, hence
is irreducible in X , and since X is sober, there exists x ∈ X such that clX(A) = clX({x}). For each
i ∈ I, by Proposition 3.15, A is a Us-set in Xi, and by Proposition 3.16, there exists xi ∈ Xi such that
clX(A) = clX({xi}). Since X is T0, all xi equals x. We then deduce that x ∈ X0 and clX0(A) = clX0({x}).
By Theorem 3.11,

⋂
i∈I Xi is Us-admitting. □

Lemma 3.18 (K4). Let f : X −→ Y be a continuous mapping between sober spaces X and Y . Then,
for each Us-admitting subspace Z of Y , f−1(Z) is a Us-admitting subspace of X.

Proof. Suppose A is a Us-set in f−1(Z). Then A is an irreducible closed set in f−1(Z), and hence is
irreducible in X . Since X is sober, there exists x ∈ X such that clX(A) = clX({x}). We need to show
that x ∈ f−1(Z). By the continuity of f , we have that

clY ( f (A)) = clY ( f (clX(A))) = clY ( f (clX({x}))) = clY ({ f (x)}).

Note that the restriction f̂ : f−1(Z) −→ Z (∀x ∈ f−1(Z), f̂ (x) = f (x)) of f is continuous. Since
A is a Us-set in f−1(Z), by Theorem 3.14, f̂ (A) = f (A) is a Us-set in Z, and since Z is a Us-
admitting subspace of Y , by Proposition 3.16, there is y ∈ Z such that clY ( f (A)) = clY ({y}). Recall
that clY ( f (A)) = clY ({ f (x)}), and since Y is T0, y = f (x) ∈ Z, so x ∈ f−1(Z). Then we have that
cl f−1(Z)(A) = clX(A)∩ f−1(Z) = clX({x})∩ f−1(Z) = cl f−1(Z)({x}). By Theorem 3.11, f−1(Z) is a
Us-admitting space. □

Now we have proved that the category of Us-admitting spaces satisfies (K1)–(K4), thus we have the
following result.

Corollary 3.19. The category of Us-admitting spaces is a reflective subcategory of Top0.

4. The Smyth power space of a Us-admitting space

For a topological space X , the upper topology on Q∗
s (X) = Qs(X)\{ /0} is generated by the following

family (as a base)
□U = {K ∈ Q∗

s (X) : K ⊆U},
where U ranges over the open subsets of X . The resulting space, denoted by Ps(X), is called the Smyth
power space or the upper space of X .

Remark 4.1. Let X be a T0 space. The following results hold trivially.

(1) The specialization order of Ps(X) is ⊇. Hence, for each A ⊆ Q∗
s (X),

↑Ps(X)A = {K ∈ Q∗
s (X) : K ⊆ G for some G ∈ A }

in the specialization order of Ps(X).
(2) Define ξ : X −→ Ps(X), x 7→ ↑x. Then ξ−1(□U) = U for each U ∈ O(X), and hence ξ is

continuous.
(3) For each A ⊆ Q∗

s (X),
⋂

clPs(X)(A ) =
⋂

A (using a similar proof to [20, Remark 2.12]).

Proposition 4.2. If K is a strongly compact set in Ps(X), then so is
⋃

K in X.
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AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 10

Proof. Suppose U is an open set in X such that
⋃

K ⊆ U . Then K ⊆ □U . Since K is strongly
compact, there is a finite family {S1,S2, . . . ,Sn} ⊆ Q∗

s (X) such that K ⊆ ↑Ps(X){S1,S2, . . . ,Sn} ⊆□U .
Then, for each 1 ≤ k ≤ n, it follows that Sk ⊆ U , and since Sk is strongly compact, there is a finite
subset Fk of X such that Sk ⊆ ↑Fk ⊆U . Let F =

⋃
1≤k≤n Fk.

Claim :
⋃

K ⊆ ↑F ⊆U .
Suppose x ∈

⋃
K . Then there is K0 ∈ K such that x ∈ K0. Since K ⊆ ↑Ps(X){S1,S2, . . . ,Sn}, there

is k0 (1 ≤ k0 ≤ n) such that K0 ⊆ Sk0 . Then, x ∈ K0 ⊆ Sk0 ⊆ ↑Fk0 ⊆ ↑F . Since x is an arbitrary element
of

⋃
K , we have that

⋃
K ⊆ ↑F . In addition, since for each k (1 ≤ k ≤ n), ↑Fk ⊆U , it follows that

↑F =
⋃

1≤k≤n ↑Fk ⊆U . Therefore, the claim holds.

