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Abstract

Let m, t, r and ki (1 ≤ i ≤ m) be positive integers with ki ≥ (2r − 1)t + 1. Let G be

a graph, H be an mr-subgraph of G, and F = {F1, F2, · · · , Fm} be a (g, f)-factorization of

G. If for any partition {A1, A2, · · · , Am} of E(H) with |Ai| = r, G has a (g, f)-factorization

F = {F1, F2, · · · , Fm} with Ai ⊆ E(Fi), 1 ≤ i ≤ m, then we say that G has (g, f)-factorizations

randomly r-orthogonal to H. Let H1, H2, · · · , Ht be t vertex-disjoint mr-subgraphs of a bipartite

graph G with ∆(G) ≤ k1 +k2 + · · ·+km−m+1. In this paper, it is demonstrated that a bipartite

graph G with ∆(G) ≤ k1 + k2 + · · · + km − m + 1 possesses a [0, ki]
m
1 -factorization randomly

r-orthogonal to every Hi, 1 ≤ i ≤ t.

Keywords: network; [0, ki]-factor; [0, ki]
m
i=1-factorization; orthogonal [0, ki]

m
i=1-factorization.
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1 Introduction

Lots of real-world networks can be simulated by networks or graphs. Henceforth we replace network by

graph. An important example of such a network is a communication network with nodes corresponding

to cities and links standing for communication channels. Other examples include the World Wide

Web with nodes acting for web pages and links simulating hyperlinks between web pages, or an

online social network with nodes modelling persons and links standing for personal contacts of each

user. Many real-life problems on network design and optimization, e. g. the file transfer problems on

computer networks, building blocks and so on, are related to the factors, factorizations and orthogonal

factorizations of graphs [2]. Horton [8] first claimed that a Room square of order 2n is equivalent to

an orthogonal 1-factorization of K2n. Euler [4] first discovered that a pair of orthogonal Latin squares

of order n is related to two orthogonal 1-factorizations of Kn,n.

All graphs discussed in this article will be finite, undirected and simple graphs. Let G be a graph.

We use V (G) to denote the vertex set of G and use E(G) to denote the edge set of G. For any

x ∈ V (G), the degree of x in G is defined as the number of edges which are adjacent to x, and

denoted by dG(x). We denote by ∆(G) the maximum degree in a graph G. For X ⊆ V (G), G[X]
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denotes the subgraph of G induced by X, and G −X = G[V (G) \X]. Let X and Y be two disjoint

vertex subsets of G. We denote by EG(X,Y ) the set of edges with one end in X and the other

in Y , and write eG(X,Y ) = |EG(X,Y )|. Let E′ be a subset of E(G). We denote by G − E′ the

subgraph derived from G by removing the edges in E′, and by G[E′] the subgraph of G induced

by E′. For convenience, we let ϕ(X) =
∑
x∈X

ϕ(x) for any function ϕ. Especially, ϕ(∅) = 0 and

dG−X(Y ) =
∑
x∈Y

dG−X(x). Let N ∪ {0} denote the set of nonnegative integers. For two functions

g, f : V (G)→ N∪ {0} with 0 ≤ g(x) ≤ f(x) for all x ∈ V (G), a spanning subgraph F of G is called a

(g, f)-factor if g(x) ≤ dF (x) ≤ f(x) for all x ∈ V (G). In particular, G is called a (g, f)-graph if G itself

is a (g, f)-factor. A (g, f)-factorization of G is a decomposition of the edge set of G into edge-disjoint

(g, f)-factors F1, F2, · · · , Fm. We call a subgraph H of G an mr-subgraph of G if |E(H)| = mr.

Assume that H is an mr-subgraph of G and F = {F1, F2, · · · , Fm} is a (g, f)-factorization of G. Then

F is r-orthogonal to H if |E(H)∩E(Fi)| = r for 1 ≤ i ≤ m. If for any partition {A1, A2, · · · , Am} of

