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BOUNDARY CONTINUITY OF ROTATIONALLY SYMMETRIC PRESCRIBED MEAN
CURVATURE HYPERSURFACES
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ABSTRACT. We examine the boundary behavior of variational solutions of Dirichlet problems for the
prescribed mean curvature equation in smooth domains in R", n > 3, when the appropriate boundary
curvature conditions are not satisfied, the Dirichlet data may be discontinuous and the Dirichlet problem
has rotational symmetry. We establish the existence of the radial limits at points of the boundary and
illustrate by example that the variational solution can be continuous on the closure of the domain even
though the Dirichlet boundary data has no limit at some boundary points.
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16 1. Introduction

17

1s The study of the geometry of fluid interfaces has generated interest for centuries (e.g. [22]), illustrated,
19 for example, by the study of Plateau’s problem (e.g. [19, Chap. V]). In this note, we wish to develop
o0 and study of higher dimensional prototypes of (generalized) nonparametric Plateau problems. Let

2o n>2, Tf:ﬁ and N, f = V- T f =div(Tf) for f € C*(Q) when Q is a bounded open set in

?_ R” with C2* boundary, for some A € (0,1). Let H € C'*(R") such that H(x,z) is a non-decreasing
?° function of z € R for each x € Q and nH satisfies the hypotheses of [9, Proposition 1.1]. Here and
2 throughout the paper, we adopt the sign convention that the mean curvature of € is nonnegative when
> Qs convex. We consider the following Dirichlet problem

26
27 (1) N.f = nH(-,f) in Q
28 (2) f = ¢ on JdQ

2% for ¢ € L*(dQ). The solvability of this problem depends on the mean curvature of the boundary of the
— domain € and the continuity (and smoothness) of the Dirichlet data ¢.

o When n = 2 and H = 0, Bernstein ([1]) observed in 1912 that convexity of the domain was a
o sufficient condition for the existence of a minimal surface which is a classical solution (i.e. f € C°(Q)
" and f = ¢ on dQ when ¢ € C°(dQ)) and a necessary condition for the existence of a classical solution
. for all ¢ € C°(9Q) ([19, §406]). In this case with ¢ € C°(dQ), a classical solution of (1)-(2) represents
% @ nonparametric solution of the Plateau problem in the cylinder € x R which spans the graph of ¢.
- In general, a generalized (e.g. variational) solution f of (1)-(2) will satisfy limgsy_sx, f(X) = ¢ (Xo)
. if xg € dQ, ¢ is continuous at xo and (n — 1)Hyq(Xo) > n|H (X0, f(X0))|, where Hyq(x) is the mean
o curvature of JQ at x € dQ (e.g. [9, Theorem 3.2], [18]). If the appropriate curvature condition (i.e.
o (n—1)Hyq(x) > n|H(x,¢(x))| for all x € dQ) is not satisfied, then a classical solution will not exist
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1 for certain ¢ € C*(dQ) and one can ask about the boundary behavior of “generalized solutions” of
2 (1)-(2). When ¢ € C'*(9Q) for some A € (0, 1), the remarkable paper [2] states “Our goal is to study
‘3 the regularity of such a solution (of (1)-(2)) without imposing any curvature conditions for dQ,” studies
"4 an associated integral n—current and establishes the regularity of the support of this current.

5 We shall examine some special cases where ¢ may not be in C°(9dQ) and the curvature condition
may not be satisfied and consider the BV (Q) solution f of (1)-(2); that is, the function f € BV (Q)
minimizes over BV (Q) the functional

3) /\/1+]Dh|2 /// ) H(x.y.5) dsdxdy+/ \h— @|dH,_,

i1 forh € BV(Q).
12 Suppose € = %y is a smooth, open subset of dQ for which

[e|e|~]o]e

—_

14 (4) Hy(x) <
15

6 where Hy is the mean curvature of 4" and M > 0. Now [8, Corollary 14.13] (see also [11, 20]) implies
17 that there exist ¢ € C*(dQ) such that (1)-(2) has no classical solution if ¢ # 0 and H(x,z) = H(x).
8 Combining [9, Theorem 3.2] and [8, Theorem 14.12], we see that for each M > 0 and x( € %), there
19 exists ¢ € C*(dQ) with supyq, |@| < M such that f(x) = ¢(x) when x € dQ and (n — 1)Hy(x) >
20 n|H(x,¢(x))| and limgsx_x, f(X) # ¢(X0), where f denotes the variational solution of (1)-(2). When
21 ¢ eclh? (dQ) (and Q need only be a bounded C 14 domain), the boundary regularity of the variational
22 solution is determined in [2, Theorem 4.2] (see also [17, 21]). What is the boundary behavior at xg € ¢
23 of the variational solution of (1)-(2) when ¢ ¢ C%!(%) or ¢ is discontinuous at xo?

