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Abstract Let A = {A4,...,A,} and B = {By, ..., B,,} be two finite sequences
of strictly positive operators on a Hilbert space H and f, h : I — R contin-
uous functions with h > 0. We consider the generalized Csiszar f-divergence
operator mapping defined by

Ian(A,B) = Z Pran(As, By),

i=1

where
Pian(A, B) := h(A)Y2f(h(A)~Y2Bh(A)~/2)h(A)V/?

is introduced for every strictly positive operator A and every self-adjoint op-
erator B, where the spectra of the operators

A, A7Y2BA7Y? and h(A)"Y2Bh(A)~Y/?

are contained in the closed interval I.

In this paper we prove several inequalities for Ir 4, (A, B) with applications
to the relative operator (a, 3)-entropy that contains as particular cases the
usual and the generalized relative operator entropies.

Keywords Operator inequality - subadditivity - convexity - divergence -
entropy - perspective.
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1 Introduction and Preliminaries

The classical perspective function associated to a continuous function f :
[0,00) — R is a function of two variables defined by Py (s,t) := sf(%), cf. [18].

Address(es) of author(s) should be given

6 Jun 2024 02:53:39 PDT
230919-Nikoufar Version 2 - Submitted to Rocky Mountain J. Math.



2 Ismail Nikoufar and Silvestru Sever Dragomir

For two discrete probability distributions p = (p1,...,pn) and ¢ = (g1, .-, qn)
the f-divergence functional

It(p,q) = Y Pr(pi,ai)
i=1

was introduced by Csiszdr [5] as a distance function on the set of discrete
probability distributions.

Let f and h be two real valued continuous functions defined on the closed
interval I and h > 0. The value f(A) is defined via the functional calculus as
usual for a self-adjoint operator A whose spectrum is contained in I. A fully
noncommutative perspective of two variables (associated to f), by choosing
an appropriate ordering, was introduced in [12] by setting

Pi(A, B) := AY2f(A"Y2BAY2) A2

and the operator version of a fully noncommutative generalized perspective of
two variables (associated to f and h) was also introduced by setting

Pian(A, B) := h(A)Y2f(h(A)~Y2Bh(A)~/2)h(A)V/?

for every strictly positive operator A and every self-adjoint operator B on a
Hilbert space H, where the spectra of the operators

A, A7Y2BA7Y? and h(A)~Y2Bh(A)~1/?

are contained in the closed interval I. Note that in this situation Pran(A, B) =
P¢(h(A), B). Then, several striking matrix analogues of a classical result for
operator convex functions were proved. More precisely, the necessary and suf-
ficient conditions for the joint convexity of a fully noncommutative perspective
and generalized perspective function were proved where restricting to the pos-
itive commuting matrices ensures Effros’ approach announced in [13].

To provide some applications for some well-known noncommutative oper-
ator divergences, we recall the following definitions:

The relative entropy or Kullback-Leibler divergence [19] between two prob-
ability distributions P = {p1,....,pn}, @ = {q1, ..., g} was defined as

- bi
D(PI[Q) =Y pilog .
i=1 '

The x2-divergence was proposed by Pearson [31] via the formula

n )2
XQ(P,Q) _ Z (pl Qz) )
i
The Hellinger distance [3] was defined by
1 n
H(P,Q) =5 Y (Vb —vVa)*.

i=1
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Some inequalities for the Csiszar f-divergence operator mapping 3

Let f(t) = —logt, g(t) = “=L h(t) = L(v/ — 1)2 Then,

I;(P.Q) = D(P||Q), I,(P,Q) = x*(P,Q) and I4(P,Q) = H(P, Q).

Since f(1) = g(1) = h(1) = 0, one can observe that D(P||Q), x*(P,Q), and
H(P, Q) are non-negative.

