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Abstract

This paper introduces fractional-order derivatives in the SIR epidemic disease model with
varying population sizes. First, we study the existence, uniqueness, and boundedness of
solutions of the considered model. Then the basic reproduction number (BRN)R0 is derived.
Local and global asymptotic stability established for disease-free equilibrium point (DFEP).
Under certain conditions, we obtain the model’s endemic equilibrium point (EEP) and
demonstrate the local asymptotic stability. Further, we study the sensitivity analysis for
BRN. Finally, different numerical results are provided to study the effects of fractional
derivatives and validate the theoretical results.
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1 Introduction

Epidemic models are an essential subject in mathematical ecology and have also received sig-

nificant attention among researchers due to the recent pandemic disease COVID-19. In the

literature, many mathematical models demonstrate the transmission of disease and its speed of

spread; see, for example, [1, 4, 6, 7, 9, 10, 11, 26, 28, 29] and also reference therein. In particu-

lar, some diseases are spread from human to human and spread the infection quickly, and new

variations are also formed in one location and spread to another. Further, it easily transfers

from one group to another group. This behavior may be understood through mathematical

models using the SIR epidemic model with varying population sizes. There are very few papers

for the SIR model with various population sizes accessible; see [2, 13, 17, 18, 23].

There has been a lot of interest in researching the SIR model with integer and fractional order

derivatives recently. SIR model for epidemic spread among a community of people taken into

account with random perturbations in [1]. Also carried out were stability studies and numerical
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simulations in [1]. The existence of non-negative solutions and the asymptotic stability of the

equilibrium point are demonstrated for the SIR model with stochastic perturbation in [9]. The

local and global asymptotic stabilities of the disease-free equilibrium are investigated using a

SIR model with two delays and a general non-linear incidence rate in [10]. Stability analysis

for the equilibrium point was addressed while taking into account the SIR epidemic model for

the Hepatitis B virus in [11]. Additionally, the same model’s optimum control and sensitivity

analyses were investigated in [11]. The dynamics of the SIR epidemic model with a discrete-

time lag, effects of delay on reproduction number, and local stability analysis for equilibrium

point were all investigated in [28]. Additionally, the identical model was taken into account,

and global stability for the equilibrium point was investigated using the Lyapunov functional

approach in [29]. The interaction dynamics between susceptible and infected individuals in the

community under consideration are described by a non-linear SIR model, and stability analysis

for equilibrium points is also covered in [31].

There aren’t many studies that look at the SIR model with various groups in the literature.

A two-group stochastic SIRS epidemic model is proposed with standard incidence rates and

deduced sufficient conditions for the existence of a positive solution in [2]. The conditions for

disease extinction and persistence in the mean were studied for the integer-order derivative SIR

epidemic model with different populations in [13]. The global stability of the SIRS epidemic was

investigated using a multi-group SIRS epidemic model with a variety of population sizes in [17].

A multi-group SIRS epidemic model with variable overall population size, infection between

various groups, and enough conditions to achieve the highest recovery rate was researched in

[18]. It was thought about using the SIR-epidemic model for populations with heterogeneous

compositions, and stability analysis for equilibrium points and epidemiological inference for

disease transmission were both covered in [23].

On the other hand, fractional-order differential equations with applications in science and

engineering have been the subject of extensive study. The Hastings-Powell food chain model

with fractional order is taken into consideration, and the necessary and adequate conditions for

the discretized system’s stability are discussed in [14]. The fractional SIR model for the measles

virus was put forth in [15], and stability analysis for the equilibrium point was also investigated.

The Adams-Bash forth-Moulton scheme was used to demonstrate the chaotic attractors for the

SIR epidemic model with fractional derivatives of childhood diseases model was suggested in

[16].

The presence and uniqueness of positive and bounded solutions were examined using the

fractional-order SVEIR model in [19]. Additionally, it was determined that the equilibrium

values for the same model had global stability in [19]. The implementation of the non-local

fractional-order epidemic model to an infection with the human respiratory syncytial virus was

examined, along with the best controls in [22]. For the SIR epidemic model with delay, local

and global stability of the trivial and EEP were investigated in the context of the fractional

derivative in [25]. The fractional-order SIR epidemic model had a approximate solution found

in [27]. In this work, we suggested a fractional-order derivative SIR epidemic disease model
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with varying populations, in contrast to the papers cited above. We also look at the BRN’s

derivation, stability analysis of equilibrium points, and presence of solutions.

This paper considers a mathematical model of SIR epidemic disease with varying population

sizes proposed in [13]. Further, here we extend the same model with time-fractional derivatives.

Therefore, the proposed fractional model in this paper consists of three different population

variables, namely susceptible Si(t), infected Ii(t) and recovered individuals Ri(t) in the group

where i = 1, 2. We considered the following SIR mathematical model with fractional-order

derivatives 0 < α < 1 and varying populations in two groups,

cDα
t S1 = σ1 − (ξ11I1 + ξ12I2 + γ1)S1,

cDα
t I1 = ξ11S1I1 + ξ12S1I2 − (γ1 + ν1 + ρ1)I1,

cDα
t R1 = ρ1I1 − γ1R1,

cDα
t S2 = σ2 − (ξ21I1 + ξ22I2 + γ2)S2,

cDα
t I2 = ξ21S2I1 + ξ22S2I2 − (γ2 + ν2 + ρ2)I2,

cDα
t R2 = ρ2I2 − γ2R2.

(1.1)

Here σi, i = 1, 2 represent the recruitment rate of the population into the group and natural

death rate is given by γi, i = 1, 2. Further, ρi, i = 1, 2 represent the natural recovery rate and

death rate due to disease is given by νi, i = 1, 2. Moreover, the transmission rate of incidence

from Si to Ii and Si to Ij respectively given as ξii and ξij where i, j = 1, 2 i ̸= j. Without loss

of generality, we assume that νi, ρi, ξii, ξij are non-negative constant and σi and γi are positive

constant.