E(H) with |Ai| = r, G has a (g, f)-factorization F = {F1, F2, · · · , Fm} with Ai ⊆ E(Fi), 1 ≤ i ≤ m,

then we say that G has (g, f)-factorizations randomly r-orthogonal to H. Let a and b be two positive

integers. Similarly, we may define [a, b]-factor, [a, b]-factorization, r-orthogonal [a, b]-factorization

and randomly r-orthogonal [a, b]-factorization. Let k1, k2, · · · , km be m positive integers. A [0, ki]
m
1 -

factorization F of G is a decomposition of the edge set of G into edge-disjoint factors F1, F2, · · · , Fm,

where each Fi is a [0, ki]-factor for 1 ≤ i ≤ m. A [0, ki]
m
1 -factorization F = {F1, F2, · · · , Fm} of G is

r-orthogonal to an mr-subgraph H of G if |E(H) ∩ E(Fi)| = r for 1 ≤ i ≤ m. If for any partition

{A1, A2, · · · , Am} of E(H) with |Ai| = r, G has a [0, ki]
m
1 -factorization F = {F1, F2, · · · , Fm} with

Ai ⊆ E(Fi), 1 ≤ i ≤ m, then we call that G has [0, ki]
m
1 -factorizations randomly r-orthogonal to

an mr-subgraph H of G. In particular, randomly 1-orthogonal is equivalent to 1-orthogonal, and

1-orthogonal is also said to be orthogonal. A graph, denoted by G = (A,B,E(G)), is a bipartite

graph with bipartition {A,B} and edge E(G).

Kano, Katona and Király [10], Zhou [28], Zhou, Bian and Pan [32], Zhou [30], Zhou, Sun and

Liu [36], Zhou, Wu and Bian [37], Zhou, Wu and Xu [38], Zhou and Bian [31], Wang and Zhang [21],

Wu [23] investigated the existence of [1, 2]-factors in graphs and obtained some results for graphs

admitting [1, 2]-factors. Matsubara, Matsuda, Matsuo, Noguchi and Ozeki [17], Zhou and Liu [34],

Zhou [26, 27] put forward some sufficient conditions for graphs to possess [a, b]-factors. Egawa and

Kano [3], Wang and Zhang [22], Zhou [29], Gao, Wang and Guirao [7] showed some results for

graphs having (g, f)-factors. Kano [9] demonstrated some results with relation to the existence of

[a, b]-factorizations in graphs. Yan, Pan, Wong and Tokuda [25] discussed the problem on (g, f)-

factorizations in graphs and derived some results for graphs to admit (g, f)-factorizations.

Alspach, Heinrich and Liu [2] put forward the following open problem: Given a subgraph H of G,

does there exist a factorization F of G with a given property orthogonal to H?

Recently, more and more results on the above problem have been derived: Liu [14], Yan [24], Li

and Liu [13], Liu and Long [15], Lam, Liu, Li and Shiu [11] investigated orthogonal factorizations in

(mg+m−1,mf−m+1)-graphs. Li, Chen and Yu [12], Wang [20] discussed orthogonal factorizations in

(mg+k,mf−k)-graphs. Feng [5] verified the existence of orthogonal factorizations in (0,mf−m+1)-

graphs. Feng and Liu [6] proved the existence of orthogonal [0, ki]
m
1 -factorizations in graphs. Zhou,

Liu and Zhang [35], Liu and Zhu [16] studied orthogonal factorizations in bipartite graphs. Some
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other results on the existence of orthogonal factorizations in graphs can be discovered in [18,19,33].

In what follows, we shall deal with the more general problem: Given t vertex-disjoint nr-subgraphs

H1, H2, · · · , Ht of G, does there exist a factorization F of G with a given property randomly r-

orthogonal to every Hi for 1 ≤ i ≤ t? The purpose of this paper is to study the above problem, and

derive the following result.

Theorem 1.1. Let m, t, r and ki (1 ≤ i ≤ m) be positive integers with ki ≥ (2r − 1)t + 1, G be

a bipartite graph with ∆(G) ≤ k1 + k2 + · · · + km −m + 1, and H1, H2, · · · , Ht be t vertex-disjoint

mr-subgraphs of G. Then G possesses a [0, ki]
m
1 -factorization randomly r-orthogonal to every Hi for

1 ≤ i ≤ t.

If t = 1 in Theorem 1.1, then we derive the following corollary.

Corollary 1.1. Let m, r and ki (1 ≤ i ≤ m) be positive integers with ki ≥ 2r, G be a bipartite

graph with ∆(G) ≤ k1 + k2 + · · ·+ km −m+ 1, and H be an mr-subgraphs of G. Then G possesses

a [0, ki]
m
1 -factorization randomly r-orthogonal to H.