24 In the two-dimensional case Q C R? with H(x,y,z) is independent of z for (x,y) € Q, this behavior
25 is investigated in [5, 6]. For simplicity of notation, we shall subsequently write (x,y) for points in R?
26 and x for points in R"~!.

27 1In [5], we assume the curvature Hy of € satisfies
28

29 Hg(x,y) < —2[H(x,y)| foreach (x,y) €€

30
5; and, in [6], we assume

inf |H(x,z)| foreach x€ ¥,
—1 z]<m

32 Hy(x,y) <2|H(x,y)| foreach (x,y) €.

— The conclusion is that if ¢ € L*(dQ) and f is the variational solution of (1)-(2), then the radial limit
— ) RF (0, (x,y)) Elim f((x,y) + r(cos0,5in6))
T.

45 exists for each (x,y) € ¢ and each 6 € (a(x,y), B(x,y)), where B(x,y) = a(x,y) + 7, 6 = a(x,y)
5o and 6 = B(x,y) are the tangent rays to dQ at (x,y) (in polar coordinates centered at (x,y)) and the
.o tangent cone to Q at (x,y) is {(x,y) + (rcos0,rsin@) : r > 0, a(x,y) < 6 < B(x,y)}. In both [5] and
o 6L RF(-, (x,y)) € COa(x,y), B(x,y)) and Rf (-, (x,y)) behaves in one of the following ways:

42 (i) Rf(-,(x,y)) is a constant function and the nontangential limit of f at (x,y) exists.
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(ii) There exist o, 0 € [a(x,y), B (x,y)] with & < o such that

1
2 constant for a(x,y)<0<a
3 Rf(0) isq strictly monotonic for o <6<m

4 constant for o <6 <B(x,y).

% An additional conclusion in [5] is that the tangential radial limits Rf (a(x,y), (x,y)) and Rf (B (x,y), (x,y))
—exist, Rf (-, (x,y)) € C%([a(x,y), B(x,y)]) and in case (i), f is continuous at (x,y), even if ¢ is discon-
5 tinuous at (x,y) or has no limit at (x,y) (e.g. [5, Example 1.4]).

o One would like to extend conclusions like those above to general smooth domains in R". However

o the techniques required to do this are unclear and two dimensional surfaces are somewhat special; for

o example Bourni ([2, Theorem 4.11]) only considers ¢ with jump discontinuities in the two-dimensional
., case and Taylor ([23]) only considers two-dimensional capillary surfaces in smooth three-dimensional
5 containers. In §2, we consider extensions of [5, 6] to rotationally symmetric Dirichlet problems in
v R" and offer examples in §3; the study of such symmetric geometries occurs in other cases (e.g.

;5 [12, 13, 14]) and can act as prototypes for the general situation (e.g. [3]).

16

I 2. Rotationally Symmetric Dirichlet Problems

18 Consider a bounded, simply-connected open set (i.e. a bounded domain) U C R? with cx boundary
19 such that U C R%, where RZ = {(x,y) € R?: x > 0}. Let 4 = (x,y) be the interior unit normal
20 to U at (x,y) € dU. For a small § = §(x,y) >0, dU NBg(x,y) \ {(x,y)} consists of disjoint, open
21 arcs d~U(x,y) and dTU(x,y) whose tangent rays approach the rays 6 = a(x,y) and 6 = B(x,y)
22 respectively, as the point (x,y) is approached and such that the interior directions from (x,y) into
23 U are the rays 7(0) = {(x,y) +r(cos0,sin0) : 0 < r < €(0)} for 6 € (a(x,y),B(x,y)); here &(-) :
24 (a(x,y),B(x,y)) — (0,6) depends on U.

25 Fix n > 3 and define Q C R" by

. © Q={(xt,y) ER": (x,y) €U, T €S},

28 Let fl = [i(x,y) be the interior unit normal to Q at (x,y) € Q. For (x,y) € 9, define 9~ Q(x,y) =
2o {(|x]7,3): TE S, (|x],y) €9~ U(1x],3)} and I+ Q(x,y) = {(x|z.y) : € 5" 2, (|x.y) € 9+ U ([x],7)}.
s0 If we set I'(x,y) = {(|x|t,y) : T € 8" 2} and Ts(x,y) = {(s7,t) € R": (s,t) € Bs(|x|,y),T € §" %},
31 then dQNTs(x,y) \['(x,y) = dTQ(x,y) Ud~Q(x,y).