Now, we consider another useful divergence measure in information theory
which is known as the Harmonic distance:

—~ 2pigi
M(P,Q) =Y ——.
S Pit 4

We have M (P,Q) = I;(P,Q) for f(t) =2(1+t"1)~%
In noncommutative information theory, Fujii and Kamei [14] have intro-

duced the relative operator entropy of two strictly positive operators A and B
by the formula

S(A|B) = AY%(log A"Y/2BA™Y/2%) A2,

Later, this notion has been extended to by Furuta [16] for two strictly positive
operators A and B and a € R by setting

So(A|B) = AY2(A~Y2BAY2)*(log AT/2BA™Y/2) A2,

Some upper and lower bounds of the relative operator entropy and the gen-
eralized relative operator entropy have been determined in [10,9,23,25,32,21,
2].
By using [27, Corollary 2.18(i)], we know that if mA < B < M A for some
2a—1
m, M € [e=(=27  00) with m < M and 0 < a < 1, then

m>logm M*log M
< _ 0 e _ _Z s
0 SalA1B) — B (A - B) - =B (B - ) (1)
1
< (M —m) (m"‘_l(l +alogm) — Mo 1(1 +alogM))A.

The relative operator («, 3)-entropy was defined by the first author [22] as
follows:

Sas(A|B) = AT (A5 BA™%)*log(A" T BA~%) A%,

In particular, one knows Sy 1(A|B) = So(A|B) and Sp1(A|B) = S(A|B).

For some recent results concerning the relative operator entropy and some
new estimates for Tsallis relative operator entropy see [15] and the references
therein. A reverse inequality for Tsallis relative operator entropy involving
a positive linear map was proved in [20]. In addition, a converse of Ando’s
inequality and an extension and reverse of the Lowner-Heinz inequality under
certain conditions were obtained. Some results of [20] were also generalized in

[30).
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4 Ismail Nikoufar and Silvestru Sever Dragomir

2 The Csiszar f-divergence operator mapping

Throughout this section we assume that f and h are continuous real valued
functions defined on [0, 00) and h > 0 unless we note otherwise. The following
lemma was proved for the generalized perspective in [22,29].

Lemma 1 Letr,s, and h be real valued and continuous functions on the closed
interval 1. If r(t) < s(t) fort €1, then

Pan(A,B) < Psan(A, B)

for every strictly positive operator A and every self-adjoint operator B such
that the spectrum of the operator A is in T and that of h(A)~*/2Bh(A)~'/2 is
in 1.

Let A = {4;,...,4,} and B = {By,..., B,} be two finite sequences of
strictly positive operators and f : I — R a continuous function. We consider
the Csiszar f-divergence operator mapping by setting

I;(A,B) =) P(A;, B:)
i=1
and the generalized Csiszar f-divergence operator mapping via

n
Tran(A,B) =Y Pran(A;, Bi).
i=1
The joint convexity of the perspective and generalized perspective was
proved in [12,24,28].

Theorem 1 The following statements hold:

(i) If f is operator convex, then Py is jointly conve.
(1t) If f is operator convex with f(0) < 0 and h is operator concave, then Pyap,
18 jointly convex.
(111) If f and h are operator concave with f(0) > 0, then Pyay, is jointly concave.

These results can be generalized to the Csiszar f-divergence operator map-
pings. The following corollary is a simple application of the joint convexity of
the perspective.

Corollary 1 The following statements hold:

(1) If f is operator convez, then Iy is jointly conves.
(i) If f is operator convex with f(0) <0 and h is operator concave, then I;ap
is jointly convex.
(11t) If f and h are operator concave with f(0) > 0, then I ap is jointly concave.

For a continuous function ¢ : (0,00) — R the transpose function g of g is
defined by

3@) = 2g(a™), x> 0.
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Some inequalities for the Csiszar f-divergence operator mapping 5

Corollary 2 Let g: (0,00) — R be a continuous function. Then,
I;(A,B)=1,(B,A)
for two finite sequences of strictly positive operators A and B.

Proof According to the relation between the perspective of g and § [26] we
have
P;(A;, B;) = Py(B;, 4;).

By summing over ¢ we deduce the result.

