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ABSTRACT. Our aim in this paper is to deal with Fréchet-Kolmogorov compactness of
Riemann-Liouville tempered fractional integrals on Lebesgue spaces and other related
compactness properties associated to the behavior of « € (0,1). Moreover, we consider some
boundedness properties for the 1-tempered fractional integrals on Lebesgue spaces.

1. INTRODUCTION

Integral operators play a key role in several areas of mathematics, such as the theory of
Fourier series and Fourier integrals, approximation theory and the theory of linear as well as
nonlinear ordinary and partial differential equations.

Integral operators appear naturally with various kernels as fundamental solutions in the
construction of the general solutions for a wide range of differential equations [3,4]. One type
of integral operator of particular interest is the so-called tempered fractional integrals which
belongs to tempered fractional calculus field. Mathematically, tempered fractional calculus
is of interest as the unique intersection between weighted fractional calculus and fractional
calculus with analytic kernels [4]. In modeling, tempered fractional calculus it has been used
to understand turbulence in geophysical flows and Lévy processes such as Brownian motion.
Especially the stochastic applications, such as tempered Lévy flights, have led to a great deal of
advanced mathematical research including solving multi-dimensional PDEs by both analytical
and numerical methods [1,7,10,15].

In this paper we employ some relatively simple techniques from functional analysis to prove
some important compactness results for Riemann-Liouville tempered fractional integrals. The
compactness results are of interest because they have a significant role in the proof of existence
of solution for nonlinear differential equations. More precisely we consider the following results:

Theorem 1.1. Let a € (0,1), 0 > 0 and p € [1,00). Then the Riemann-Liouville tempered
fractional integrals 177, 1,°7 - LP(a,b) — LP(a,b) are compact.
Theorem 1.2. Let o € (0, %) and o > 0. The Riemann-Liouville tempered fractional integrals

1%, 12 : LP(a,b) — L9(a,b) are compact for every q € [1,p},), where p}, = £

at ? b~ ap
Theorem 1.3. Let o = % and o > 0. Then, the Riemann-Liouville tempered fractional
integrals 177, 1,27 LP(a,b) — L9(a,b) are compact for every q € [1,00).

Finally, in the particular case p = 2 we prove that:

Theorem 1.4. Let o € (%, 1) and o > 0. The Riemann-Liouville tempered fractional integrals
17, 1,27 : L*(a,b) — Cla, b] are compact.
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On the other hand, we study some boundedness result considering the -tempered fractional
integrals which is a generalization of the Riemann-Liouville tempered fractional integrals.
Recently Fahad et al [5] investigated tempered and Hadamard-type fractional calculi together,
and the generalization of both which is given by taking the operators with respect to an
arbitrary monotonic function. Such a generalization can be thought of as 1-tempered fractional
calculus, and it is a special case both of fractional calculus with analytic kernels with respect
to functions and of weighted fractional calculus with respect to functions, for more detail
see [3,4,8,11]. To state our main results in this direction, let € (0,1), o > 0 and let
Y : [a,b] — R be a C! function such that ¥/ > 0 on [a,b]. Then the tempered fractional
integral of order v and index o with respect to v is defined as

a,0 1 z a— . z)— s
107, 0(0) = a7 [ 60— b)),
Considering this integral we have the following results.

Theorem 1.5. Let « € (0,1), 0 > 0 and p € [1,00]. Suppose that i)' : [a,b] — R is an
increasing function, then, the tempered fractional integral Hgf v LP(a,b) — LP(a,b) is bounded.

Horeoner (@, o (6 (b) — (a))
«,0 ’ya70-¢ - a
"]Ia+,1/)u||Lp(a7b)§ UQF(O{) ||uHLp((l,b)

Theorem 1.6. Let p > 1, 0 > 0, a € (0, %) and suppose that 1’ is an increasing function
on [a,bl], then, the tempered fractional integral H?Llfd, : LP(a,b) — L%(a,b) is bounded for every
qc [17 J;ap)

Theorem 1.7. Let a = }% and o > 0. Suppose that ¢’ is an increasing function on [a,b], then,

1
the tempered fractional integral ]Igfqp : LP(a,b) — L%(a,b) is bounded for every q € [1,00).