32 Let C be afixed, designated open subset of dU; we might consider C to be connected but this is not
33 essential. Let us define a hypersurface 4 in R” by

ae) ¢ ={(xt,y): (x,y) €C, T€S"*}.
35
56 Foreach P = (x,y) € ¢, we define

37 Tr={wecs" ' : {P+rw:0<r<e}CQ forsome & >0},

Z% T¢ ={® € Tp : ® is not tangent to ¢ at P} and T}, = {® € Tp : @ is not tangent to I at P}. Let

40 Rf(0,P)E lim £ (P+7@) foreach @ € Tp for which this limit exists.
I

41
42 Set 1= (1,0,...,0) € " 2.
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Let us assume that ¢ € L*(dQ) satisfies

1
2

~® ¢(x,y) = o(|x[70,y)

Z for almost all (x,y) € dQ and H satisfies

5

P C)) H(x,y,z) = H(|x|70,,2)

7 for each (x,y) € Q, z€ R.If f € BV(Q) minimizes (3), then uniqueness (e.g. [7, Theorem 1]) implies
8 that

9

10 (10) f(x,y) = f(|x|w,y) for (x,y) € Q.

"' For each 7 € 8”2, let L; € SO(n) be the rotation about the x,—axis which maps (7, y) to (1, y) for

2 each y € R; we write L; (@) = (L;(®)1,...,L:(®),). We note using hyperspherical/polyspherical

'3 coordinates that

— T T 2n N

15 /«/1+|Df|2:// / / | +|Dg(ry) »2F (e) d6; ...d6,_drdy
Q UJo 0 JO

17

3 =Yooz [ 1+ IDg(ry) "~ 2dray,

19

e . —1
20 where F(6) = IT}_7sin" > %(6;) and V,_» = H,_»(5" %) = §’(an1
oy 2

2 2)—sphere. Similar calculations imply that (3) can be written as

- J 8(ry)
2 W [ o1 iR arays [ [ 22 [ wri(ry.s) ds aray
24 Vo U U 0

26 +/a r"2|g(r,y) — ¢(r,y)|drdy
U

We shall impose different conditions on C, and so %, in the following.

n

is the surface area of the (n —

~—

28

29 _
o~ 21 Foran (x0,y0) € C, k(x0,y0) < n|H (x0%0,0,2)| = "2

?Z Let us suppose first that (xg,yp) € C and the curvature (with respect to i) k of C satisfies
32

83 (11) K (x0,Y0) < n|H (x0T0,y0,2)| —
(ﬂ

35 and either

36 n—2

5 (12) H (x0T0,y0,2) < — for |z| <M,
o 0

% or

39

10 n—2

40 (13) H(x070,y0,2) > —— for |z] <M,
41 nxo

-2
& for z € [-M,M]
0

X

g where M > 0 will depend on the solution of (1)-(2) under consideration.

3 Nov 2023 16:15:14 PDT
230602-Lancaster Version 2 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

ROTATIONALLY SYMMETRIC HYPERSURFACES 5

i+ Theorem 1. Let Q, H, C, € and ¢ satisfy the conditions above. Let f € C*(Q)NL*(Q)NBV(Q)
2 minimizes the functional (3) for h € BV (Q). Suppose K satisfies (11) and either (12) or (13) when
3 M = supg |f|. Then there exists a neighborhood ¥ C R? of (xo,yo) such that for each (x,y) € CNY

4 andT € S”—Z, Rf(®,(x7,y)) exists for each @ € T(lxr B

Define g : U — R by g(x,y) = f(x7,y). Then for each (x,y) €CNY¥, 1€ S" % and w € T}, we

R(@,P) = Rf(Li(©), Fy) = Rg(8 (x,y)) limg(x+rcos0,y-+rsin6),

9 where P = (x1,y) €€, Py = (x79,y) €€, 0 € (at(x,y),B(x,y)) and
10
1
14 0,sin0) =
7 o (s sin®) = @)+ (P

E Further, Rg(0,(x,y)) behaves as in one of the following cases:

il (a) Rg(-,(x,y)) is constant on (a(x,y),B(x,y)) and g has a nontangential limit at (x,y).

s (b) there exist 01,0, € [a(x,y), B(x,y)] with 6; < 6, such that
16

(Le(@)1,Le(®@)n)-

17 constant if a(x,y) <6 <6
18 (15) Rg(0,(x,y)) is { strictly monotonic if 8; < 6 < 6,
9 constant if 6, <6 < B(x,y).