For a finite sequence of strictly positive operators A = {44,...,A,} on a
Hilbert space H and a continuous function f, we set

Spay =Y f(Ai),
i=1
where f(A) :={f(A1),..., f(An)} is a finite sequence of operators on H.
Definition 1 We say that the continuous function f is subadditive if

f(Sa) < Spa

for a finite sequence of strictly positive operator A. The function f is called
superadditive if the reverse inequality holds, i.e., f(Sa) > Sy(a)-

Remark 1 Let f and h > 0 be two continuous functions and A, B two finite
sequences of strictly positive operators. Then,

Tran(A,B) = 7 Pran(Ai, B) = 3 Py(h(Ay), B)) = 1;(h(A), B).
=1 =1

The proof of the following theorem is a direct application of Hansen-
Pedersen-Jensen inequality.

Theorem 2 If f is operator convex function, then
Pr(Sa,S8) <I;(A,B). (2)

Proof Let A = {A;,A4,,...,A,} and B = {By, By, ..., B,} be two finite se-
quences of strictly positive operators on a Hilbert space H. Since

25;1/2A§/2A§/25;1/2 _7
i=1
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6 Ismail Nikoufar and Silvestru Sever Dragomir

and f is operator convex, it follows via [17, Theorem 2.1] that

f(S;l/QSBsgl/Q) _ f<zs;1/2BZS;1/2>

=1

n
_ f<ZSA1/2AZ1/2(Ai1/2BiAZ_1/2)AZ;/2SA1/2)
=1
< Z5;1/2Ag/zf(A;l/zBiA;1/2)AZ;/QS;1/2.
=1

This ensures that

SA2F(Sa 2SS, A S ) < ST AV F(AT 2B AT )AL,

1
i=1
which implies the result.

In the dual case (when f is operator concave) the reverse inequality holds
in (2).

Corollary 3 If f is operator convex, then
f(1)Sa <1y(A,B)

for two finite sequences of strictly positive operators A,B with SA = Sp.
Moreover, the reverse inequality holds for an operator concave function.

Proof Since P;(Sa,Sa) = f(1)Sa, the result follows from Theorem 2.
Theorem 3 If f is operator convezx with f(0) < 0 and h is superadditive, then
Pran(Sa,SB) < Iran(A,B). (3)

Proof Let {Ay, As, ..., Ay} and {By, Bs, ..., B,} be two sequences of strictly
positive operators on a Hilbert space H. Define Sg = Y. | B;, Sha)y =
S h(Ay), and T; = h(A;)Y2h(Sa)"Y/2. Tt follows from superadditivity
of h that

S Ty = h(Sa)V2h(A:) P h(A) P h(SA) T
=1 =1

(52 Y A(ADB(SA) 2

= h(SA)_l/QSh(A)h(SA)_l/Q
< h(SA)"Y2h(SA)M(SA) "2 = 1.
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Some inequalities for the Csiszar f-divergence operator mapping 7

So, [17, Corollary 2.3] entails that

F(h(Sa)~V/2SBh(SA)"'/?)

Il
—
7 N

«
I
—

(SA)I/QBih(SA)1/2>

h(Sa) ™" /?h(A; >1/2<h<Ai>1/2Bm<Ai>1/2)h(Ai>1/2h<SA>”2)

I
~
/~
[

«
Il
-

Il
Kh
N
=

T2 (h(A) V2 Bih(A) V2T, )

?

i=1

" f(h(A;) V2 Bih(A;) AT,

7

IN
~

@
Il
A

h(Sa) ™2 h(A)Y2 F(h(AD) 72 Bih(A) =) (A 2h(Sa) 712,

Il

=1

Therefore,
h<5A>1/2f(h(SA>*Wth(SA)*/Q)h(S )12

< Zh 1/2f ) 1/23 h(A ) 1/2)h(Ai)1/2.
From here we have

Pran(Sa,SB) < ZPfAh(AiaBi) =TI;an(A,B).

i=1

Corollary 4 If f is operator concave with f(0) > 0 and h is superadditive,
then the reverse inequality is valid in (3).

We note that in Corollary 4 the condition f(0) > 0 can be removed for a
positive operator concave function f.

Theorem 4 Suppose that f, h: (0,00) — (0,00) are continuous functions. If
f is operator monotone and h is superadditive, then the reverse inequality is
valid in (3).