The paper is arranged as follows: In Section 2, we provide some preliminaries, it is helpful

throughout the article. In Section 3, we prove the existence and uniqueness of the solutions of

the model (1.1). Further, the non-negativity and boundedness of solutions are also proved. The

calculation of BRN and stability analysis of a DFEP is presented in Section 4. Conditions for

the existence of EEP and their stability are also discussed in Section 5. Finally, in Section 6,

we perform sensitivity analysis for the BRN, and some numerical results are provided to show

the effects of fractional derivative for the model (1.1).

2 Mathematical preliminaries

In this section, we recall some basic definitions, and lemmas are very useful to prove the paper’s

main results.

Definition 2.1. [21] Let g : R+ → R be a function. Then

cDα
t g(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1g(s)ds

is said to be the Caputo fractional-order derivative of g(t), where α ∈ (n− 1, n) and Γ(α) is the

Euler Gamma function.
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Definition 2.2. [15]

Normalized sensitivity index for R0 with respect to ℵ is given by

Sℵ =
ℵ
R0

∂R0

∂ℵ
,

where R0 is the BRN and ℵ is a given parameter in the model equation.

Lemma 2.1. (Generalized mean-value theorem) [20]

Let g(x) ∈ C[a, b] and cDα
a g(x) ∈ C(a, b] for 0 < α ≤ 1 then

g(x) = g(a) +
1

Γ(α)
cDα

a g(ϵ)(x− a)α.

Lemma 2.2. [30]

Let v(t) ∈ R+ be a continuous and differentiable function. Then, for any time t ≥ t0,

cDα

[
v(t)− v0 − v0ln

v(t)

v0

]
≤

(
1− v0

v(t)

)
cDαv(t),

v0 ∈ R+ is known data.

Lemma 2.3. [8]

If V is a bounded closed set, then every solution of cDαx(t) = f(x) take the initial value from V

and remains in V for all time. If there exists a function U(x) : V → R, which has a continuous

first partial derivatives with
cDαU |cDαx(t)=f(x) ≤ 0.

Let Q = {x|cDαU |cDαx(t)=f(x) = 0} and L be the largest invariant set of Q. Then every solution

of x(t) inizitated in V → L as t → ∞. In particular, when L = 0, then x → 0 as t → ∞.

Lemma 2.4. [12]

Let v(t) be a continuous function on [a,∞) and satisfy

cDαv(t) ≤ −µv(t) + λ,

v(a) = va.

Here (µ, λ) ∈ R2, µ ̸= 0 and a ≥ 0 is the initial time. Then, the solution has the form

v(t) ≤ (va −
λ

µ
)Eα[−µ(t− a)α] +

λ

µ
.

Here Eα[·] denotes the Mittag-Leffler functions [24].

3 Solvability of fractional SIR epidemic disease model with
varying population sizes

In this section, we prove the well possedness of solutions for the proposed SIR epidemic disease

fractional-order system with varying populations. Here, we use the contraction mapping princi-

ple to prove the desired result. Then, we study the non-negativity of solutions of the proposed

model. Finally, we establish the boundedness of the solutions of the model (1.1).
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In order to prove that there exists a solution (S1(t), I1(t), R1(t), S2(t), I2(t), R2(t)) for (1.1),

we rewrite the given system (1.1) as follows:

cDα
t U(t) = F (U(t)), 0 < α < 1, t ∈ (0, T ], U(0) = U0,

where the nonlinear function F : Ω → R is defined as below:

U(t) =



S1

I1
R1

S2

I2
R2

 , U0 =



S10

I10
R10

S20

I20
R20

 , F (U(t)) =



σ1 − (ξ11I1 + ξ12I2 + γ1)S1

ξ11S1I1 + ξ12S1I2 − (γ1 + ν1 + ρ1)I1
ρ1I1 − γ1R1

σ2 − (ξ21I1 + ξ22I2 + γ2)S2

ξ21S2I1 + ξ22S2I2 − (γ2 + ν2 + ρ2)I2
ρ2I2 − γ2R2

.
Here Ω is defined as follows:

Ω = {(S1, I1, R1, S2, I2, R2) ∈ R6
+ : max(|S1|, |I1|, |R1|, |S2|, |I2|, |R2|) ≤ A}. (3.1)

Further X = C([0, T ],R) is the Banach space of continuous functions from [0, T ] into R and

(X, ∥.∥∞) endowed with the supremum norm ∥U(t)∥∞ = sup
0≤t≤T

|U(t)|.

Theorem 3.1. Suppose that

(i) there exists a constant 0 < M < 1 such that |F (U(t))− F (V (t))| ≤ M∥U − V ∥ where

M =
Tα

Γ(α+ 1)
max {(ξ11 + ξ12)2A+ γ1, 2A(ξ11 + ξ12) + (γ1 + ν1 + ρ1), ρ1 + γ1,

(ξ21 + ξ22)2A+ γ1, 2A(ξ21 + ξ22) + (γ2 + ν2 + ρ2), ρ2 + γ2},

(ii) there exists U0 ∈ X then the operator Θ : X → X is defined by

Θ(U(t)) = U0 +
1

Γ(α)

∫ t

0
(t− τ)α−1F (U(τ))dτ,

satisfies

∥Θ(U(t))−Θ(V (t)))∥ ≤ M∥U − V ∥,

where M is defined as before.

Then there exists a unique solution for the system (1.1) in the region Ω× (0, T ] with the initial

conditions F (0) = F0 and t ∈ (0, T ].