20
21 If case (a) holds, then f has a nontangential limit at (xt,y) for each T € §" 2.
22
23
24 2.2. For an (x9,y0) € C, k(x0,y0) < —n|H (x07T0,Y0,2)| —

25
o Letus suppose second that (x0,¥0) € C and the curvature (with respect to i) k of C satisfies

n—2
xo °

n—2
% (16) K(x0,y0) < —n|H (x0T0,y0,2)| — — for z € [-M,M]|,
0

2% where M > 0 will depend on the solution of (1)-(2) under consideration.
30

31 Theorem 2. Let Q, H, C, € and ¢ satisfy the conditions above. Let f € C*(Q)NL*(Q) minimizes
32 the functional J(h) given in (3) for h € BV (Q) and define g : U — R by g(x,y) = f(x7,y). Suppose K
33 satisfies (16) when M = supg | f|. Then there exists a neighborhood ¥ C R? of (xo,yo) such that for
34 each (x,y) € CNY, the limits

35

35 lim w,v) =z-(X,
3 a*U(x,y)a(w,vH(x,y)g( ) )
7 and

il lim (w,v) = 24 (x,)
89 otU (x,y)a(w,V)ﬁ(xvy)g 7 o

40
L, exist. For each (x,y) €CNY¥,t1€8" %2 and w € TS,

42 Rf(a),P):Rf(Lf(CO),Po):Rg(ev(xa)’))
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1 exists, where P = (xt,y) € €, Py = (x10,y) € €, Rg(at(x,y), (x,y)) = z—(x,y), Rg(B(x,y), (x,y)) =
> z+(x,y) and 0 € [a(x,y),B(x,y)] satisfies (14). Further Rg(-,(x,y)) € CO([at(x,y),B(x,y)]) and

3 Rg(+,(x,y)) behaves as in one of the following cases:

4 @ 2 (xy) =z (xy) and g € CO(U U{(x,y)}).

5 (b) z_(x,y) # z+(x,y) and there exist 0,6, € [o(x,y), B (x,y)] with 81 < 6, such that
% 72— (x,y) if o(x,y) <6 <6,

Py Rg(0,(x,y))is ¢ strictly monotonic if 8; < 6 < 6,

9 2+ (%) if 6, <0 < B(x,y).

10

Ifcase (a) holds for (x,y) € CNYV, then f € CO(QU{(xT,y)}) for each T € S"~2.

— 3. Examples

- Example 1. Letac (3,1), b€ (0,1—a), He Rwith—} < —3H — 5 and H € [0,1]. Set

E Q={(rcos,rsinf,y) cR*: r* +y* < 1,0< 6 <27t,r20,(r—a) +y* > b*}

18

1o (see Figure 1). Define ¢ € C= (R>\ Zy) by ¢(x,y) = (1 —[x|> — y*)cos <y) where Zy = {(x1,x2,0) :

2E (x1,%2) € R?}. Let f € C*(Q) minimize the functional J(-) given in (3). Then f € C%(Q) (but f is not
21 equal to ¢ on portions of Bi(03) N9Q, where 03 = (0,0,0)).
22

23

24

25

26

27

28

29

30

31 FIGURE 1. Q

32

33
% Example2. Letn=3,e€ (0,1),U ={(x,y) €R?*: (x—1—¢€)>4+y> < 1} and Q= {(xcos G,xsinG,y) €
® R3: (x,y) €U,0 €[0,27]}. Notice that dQ is a torus and its mean curvature (with respect to L) at

% ((1+e+cosy)coso,(1+¢e+cosy)sino,siny) is

37

— l+e+2

Z% Hyo((14+€+cosy)coso,(1+€+cosy)sino,siny) = 2&;:4_222%
w for0<o<2m, —3<y<3F HereM=1,k=1and

41

12 o(l+€e+cosy,siny) = E_X and B(1+&+cosy,siny) :g—x
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i ifx €[—%.5] while
2 . T , T
o o(1+€e-+cosy,siny) =X—3 and PB(1+e€e-+cosy,siny) :x+—
4 4
% ifxe [% 37”] The isoperimetric inequality for Caccioppoli sets A in R says 75(A) < (4 )% (f ]D¢A|)%
_ T

1
% or [|D@ys| >3 (4—”) 3 (%@(A))zﬂ. Let A be a Caccioppoli set in Q and write |A] H3(A) and
E 0A|Z [ D@y |. Then |A] < 4(Q) = 27*(1 + &) = LT g 50 (42 ) > (M(M ) A3 with