From the claim, we have that
⋃

K is a strongly compact set in X . □

Theorem 4.3. Let X be a T0 space. Then the following conditions are equivalent:

(1) Ps(X) is Us-admitting;
(2) Ps(X) is a d-space;
(3) X is Us-admitting;
(4) for each closed Us-set A in Ps(X) and each U ∈O(X),

⋂
A ⊆U implies K ⊆U for some K ∈A .

Proof. (1) ⇒ (2): It is clear by Proposition 3.12.

(2) ⇒ (3): Suppose F is a filtered family of strongly compact sets in X and U ∈ O(X) such that⋂
F ⊆ U . Then, F is a directed set in Ps(X) with the specialization order ⊇, and since Ps(X) is a

d-space, the supremum
∨

Ps(X)F of F in Ps(X) exists, denoted by K0. It follows that K0 ⊆
⋂

F ⊆U ,
so K0 =

∨
Ps(X)F ∈□U . Since Ps(X) is a d-space, we have that □U is Scott open, there is G0 ∈ F

such that G0 ∈□U , that is, G0 ⊆U . Thus, X is Us-admitting.

(3) ⇒ (4): Suppose
⋂

A ⊆U . Since A is a Us-set, there is a filtered family F = {Ki : i ∈ I} of
strongly compact saturated subsets of Ps(X) such that A ∈ m(F). For each i ∈ I, let K̂i =

⋃
(A ∩Ki).

By Proposition 3.13, A ∩Ki is strongly compact in Ps(X), and by Proposition 4.2 K̂i is strongly
compact in X , and since every element in Ki ∩A is saturated, K̂i is saturated. Thus, {K̂i : i ∈ I} is a
filtered family of Qs(X).

Claim:
⋂

i∈I K̂i ⊆
⋂

A .
Let x ∈

⋂
i∈I K̂i. For each i ∈ I, x ∈ K̂i =

⋃
(A ∩Ki), so there is Gi ∈A ∩Ki such that x ∈ Gi. Then,

clPs(X)({Gi : i ∈ I}) is a closed subset of A that has a nonempty intersection with all elements of F.
Since A ∈ m(F), we have that A = clPs(X)({Gi : i ∈ I}). By Remark 4.1(3), we have that

x ∈
⋂
{Gi : i ∈ I}=

⋂
clPs(X)({Gi : i ∈ I}) =

⋂
A .

Thus, by the arbitrariness of x, we have that
⋂

i∈I K̂i ⊆
⋂

A .

Since
⋂

A ⊆ U , by the above claim
⋂

i∈I K̂i ⊆ U . Since X is Us-admitting, there is i0 ∈ I such
that K̂i0 =

⋃
(A ∩Ki0)⊆U . Since A ∩Ki0 ̸= /0, choose a K0 ∈ A ∩Ki0 . It follows that K0 ⊆U , as

desired.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 May 2023 00:42:22 PDT
220807-Shen Version 2 - Submitted to Rocky Mountain J. Math.



AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 11

(4) ⇒ (1): We prove this conclusion by using Theorem 3.11(5). Suppose A is a Us-set in Ps(X) and
U is an open set in Ps(X) such that

⋂
K∈A ↑Ps(X)K ⊆U . Then there exists a family {Ui : i ∈ I} ⊆O(X)

such that U =
⋃

i∈I □Ui.

Claim 1:
⋂

A is nonempty strongly compact saturated.
The proof of Claim 1 is analogous to that of Proposition 3.2.

Claim 2: there is K ∈ A such that ↑Ps(X)K ⊆ U .
For each K ∈ A , since ↑Ps(X)K = {G ∈ Q∗

s (X) : G ⊆ K}, it follows that
⋂

A ∈
⋂

K∈A ↑Ps(X)K ⊆
U =

⋃
i∈I □Ui. Then, there exists i0 ∈ I such that

⋂
A ∈□Ui0 , that is,

⋂
A ⊆Ui0 . By condition (4),

there exists K0 ∈ A such that K0 ⊆Ui0 . This implies that ↑Ps(X)K0 ⊆□Ui0 ⊆ U .
By Theorem 3.11, we deduce that Ps(X) is Us-admitting. □

5. The Xi-Zhao dcpo model of Us-admitting spaces

For a poset P, we use Maxσ (P) to denote the space of the maximal points set Max(P) with the relative
Scott topology on P. A poset model of a topological space X is a poset P such that Maxσ (P) is
homeomorphic to X .