Proof. Consider the solution of the system (1.1), which is given from the Lemma (2.1), as

follows:

Θ(U(t)) = U0 +
1

Γ(α)

∫ t

0
(t− τ)α−1F (U(τ))dτ,

Θ(U(t))−Θ(V (t)) =
1

Γ(α)

∫ t

0
(t− τ)α−1(F (U(τ))− F (V (τ)))dτ,

|Θ(U(t))−Θ(V (t))| ≤ 1

Γ(α)

∫ t

0
(t− τ)α−1 |(F (U(τ))− F (V (τ)))| dτ.
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The norm of the matrix P = |pi,j(t)|, is denoted by

∥P∥∞ =
∑
i,j

sup
t∈(0,T ])

|pi,j(t)|.

Now we get

∥Θ(U(t))−Θ(V (t))∥ ≤
(

1

Γ(α)

)(
tα

α

)
max {(ξ11 + ξ12)2A+ γ1, 2A(ξ11 + ξ12) +G1, ρ1 + γ1,

(ξ21 + ξ22)2A+ γ1, 2A(ξ21 + ξ22) +G2, ρ2 + γ2}∥U − V ∥

≤ Tα

Γ(α+ 1)
max {(ξ11 + ξ12)2A+ γ1, 2A(ξ11 + ξ12) +G1, ρ1 + γ1,

(ξ21 + ξ22)2A+ γ1, 2A(ξ21 + ξ22) +G2, ρ2 + γ2}∥U − V ∥

≤ M∥U − V ∥.

Here G1 = γ1 + ν1 + ρ1 and G2 = γ2 + ν2 + ρ2. If M < 1, then U = F (U) is contraction

mapping, and this becomes the sufficient condition for the existence and uniqueness of the

solution for the model (1.1).

Theorem 3.2. Suppose system (1.1) has a unique solution for all time t ≥ 0 with non-negative

initial conditions then all state variables Si(t), Ii(t), Ri(t), (i = 1, 2) are also non-negative. Fur-

ther the total population Q(t) =
2∑

i=1
Si(t) + Ii(t) +Ri(t) remain bounded.

Proof. It is easy to understand that from Theorem 3.1 there exists a unique solution for the

system (1.1). Next, we have to prove that solutions of (1.1) are non-negative. From the system,

we have
cDα

t S1|S1=0 = σ1 ≥ 0,

cDα
t I1|I1=0 = ξ12S1I2 ≥ 0,

cDα
t R1|R1=0 = ρ1I1 ≥ 0,

cDα
t S2|S2=0 = σ2 ≥ 0,

cDα
t I2|I2=0 = ξ21S2I1 ≥ 0,

cDα
t R2|R2=0 = ρ2I2 ≥ 0.

(3.2)

By (3.2) and by Lemma 2.1, we say that (S1(t), I1(t), R1(t), S2(t), I2(t), R2(t)) ≥ 0 for all t ≥ 0.

Next, we want to prove that non-negative solutions of (1.1) also bounded. Adding all the

equations of fractional SIR epidemic model (1.1) and using the definition Q(t), we get

cDα
t Q(t) = σ1 − γ1S1 − (γ1 + ν1)I1 − γ1R1 + σ2 − γ2S2 − (γ2 + ν2)I2 − γ2R2.

For µ > 0, we get

cDα
t Q(t) + µQ(t) = σ1 − (γ1 − µ)S1 − (γ1 + ν1 − µ)I1 − (γ1 − µ)R1 + σ2 − (γ2 − µ)S2

−(γ2 + ν2 − µ)I2 − (γ2 − µ)R2.

Suppose we assume that µ ≤ min{γ1, γ2} then

cDα
t Q(t) + µQ(t) ≤ σ1 + σ2 = g.
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Then by Lemma 2.4, we have

Qt ≤
(
Q0 −

g

µ

)
Eα[−µtα] +

g

µ
,

if t → ∞ then Q(t) → g
µ . This shows that 0 < Q(t) ≤ g

µ . Hence, all the solutions of the system

beginning with R+
6 are restricted to the region

Ω =

{
(S1, I1, R1, S2, I2, R2) ∈ R+

6 |Q(t) ≤ g

µ
+ δ, for any δ > 0

}
.

It is clear that Ω obtained above satisfies as in (3.1).

4 Stability analysis of a disease free equilibrium point

In this section, first, we find the DFEP for the considered model. Then, using the method

proposed in [3] BRN of the multiple group model derived. Finally, we conclude the section with

stability analysis of the DFEP of the model (1.1).

4.1 Equlibrium point

Suppose E∗ := (S∗
1 , I

∗
1 , R

∗
1, S

∗
2 , I

∗
2 , R

∗
2) ∈ R6

+ is the equilibrium point of the model (1.1). Then

cDα
t S1(E

∗) = 0, cDα
t I1(E

∗) = 0, cDα
t R1(E

∗) = 0,

cDα
t S2(E

∗) = 0, cDα
t I2(E

∗) = 0, cDα
t R2(E

∗) = 0.
(4.1)

From the above, we obtain one equilibrium point E0 =

(
σ1
γ1

, 0, 0,
σ2
γ2

, 0, 0

)
and it is called a

DFEP. Apart from the DFEP, there are some other possible equilibrium points that exist, and

those will be discussed later.