1

1 1
)3 |A|. Set H| = <372)> * | so that

10 equality only if |A| = |Q|. Thus [ |D@ga| >3 ( T(0Te

3n(l+¢)
11

@ (8) | 3tdx| =3t1al < [ Doyl
1fNotzce that (]8) is a strict znequalzty if A# 0,Q and if we calculate, we obtain | [o3H dx| =

E67r (ﬁ) (I1+¢)= (4ﬂ(1+£)> 4n2(1+¢) < 4n*(1+€) = [|Doa|. Thus (18) is a strict in-
16

 equality for all Caccioppoli sets A in Q with |A| > 0. From [10, Theorem 1.1], we see that there is a
7 function f € C*(Q) which satifies (1) for each constant H € (0,Hj).

8 Notice that there exists & € (0, 1) such that for each € € (0, &),
19

o 1 & &2 +2+6

20 He——— 4212500

o 2+ 6 6(2+e)

LI —

1
< : 1 1 : 2 3 2
5 this follows from the facts that limg o 5 + % = 5 and limg g (W) = (3—”)
o2 0.5965. Now condition (11) is

= 1

25 |
5 1<3|H(1+¢ ’ I+etcosy’
. ’ ( +e+cosy SIHX)’ 1+€+4cosy

27 _ 2 3 _ o2 A3
—Assumeee(O o) andH—zJr8 +£:then1 <3H — mzfandonlyzfxe (—cos 1(2 2‘182‘9 ),cos ! (228%28 ))

29 Letusfixe € (0,80) and set H= 2+8 +£andC={(1+e&+cosy,siny) € R*:cos(y) > 2*2‘12;283}.

%0 Let ¢(x1,x2,y) = cos (;) fory # 0 and let f € C*(Q) minimize (3). Then we can apply Theorem 1 to
Z% see that the radial limits of f exist at each point of €. Due to the symmetry of ¢ and Q, case (a) of
3— Theorem 1 holds, g has a nontangential limit at (€,0) € C and Rf(-,(€cos 0, €sin7,0)) is a constant
5, Junction for each ¢ € [0,27).

is approximately

33 4. Proofs
36

37 Proof of Theorem 1: First note that

%(19) f(x,y) = f(Le(x,y)) foreach (x,y) €Q, T€S"

39

4o Notice that g : U — R, given by g(x,y) = f(x70,y), satisfies

s gx(xay)

— (20) Nu.(f)(x,0,...,0,y) =Nao(g)(x,y) +(n—2

¥ ol ) =M@ )+ (n-2) ST
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and so the mean curvature H, (x,y) at (x,y,g(x,y)) € U x R of the graph of g satisfies

gx(x,)
1+ [Vg(x,y)[?

For (x,y) E U nH (x7y,y,8(x,y)) — "2 < 2H,(x,y) < nH (x7y,y,&(x,y)) +"=2. Thus |N2(g)| < n|H|+
SUP(xy)cu 2 < o0 shows N,(g) is bounded and the calculation on p. 170 of [16] shows that the area
A(S) of the graph of g over U is finite.

Since co = inf{r: (r,y) € U for some y € R} > 0, we see that

0 /, V11D < / 1+ DfP.

11

™ Since |fof0 ™3 nH (x,y,5) ds dxdy)| +faQ|f—¢|dHn,1 < oo and J(f) < oo, we see again that the

'3 area A(S) of the graph of g over U is finite.

* It follows from (11) that there exists a neighborhood #] C R? of (x0,¥0) such that

15

— -2
16 (22) K(x,y) < inf |nH(xTo,y,2)| — 77 for (x,y) eCNA.
17 z€[—M M| X

E If (12) holds, then there exists a neighborhood #> C R? of (xp,yo) such that

@1 2H,(x,y) € Na(g) (x,y) = nH (x70,y,8(x,y)) — (n— 2)-

\@\m\*\m\m\ﬂw\w\*

—_

19
20 (23) limsup H,(x,y) <0 forall (xi,y;) € CN%s.
o Us(xy)=(x1:y1)

22 If (13) holds, then there exists a neighborhood %5 C R? of (xo, o) such that

23 . .
2 (24 liminf  H,(x,y) >0 forall (x,y;) € CN%.
. yominf | o(x,y) orall (x,y;) 5

% Set ¥ = V1N Y. Letus fix (xg,y1) €eCNY.

® " If g has a nontangential limit at (x|, y; ), then Rg(8, (x1,y1)) exists for each 6 € (a(x1,y1), B (x1,y1))
?’_ and case (a) holds; that is, for each nontangential direction (cos0,sin 0) from (x,y;) into U, the limit
?® Rg(8,(x1,y1)) exists and these limits are all the same.