Proof Let A = {A;, Ao, ..., A,} and B = {By, Ba, ..., B,} be two sequences
of strictly positive operators on a Hilbert space H and note that a positive
operator monotone function f is operator concave ([4, Chapter V]). So,

Pran(Sa,S8) = Pr(h(Sa), SB)
> Pr(Sh(a), SB) (by [26, Theorem 2.3])
>1;(h(A),B) (by Corollary 2)
=I;a1(A,B) (by Remark 1).
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8 Ismail Nikoufar and Silvestru Sever Dragomir

We may consider a dual form of the above theorem when f : (0,00) —
(0,00) is operator convex. In this case the operator monotonicity of f makes
it to be an affine function. So, the inequality (3) holds when f is affine and h
is subadditive without needing the condition f(0) < 0.

3 Bounds of the Csiszar f-divergence operator mapping

Throughout this section we assume that f, b : [a,b] C R — R are continuous
real valued functions and h > 0. We verify the bounds of the Csiszar f-
divergence operator mapping.

Theorem 5 Let A = {A;,...,A,},B ={By,..., By} be two finite sequences of
strictly positive operators. If f : [a,b] C R — R is a concave and differentiable
function and h : [a,b] — (0,00) is a continuous function such that mh(A4;) <
B; < Mh(A;) for some m, M € [a,b] with 0 < m < M, then

f(m)

—m

f(M)
M—-—m

0 <TIyan(A,B) (MSpa) — SB) — (SB —mSpa)) (4)

(M —m) (f(m) = /(M) ) Shia)-

Proof Due to [11, Corollary 1] and for the concave and differentiable function
f, we get

< fA =z +ey) = (=) f(x) = cf(y) ()
<c(l=c)(y—2)(f'() - f'(¥),

where ¢ € [0,1] and z, y € [a,b] with < y. Replacing « = m, y = M, and

c= 172 € [0,1] in (5), we find that

Oﬁf(u)*%(M*U)*AJ;(]_\{)n(U*m)SM—_m

where ¥ (u) = (u — m)(M — u). The maximum value of ¥(u) is (M — m)?2.
So,
f'(m) = f'(M) 1 / /
WW(U) < Z(M —m)(f'(m) — f'(M)). (7)

Regarding (6) and (7) one can deduce
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Some inequalities for the Csiszar f-divergence operator mapping 9

Using Lemma 1 and replacing h(4;)~Y/2B;h(A;)~"/? with « and then multi-

plying both sides of the inequality (8) by h(A;)'/2, we get
0< Prh(40.8) — 2 () - )~ T (5 (a0
< L —m) (7' (m) — £ (M))h(A).

By summing over 4 in (9), we reach the desired results.

Remark 2 Under the hypotheses of Theorem 5, if h : [a,b] — (0,00) is the
identity function, then

1(a.B) - " (ars, g - S

i( ) (F1m) ~ £00)) S

I /\

(SB —mSa) (10)

where f’ and f/ are the left-hand and right-hand derivative of f, respectively.
This inequality is a generalization of Theorem 7 from [7] and Theorem 2 from
[25] in which only the case of a pair of operators was considered.

Corollary 5 Let A = {Ay,..., A} and B = {By,...,B,} be two finite se-
quences of strictly positive operators with Z?Zl A; = Z?:l B; =1 and 0 <

, noa-1 —1y— mM+1 (m+M+2)(M—m)*
(i) 0 < Zi:1(Ai + B; ) b (M+1)(J7rn+1) < 4(m+1)2(M+1)2

(i) 0 < 3" S(Ai|Bs) + Milv,ln1 < K(M),

where K(h) = hH , h >0, is the Kantorovich constant.

Proof (i) Remark 2 indicates that the bounds of the Csiszdr f-divergence
operator mapping for the concave function f(t) = 2(1 +¢~1)~! are given by
(1).

(ii) The bounds of the Csiszar f-divergence operator mapping for the con-
cave function f(t) = logt are given by (ii) by using Remark 2.

Corollary 6 Let A = {A;,...,A,} and B = {By,..., By} be two finite se-

quences of strictly positive operators with Y i _, A? =Yr,B =1,0<
2a—1

mAf < B; < MA?, 0<a<l, and f €R for some m,M € [e=(=a] 00).