If r = 1 in Theorem 1.1, then we obtain the following corollary.

Corollary 1.2. Let m, t and ki (1 ≤ i ≤ m) be positive integers with ki ≥ t + 1, G be a bipartite

graph with ∆(G) ≤ k1 + k2 + · · ·+ km −m+ 1, and H1, H2, · · · , Ht be t vertex-disjoint m-subgraphs

of G. Then G possesses a [0, ki]
m
1 -factorization orthogonal to every Hi for 1 ≤ i ≤ t.

In what follows, we provide an example of an orthogonal factorization: Let m = 2, t = 1 and

ki = t + 1 = 2 for 1 ≤ i ≤ m. Let G = (X,Y,E(G)) = Kn,n, n = 3, be a complete bipartite graph

where X = {x1, x2, x3} and Y = {y1, y2, y3}. Let H be a subgraph of G with V (H) = {x1, x2, y1, y2}
and E(H) = {x1y1, x2y2}. Set E1 = {x1y1} and E2 = {x2y2}. G is a bipartite graph with ∆(G) =

k1+k2+· · ·+km−m+1, where k1 = k2 = · · · = km = t+1 and (m, t) = (2, 1). We easily see thatG has a

[0, 2]-factorization {F1, F2} such that E1 ⊆ F1 and E2 ⊆ F2, where F1 = {x1y1, y1x2, x2y3, y3x3, x3y2}
and F2 = {x1y2, x1y3, x2y2, x3y1}. That is to say, G possesses a [0, ki]

m
1 -factorization orthogonal to

H. Similarly, for any 2-subgraph H ′ of G, we easily find a [0, ki]
m
1 -factorization of G orthogonal to

H ′.

2 Preliminary Lemmas

Folkman and Fulkerson gave a criterion for a bipartite graph with a (g, f)-factor (see Theorem 6.8

in [1]).

Lemma 2.1. Let G = (A,B,E(G)) be a bipartite graph, and g, f : V (G)→ N∪{0} be two functions

with 0 ≤ g(x) ≤ f(x) for each x ∈ V (G). Then G admits a (g, f)-factor if and only if

γ1G(X,Y ; g, f) = f(X) + dG−X(Y )− g(Y ) ≥ 0

and

γ2G(X,Y ; g, f) = f(Y ) + dG−Y (X)− g(X) ≥ 0

for any X ⊆ A and Y ⊆ B.
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We easily see that dG−Y (X) = eG(X,B \Y ) and dG−X(Y ) = eG(Y,A \X). Let E1 and E2 be two

disjoint subsets of E(G), and let X ⊆ A and Y ⊆ B. Put

E
X,B\Y
1 = |E1 ∩ EG(X,B \ Y )|, E

Y,A\X
1 = |E1 ∩ EG(Y,A \X)|

E
X,B\Y
2 = |E2 ∩ EG(X,B \ Y )|, E

Y,A\X
2 = |E2 ∩ EG(Y,A \X)|

Note that E
X,B\Y
1 ≤ dG−Y (X), E

Y,A\X
1 ≤ dG−X(Y ), E

X,B\Y
2 ≤ dG−Y (X) and E

Y,A\X
2 ≤

dG−X(Y ).

Using Lemma 2.1, Liu and Zhu [16] showed a characterization for a bipartite graph to admit a

(g, f)-factor including E1 and excluding E2, which plays an important role in the proof of our theorem.

Lemma 2.2 (Liu and Zhu [16]). Let G = (A,B,E(G)) be a bipartite graph, let g, f : V (G)→ N∪{0}
be two functions with 0 ≤ g(x) ≤ f(x) for each x ∈ V (G), and let E1 and E2 be two disjoint subsets

of E(G). Then G possesses a (g, f)-factor F with E1 ⊆ E(F ) and E2 ∩ E(F ) = ∅ if and only if

γ1G(X,Y ; g, f) ≥ EX,B\Y
1 + E

Y,A\X
2

and

γ2G(X,Y ; g, f) ≥ EY,A\X
1 + E

X,B\Y
2

for any X ⊆ A and Y ⊆ B.