= Letus now suppose that g does not have a nontangential limit at (x;,y; ). Since we are only interested
% in interior radial limits (i.c. @ € (a(x1,y1), B(x1,y1)), we may replace U by a subdomain U* such that
1 QU*NAU = {(x1,y1)}, QU* has the same tangent rays at (x|, y;) as does dU, g € C° (T \{(x1,3)})

%2 and the curvature k* of U* satisfies
33

34 (25) K*(x1,y1) < inf  |nH(x1T0,y1,2)
35 ZE[-M M|

36 Set So = {(x,y,8(x,y)): (x,y) €U*}.

37 Now we have not shown that g is the variational solution of the two dimensional version of (1)-(2)
38 and so we cannot directly use the results of [6]. However, since we know that the area of S is finite,
39 we claim that the arguments used to prove [6, Theorem 2.3] and its conclusions continue to hold here.
40 Parametrizing the graph of g over U* in isothermal coordinates, we see that the Dirichlet integral
41 of the parametrization Y : E — R? is finite. We now argue as in the proof of [6, Theorem 2.3]. One
42 detail we need to mention is that, when (12) (and (23)) holds, the upper Bernstein pair (U Tyt

-2
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n—2
X

1 required in the later part of the proof will be assumed to satisfy Ny (x,y) < nH (xTo,y, —M) —
o for (x,y) € U™ and
Vytxy) Vixy)

3 1m

4 Uts(ey) =) /14 [Vt (ny)]?

5 for almost every (x2,y2) € I' = Bg(x1,y1) NdU™ and, when (24) holds, the lower Bernstein pair
6 (U™, y) will be assumed to satisfy Noy~ (x,y) > nH (x7,y,M) + =2 for (x,y) € U~ and

7

7 Vi o

B T CACE L

9 v- —0232) 1+ [V (x,y) 2

10 for almost every (xp,y2) € I' = Bg(xl,yl) NJU™. It follows from this argument that Rg(0, (x1,y1))

11 exists for 6 € (a(x1,y1),B(x1,y1)) and Rg(-, (x1,y1)) € CO((et(x1,¥1), B (x1,y1))). Notice from [6]
2 thatif 0 < r(r) > 0and 6(¢t) — 0 € (o(x,y),B(x,y)) as | 0, then

@9 lim g1+ r(1)08 0(1), 1 +1(1)sin (1)) = R (6, (x1.31).

15
s Weclaim thatif (x,y) eCNY, 0 € T(’xT yand 6 € (a(x,y),B(x,y)) satisfies |/ ®F + ®2(cos 6,sin ) =

17 (01, @,), then Rf (@, (x70,y)) = Rg(6, (x,y))-

18 Pf: Fix (x,y) eCN¥ and w € T(‘My). Set o' = (®y,...,0, 1) and T = m(x‘co—f—r(o’). Notice
19 that

;i L:((xT0,y) +rm) = (\/x2—|—2rxa)1 + 72| 10,y + r@,) = ((x+roy + 0(r*)) 0,y + ray,)

oo and

23 f((x70,y) +r@) = f (L((x70,y) + r@)) = g(x+ray + O(r%),y+ ro,)

24 Thus

25 Rf (@, (x7,y)) = limg(x+ ror + O(r?),y+rw,) =Rg(6,(x,y)). O

26 r

>, The remainder of the claims in Theorem 1 follow from (19) and [6]. O

8 Proof of Theorem 2: We shall adopt the notation and results of the previous proof. It follows from

2 (16) that there exists a neighborhood ¥ C R? of (xg,yo) such that
30

— -2

:1 K(xvy) S —”|H(XT07)%Z)‘ - nT for (x,y) € Cﬂ/y/az € [_MaM]

32

53 and so, for (x,y) eCNY,

& K(0y) < —nlAGey) | = =2 < |nfi(r,y) - P28 oy

35 X,Y) > n X,)))| X < n (x,y) X W(X y) - | g(xay)|'

z% where W = /1 + |Vg|? and A (x,y) = H(xTo,y,g(x,y)). It follows from the arguments in the proof of
o [5, Theorem 1.1] that for each (x,y) € CN¥, the limits z; (x,y) and z»(x,y) exist, Rg(0, (x,y)) exists
o for each 8 € [a(x,y), B(x,y)] and Rg(, (x,y)) € C°([a(x,y), B(x,y)]). In addition, it follows from the
o proof of [5, Theorem 1.1] that g € C°(U U {(x,y)}) when z1(x,y) = 22(x,).