4.2 Basic reproductive number

Obtaining BRN for SIR model with varying population is important calculation to analyze the

model behaviour. However, it is not straightforward for the considered model (1.1) as in the

basic SIR model. We require a more systematic approach as in [3]. Therefore, we follow a

method proposed in [3] and then calculate the BRN of (1.1). To compute the BRN R0, first,

we distinguish the new infection from all other changing individuals. Let Fi denotes the rate of

arrival of new infections in the compartment i. V−
i refer the transformation rate of individuals

from the compartment i to other and V+
i represents the transformation rate of individuals from

other to compartment i.
cDα

t = fi(x) = Fi − Vi,

where Vi = V−
i − V+

i . To define a next generation matrix, we have to calculate Fi and Vi. To

find Fi and Vi, compute the first partial derivatives with respect to the infected compartments

and then we form a next generation matrix as FV −1.
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We divide the model (1.1) into two sub-models. We consider sub-model i as a fractional

derivative of Si, Ii, Ri for i = 1, 2 respectively. For the sub-model i

Fi = (σi, ξi1SiI1 + ξi2SiI2, 0),

Vi = (γiS1 + ξi1SiI1 + ξi2SiI2, (γi + νi + ρi)Ii, γiRi − ρiIi).

Here Ii (i = 1, 2) is the only infected compartment in the sub-model i. So the next genera-

tion matrix for the disease free equilibrium point

(
σi
γi
, 0, 0

)
is

Fi =
∂Fi

∂Ii
and Vi =

∂Vi

∂Ii
.

Then we get, Fi = [Siξii] =

[
ξiiσi
γi

]
and Vi = [γi + νi + ρi] = [Gi].

R0i = FiV
−1
i =

ξiiσi
γiGi

=
Kii

Gi
,

where Kij =
ξijσi
γi

, Gi = γi + νi + ρi. Thus the BRN is

R0 = R01 +R02 =
K11

G1
+

K22

G2
. (4.2)

Now, we discuss about the stability of DFEP of the model (1.1).

Theorem 4.1. Suppose Kij =
ξijσi
γi

, Gi = γi + νi + ρi for i, j = 1, 2 where ξij , σi γi, νi ρi are

defined as in the model (1.1). If the following conditions R0 < 1 and

K11K22 +G1G2 > G1K22 +G2K11 +K12K21, (4.3)

hold true then the DFEP is locally asymptotic stable.

Proof. Consider a function f : R6
+ → R6

+, where

f(U) = (f1(U), f2(U), f3(U), f4(U), f5(U), f6(U)), U = (S1, I1, R1, S2, I2, R2) ∈ R+
6 .

Suppose RHS of (1.1) is taken as fi, (i = 1, · · · , 6), then (1.1) is rewritten as Dα(U) = fi(U).

Thus the Jacobian matrix is given by

Jf =
∂(f1, f2, f3, f4, f5, f6)

∂(S1, I1, R1, S2, I2, R2)
=


∂f1
∂S1

· · · ∂f1
∂R2

...
. . .

...
∂f6
∂S1

· · · ∂f6
∂R2

 .

Now, we give the Jacobian matrix for the model (1.1) at the disease free equilibrium

E0 =

(
σ1
γ1

, 0, 0,
σ2
γ2

, 0, 0

)
.

Jf (E0) =



−γ1 −K11 0 0 −K12 0
0 K11 −G1 0 0 K12 0
0 ρ1 −γ1 0 0 0
0 −K21 0 −γ2 −K22 0
0 k21 0 0 K22 −G2 0
0 0 0 0 ρ2 −γ2

 .
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Characteristic equation of the above matrix is given as

(−λ− γ1)(−λ− γ1)(−λ− γ2)(−λ− γ2)(λ
2 + P1λ+ P2) = 0,

where

P1 = (G1 +G2 − (K11 +K22),

P2 = K11K22 −G1K22 −G2K11 +G1G2 −K12K21.

By simple calculation, we get the following eigenvalues,

λ1 = −γ1; λ2 = −γ1; λ3 = −γ2; λ4 = −γ2.

We find the remaining eigenvalues by solving the equation

λ2 + P1λ+ P2 = 0. (4.4)

We know that from Routh-Hurtwiz condition equation (4.4) has a negative root of real parts if

P1 and P2 are greater than 0. If R0 < 1 then it is obvious that P1 > 0 and similarly if condition

(4.3) hold true then P2 > 0 . Thus, the DFEP is locally asymptotic stable.

Next, we prove that DFEP is globally asymptotically stable.

Theorem 4.2. Suppose Kij =
ξijσi
γi

for i, j = 1, 2 where ξij , σi γi are defined as in the model

(1.1). If the following conditions

k11 + k21 < γ1 + ν1,
k12 + k22 < γ2 + ν2,

(4.5)

hold true then the DFEP is globally asymptotic stable.

Proof: Consider the Lyapunov function as

L(S1, I1, R1, S2, I2, R2)

=

(
S1 −

σ1
γ1

− σ1
γ1

ln

(
γ1S1

σ1

))
+ I1 +R1 +

(
S2 −

σ2
γ2

− σ2
γ2

ln

(
γ2S2

σ2

))
+ I2 +R2.

From the above definition, it is easy to understand that

L(S1, I1, R1, S2, I2, R2)


= 0 only at

(
σ1
γ1

, 0, 0,
σ2
γ2

, 0, 0

)
,

> 0 Ω ̸=
(
σ1
γ1

, 0, 0,
σ2
γ2

, 0, 0

)
.