3 The Proof of Theorem 1.1

In what follows, we always assume that G is a bipartite graph with ∆(G) ≤ k1 +k2 + · · ·+km−m+1,

where m and ki (1 ≤ i ≤ m) are positive integers with ki ≥ (2r − 1)t+ 1. For every isolated vertex x

of G and every [0, ki]-factor Fi, we possess dFi
(x) = 0. We denote by I the set of all isolated vertices

of G. Obviously, G possesses a [0, ki]-factor if G− I has a [0, ki]-factor. Hence, we may assume that

G does not possess isolated vertices. Next, we define

p(x) = max{0, dG(x)− (k1 + k2 + · · ·+ km−1 −m+ 2)}

and

q(x) = min{km, dG(x)}

for any x ∈ V (G). In light of the definitions of p(x) and q(x), we admit 0 ≤ p(x) ≤ q(x) for each

x ∈ V (G).

Let H1, H2, · · · , Ht be t vertex-disjoint mr-subgraphs of G. Choose arbitrary Ai ⊆ E(Hi) with

|Ai| = r for 1 ≤ i ≤ t. Let E1 =
t⋃

i=1

Ai and E2 =
( t⋃

i=1

E(Hi)
)
\ E1. Then |E1| = rt and

|E2| = (m− 1)rt.

The proof of Theorem 1.1 depends heavily on the following lemma.

Lemma 3.1. Let m, t, r and ki (1 ≤ i ≤ m) be positive integers with 2 ≤ m and ki ≥ (2r − 1)t+ 1,

G = (A,B,E(G)) be a bipartite graph with ∆(G) ≤ k1 + k2 + · · ·+ km −m+ 1. Then G possesses a

(p, q)-factor Fm with E1 ⊆ E(Fm) and E2 ∩ E(Fm) = ∅, where E1 and E2 are defined as the above.
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Proof. In light of Lemma 2.2, it suffices to justify that

γ1G(X ′, Y ′; p, q) ≥ EX′,B\Y ′

1 + E
Y ′,A\X′

2

and

γ2G(X ′, Y ′; p, q) ≥ EY ′,A\X′

1 + E
X′,B\Y ′

2

for any X ′ ⊆ A and Y ′ ⊆ B. We justify only the first inequality. The second one can be justi1ed

similarly.

We now choose two subsets X ⊆ A and Y ⊆ B such that

(a) γ1G(X,Y ; p, q)− EX,B\Y
1 − EY,A\X

2 is minimum;

(b) |X| is minimum subject to (a).

By the definition of E
X,B\Y
1 , E

Y,A\X
1 , E

X,B\Y
2 and E

Y,A\X
2 , we derive

E
X,B\Y
1 ≤ min{rt, r|X|}, E

Y,A\X
2 ≤ min{(m− 1)rt, (m− 1)r|Y |},

E
Y,A\X
1 ≤ min{rt, r|Y |}, E

X,B\Y
2 ≤ min{(m− 1)rt, (m− 1)r|X|}}.

Claim 1. If X 6= ∅, then q(x) ≤ dG(x)− 1 for each x ∈ X, and so q(x) = km for each x ∈ X.

Proof. Let X1 = {x ∈ X : q(x) ≥ dG(x)}. Next, we justify X1 = ∅.
On the contrary, we let X1 6= ∅. Write X0 = X \X1. Hence, we derive

γ1G(X,Y ; p, q) = q(X) + dG−X(Y )− p(Y )

= q(X0) + q(X1) + dG−X0(Y )− eG(X1, Y )− p(Y )

≥ q(X0) + dG−X0(Y )− p(Y ) + dG(X1)− eG(X1, Y )

= γ1G(X0, Y ; p, q) + dG−Y (X1). (3.1)

Note that

E
X,B\Y
1 + E

Y,A\X
2 ≤ EX0,B\Y

1 + E
Y,A\X0

2 + E
X1,B\Y
1 (3.2)

and

dG−Y (X1) ≥ EX1,B\Y
1 . (3.3)

It follows from (3.1), (3.2) and (3.3) that

γ1G(X,Y ; p, q)− EX,B\Y
1 − EY,A\X

2

≥ γ1G(X0, Y ; p, q) + dG−Y (X1)− EX0,B\Y
1 − EY,A\X0

2 − EX1,B\Y
1

≥ γ1G(X0, Y ; p, q)− EX0,B\Y
1 − EY,A\X0

2 ,

which contradicts the choice of X (See condition (b)). Thus, we admit X1 = ∅, and so if X 6= ∅, then

q(x) ≤ dG(x)− 1 for each x ∈ X. Combining this with the definition of q(x), we admit q(x) = km for

each x ∈ X if X 6= ∅. This completes the proof of Claim 1. �

Next, we let d = k1 + k2 + · · ·+ km−1 −m+ 2, Y1 = {x : dG(x)− d ≥ 1, x ∈ Y } and Y0 = Y \ Y1.