o Fix (x,y) € CN7Y and set Py = (xTp,y). Consider @ € Tp,. Notice that either (i) o is tangent to

2 Clry) ={(xT,y) 1T € §"72} and @ = @, = 0 or (ii) (@1, ®,) = 1/ ©? + ®2(cos B,sin O) # (0,0) for
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1 some 6 € [a(x,y),B(x,y)]. Notice that in case (i), @ ¢ Ty and in case (ii), @ € Ty . Using (19) and
> arguing as in the claim at the end of the previous proof, we see in case (ii) that

Rf((l),P()) = Rg(97 (xvy))'
Remark 1. When, for example, 6 = a(x,y) and ® = (tcosa(x,y),®” tsina(x,y)) with @" =
(n,...,0,—1), |0"| <1landt =+/1—|@"|? > 0, we mean by the symbols Rg and Rf the limits
27) Rg(a(x,y), (x,y)) = lim g (wv)

I~U(x,y)3(wy)—(xy)

and

R PR) = li *
f(@.R) a—Q(xro,yl)gl(w,v)%Pof (w,v),

.
=[3]ele|~]ofa|~]|e|

12 where g* is the trace of g on dU and f* is the trace of f on dQ. (When, for example, {(x+
13 reosa(x,y),y+rsina(x,y)): 0 <r < 8} is contained in U for some small § > 0 and the two limits
14 (5)and (27) for Rg(a(x,y), (x,y)) both exist, they agree. One feature of [5, Theorem 1] is that (5) and
15 (27) both exist and agree.)

® " In case (i) with 0; = @, =0, (xTp,y) + ro may not be in Q for any r > 0 and we interpret Rf as

17
= (28 Rf(w,Py) = lim *(w,v).
E ( ) f( ) 0) %(X_),)a(w,v)%Pof ( V)
19

20 When case (b) of Theorem 2 holds, limy- g (xzy y)5 (wo) =8y f 7 (W5 V) = 2 (%,3), imy 0 ee y)5(wo)opy S (W, V) =
51 Z+(x,y) and (28) will not exist. When case (a) holds and g is continuous at (x,y), this together with

> (19) implies

lim W, = s Y) lim * w, = 3
23 o (W1,V)—>P0f (w,v) =g(x,y) o (Vlw)ﬁpof (w,v) =g(x,y)
 and f is continuous at Py. The conclusions of Theorem 2 then follow using (19) as in the proof of
?° Theorem 1. ]
26

2Z Proof of Example 1: Notice first that ¢ = 0 almost everywhere on dB(03), f € C°(Q\ .7) and
28 f=00n0dB(03), where 7 = {(rcos0,rsin0,y) e R®: 0 < 0 < 2x,(r—a)? +y* = b*}.
29

30

31

32

33

34

35

36

37

38 FIGURE 2. Q (left) W in blue, yg = 0; W in green, yg > 0. (right)

39
w0 Set C={(x,y) € R*: (x—a)’>+y> = b*} and fix (xo,y0) € C. Since our interest is local (near
41 (x0,0)), let us set U = {(x,y) 2y <1, x> %(a—b), ly| <2b}. Let W =W(8) = {(x,y) € R?:
42 (x—a)>+y* > b% (x—x0)*>+ (y — y0)* < 8%}, where 0 < § < min{b,1 —a — b} (see Figure 2). If
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1 yo # 0, we may assume that & is small enough that y # 0 for all (x,y) € W(J) and so ¢ is continuous
2 at (x070,Y0)- Notice that (16) holds because k¥ = —% and xg > a—b.

Consider first yo = 0. Since ¢(x,y) = ¢(x,—y) for (x,y) € dQ\ Zy, f has this same symmetry;
f(x,y) = f(x,—y) for (x,y) € Q. Thus ¢*(x,y) is an even function of y, z_(xp,0) = z4(x0,0), case (a)
of Theorem 2 holds and f € C%(Q U {(xycos 8, x9sinH,0)}) for each 6 € [0,27).