Finally we consider the case p =2 and «a € (%, 1) and we suppose a technical condition on
1. More precisely we have.

Theorem 1.8. Let o € (%, 1) and o > 0. Suppose that 1 is a Lipschitz function on [a,b] that
18, there is a positive constant L such that

|¢($1) - 1/}(352)! < L|CU1 — 1’2‘7 Vxi,z9 € [a, b].

Moreover suppose that v is an increasing function on [a, b], then the tempered fractional integral
H2‘f¢ : L%(a,b) — H“_%[a, b) is bounded. Furthermore

lim ]Iaf:qbu(x) =0.

z—at @
Here H‘)‘_%[a, b) denotes tha Hélder space of order a — & > 0.

This paper is organized as follows. In Section 2, the lower gamma incomplete function,
Riemann-Liouville tempered fractional integrals are introduced briefly along with some
boundedness results of Riemann-Liouville tempered fractional integrals. Section 3 present
some compactness results of Riemann-Liouville tempered fractional integrals Our results in
this section are based on Arzeld-Ascoli and Fréhet-Kolmogorov compactness theorems. Finally,
in section 4 we deal with the i-tempered fractional integral, under some suitable conditions
over function 1 we are able to show some boundedness on Lebesgue spaces. We note that our
results obtained in section 3 and section 4 are very general which will include some specific
cases such as the well-known Riemann-Liouville fractional integrals.
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2. SOME PREVIOUS RESULTS

For a > 0 and = > 0, the incomplete Gamma function is defined by

x
'y(a,a:)—/ t* e tat
0

which is convergen for all & > 0. Moreover we have the following estimates

x® x¢
2.1 T < <
(21) e <) <t
and by using integration by parts, we see that
(2.2) Y(a+1,2) = ay(a,z) — %",

This equality can be used to extend the definition of v(«, z) to negative, non integer values of
a. For example, if o € (—=1,0) and = > 0, then

1 1
2.3 S 1 Zr%e T,
(2.3) v(a, x) av(oﬂr ,T) + i

For more details the reader’s can see [6].
Let a € (0,1) and o > 0. The left and right Riemann-Liouville tempered fractional integrals
of order «a are defined as

1 x

(2.4) 17 u(z) = F()/ (x — 5)* e @ y(s)ds, x> a,
« a

and
1 b

(2.5) Lo u(z) = F()/ (s — ) Le oDy (s)ds, x <b,
« xT

respectively.

These integrals have the following LP boundedness properties

Theorem 2.1. [12] Let o € (0,1), 0 > 0, p € [1,00|. Then, the tempered fractional integrals
of Riemann-Liouville 17:7, 1,27 : LP(a,b) — LP(a,b) are bounded. Moreover

a,o 7(0470-(()_ a’))
(2.6) H]Ia+ UHLP(a,b) < WHU”L?(a,b)-
and

o, ’Y(aa U(b - CL))
(2.7) Hﬂb— U”Lp(a,b) < WHUHLP(a,b)

Moreover depending of o we have the following result.
Theorem 2.2. [12]

(1) Let p > 1, a € (0, %), o >0 and p}, = Jj. Then, the Riemann-Liouville tempered

fractional integrals 1757, ;"7 are bounded from LP(a,b) into LPa(a,b).