By the definition of p(x), it is obvious that

p(x) = 0 (3.4)
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for any x ∈ Y0, and

p(x) = dG(x)− d (3.5)

for any x ∈ Y1. By the definition of E
Y,A\X
2 , we have

E
Y0,A\X
2 + E

Y1,A\X
2 = E

Y,A\X
2 . (3.6)

From Claim 1, we easily see that q(X) = km|X| for those X ⊆ A that satisfy conditions (a) and (b).

If Y1 = ∅, then by (3.4), E
X,B\Y
1 ≤ min{rt, r|X|} ≤ r|X|, EY,A\X

2 ≤ dG−X(Y ) and km ≥ (2r− 1)t+ 1

we derive

γ1G(X,Y ; p, q) = q(X) + dG−X(Y )− p(Y )

= km|X|+ dG−X(Y )− p(Y0)− p(Y1)

= km|X|+ dG−X(Y )

≥ ((2r − 1)t+ 1)|X|+ dG−X(Y )

≥ r|X|+ dG−X(Y )

≥ E
X,B\Y
1 + E

Y,A\X
2 .

If X = ∅, then E
X,B\Y
1 = 0. Using (3.4), (3.5), (3.6), ki ≥ (2r − 1)t + 1 (1 ≤ i ≤ m), 2 ≤ m and

dG(Y0) = dG−X(Y0) ≥ EY0,A\X
2 , we admit

γ1G(X,Y ; p, q) = q(X) + dG−X(Y )− p(Y )

= dG(Y0) + dG(Y1)− p(Y0)− p(Y1)

= dG(Y0) + dG(Y1)− p(Y1)

= dG(Y0) + dG(Y1)− (dG(Y1)− d|Y1|)

= dG(Y0) + d|Y1|

= dG(Y0) + (k1 + k2 + · · ·+ km−1 −m+ 2)|Y1|

≥ dG(Y0) + ((m− 1)((2r − 1)t+ 1)−m+ 2)|Y1|

= dG(Y0) + ((m− 1)(2r − 1)t+ 1)|Y1|

≥ dG(Y0) + (m− 1)r|Y1|

≥ E
Y0,A\X
2 + E

Y1,A\X
2

= E
Y,A\X
2

= E
X,B\Y
1 + E

Y,A\X
2 .

Next, we always assume that X 6= ∅ and Y1 6= ∅. The following proof will be divided into two

cases.

Case 1. |X| ≥ |Y1|.
Since G is a graph with ∆(G) ≤ k1 + k2 + · · ·+ km −m+ 1, we derive dG(Y1) ≤ (k1 + k2 + · · ·+

km −m+ 1)|Y1| = (d+ km − 1)|Y1|. Combining this with (3.4), (3.5) and Claim 1, we admit

γ1G(X,Y ; p, q) = q(X) + dG−X(Y )− p(Y )
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= q(X) + dG−X(Y )− p(Y0)− p(Y1)

= km|X|+ dG−X(Y )− p(Y1)

= km|X|+ dG−X(Y ) + d|Y1| − dG(Y1)

= km(|X| − |Y1|) + dG−X(Y ) + (d+ km)|Y1| − dG(Y1)

≥ km(|X| − |Y1|) + dG−X(Y ) + dG(Y1) + |Y1| − dG(Y1)

= km(|X| − |Y1|) + |Y1|+ dG−X(Y )

= (km − 1)(|X| − |Y1|) + |X|+ dG−X(Y ). (3.7)

Subcase 1.1. |X| ≥ rt.
Note that E

X,B\Y
1 ≤ min{rt, r|X|} ≤ rt and dG−X(Y ) ≥ E

Y,A\X
2 . By (3.7), |X| ≥ |Y1| and

km ≥ (2r − 1)t+ 1, we obtain

γ1G(X,Y ; p, q) ≥ (km − 1)(|X| − |Y1|) + |X|+ dG−X(Y )

≥ |X|+ dG−X(Y )

≥ rt+ dG−X(Y )

≥ E
X,B\Y
1 + E

Y,A\X
2 .