Then,
(m—1)M%
log M(I\/I—l)mo‘
0< S Sa (4 Bi) + —m 0T 11
=2 8(Ai Y —m (11)
1 3 3 mozm‘"*
< Z(M—m)(mo‘ byt +1ng)-
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10 Ismail Nikoufar and Silvestru Sever Dragomir

Proof According to Theorem 5, the bounds of the generalized Csiszar f-
2a—1
divergence operator mapping for the concave function f(t) = t*logt on [e=(==) | c0)

and h(t) = t? can be obtained as (11).

Theorem 6 Let A = {Ay,...,A,},B = {By,..., By} be two finite sequences
of strictly positive operators. If f : [a,b] C R — R is a concave function and
h:la,b] = (0,00) is a continuous function such that mh(A4;) < B; < Mh(A;)
for some m, M € [a,b] with 0 < m < M, then

2J¢(m, M)I.An(A,B) (12)
<Iyan(A,B) - %(Msh(m —SB) — ]\J;q{)n (SB — mSk(a))

< 2Jf(m, M)IRAh(A, B),

where
M+m f(m)+ f(M
2 2
. u—m M-—u 1 u — Mim
rlw) = min{ g b = o T |
u—m M—u 1 u — Mtm
R(u) = max { " =5 Mfin‘

and 0 <m < M.

Proof Regarding [6, Theorem 1], we have

2rJp(z,y) < f(1 =)z +cy) = (1 =) f(x) +cf(y)) < 2RTp(z,y)  (13)

forall z, y € (a,b) and ¢ € [0,1], where 7 = min{¢, 1—c} and R = max{c, 1—c}.

Replacing © = m, y = M, and ¢ = {7 with u € [m, M] in (13), we observe

M — u—m

2J5(m, Myr(u) < f(u) = f(m) o— = fM) 57— (14)
< 27 (m, M)R(u).
Applying Lemma 1 and taking the generalized perspective, we get
27 (m. M)P(h(A,). B) (15)
< Py(n(40), B) — 7 (arn(a) — B — 2 (5, mia)

By summing the inequalities over ¢ in (15), we conclude the result.
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Some inequalities for the Csiszar f-divergence operator mapping 11

Remark 3 Under the hypotheses of Theorem 6, if h : [a,b] — (0,00) is the
identity function, then

27;(m, M)L (A, B) (16)
<1;a,B) — " a5y — 5m) ~ T (55— msy)

< 2J¢(m, M)Ig(A, B).

This inequality is a generalization of Theorem 3 from [25] and Theorem 2 from
[9] in which only the case of a pair of operators. Note that S(B|A) = —S(A|B).

As a consequence of our main results, one realizes the bounds of the y?-
divergence, Harmonic distance, and Kullback-Leibler divergence, respectively,
as follows:

Corollary 7 Let P = {p1,....,pn} and Q = {q1,...,qn} be two probability dis-
tributions with > . p; =Y i1 ¢; =1 and 0 < mp; < q; < Mp;. Then,

(Z) _(M—m)(m+1) < (M—-1)(1—m) _XZ(PyQ) S (M—m)(M+1)

mM(m+M) — mM mM(m+M) 7
.. 2(mM+1 m+M+2)(M—m)?
(“’) 0 S M(P7 Q) - (]\4(4_1)(7”_;’_)1) S (2(m+1)2)((M+1)2) )

1 pm—1
(iii) —K () < D(P||Q) - =3+ < 0.
Proof (i) Consider A; = p;I, B; = ¢;I in Remark 3, I is identity operator.