(2) Let a € (0,1), 0 >0 and p = é Then the tempered fractional integrals of Riemann-
Liowville 1757, T,°7 are bounded from Lé(a, b) into L%(a,b) for everqu € [1,00).
(3) Let o € (3,1) and 0 > 0. Then, for each u € L*(a,b), I*7u e H* 2(a,b) and

Jim I37u(z) = 0,

where Ha_%(a, b) denotes the Hélder space of order o — 3 > 0.
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3. COMPACTNESS PROPERTY OF RIEMANN-LIOUVILLE TEMPERED FRACTIONAL INTEGRALS

In this section we deal with the compactness property of Riemann-Liouville tempered
fractional integrals. We start our analysis with the Fréchet-Kolmogorov compactness on LP,
more precisely we are going to prove Theorem 1.1.

Proof of Theorem 1.1. Lep p =1, By = {u € L'(a,b) : ||lullf1(qp < 1} and h > 0. For
u € By we have

b—h
/ I u(x + h) — 107 () |da
a+h

S

1 b—h z+h
T T / h / (& 4 h = 8)* e 7 u(s) | dsda

(z+h—s)* temo@rh=s) _(p _ )a=le=0@=9)) |y (s)|dsdx

By doing the change of variable t = s — x and using Fubini’s theorem we have

1 b—h prz+h
— / / (z + h — 5)* Le 0 @Hh=9)|y(s)|dsdx
a+ T

I'(a) h
1 h R b—h
(3.1) :/ h—t)*" e 7\ / u(t + h)|dzdt
I(a) Jo ( ) a+h ul )
1 " a-1,_—o(h—t) 1
< Fra i [ (=0 et = (o)l o

By other side, note that

o Lo |

(z+h—s)* temo@rh=s) _(p _ g)amlem0@=9)| |y (s)|dsdx

1 b=h rath b=h rz 1_—o(z+h—s) 1,—o(z—s)
= +/ / ) T+ h—8)"e VT (g — ) eV |u(s)|dsdz.
F(a) </a+h /a a+h Ja+t+h ‘( ) ( ) | ()‘
Let
b—h rath
T B e R O T [T
a+h Ja

b—h prz
Sa= [ [ [ b s e (o gt o) (s s

a+h
b—h
_ é.o / , [l (Lvm, oh) ~ (e, o (b~ 5)) ~ (b — s - ’””) “

< mv(a,ah)\\u\!um,w-
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In the same way, Fubini’s theorem yields that
1 a+h pb—h
¥ = / / ((az — )2 e 0@ (g4 h— s)a_le_”(“'h_s)) dzx|u(s)|ds
() a

1 h
= ST (@) / [Y(a,o(b—h—35)) —v(a,o0(a+h —35)) —y(a,0(b—23)) +v(a,0(a+2h — s))]|u(s)|ds

a+h
< [ Dlecoi+2h-9) = (aa(a+ k- 9)us)ds
1

< EETYE}V(Q72Uh)”UHL%aﬁy
Consequently

F (x4 h— ) temo@th=s) _ (5 — 5)21e0@=9)| |y (s)|dsda
(3.2) at

~v(a Uh) (e, 20h)
< .
_H®< il SR UL O Y P

Therefore, by (3.1), (3.2) we obtain

b—h
oo oo 1 2vy(a,oh) (e, 20h)
r: h)-—17 dr < .
e - Touits < s (2 2

Moreover, (2.1) implies that

lim (e, oh) — lim (v, 20h) 0.
h—0+ o“ h—0+ o®
which implies that
b—h
hlirgl+ - I u(x + h) — I u(z)|dz = 0
On the other hand, if u € By, Theorem 2.1 yields that

a,0 ")/(OJ,O'(b— a’))
11wl 1) < T saT(a)

b—h
/|]I x)|dx = hm/ 127 wu(x)|d,

so, for any € > 0, there is § > 0 such that:

from where we get

/ 177 u(x)|dz < e whenever 0 < h < 4.
(a,b)\[a-+h,b—h]
Therefore, by [2, Theorem 1.95], 1727 (By) is precompact in L'(a, b).
Now we consider the case p € (1,00). Let H C LP(a,b) be a bounded set, that is
lullzp(apy < €, Yu € H and for some C' > 0.
Now, for every u € ‘H, Theorem 2.1 implies that