Subcase 1.2. |X| ≤ rt− 1.

Note that Y1 6= ∅. Hence, |Y1| ≥ 1. Next, we shall consider two cases.

Subcase 1.2.1. |Y1| = 1.

Let Y1 = {y}. Note that E
X,B\Y
1 ≤ min{rt, r|X|} ≤ r|X|, EY,A\X

2 ≤ min{(m − 1)rt, (m −
1)r|Y |} ≤ (m − 1)r|Y | and dG−X(Y ) ≥ E

Y,A\X
2 . According to (3.5), (3.6), (3.7), X 6= ∅, 2 ≤ m and

ki ≥ (2r − 1)t+ 1 (1 ≤ i ≤ m), we get

γ1G(X,Y ; p, q) ≥ (km − 1)(|X| − |Y1|) + |X|+ dG−X(Y )

= (km − 1)(|X| − 1) + |X|+ dG−X(Y1) + dG−X(Y0)

= (km − 1)(|X| − 1) + |X|+ dG−X(y) + dG−X(Y0)

≥ (km − 1)(|X| − 1) + dG(y) + dG−X(Y0)

≥ (km − 1)(|X| − 1) + d+ 1 + dG−X(Y0)

= (km − 1)(|X| − 1) + k1 + k2 + · · ·+ km−1 −m+ 3 + dG−X(Y0)

≥ (2r − 1)t(|X| − 1) + (m− 1)((2r − 1)t+ 1)−m+ 3 + dG−X(Y0)

≥ r(|X| − 1) + (m− 1)((2r − 1) + 1)−m+ 3 + dG−X(Y0)

= r(|X| − 1) + (m− 1)r + (m− 1)(r − 1) + 2 + dG−X(Y0)

≥ r(|X| − 1) + (m− 1)r + r + 1 + dG−X(Y0)

> r|X|+ (m− 1)r + dG−X(Y0)

= r|X|+ (m− 1)r|Y1|+ dG−X(Y0)

≥ E
X,B\Y
1 + E

Y1,A\X
2 + E

Y0,A\X
2

= E
X,B\Y
1 + E

Y,A\X
2 .
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Subcase 1.2.2. |Y1| ≥ 2.

If r = 1, then E
X,B\Y
1 ≤ min{t, |X|} ≤ |X|. Note that dG−X(Y ) ≥ E

Y,A\X
2 . In light of (3.7) and

|X| ≥ |Y1|, we derive

γ1G(X,Y ; p, q) ≥ (km − 1)(|X| − |Y1|) + |X|+ dG−X(Y )

≥ |X|+ dG−X(Y )

= E
X,B\Y
1 + E

Y,A\X
2 .

In the following, we consider r ≥ 2. Note that E
X,B\Y
1 ≤ min{rt, r|X|} ≤ rt and E

Y,A\X
2 ≤

min{(m − 1)rt, (m − 1)r|Y |} ≤ (m − 1)rt. Since |Y1| ≥ 2, there exist y1, y2 ∈ Y1. In terms of (3.5),

(3.7), |X| ≥ |Y1|, |X| ≤ rt− 1, 2 ≤ m and ki ≥ (2r − 1)t+ 1 (1 ≤ i ≤ m), we have

γ1G(X,Y ; p, q) ≥ (km − 1)(|X| − |Y1|) + |X|+ dG−X(Y )

≥ |X|+ dG−X(Y1)

≥ 2|X|+ dG−X(Y1)− (rt− 1)

≥ 2|X|+ dG−X(y1) + dG−X(y2)− (rt− 1)

≥ dG(y1) + dG(y2)− rt+ 1

≥ 2(d+ 1)− rt+ 1

> 2d− rt

= 2(k1 + k2 + · · ·+ km−1 −m+ 2)− rt

≥ 2((m− 1)((2r − 1)t+ 1)−m+ 2)− rt

> (2m− 2)(2r − 1)t− rt

≥ m(2r − 1)t− rt

= mrt+m(r − 1)t− rt

≥ mrt

= rt+ (m− 1)rt

≥ E
X,B\Y
1 + E

Y,A\X
2 .

Case 2. |X| ≤ |Y1| − 1.