So, the bounds of the Csiszar f-divergence operator mapping for the concave
(t=1)*

function f(t) = —*—~~ can be obtained as follows:
(M —m)? 2 (M —-1)(A —m)
mfr(]:v Q) < —x"(P,Q) + oM (17)
(M —m)?
> mIR(PaQ)7

where

1 1 -
I.(P,Q) = i—m;|2%—(m+M)Pi|,

1 1 -
Ir(P,Q) = §+m;|2%—(m+M)Pi|-

A simple verification and using the fact that the absolute value for real numbers
satisfies the triangle inequality we reach

n

m2|2%—(m+M)m| < 2(M1_m)<22q7:+(m+M)Zpi>
- _2—|—m+M . .
- 2(M—m)’
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12 Ismail Nikoufar and Silvestru Sever Dragomir

This implies
1 1 - 1 24+m+M
IR(P,Q) =5+ 57— > _[2q; — Mp;| < =+ ————
r(PQ) 2+ﬂMmeﬂ|q (m+Mpil < 5+ 50—

n

Z |2(Ii - (m + M)pi‘ = I’I’(P7Q)

i=1

1

1 24m+M _1
2 2(M —m)

2 2(M —m)

IN

Therefore, by replacing the lower and upper bounds of I, and Ig in (17),
respectively, we conclude the result.

(ii) Consider A; = p;I, B; = ¢;I in Corollary 5(i). We realize the bounds
of the Harmonic distance as required by (ii).

(iii) Consider A; = p;I, B; = ¢;I in Corollary 5(ii). Then, we reach the
bounds of the Kullback-Leibler divergence as required by (iii).

Note that from the part (iii) of the above corollary one may easily deduce
that .
log % M
D(P ——n < K(—).
(PIIQ) ~ 2% | < (1)
Theorem 7 Let A = {Ay,...,A,},B = {By,..., By} be two finite sequences
of strictly positive operators. If f : [a,b] C R — R is a twice differentiable
function and h : [a,b] — (0,00) is a continuous function such that mh(A4;) <
B; < Mh(A;) for some m, M € [a,b] with 0 < m < M and there exist the
constants 1, y2 such that v3 < f"(t) < o for every t € (a,b), then

1
§’Y1Iq/4h(A7 B) (18)
M
< ]\j(inzn (MSh,(A) - SB) + ]\Z(_ T)n(SB - mSh(A)) - IfAh(A, B)
1
< 5’72IWA1L(A,B),

where ¥ (t) = (t —m)(M —t).
Proof In view of [1, Lemma 2.2], we get

Lol mly — o)’ < (1 - Af (@) +efly) — (1 -z +ey)  (19)

(1—c)ra(y — x)?,

IN

—c
2
where ¢ € [0,1], z, y € [a,b]. Substitute + = m, y = M, and ¢ = {0,
(19), to reach

in

(= m) (M~ < ST pm) + A F(M) — fw) (20)
< %(u —m)(M —u)ys.
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Some inequalities for the Csiszar f-divergence operator mapping 13

Due to Lemma 1, we deduce
%7113%(71(141‘),3) (21)

f(m) f(M)
_m(Mh(Ai) —B)+ M —m

V2P (h(Ai), B).

<

(B —mh(Ai)) — Py (h(Ai), B)

<

N | =

Sum the obtained inequalities over ¢ in (21) to obtain the results.

Remark 4 Under the hypotheses of Theorem 7, if h : [a,b] — (0,00) is the
identity function, then

f(m)
M—-—m

f(M)
M—-—m

IN

(MSA — SB) +

1
5’}/1I¢(A,B) (SB —mSA) —If(A,B)

(22)

IN

1

This inequality is a generalization of Theorem 7 from [8], Theorem 4 from [9]
and Theorem 4 from [25] in which only the case of a pair of operators. Note
that S(B|A) = —S(A|B).

Corollary 8 Let A = {A;,...,A,} and B = {By,..., By} be two finite se-
quences of strictly positive operators with Y .~ A; = > B; =1 and 0 <

1 (M —=1)y/m+ (1 —-m)VvM
1

where
Iy(A,B) = En:(Bi —mA)A;H(MA; — By),
i=1
1;(AB) = % Z AP(ATP B AT P2 — 12 A,
i=1
Proof Consider ¥(t) = (t —m)(M —t), f(t) = 3(v/t — 1) and note that
4M1/M <fo< 4m1\/ﬁ

for every t € [m, M]. Hence, by using Remark 4, one can get the bounds of
the Csiszdr f-divergence operator mapping as (23).