a0 v(a,0(b—a)) Y(a, (b - a))
1L, ull o (ap) < “‘:;gﬁ;zz;y“*\VLHLp(ab) (74447;55?2“j“*-
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On the other hand, for h > 0 we have

a,o a,o 1 v
LS ula+ )~ T (o) < s [

1 z+h
+ (o) / (x4 h — s)* e 7 @Hh=9) |y () |ds.
xT
By Holder inequality we have

(x4 h— ) tem0@Th=s) _ (5 — 5)2 e (@=9)| |y (s)|ds

z+h
/ (2 + h —5)* Le 7 @Hh=s) 1y (s)|ds

z+h 1/q a+h 1/p
< </ (x+h— s)ale"(””hs)ds) (/ (x+h— s)“leo(x+h5)\u(s)]pds>

1/q a+h 1/p
< (H2Z) ([ nm et e pas
o xT

By other side, denote by k(z, s)

/x u(s)|ds = / ez + by 8) — k(z, 5)|[u(s)|ds

< k(z + h,s) — k(z, s)!ds) v </ax |k(z + h,s) — k(m,s)]‘u(s)’pds> 1/p

— (Mot e ”(x_“hf,l_”(‘“’”(”“"_a”)l/q (/ mlk‘(aﬂ—h,s)—k:(:c,S)HU(S)!pds)l/p

g( O“’h> (/ ez + b, s) — (x,s)|]u(s)|pds>l/p.

Consequently
I u(a + ) — I (@) P
< (7(04, oh)

) (U:M e ofutoras) o+ ([ ) -k )

< or (W) </:+h k(z + h, s)|u(s)|Pds + / |k(z + h, 5) — k(z, S)Hu(s)]pds) .

Hence, by using Fubini’s theorem we obtain

= (z —5)* 1e=7(*=%) then

(:L’ +h— )a—l —o(z+h—s) ({L‘ o S)a—le—a(ac—s)

/ I u(z 4 h) — 107 u(x)|Pde

§2P< V(o oh) ) </ / k(x+h,s)|u(s)|pdsdm+/ab[|k(x+h,s) —k(:z:,s)||u(s)|pdsdac>

p
Y(a,oh)\a"
<2 () e

Note that, by (2.1)
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Therefore

1 -+ h —I*° a =0.
g R ) = e

By Fréchet-Kolmogorov theorem [9, Theorem 1.3] we get the affirmation. O

Proof of Theorem 1.2. Letting ¢ € [1,p}) and 6 € (0, 1] such that

then, by Hélder inequality we have

T8 (- + h) = 12 ull Lagatnp—ny < o7+ h) = To 7wl gy pom T u(- + h) = 157w |Lpa(a+hb B

1-0
< ||Haavou(' + h) — I[ao‘:cuHeLl ath,b—h) 2||]IaJr uHLpa ab
+ + (a+ )

Consequently, Theorem 1.1 yields that
Y ([T u(- 4 R) = Tl Lagatno—n) = O-

By other side, if u € B, = {v € LP(a,b) : ||v||Lr(ap) < 1}, Holder inequality implies

o 1-2
1T wl Lo (o) (ahp—n)) < (@ 0)\ (@ + h,b—h)|" »a [T

< Cpzl(a,b) \ (a4 h,b—h)| =35 50 as h—o.

uHLch ((a,b)\(a+h,b—h))

Therefore, by [2, Theorem 1.95], I} (B,) is precompact in L?(a,b) for every ¢ € [1,p},). O
To give the proof of Theorem 1.3, we need the following continuity property of the Tempered
fractional integral with respect to the order of integration, that is:

Lemma 3.1. Let o, a9 € (0,1) and o > 0. Then for any u € LP(a,b) we have

hm [T

Jim 970~ 13wl o) = 0.