First compute the fractional order αth derivative for L, and use Lemma 2.1, we get

cDα
t L(t) ≤

(
1− σ1

γ1S1

)
cDα

t S1 +
cDα

t I1 +
cDα

t R1 +

(
1− σ2

γ2S2

)
cDα

t S2 +
cDα

t I2 +
cDα

t R2

≤ −(σ1 − S1γ1)
2

S1γ1
− (σ2 − S2γ2)

2

S2γ2
− γ1R1 − γ2R2 −

(
γ1 + ν1 −

ξ21σ2
γ2

− ξ11σcase1
γ1

)
I1

−
(
γ2 + ν2 −

ξ12σ1
γ1

− ξ22σ2
γ2

)
I2

≤ −
(
γ1 + ν1 −

ξ21σ2
γ2

− ξ11σ1
γ1

)
I1 −

(
γ2 + ν2 −

ξ12σ1
γ1

− ξ22σ2
γ2

)
I2

≤ − (γ1 + ν1 −K21 −K11) I1 − (γ2 + ν2 −K12 −K22) I2.
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Then we get, cDα
t L(t) ≤ 0 for all (S1, I1, R1, S2, I2, R2) ∈ R6

+ if (4.5) hold true. Further,
cDα

t L(t) = 0 only at DFEP.

Then using Lemma 2.3, it follows that every solution belongs to R6
+ tends to E0. These

shows that the equilibrium point E0 is globally asymptotically stable.

5 Stability analysis of endemic equilibrium point

In this section, first we prove that there exists at-least one EEP for the considered fractional

SIR model with varying population sizes (1.1). Further, we prove that the EEP is locally

asymptotic stable for BRN R0 > 1.

Theorem 5.1. Consider R0 > 1, Hij =
ξijγj
ρj

and Gi = γi + νi + ρi. Further, assume that at

least one of the following conditions are satisfied

σ2ρ2σ1ρ1(H21H12 −H11H22) +G1γ
2
2ρ2H22σ2 < G1γ

2
1G2γ

2
2 −G2γ

2
2ρ1H11σ1

and H11H22 > H21H12,
(5.1)

σ2ρ2σ1ρ1(H21H12 −H11H22) +G1γ
2
2ρ2H22σ2 > G1γ

2
1G2γ

2
2 −G2γ

2
2ρ1H11σ1

and H11H22 < H21H12.
(5.2)

Then there exists at least one EEP other than DFEP

(
σ1
γ1

, 0, 0,
σ2
γ2

, 0, 0

)
.

Proof. Equating the fractional derivatives of (1.1) to zero, for i = 1, 2, we get

Si =

(
σi

ξi1I1 + ξi2I2 + γi

)
, (5.3)

Si(ξi1I1 + ξi2I2) = GiIi, (5.4)

Ii =

(
γi
ρi

)
Ri. (5.5)

Substituting (5.3) and (5.5) in (5.4), we get

A1R
2
1 −A2R1 −A3 = 0, (5.6)

B1R
2
2 −B2R2 −B3 = 0, (5.7)

respectively for i = 1 & i = 2. Here, Ak, Bk for k = 1, 2, 3 are defined as follows:

A1 = G1γ
2
1ρ2ξ11; B1 = G2γ

2
2ρ1ξ22;

A2 = ξ11σ1γ1ρ2ρ1 −G1γ1γ2ξ12ρ1R2 −G1γ
2
1ρ1ρ2; B2 = ξ22σ2γ2ρ2ρ1 −G2γ1γ2ξ21ρ2R1 −G2γ

2
2ρ2ρ1;

A3 = ξ12σ1γ2ρ
2
1R2; B3 = ξ21σ2γ1ρ

2
2R1.

It is easy to see that by Descartes’ rules of signs , if R1 > 0 in (5.7) then R2 has atleast one

positive solution. Next our claim is that R1 has atleast one positive solution. Substituting

Ak, Bk for k = 1, 2, 3 in (5.6) and (5.7), we get

R2 =
(G1γ1H11R1 +G1γ

2
1 − ρ1H11σ1)R1

H12σ1ρ1 −G1γ1R1H12
, (5.8)
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R1 =
(G2γ2H22R2 +G2γ

2
2 − ρ2H22σ2)R2

H21σ2ρ2 −G2γ2R2H21
. (5.9)

Now, substitute (5.8) in (5.9) and solving the resulting algebraic equation, we get

R1 = 0, (5.10)

a1R
3
1 + a2R

2
1 + a3R1 + a4 = 0, (5.11)

where we assume a1, a2, a3 and a4 are as follows:

a1 = (G1γ1H11)
2G2γ2H22 − (G1γ1)

2H12H11G2γ2H21,

a2 = (G1γ1H12)
2H21σ2ρ2 −H21H12σ1ρ1G1γ1H11G2γ2 +G2

1γ
3
1G2γ2H21H12−

ρ1σ1H11G1γ1H12G2γ2H21 −G1γ1H11(G2γ2H22G1γ
2
1 −G2γ2H22ρ1σ1H11

−G1γ1H12G2γ
2
2 + ρ2σ2H22G1γ1H12)− (G1γ

2
1 − ρ1H11σ1)G1γ1H11G2γ2H22,

a3 = H12σ1ρ1(ρ1σ1H11G2γ2H21 −G1γ1H12H21σ2ρ2 −G1γ
2
1G2γ2H21)

−G1γ1H11H12σ1ρ1(G2γ
2
2 − ρ2H22σ2)− (G1γ

2
1 − ρ1H11σ1)(G2γ2H22G1γ

2
1

−G2γ2H22ρ1σ1H11 −G1γ1H12G2γ
2
2 + ρ2σ2H22G1γ1H12)−G1γ1H

2
12σ1ρ1H21σ2ρ2,

a4 = (H12σ1ρ1)
2H21σ2ρ2 − (G1γ

2
1 − ρ1H11σ1)(H12σ1ρ1(G2γ

2
2 − ρ2H22σ2)).

The one root R1 = 0 gives the DFEP. Then, from (5.11), we look for other possible roots .

Suppose if a1 > 0 and a4 < 0 or a1 < 0 and a4 > 0 then at least one of the conditions (5.2)

are satisfied. Therefore, the Descartes rule of signs implies that there exists at least on positive

real root for (5.11).