Observing that topological spaces having a poset model must be T1. Conversely, Xi and Zhao
[22, 23] proved that one can obtain all T1 spaces from the Scott spaces of dcpos by taking the subspaces
of all maximal points, as shown below.

Theorem 5.1 ([22, 23]). Every T1 space X has a dcpo model, denoted by D(X).

The following are the main steps of constructing D(X).
(i) Given a T1 space X . Let P be the set of all filters of open sets of X with nonempty intersection.

With the inclusion order ⊆, P is a bounded complete algebraic poset model of X .
(ii) From the above (P,≤P), construct a dcpo P̂ as follows:

P̂ = {(x,e) : x ∈ P,e ∈ Max(P) and x ≤P e},

and (x,e)≤ (y,d) in P̂ iff either e = d and x ≤P y, or y = d and x ≤P d.
(iii) Then, Max(P̂) = {(e,e) : e ∈ Max(P)} and the mapping h : Maxσ (P) −→ Maxσ (P̂), where

h(e) = (e,e) for each e ∈ Max(P), is a homeomorphism.
(iv) Thus, D(X) = P̂ is a dcpo model of X , called the Xi-Zhao model of X .

Remark 5.2 ([23]). For a bounded complete algebraic poset P, if D is a directed subset of P̂ and it
does not have a largest element, then there is e ∈ Max(P) and a directed subset {xi : i ∈ I} of P such
that D = {(xi,e) : i ∈ I}, and in this case,

∨
D = (

∨
i∈I xi,e).

Recently, Chen and Li [1] provided an example of a Us-admitting T1 space X such that D(X) is not
Us-admitting. Since every T1 space is Us-admitting (see Proposition 3.3), their result can be restated
as follows:

Proposition 5.3 ([1]). The Xi-Zhao dcpo model of a T1 space need not be Us-admitting.

Thus, a naturally question is:
• for what spaces X , are D(X) Us-admitting?
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AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 12

We will prove that the Us-admitting property and well-filteredness are equivalent for the Scott space of
D(X).

Lemma 5.4. For a bounded complete algebraic poset (P,≤P), if (x,e) ∈ P̂ and x ∈ K(P), then
↑(x,e)∩Max(P̂) is open in Maxσ (P̂).

Proof. Let U = {(y,d) ∈ P̂ : x ≤P y}. We first prove that U is Scott open in P̂. Suppose (y2,d2) ≥
(y1,d1) ∈ U . Then, x ≤P y1, which follows that (x,d1) ≤ (y1,d1) ≤ (y2,d2). Then, from (x,d1) ≤
(y2,d2) we deduce that x ≤P y2. This means (y2,d2) ∈U . Hence, U is an upper set. Suppose D is a
directed subset of P̂ such that

∨
D ∈U . If D has a largest element, then trivially

∨
D ∈ D ∩U ̸= /0.

Otherwise, D = {(xi,e) : i ∈ I}, where e ∈ Max(P) and {xi : i ∈ I} is a directed subset of P. Then,∨
D = (

∨
i∈I xi,e) ∈U , which follows that x ≤P

∨
i∈I xi. Since x is a compact element in P, there is

i0 ∈ I such that x ≤P xi0 . This means that (xi0 ,e) ∈ D ∩U ̸= /0. All these show that U is a Scott open
subset of P̂.

Now we claim that ↑(x,e)∩Max(P̂) =U ∩Max(P̂). This is trivial since for each (d,d) ∈ Max(P̂),
(d,d) ∈U iff x ≤P d iff (x,e)≤ (d,d).

All the above shows that ↑(x,e)∩Max(P̂) is open in Maxσ (P̂). □

Lemma 5.5. Let P be a bounded complete algebraic poset. Then, every compact set in Maxσ (P̂) is
strongly compact in ΣP̂.