As another application of our results, we obtain the bounds of the Hellinger
distance.
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14 Ismail Nikoufar and Silvestru Sever Dragomir

Corollary 9 Let P = {p1,....,0n} and Q = {qi,...,qn} are two probability
distributions with >~ p; = > ¢ =1 and 0 < mp; < ¢; < Mp;. Then,

(M —1)y/m+ (1 —m)VM (M —m)?
H(P -1 < —. 24
(FQ)+ M —m S Somgm Y
Proof The function ¥(t) = (t — m)(M — t) attains its maximum value at
(M—m)*

t = MEm on the closed interval [m, M] and the maximum value is
and the minimum value is zero. Then, the inequality (23) can be rewritten as

(M —1)ym+ (1 —m)VM (M —m)?
0<1- T —If(A,B)gW, (25)
where f(t) = 2(v/t — 1) If one sets A; = p;I, B; = ¢;I in (25), then
(M —1)ym+ (1 —m)VM (M —m)?
0s1- M—m S HPQ) s

and so one reaches the desired result.

As a final result, consider f(t) = —t“logt. Then,
- —a) o Di
I;(P.Q) = > p' g log .

i=1 ¢

We denote by D, (P||Q) this new and generalized f-divergence functional and
call it the relative a-entropy or Kullback-Leibler a-divergence.

Corollary 10 Let P = {p1,...,pn} and @ = {q1,...,qn} are two probability
distributions with Y i p; = Yy qi = 1, 0 < mp; < ¢ < Mp; for some
2a—1
m, M € [ea(=2) 00), and 0 < a < 1. Then,
(m—1)M%
log %

0 T

IA

— Da(Pl|Q) (26)

a—1
am
m

)
Proof Consider A; = p;I, B; = ¢;I, and =1 in Corollary 6 and deduce the
desired result.

1
< Z(M —m) (mo‘*l — M +log

We remark that the relative 0-entropy is the relative entropy or Kullback-
Leibler divergence. Moreover, when a — 0 the inequalities (26) ensure
log M=) 1 M
=20 p(pl|Q) £ {(M —m)(m™ = M) = K(1),  (27)

0<

S -
which confirm Corollary 7 (iii).

We also have the following upper and lower bounds for the difference

f(m) f (M)

SN (M _ S

M—m( Sh(A) SB)+M—m

under consideration.

(S —mSna)) — Iran (A, B)
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Theorem 8 With the assumptions of Theorem 7 and if there exists the con-
stants 1 < @9 such that

w1 <tf" (t) < o for allt € (m, M) C (0,00),

then
v1loan (A, B) (28)
< % (MSha) — SB) + % (Sg — mSna)) — Iran (A, B)
< polgan (A,B),
where Mo .
D(t) := mmlnm—l— WU linM —tint.

Proof Consider the function f,, (t) := f (t) —¢1tInt for t € (m, M) C (0,00).
Since f,, is twice differentiable on (m, M) and

" _
L () — ¢ >0

1" el 7ﬂf
fh =g - 2=

then f,, is convex on (m, M) and, as above, we have that

M —u uU—m
0< mfsal (m)+mf<m (M) = fo, (u) (29)
for all u € [m, M].
Now, observe that by (29) we get

M —u uU—m

—L )+ e f (M)~ £ ()

M
M —u 1 +u
—minm

P\ —m M

0<

linM>,

which gives that

u—m

M= _linMulnu> (30)

for all u € [m, M].

We consider the function f,, (t) := @otInt— f (t) for t € (m, M) C (0,00).
As above, we observe that f,, is twice differentiable and convex and we also
obtain the inequality

M—u u—m
MU )+ 5 (0 - f ) (31)

M—u u—m
< - —
902( mlnm + MIn M ulnu)
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16 Ismail Nikoufar and Silvestru Sever Dragomir

for all u € [m, M].
By utilizing Lemma 1 , we deduce from (30) and (31) that

©1Pg (h (Ai), Bi) (32)
f(m) f (M)
< J N N _ B, J N (B — ) ) )
= M_m(Mh(AZ) BZ)—’_M—m(BZ mh (A;)) — Py (h (Ai), Bi)
< 2 Pp (h(Ai), B;)
fori=1,...,n.
Sum the obtained inequalities over ¢ from 1 to n in (32) to obtain the

desired inequalities (28).