Theorem 5.2. Suppose R0 > 1 and

ϕi > 0, ∀i = 1, · · · , 6,
ϕ1ϕ2 > ϕ3,

ϕ1ϕ2ϕ3 + ϕ1ϕ5 > ϕ2
1ϕ4 + ϕ2

3,

ϕ2
1(ϕ2(ϕ3ϕ4 + ϕ1ϕ6)) + ϕ5ϕ

2
3 > ϕ5(ϕ1ϕ2 − ϕ3)

2 + ϕ1(ϕ3(ϕ1ϕ6 + ϕ2ϕ5+

ϕ4ϕ3) + ϕ2
5 + ϕ2

1ϕ
2
4),

(ϕ5(ϕ1ϕ2 − ϕ3)− ϕ2
1ϕ6)

2ϕ3 > ϕ1ϕ6(ϕ
2
3 + ϕ2

1ϕ4) + ϕ1ϕ2(ϕ5(ϕ1ϕ2 − ϕ3)−
+ϕ2

1ϕ6(ϕ2ϕ3 + ϕ5) ϕ2
1ϕ6)

2 + ϕ1ϕ6(ϕ5ϕ
2
1 + (ϕ1ϕ2 − ϕ3)ϕ3 − ϕ2

1ϕ4)
2.

(5.12)

are satisfied then the EEP E1 = (S∗
1 , I

∗
1 , R

∗
1, S

∗
2 , I

∗
2 , R

∗
2) of the model (1.1) is locally asymptotic

stable. Here, assume that

a11 = −ξ11I
∗
1 − ξ12I

∗
2 − γ1, a12 = −ξ11S

∗
1 , a15 = −ξ12S

∗
1 ,

a21 = ξ11I
∗
1 + ξ12I

∗
2 , a22 = ξ11S

∗
1 −G1, a25 = ξ12S

∗
1 ,

a32 = ρ1, a33 = −γ1,

a42 = −ξ21S
∗
2 a44 = −ξ21I

∗
1 − ξ22I

∗
2 − γ2, a45 = −ξ22S

∗
2 ,

a52 = ξ21S
∗
2 a54 = ξ21I

∗
1 + ξ22I

∗
2 a55 = ξ22S

∗
2 −G2,

a65 = ρ2, a66 = −γ2.

Further, we also assume that
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ϕ1 = −(a11 + a22 + a33 + a44 + a55 + a66),

ϕ2 = a11(a22 + a33 + a44 + a55 + a66) + a22(a33 + a44 + a55 + a66) + a33(a44 + a55 + a66)

+a44(a55 + a66) + a55a66 − a12a21 − a45a54,

ϕ3 = (a21a12(a33 + a44 + a55 + a66) + a45a54(a33 + a66 + a22 + a11) + a52a25(a11 + a33

+a44 + a66))− (a11(a22(a33 + a44 + a55 + a66) + a33(a44 + a55 + a66) + a44(a55 + a66)

+a55a66) + a22(a33(a44 + a55 + a66) + a44(a55 + a66) + a55a66) + a33(a44(a55 + a66)

+a55a66) + a44a55a66 + a21a52a15 + a25a42a54),

ϕ4 = a11(a22(a33(a44 + a55 + a66) + a44(a55 + a66) + a55a66) + a33(a44(a55 + a66) + a55

a66) + a44a55a66) + a22(a33(a44(a55 + a66) + a55a66) + a44a55a66) + a33a44a55a55

−(a12a21(a33(a44 + a55 + a66) + a44(a55 + a66) + a55a66) + a11a25a52(a33 + a44 + a66)

+a11a25a42a54 + a21a15a52(a33 + a44 + a66)− a54a45(a11(a33 + a22 + a66)− a21a12)

−a22a33a45a54 − a25a33a52a44 − a25a33a52a66 − a22a45a54a66 − a25a44a52a66

−a33a45a54a66 − a21a15a42a54 + a25a54a42(a33 + a66),

ϕ5 = a66(a21a12 − a11a22)(a44a55 − a45a54) + (a44a52 − a54a42)(a11a25 − a21a15)

a33a66(a21a12a44 − a11a22a44 − a11a22a55 + a11a25a52 − a21a15a52 + a21a12a55

−a11a44a55 + a11a45a54 − a22a44a55 + a22a45a54 − a25a42a54 + a25a52a44)

−(a33((a11a22 − a21a12)(a44a55 − a54a45)) + (a11a25 − a21a15)(a42a54 − a52a44)),

ϕ6 = a33a66(a11a22a44a55 − a11a22a45a54 − a11a25a42a54 + a44a25a11a52

−a21a12a44a55 + a21a12a45a54 − a15a42a54a21 + a21a15a52a44).

Proof. Jacobian matrix for the system at E1 is

J(E1) =



a11 a12 0 0 a15 0
a21 a22 0 0 a25 0
0 a32 a33 0 0 0
0 a42 0 a44 a45 0
0 a52 0 a54 a55 0
0 0 0 0 a65 a66

 .

The characteristics equation of the above matix is

λ6 + ϕ1λ
5 + ϕ2λ

4 + ϕ3λ
3 + ϕ4λ

2 + ϕ5λ+ ϕ6 = 0.

where the values of aij and ϕi are defined above. If it stastifies the Routh-Hurwitz criterion,

then the EEP of the system is locally asymptotic stable.

6 Numerical simulations

In this section, first we perform the sensitivity analysis for the BRN R0. Then, we analyse the

considered fractional SIR epidemic model with varying population using numerical simulations.