SinceG is a graph with ∆(G) ≤ k1+k2+· · ·+km−m+1, we possess dG(X) ≤ (k1+k2+· · ·+km−m+

1)|X| = (d+km−1)|X|. Note that dG−Y (X) ≥ EX,B\Y
1 and E

Y,A\X
2 ≤ min{(m−1)rt, (m−1)r|Y |} ≤

(m− 1)rt. By (3.4), (3.5), Claim 1, 2 ≤ m and ki ≥ (2r − 1)t+ 1 (1 ≤ i ≤ m), we get

γ1G(X,Y ; p, q) = q(X) + dG−X(Y )− p(Y )

= q(X) + dG(Y )− eG(X,Y )− p(Y0)− p(Y1)

= km|X|+ dG(Y )− eG(X,Y )− p(Y1)

= km|X|+ dG(Y )− eG(X,Y ) + d|Y1| − dG(Y1)

≥ km|X| − eG(X,Y ) + d|Y1|

= (d+ km)|X| − eG(X,Y ) + d(|Y1| − |X|)
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≥ dG(X) + |X| − eG(X,Y ) + d

= dG−Y (X) + |X|+ k1 + k2 + · · ·+ km−1 −m+ 2

≥ dG−Y (X) + |X|+ (m− 1)((2r − 1)t+ 1)−m+ 2

= dG−Y (X) + |X|+ (m− 1)(2r − 1)t+ 1

≥ dG−Y (X) + |X|+ (m− 1)rt+ 1

> dG−Y (X) + (m− 1)rt

≥ E
X,B\Y
1 + E

Y,A\X
2 .

In conclusion, γ1G(X,Y ; p, q) ≥ EX,B\Y
1 +E

Y,A\X
2 . In terms of the choice of X and Y , we possess

γ1G(X ′, Y ′; p, q) ≥ EX′,B\Y ′

1 +E
Y ′,A\X′

2 for any X ′ ⊆ A and Y ′ ⊆ B. It follows from Lemma 2.2 that

G admits a (p, q)-factor Fm with E1 ⊆ E(Fm) and E2∩E(Fm) = ∅. This finishes the proof of Lemma

3.1. �

Proof of Theorem 1.1. We verify Theorem 1.1 by induction on m and n. Obviously, Theorem 1.1

is true when m = 1. Therefore, we may assume that m ≥ 2 in the following. For the inductive step,

let Theorem 1.1 be true for arbitrary bipartite graph G′ with ∆(G′) ≤ k1 +k2 + · · ·+km′−m′+1 and

1 ≤ m′ < m, and arbitrary t vertex-disjoint m′r-subgraphs H ′1, H
′
2, · · · , H ′t of G′. Next, we discuss a

bipartite graph G with ∆(G) ≤ k1+k2+ · · ·+km−m+1 and arbitrary t vertex-disjoint mr-subgraphs

H1, H2, · · · , Ht of G.

We select any Ai,m ⊆ E(Hi) with |Ai,m| = r for 1 ≤ i ≤ t. Write E1 =
t⋃

i=1

Ai,m and E2 =( t⋃
i=1

E(Hi)
)
\ E1. In terms of Lemma 3.1, G admits a (p, q)-factor Fm with E1 ⊆ E(Fm) and

E2 ∩E(Fm) = ∅. Obviously, Fm is also a [0, km]-factor of G. Set G′ = G−E(Fm). By the definition

of p(x), we derive

0 ≤ dG′(x) = dG(x)− dFm
(x) ≤ dG(x)− p(x)

≤ dG(x)− (dG(x)− (k1 + k2 + · · ·+ km−1 −m+ 2))

= k1 + k2 + · · ·+ km−1 − (m− 1) + 1

for any x ∈ V (G). And so G′ is a bipartite graph with ∆(G′) ≤ k1+k2+· · ·+km−1−(m−1)+1. Write

H ′i = Hi−Ai,m for 1 ≤ i ≤ t. It is obvious that H ′1, H
′
2, · · · , H ′t are t vertex-disjoint (m−1)r-subgraphs

of G′. By the induction hypothesis, G′ possesses a [0, ki]
m−1
1 -factorization randomly r-orthogonal to

every H ′i, 1 ≤ i ≤ t. Hence, G admits a [0, ki]
m
1 -factorization randomly r-orthogonal to every Hi,

1 ≤ i ≤ t. We complete the proof of Theorem 1.1. �
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