Proof. Note that

0 %u(x) = I u(z) = (F(Cllo) — F(1a)> /j(x — 5)20 e @=5)y (5)ds

L z . ao—1 r— )1 e—a(z—s)u $)ds
e [ @9 =@ (5)d

= Iu(z) + Hau(z).

Now we estimate the LP norm of II; and IIs. Theorem 2.1 yields that

I'(a a
IMrulsan = 1 = 122 128wl
T(ao) | 1(an,o(b — a)
< .
< |1 - T 700D o
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Moreover, doing the change of variable ¢ = x — s and using generalized Minkowski inequality

we get
b 1/p
Mauloosy = ( | Mauto) e

b 1 T—a p 1/p
= (/a F(a)/a tr0 (1 — T @0) ety (1 — t)dt dx)
1 b/ rb—a P\ P
< — / </ o] — om0ty (g — t)|dt> da
F(a) a 0
1 b—a b 1/p
< / ol — a0 gmat (/ lu(x — s)lpdx> dt
F(a) 0 a
< 1 /bat%—lu _ 19700 |~ g ||
~ T(e) Jo Hed

Consequently, by the previous estimates we have

I'ao)| v(ap,0(b—a)) 1 /ba - o
a 1 — @0 ot gt '
)| omlag) Ty ' | e lull oay

Therefore, by the continuity of I'

1—

T u—T 7wl o0y < (

aliﬁ\rgo 1197w — 107 ul| Lo (a,p) = 0, Vo > 0.
O
Proof of Theorem 1.3. Let e >0 and o =« — € = 119 —e< %. Then
« _ p 1
Pac = l—aep €

By Theorem 1.2, the tempered fractional integral ]IZIU : LP(a,b) — L%(a,b) is compact for
every q € [1,p}, ). Note that as € — 0, p},, — oo. Moreover, for any u € LP(a,b) Lemma 3.1
yields that

lim I u(z) = I u(z) ae. z € (a,b).

Therefore
7 : LP(a,b) — L%(a,b)

is compact for every ¢q € [1,00). O

Proof of Theorem 1.4. Let X C L?(a,b) be a bounded set, that is
ullz2(ap) < € for all u € X and for some C > 0.

According to the Arzeld-Ascoli compactness criterion, it suffices to show that I727(X) is
bounded and equicontinuous.
For every u € X, by Theorem 2.2-(3) we have

oo Y(2a—1,20(b—a 1/2
e < 2B 1200 Ty
(20)**T(a)

(2a —1,20(b — a))/?

(20)%721(a)

<’
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TEMPERED FRACTIONAL OPERATORS 9

Hence, the set I7)7(X) is bounded in Cfa, b].
Moreover, by Theorem 2.2-(3), there is a positive constant K such that

17 u(x) — I u(y)| <

Thus I7?7 (X) is equicontinuous. O

1
yl* 2

4. TEMPERED FRACTIONAL INTEGRALS WITH RESPECT TO FUNCTIONS: L” BOUNDEDNESS
In this section we are going to prove Theorem 1.5 - Theorem 1.8. We start our analysis with

the proof of Theorem 1.5.

Proof of Theorem 1.5. We divide the proof in three parts:
Case 1: p = co. Let u € L*(a,b), then by doing the change of variable t = o(¢(x) — ¥(s))

we derive
138 @) < ooy [ 96 0G) = v e D (s
”“”L‘”(avb () —(s))
< / ¥ (s)((x) — (s))e s
HUHLOO a.b) @)=(a) ot
—-Gar()jg t dt
(e, o(Y(z) —(a)))

= O'aF(O() ||u||L°°(a,b)‘

Since 1 and ~y(«, -) are increasing functions we get

_ 2o, o (b) — ¥(a)