In the numerical computations, we consider various order of fractional derivatives and compared

the results with integer order derivative. The numerical simulations in the fractional order

12

6 Apr 2023 03:20:28 PDT
220129-Shangerganesh Version 2 - Submitted to Rocky Mountain J. Math.



system (1.1) are carried out by using Garrappa’s MATLAB code “flmm2.m” [5]. Further, we

also analyse effects of the models parameters using a sequence of numerical simulations.

6.1 Sensitivity analysis

In this section, we perform sensitivity analysis of the model (1.1). Using the Definition 2.2, we

do analysis for the parameters in the BRN R0. Here

R0 =
ξ11σ1

γ1(γ1 + ν1 + ρ1)
+

ξ22σ2
γ2(γ2 + ν2 + ρ2)

.

Suppose the normalized sensitivity index for a parameter is positive then the R0 value

increases if there is increase in the given parameters. Similarly the R0 value decreases if the given

parameter value decreases. On other hand, the normalized sensitivity index for a parameter

is negative then the R0 value increases (or decreases) if the parameter value decreases (or

increases).

Sξ11 =
ξ11
R0

(
∂R0

∂ξ11

)
=

1

1 + ξ22σ2γ1G1

ξ11σ1γ2G2

> 0,

Sσ1 = σ1
R0

(
∂R0
∂σ1

)
=

1

1 + ξ22σ2γ1G1

ξ11σ1γ2G2

> 0,

Sξ22 =
ξ22
R0

(
∂R0

∂ξ22

)
=

1

1 + ξ11σ1γ2G2

ξ22σ2γ1G1

> 0,

Sσ2 =
σ2
R0

(
∂R0

∂σ2

)
=

1

1 + ξ11σ1γ2G2

ξ22σ2γ1G1

> 0,

Sγ1 =
γ1
R0

(
∂R0

∂γ1

)
= −

 γ1 +G1

G1

(
1 + ξ22σ2γ1G1

ξ11σ1γ2G2

)
 < 0,

Sν1 =
ν1
R0

(
∂R0

∂ν1

)
= −

 ν1

G1

(
1 + ξ22σ2γ1G1

ξ11σ1γ2G2

)
 < 0,

Sρ1 =
ρ1
R0

(
∂R0

∂ρ1

)
= −

 ρ1

G1

(
1 + ξ22σ2γ1G1

ξ11σ1γ2G2

)
 < 0,

Sγ2 =
γ2
R0

(
∂R0

∂γ2

)
= −

 γ2 +G2

G2

(
1 + ξ11σ1γ2G2

ξ22σ2γ1G1

)
 < 0,

Sν2 =
ν2
R0

(
∂R0

∂ν2

)
= −

 ν2

G2

(
1 + ξ11σ1γ2G2

ξ22σ2γ1G1

)
 < 0,

Sρ2 =
ρ2
R0

(
∂R0

∂ρ2

)
= −

 ρ2

G2

(
1 + ξ11σ1γ2G2

ξ22σ2γ1G1

)
 < 0.
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In order to perform the sensitivity analysis for R0, we assume the following values for the model

parameters,

Case A:
σ1= 0.7, ξ11= 0.5, ξ12= 0.3, γ1= 0.2, ν1= 0.5, ρ1=0.3,
σ2=0.5, ξ21= 0.1, ξ22= 0.3, γ2= 0.1, ν2= 0.2 , ρ2= 0.3,

Moreover, using the values defined above, we obtain the normalized sensitivity index for

every parameter in R0 as follows:

Sξ11 0.411· · · > 0, Sξ22 0.588· · · > 0,
Sσ2 0.588· · · > 0, Sσ1 0.411· · · > 0,
Sγ1 -0.494· · · < 0, Sν1 -0.205· · · < 0,
Sρ1 -0.123· · · < 0, Sγ2 -0.686· · · < 0,
Sν2 -0.196· · · < 0, Sρ2 -0.294· · · < 0.

In the above mentioned results Sξ11 , Sξ22 , Sσ1 , Sσ2 are positive. Therefore, R0 value increase

if ξ11,ξ22,σ1,σ2 are increasing. Similarly Sγ1 ,Sν1 ,Sρ1 ,Sγ2 ,Sν2 ,Sρ2 are negative. Therefore, R0

value increasing if γ1,ν1,ρ1,γ2,ν2,ρ2 are decreasing. Otherwise it increases.

6.2 Computational results

This section, first discusses the effects of various fractional-order derivatives and compares the

results with integer-order derivative. To approximate the solution of the fraction-order system

(1.1), all computations are performed using Garrappa’s MATLAB code “flmm2.m” [5] with

algorithm as given below. Numerical simulations are performed using the implicit fractional

linear multistep methods (FLMMs) of the second order.

Algorithm:

Step 1: Fix the initial values U0. Model parameter values are used as in Case A.

Step 2: Set the end time T. Import the nonlinear function F (U(t)) .

Step 3: Set up the Jacobian of F (U(t)). Fix fractional order derivative values.

Step 4: Solve the system by using the in-house MATLAB code flmm2.m.

Step 5: Repeat Step 4 for different values of α.

Step 6: Plot the output.

Step 7: End.

We consider the parameter values Case A as in the Section 6.1. We perform numerical

simulations for the fractional derivatives α = 0.3, 0.5, 0.7, 0.9 & 1. First, we calculate BRN R0

using (4.2), we get R0 = 4.25 > 1. Further, here R0 > 1 and (5.2) is satisfied for the parameter

values Case A.
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Figure 1: Plots represent the effects of various fractional order derivatives α = 0.3, 0.5, 0.7, 0.9 & 1 and
compare the results with integer order derivative of the model (1.1) with parameter values as in Case
A. Finally, all the solutions parameters converging to an EEP E1 = ( 1.1552, 0.46896, 0.70344, 1.57049,
0.571584, 1.71475 ).