Proof. Suppose K is a compact set in Maxσ (P̂), and U is an open set in ΣP̂ with K ⊆U . Then, for each
(e,e)∈U ∩Max(P̂), since P is algebraic, ↓e∩K(P) is a directed subset of P whose supremum equals e.
Thus, {(x,e) : x ∈ ↓e∩K(P)} is a directed subset of P̂ such that

∨
{(x,e) : x ∈ ↓e∩K(P)}= (e,e) ∈U ,

so there is xe ∈ ↓e∩K(P) such that (xe,e) ∈ U . Thus, by Lemma 5.4, {↑(xe,e)∩Max(P̂) : (e,e) ∈
U ∩Max(P̂)} is a family of open sets in Maxσ (P̂) that covers U ∩Max(P̂), hence covers K. Since
K is compact in Maxσ (P̂), there is a finite subset {(ek,ek) : 1 ≤ k ≤ n} ⊆ U ∩Max(P̂) such that
K ⊆

⋃
1≤k≤n ↑(xek ,ek)∩Max(P̂), which implies that K ⊆ ↑{(ek,ek) : 1 ≤ k ≤ n} ⊆ U . Thus, K is

strongly compact in ΣP̂. □

Lemma 5.6. For a bounded complete algebraic poset P, if P̂ is Us-admitting, then Maxσ (P̂) is
well-filtered.

Proof. Suppose {Ki : i ∈ I} is a filtered family of compact sets in Maxσ (P̂) and U is an open set in
Maxσ (P̂) such that

⋂
i∈I Ki ⊆U . Then, there is a Scott open subset W of P̂ such that U =W ∩Max(P̂).

By Lemma 5.5, {Ki : i ∈ I} is a filtered family of strongly compact saturated sets in ΣP̂ whose
intersection

⋂
i∈I Ki ⊆U ⊆W . Since ΣP̂ is Us-admitting, there is i0 ∈ I such that Ki0 ⊆W . Note that

Ki0 ⊆ Max(P̂), so Ki0 ⊆W ∩Max(P̂) =U . Therefore, Maxσ (P̂) is well-filtered. □

For a T1 space X , applying Lemma 5.6 to the dcpo D(X) we obtain the following result.

Theorem 5.7. For a T1 space X, if D(X) is Us-admitting, then X is well-filtered.

For a T1 space X , it was shown by Xi and Zhao [17] that X is well-filtered if and only if D(X) is
well-filtered. Thus, by Theorem 5.7 we have the following.

Theorem 5.8. For a T1 space X, the following statements are equivalent:
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AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 13

(1) X is well-filtered;
(2) D(X) is well-filtered;
(3) D(X) is Us-admitting.

6. Conclusion

The results in this paper demonstrate that the class of Us-admitting spaces, whose definition makes
use of more special compact saturated sets, enjoy many pleasant properties that are similar to those
of well-filtered spaces and sober spaces. In particular, we prove that the category of all Us-spaces
is reflective in the category of T0 spaces. Moreover, a T0 space is Us-admitting if and only if its
Smyth space is Us-admitting, providing a positive solution to Heckmann’s problem. In summary, the
Us-spaces form a well-behaved class that lies between the class of well-filtered spaces and that of
d-spaces, and they might be used in the study of other non-Hausdorff topological properties.

References

[1] S. Chen and Q. Li, On some topological properties of dcpo models of T1 topological spaces, Resuls Math. 77(2) (2022),
77–92.

[2] Yu. L. Ershov, K-Completions of T0-Spaces, Algebra and Logic 61(4) (2022), 177–187.
[3] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove and D.S. Scott, Continuous Lattices and Domains,

Vol. 93 (Cambridge 2003).
[4] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology, Vol. 22

(Cambridge 2013).
[5] Q. He, X. Xi and D. Zhao, Dcpo models of Choquet complete and Baire spaces, Results Math. 74(3) (2019), 74–87.
[6] R. Heckmann, An upper power domain construction in terms of strongly compact sets, in Brookes, S., Main, M.,

Melton, A., Mislove, M., Schmidt, D. (eds.) Mathematical Foundations of Programming Semantics, pp. 272–293 (
Springer, 1992).

[7] R. Heckmann and K. Keimel, Quasicontinuous domains and the Smyth powerdomain, Electron. Notes Theor. Comp.
Sci. 298 (2013), 215–232.

[8] K. Keimel and J. Lawson, D-topology and d-completion, Ann. Pure Appl. Logic 159 (2009), 292–306.
[9] J. Lawson, Spaces of maximal points, Math. Structures. Comput. Sci. 7(5) (1997), 543–555.