”Hm+¢“”L“%mw = ooT (o) HUHquLm-

Case 2: p = 1. Since ¢ is an increasing function, then the change of variable t = o (¢(x)—1(s))
and Fubini’s Theorem yield that

b x
02 il < g [ 96 wle) = (s e D () s

1 e "(2)(h(z) — (s))*Le W@ =6 |y (s) |dsda
<wa | [ v@wE =) u(s)ldsd

L o [ ) () — w(s))a-Le-o @56 grds
—F(a/uﬂ/w()(w() (s)) dzd

= o | WOt — vt
Again by the monotony of ¥ and v(«, ) we get
_ o, ob(b) — ¥(a)

H]Ia-’hwUHLl(a,b) > O'aF(Oé) HUHLl(a,b)'

Case 3: 1 < p < 0. In this case, let ¢ > 0 such that
1 1
241
P q

and denote by

(e, s) = o/ () () — (s))" e WD),

7 Jun 2023 20:15:30 PDT
230607-TorresLedesma Version 1 - Submitted to Rocky Mountain J. Math.



UESAR E. TORRES LEDESMA, MANUEL M. BONILLA, JESUS A. RODRIGUEZ, AND HERNAN C. GUTIERREZ

Hence, Holder inequality, the monotony of ¥ and ~(«, -) yield that

a,o 1 *
100 < o [ Ve u(e)lds

<ty ([ te0ae)” ([ teonor)”

< s (et - <>>>”q ([ 5ot )‘pds>”p_

Consequently, since v’ is an increasing function, Fubini’s Theorem yields that

/|H x)|Pdx

srpta) (7(“’” ) / / W (5) (4 () — (s))* e~ 7@V () Pdsda
< I‘pta) <’Y(0W ) / u(s)P? / ¥ () (@(@) — $(s))7 e~ @V g
- gy (TG ) iﬁ’l‘w“)”u(swd&

So, by the monotony of ¥ and v(«,-) we obtain

/ 157 ul@)Pde < Fpt ) (7<a,0<w(b> - w(a»))p

O-Oé

||u||Lp (a,b)

Therefore

V(e o (¥ (b) = ¢(a)))

G el ooy < oo (@) ull Lo (ap)-

]
In our next result we consider the LP boundedness of the tempered fractional integral 1% + W
when a € (0, p) more precisely we consider the proof of Theorem 1.6
Proof of Theorem 1.6. We divide the proof in two case:
Case 1: p=1land 1 <¢g< ﬁ The case ¢ = 1 was proved in Theorem 1.5. Hence we

consider the case ¢ € (1, ﬁ) Let r the conjugate of ¢ that is
1 1
—+-=1.
q

Then, Holder inequality and the monotony of ¢’ yield that

17l M% (9() = 9(5))" e O (4 (5) u(s) )T (85 () ds

(/ V(s w(s))q(a1>eaq<¢<x)¢(s))u(s)’d8) 1/q (/:w’(s)yu(s)ms)m

(w’(b))?HUHEI(a,b) z g(a—1)  —oq(w(z)—(s))
ST </ ¥ () () — ()7 Ve s

1/q
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Hence, by the monotony of ¥’, v(«, -) and Fubini’s theorem we get

,b ’ %1 b rz
[t < O [ I ) ) e s

WO ullir ey b
= rq(a)L = / [u(s)| / W () ((@) — ()10 emTa @) gy s

WO el gy P 4(1 = g(1— ), oq((b) — (s)))
- Pq(a)L : /a (og)t—ai=) ule)de
e a1 a1 = 0,09 0) ~ v@))ull

Therefore, since ¢ € (1, =), hence 1 — ¢(1 — a) > 0 then

(' (b)"

i 10 90— ou(w () - B@))Y full 1 -

5%yl Lagapy <

Case 2: p € (1,%) and ¢ € [p, T=ap
L%(a,b) and Theorem 1.5 yield the desired result.
Suppose that ¢ € (p, gﬁ)' Let