Therefore, the Theorem 5.1 guarantees that there exists at least one EEP. Next, we calculate

the equilibrium points procedure mentioned as in Section 4 and 5. Then, we get four equilibrium

points for the considered model (1.1). However, only E0 = ( 3.5, 0, 0, 5, 0, 0) and E1 = ( 1.1552,

0.46896, 0.70344, 1.57049, 0.571584, 1.71475 ) are in R+
6 and other two are complex numbers,

so we omitted. Here E0 = ( 3.5, 0, 0, 5, 0, 0) is a DFEP. Next, E1 = ( 1.1552, 0.46896, 0.70344,

1.57049, 0.571584, 1.71475 ) is an EEP for (1.1) with Case A.

Here, R0 is greater than 1 and the coefficients of characteristic equation λ6 + 1.7698λ5 +

1.4965λ4 + 0.6896λ3 + 0.1949λ2 + 0.0278λ1 + 0.0014 satisfy conditions (5.12) of Theorem 5.2.

Therefore, we conclude that EEP E1 = ( 1.1552, 0.46896, 0.70344, 1.57049, 0.571584, 1.71475

) is locally asymptotic stable for the model (1.1). Next, numerical simulations show the effects

of various order of fractional derivatives depicted in Fig. 1. It is clearly shows that huge

differences are there in the populations of each compartments Si, Ii, Ri i = 1, 2. We noted that

the dynamics of solutions of model (1.1) impacted significantly due to the fractional derivatives,

see Fig. 1. Population in all the compartments Si, Ii, Ri i = 1, 2 varying from the initial level

when t increases and continues until the convergence to the equilibrium point. This behaviour

observed for all α = 0.3, 0.5, 0.7, 0.9 & 1. Therefore, from numerical results, we conclude that

dynamics of SIR epidemic model with varying population changes concerning order of fractional

derivatives. Now, we replace the transmission rate parameters S1 to I1 and S2 to I2 ξii for

i = 1, 2 respectively as
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Figure 2: Plots represent the effects of transmission rate parameters of the model
(1.1). Model parameter values are assumed as in Case B. Further, comparative re-
sults of Case B with Case A is also presented. Moreover, all the solutions pa-
rameters converging to an EEP (1.1552, 0.46896, 0.70344, 1.57049, 0.571584, 1.71475) and
(1.02229, 0.495542, 0.743313, 1.25176, 0.624706, 1.87412) of Case A and Case B respectively.

Case B:
σ1= 0.7, ξ11= 0.6, ξ12= 0.3, γ1= 0.2, ν1= 0.5, ρ1=0.3,
σ2=0.5, ξ21= 0.1, ξ22= 0.4, γ2= 0.1, ν2= 0.2 , ρ2= 0.3,

In the sensitivity analysis of BRN, we discussed any change in the transmission parameter

impact the value of R0. Accordingly, for Case B, R0 is calculated as 5.433 > 1. Here, for

Case B, R0 > 1 and it satisfies the equation (5.1), then by the Theorem 5.1, there exists

at least one EEP. Calculate the equilibrium as above, we get EEP a E1=( 1.02229, 0.495542,

0.743313,1.25176, 0.624706, 1.87412) for Case B. However, DFEP E0 remains the same for Case

B. Further, the characteristic equation for E1 in Case B is λ6+1.7835λ5+1.6467λ4+0.8294λ3+

0.2596λ2 + 0.0396λ1 + 0.002 and its coefficients satisfy the condition (5.12). Therefore, again

by Theorem 5.2, we conclude that E1 is locally asymptotic stable for Case B. Comparison of

the EEP of both cases, we observed that the solution parameters Si i = 1, 2 decreased and

Ii, Ri i = 1, 2 increased for Case B than Case A. It has shown in Fig. 2.

Finally, we consider the following model parameters and discuss the numerical results briefly.

Case C:
σ1= 0.7, ξ11= 0.5, ξ12= 0.3, γ1= 0.6, ν1= 0.4, ρ1=0.2,
σ2=0.5, ξ21= 0.1, ξ22= 0.3, γ2= 0.3, ν2= 0.6 , ρ2= 0.4,

The BRN for Case C is R0 is calculated as 0.8707 < 1. Then we obtain the DFEP E0 =

(1.16667, 0, 0, 1.66667, 0, 0). Further, parameter values of Case C satisfy (4.3) and (4.5). It is

clear that the DFEP is locally and globally asymptotic stable. Since R0 < 1, even for various

fractional order derivatives, α = 1, 0.9, 0.4, all solutions parameters, Si, Ii, Ri, i = 1, 2 converges
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Figure 3: Plots represent the effects of various fractional order derivatives α = 0.4, 0.9 & 1 and compare
the results with integer order derivative of the model (1.1) with parameter values as in Case C. Finally,
all the solutions parameters converging to a DFEP E0 = (1.16667, 0, 0, 1.66667, 0, 0).

to DFEP with different time(t), see Fig. 3.

Conclusion

We considered here a fractional-order SIR epidemic model with varying population sizes. We

first studied the existence and uniqueness of solutions of the considered model. Then, we

also proved that the solutions of the model are bounded. Further, we found a DFEP and

then estimated the model’s BRN. Next, we performed a stability analysis for the DFEP. We

proved that the EEP exists and is locally asymptomatic stable using certain conditions. Finally,

sensitivity analysis and numerical simulations are performed to validate the theoretical results.

As a result of the studies mentioned above, it is simple to pinpoint the variables that are crucial

for limiting the spread of infections in the varying population model. In addition, this research

may be helpful in developing a disease control strategy to stop the infection from spreading

throughout the system.
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