Theorem 9 With the assumptions of Theorem 7 and if there exists the con-
stants Y1 < 1o such that

Py < 2f(t) < by for allt € (m, M) C (0, 00),

then
Y1ilyan (A, B) (33)
< ]\J; @n (MSh(a) — SB) + Af; (ﬁ; (S5 — mSna)) — Ian (A, B)

S wQI\I/Ah (A7 B) )

where

M —t t—
U (t) :=Int — i Inm — m

In M.

Proof Consider the function fy, (t) := f (t) + 91 Int for t € (m, M) C (0,00).
Since fy, is twice differentiable on (m, M) and

Yy () — >0

RO O 3

then fy, is convex on (m, M) and, as above, we have that

Mty L

0<
~—M-m M—-—m

Fi (M) = fy, (u) (34)

for all u € [m, M].
Observe that by (34) we get

M —u u—m
)+ 1
()

M—-u U—m
(M— lnm+M lnM) — f(u) — Y1 Inu,

0<

m —m
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which gives that

M —u u—m
1 <1nt— i Inm — U 1nM>

< ST )+ A ()~ 1 (1)

In a similar way we derive

M—u u—m
D )+ (M) — (1)
< 1o (lnt ]]\\j__:fllnmf A“4__7;’;1nM>.

The proof now follows along the lines of the theorem above and the details are
omitted.

Theorem 10 With the assumptions of Theorem 7 and for p € (—o00,0) U
(1,00), if there exists the constants 61 < d2 such that

S1 < fP (1) t2P < 8y for all t € (m, M) C (0,00),

then
RELJA (A,B) (35)
p(p* 1) I'yAh 3
f(m) f (M)
< M—m (MSh(A) - SB) + M—m (SB —mSh(A)) _IfAh (A,B)
P
<
“plp l)IFpAh (4.B),
where Mo .
= T mP —M g g
I, () : ™ +M—m tr.

Proof Consider the function fs, (t) := f (t)—%tp fort € (m, M) C (0,00).
Observe that
@)=t -t 2= ('Ot ?=86)t"*>0
for t € (m, M), which shows that fs, is convex. Then
M —u U —
for all u € [m, M].
Observe that by (36) we get
01 M—u P+ uU—m
p(p—1) \M—-—m M—-—m

M—u uU—m
S ) + e f (M) — £ (u)

0<

" fi (M) = fi, (w) (36)

MP — ’pr>

<
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18 Ismail Nikoufar and Silvestru Sever Dragomir

for all u € [m, M].
In a similar way we derive

M —u u—m
S ) 3 f (M) f (u)

02 M —u u—m
Sp(p*l) (Mmmp+MmMp_up>

for all u € [m, M].
By using a similar argument as above we obtain (35).

Ezample 1 For a given twice differentiable function f defined on (0, 00), if we
take,
So= sup f’(t)t*Pandé = inf f"(t)t>7P
te(m,M) te(m,M)
assumed to be finite for some p € (—o00,0) U (1,00), then we get the corre-
sponding lower and upper bounds for

7]\‘; (1n,r)n (MSh(A) - SB) + ]\‘};(i\{’)n (SB - mSh(A)) — IfAh (A,B)

as provided by (35).
If we take f (t) = tlnt in (35), then

m'=Pif p > 1
So= sup f'()t*P= sup t'7P=
te(m,M) te(m,M) M1-p ifp<0
and
MPifp>1
61= inf f/()t*P= inf t'7P=
te(m,M) te(m,M) mlfp lfp <0
and we get from (35) that
. M 7Pifp>1
7IF Ah (A,B) X (37)
plp=1)"" m!=Pif p <0
mlnm mln M
< M — — -1 A B
_'Af—wn( Sh(a) SB)*-AI__nl(SB mSpa)) = Iyme)an (A, B)
1 mi=Pifp > 1
< ———Ir,an(A,B) x
p(p—1) M if p < 0.
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