1 1
A=—-——-<axl
p
and define
1 1 1
—=14+-=—==1-A
oY q D

. If ¢ € [1, p] the continuous embedding of L”(a,b) into

Denote by ®(z,s) = (¢(z) — 1(s))* Le=oW@) %) Hence, by Holder inequality we derive

o0 1
134 00| < s [ @0 ute)lds

= e / B, 5) 5 (0/(5)) ()| Dz, ) (@) o uls) P ) ds

= F(la) (/ax (z, S)Hw,(s)’“(sﬂpdS) v </j P(, s)ﬁw'(s)u(sﬂHdS) T

< i ([ot v ([ s omon) ([ voners)

Consequently, by the monotony of ¢' and v(«, ) we get

(4.1)
a,o (b %7% =L 1—k(1l—a),or((b) —1(a 17% @ - 1/q
s o) < R g, (T T O (s puteras)
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Hence, by (4.1), Fubini’s theorem and the monotony of 9, y(c, ) we obtain

/]]I x)|%dz

(w’(b)) v (1 — k(1 —a),or(1p(b) —
< Fq(Oé> ||’LL| LP( ab) <7 (O.K)lfn(lfa) )

W) 7 (v k(1= a),or(w(b) — ¥(a) ) *
= Ti(a) ( (o)1) )
Therefore

q(p 1)

/ / (x,8)" ' (s)|u(s)|Pdsds

el

HUHLP(a,b)-

(' (b)» s (’Y(l — K1l = a),0k(¥(b) — w<a>>>>i

1
P
[ wUllzagap) < (o) (o)l —r(1-0)
O
In our next result we deal with the case o = L.

Proof of Theorem 1.7. If ¢ € [1,p) the result is a consequence of the continuous embedding
of LP(a,b) into L(a,b) and Theorem 2.1. Now we consider the case

1
—=p<gq<oo.
e’

Theorem 2.1 yields the case ¢ = p, hence we just consider the case - L < ¢ < 0o. In this case let

us define

1 1 1 1 1 1
k=—-——-=a—— and —-=1—-k=14+-—-
p q q 1% q P
Hence

1
0<k<a<l and g<17

Denote by ®(z,s) = (¥(z) — ¥(s))* Le=?@@)=¥()  hence by Hélder inequality and the
monotony of ¢’ and ~(«, -) we derive

17 u()| <

q—p

;<1><x,s)%'(snu(s)wds)w(/j@(as)w ) (/ Solu(s)as) B

q=p p—1

(
< (¥'(b)) » <7(Q(a — 1) +1,00(¢(b) —w(a))))l’ (/m (2, )24 (s)|u(s)ypds>q a-p

(op)ela—1)+1 lll oo,y

Hence, by Fubini’s theorem, the monotony of ¢’ and v(«, ) we get

<M (v(g(a—1>+1,a@<¢<b>—¢<a>>)>q“’p”

HU| L?(a,b) (O.Q)g(a—l)+1

L W) » <’V(@(Oé —1)+1,00(¢(b) — w<a>>>)q@

(rg)ele b1

/ab / ®(x, )2 (s)|u(s)[Pdsda

HUH%p(a,b)
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Therefore

HUHLMapy

(¥'(b)" <7(Q(04 — 1)+ 1,00(4(b) — ¢(a))))9

”Ha;-’wuHLq(a,b) S F(O{) (O'Q)Q(ail)+1

O

Finally we are going to show Theorem 1.8.
Proof of Theorem 1.8. Let ®(z,s) = (1(x) — (s))* e ?W@—¥6) ¢ < 21 < 9 < b and
u € L?*(a,b). Then, by Holder inequality we derive

158 o) =T ule)] < s [ 9/ 1B(.5) = Blaa, o) a9)lds + s / 0/ (5) (2, 8)|u(s)|ds
< ([ v - <I><x2,s>|2ds)l/2(/a w’<s>ru<s>|2ds)l/2

rre ([ (e s)ds) - (/ ¢'<s>|u<s>|2ds)1/2 .
)

Note that, by doing the change of variable t = 20 (¢(x) — 1 (s)) and (2.1) we get
To Zo
/ V' (8)® (29, 5)%ds = / W (5)(W(@2) — (s))2@ De 20 (W@ =¥(5) g
x1 z1

- (20)12a—17(2a — 1,20 (¢(x2) — p(21)))

(¢($2)—'¢W$1»2a_1.