[10] J. Lawson, G. Wu and X. Xi, Well-filtered spaces, compactness, and the lower topology, Houston J. Math. 46(1) (2020),
283–294.

[11] C. Shen, G. Wu and D. Zhao, Weak domain models of T1 spaces, Electron. Notes Theor. Comp. Sci. 345 (2019),
219–232.

[12] C. Shen, X. Xi, X. Xu and D. Zhao, On well-filtered reflections of T0 spaces, Topo. Appl. 267 (2019), 106869.
[13] C. Shen, X. Xi and D. Zhao, The non-reflectivity of open well-filtered spaces via b-topology, Houston J. Math. 48(4)

(2022), 843–854.
[14] C. Shen, X. Xi and D. Zhao, The reflectivity of some categories of T0 spaces in domain theory, Rocky Moun-

tain J. Math. Being prepared for publication. https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-
mathematics/DownloadAcceptedPapers/230116-Shen.pdf

[15] G. Wu, X. Xi, X. Xu and D. Zhao, Existence of well-filtered reflections of T0 topological spaces, Topo. Appl. 270
(2020), 107044.

[16] O. Wyler, Dedekind complete posets and Scott topologies, in Continuous Lattices, Springer, Berlin, Heidelberg, pp.
384–389 (1981).

[17] X. Xi and D. Zhao, Well-filtered space spaces and dcpo models, Math. Struct. Comp. Sci. 4(27) (2017), 507–515.
[18] X. Xu, C. Shen, X. Xi, D. Zhao, First countability, ω-well-filtered spaces and reflections, Topo. Appl. 279 (2020)

107255.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 May 2023 00:42:22 PDT
220807-Shen Version 2 - Submitted to Rocky Mountain J. Math.



AN ANSWER TO AN OPEN PROBLEM OF HECKMANN AND Us-ADMITTING SPACES 14

[19] X. Xu, C. Shen, X. Xi, D. Zhao, First-countability, ω-Rudin spaces and well-filtered determined spaces, Topo. Appl.
300 (2021) 107775.

[20] X. Xu, C. Shen, X. Xi and D. Zhao, On T0 spaces determined by well-filtered spaces, Topo. Appl. 282 (2020), 107323.
[21] X. Xu, X. Xi and D. Zhao, A complete Heyting algebra whose Scott space is non-sober, Fund. Math. 252 (2021),

315–323.
[22] D. Zhao, Poset models of topological spaces, in Proceeding of International Conference on Quantitative Logic and

Quantification of Software, pp. 229–238, (Global-Link Publisher 2009).
[23] D. Zhao and X. Xi, Directed complete poset models of T1 spaces, Math. Proc. Camb. Phil. Soc. 164(1) (2018), 125–134.

CHONG SHEN, SCHOOL OF SCIENCE, BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS, BEIJING,
CHINA 100876; KEY LABORATORY OF MATHEMATICS AND INFORMATION NETWORKS (BEIJING UNIVERSITY OF

POSTS AND TELECOMMUNICATIONS), MINISTRY OF EDUCATION, CHINA.
Email address: shenchong0520@163.com

QINGYU HE, SCHOOL OF MATHEMATICS SCIENCE, YANGZHOU UNIVERSITY, JIANGSU, YANGZHOU, CHINA

225009.
Email address: qyhe@yzu.edu.cn

XIAOYONG XI, SCHOOL OF MATHEMATICS AND STATISTICS, YANCHENG TEACHERS UNIVERSITY, JIANGSU,
YANCHENG, CHINA 224002.

Email address: xixy@yctu.edu.cn

DONGSHENG ZHAO, MATHEMATICS AND MATHEMATICS EDUCATION, NATIONAL INSTITUTE OF EDUCATION,
NANYANG TECHNOLOGICAL UNIVERSITY, 1 NANYANG WALK, SINGAPORE 637616.

Email address: dongsheng.zhao@nie.edu.sg

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 May 2023 00:42:22 PDT
220807-Shen Version 2 - Submitted to Rocky Mountain J. Math.


	1. Introduction
	2. Preliminaries
	3. The reflectivity of Us-admitting spaces
	4. The Smyth power space of a Us-admitting space
	5. The Xi-Zhao dcpo model of Us-admitting spaces
	6. Conclusion
	References