<
- 200 — 1

Therefore, by our hypothesis there is a positive constant L such that

L2a 1 o1
(12) v s < s -t
By other side, doing the change of variable ¢ = % we obtain

/x1 V(3)|®(21,5) — ®(x2, 5)|ds

= [T 06| @) - vl e O - ((ay) — pl) e g

Y(z1)—¥(a)

_ (w(l‘z) B w(l‘l))ga_l /wug)—w(m) ta—le—at(zp(xQ)—i/)(zl)) - (1 + t)oz—le—a(1+t)(w(x2)—¢(g;1)) 2
0

dt.

As in the proof of [14, Lemma 2.7] combining with [13, Theorem 2.6] we can show that the last
integral is finite, that is, there is a positive constan C such that
P(z1)—1p(a)

R a1 —ot(lea)—(en) _ (1 4 g)a—lemo(lH) @) —w(e)) 24t < C < 0.

0

Hence, by using our hypothesis and (2.1) we get

(4.3) /m1 V' (8)|@(x1, 5) — B(22,5)*ds < Cly(x2) — (21)]P* ™ < CL* Hag — 2y [P
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Consequently, by (4.2), (4.3) and since ¢’ is monotone we have
(4.4)

157 uln) ~ 157 (o) < (V;f;f@ Vepe-ty YU T2

_1
(o) V2a - 1) 2 = a2l )

On the other hand, for any u € L?(a,b), the Holder inequality yields that

17 (@)l < % | e ta) = (e s s

< (/) Ve w(s)>2<a—1>e—2a<w<w>—w<s>>ds)”2 ( /w¢’(s)|U(s)|2d.s>1/2
W 120 — 1, 20(6() — ¥(a) | a
= Ia) ( (20)201 ) 1l 22 (a,)-

Hence, by the monotony of v(«, ) we get

V) (120 1,20 () — ()|
(4.5) ||]Ia+¢uHooS T(a) ( (20)20-1 ) HUHB(CLJJ)'
Therefore, combining (4.4) with (4.5) we have
2 () 17 (o)
H+ a-3 H+ 00
T e
V) (20 —1,20((0) — @)\ VIO smraer  VEE) L
S( o () Ny YO P = Il

which implies that I w : L%(a,b) — H* 2 [a, b] is bounded.
Finally, (2.1) ylelds that

e-mﬂ¢¢w—¢m@)(¢(w)—'w(aﬁ2a71 ~ 12 —1,20(¥(z) — ¥(a) _ ($(x) = P(a))**!
200 — 1 - (20)20—1 - 200 — 1 ’

hence by the continuity of 1) and the Sandwich theorem we get
lim_ .7 yu(x) = 0.

z—a™t

This completes the proof of the Theorem. O

Remark 1. (1) Note that in Theorem 1.8 we just consider the particular case p = 2, the
general case still is an open problem.
(2) In Theorems 1.5, 1.6, 1.7 and 1.8 we just consider the case of the left 1¥-tempered
fractional integral

15, 0(0) = s || 9(6)la) = (e e ey,

In a similar way we can show that the results of the cited Theorem hold for the right
W-tempered fractional integral defined as

e / V(s (@) e T WY@y (5)ds
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(3) In Theorem 1.6 we showed that the 1-tempered fractional integral ]I:f@ is bounded from

LP(a,b) into L9(a,b) for every q € [1,p}), where p}, = 1_pap. The case

%7 : LP(a,b) — LP~(a,b)

a+7/11[) ’

still s an open problem.
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