Consider second yg # 0. From Theorem 2 and, if necessary, by choosing é > 0 smaller (so that

7 W(0) C ¥), we see that for each (x,y) € W(8) NC, the radial limits Rg(6, (x,y)) exist for each
'8 0¢[ufx,y),B(x,y)] and either case (a) holds or case (b) holds. If case (b) holds, then we can modify the
‘9 argument in the proof of [5, Corollary 1.2] and obtain a contradiction. Set z; = Rg(a(x0,Y0), (xX0,Y0)),
10 22 = Rg(B(x0,Y0), (x0,¥0)) and z3 = ¢ (x0,y0). Since we assume case (b) holds, we have z; # z,; we
1 may assume that z; < z3 and z; < zp and we may assume 0 > 0 is small enough that ¢ (x7p,y) >
12 (z1+23)/2 for (x,y) € dW(8) NC. Then there exist a;, & € [0t (x0,Y0), B(x0,v0)] with o1 < 0 such

3
4
5
6

13 that

14 constant(=z;) for o(xp,y0) <6 <
15 Rg(6,(x0,y0)) is { strictly increasing for o <0<m

16 constant(=z) for o <6 < B(xo,y0)

17
— and, for (x,y) € CNW (), €S and 0 € T?

. (o)’ Rf(w,P) =Rf(L;(®w),Py) = Rg(0,(x,y)), where
19 P=(x1,y) Pp = (x79,y) and L;(®) and O satisfy (14).

oo Letusadopt the terminology and arguments in the proof of [5, Corollary 1.2]. Let zp € (z1, min{z2,2z3})
o1 with zo < (z1 +23)/2 and let 6y € (o (x0,Y0), B(x0,¥0)) such that Rg(6o, (x0,y0)) = zo. Let 6}, €
25 (60, B(x0,y0)) satisfy zo < Rg(6p, (x0,y0)) < (z1+23)/2.Set T = {(xo+rcos 0y,y0+rsin6) : r € R}.
-3 Foreach R >0, let C(R) be the circle of radius R which passes through (xo, o), is tangent at (xo, o)
o, tothe line T and intersects d~U (xp,yo) and let V(R) be the open disk inside C(R). Consider the torus
s T =T (R)={(x1,y) €R’: (x,y) €C(R), T € S'} and let 7 (R) = {(x7,y) € R®: (x,y) EV(R),T €
o5 S'} represent the solid torus. Choose R > 0 small enough that V(R) NU C W(§) and that twice
>, the minimum mean curvature of the torus .7 is greater than 3H (this is similar to the requirement
s that 2R|H(x)| < 1 for all x € Byg(y) in the proof of [5, Corollary 1.2] and implies that the Dirichlet
o9 problem (1)-(2) is solvable (in .#(R)) for all continuous Dirichlet data on .7 (R)). (See Figure 3 with
20 (x0,y0) = (a,b), o(a,b) =0, B(a,b) = &, Ey (blue region), C(R) (green), U (yellow & blue regions),

31 22>723,2a = %(Z3 +21), and the various values of z labeled by their subscripts (e.g. 7o is labeled by
5 0).

% )1)\Iotice that C(R) N AU = {(x0,¥0), (xp,y,)} for some (xp,y,) € d~U(x0,y0). Let y € C*(T(R))
aa satisfy W(xoT,y0) = zo for T € S', w(x,y) = w(|x|79,y) for (x,y) € 7 (R), y < f on T (R)NQ (recall
35 Rg(0p, (x0,¥0)) > Rg (60, (x0,0)) = 20), SUP 7(r) ¥ =20 and Y (x,To, yp) <Himinfy s ), 5,) 8(X7)-
3E Let h € C? (W) satisfy N3h = 3H in .(R) and h = y on .7 (R). Since N3(h) = 3H > 0,
¥ < Sup 7 (g) ¥ = 2o- Since ¢ (x7,y) > (z1 +23)/2 for (x,y) € IW(6)NC, h < z9 < ¢ on .7 (R) N IQ.
%8 Since h is a classical solution of the Dirichlet problem Qh = 0 in .#(R) and h = y on 9.7 (R)),

% where Qk = N3k — 3H, it is also the variational (i.e. BV (.(R))) solution and minimizes
40

41 k(x,y)
o Ik:/ \/1+Dk2+// / 3Hddd+/ k— wldH
- (k) k) |Dk| ) o s dxdy 9(R)’ v|dH,
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2 P

3 ™2

—_— -

4 :

5 ia

> o

6 10

7 Snl

8

° T ‘

9 /‘\

10

m FIGURE 3. U, Ey in blue (left) z; < zo < zp < 24 < 73 < 22 (right)

12

13

12 over BV(Z(R)). Set E = {(x,y) € QN.Z(R) : h(x,y) > f(x,y)} and Eg = {(x,y) € R*: (x10,y) €
15 E,x>0}.

16 Define k € CO°(Q)NBV(Q) by k = f + (h— f)xe, where g is the characteristic function of E.
17 Since f minimizes J over BV (Q), we have J(f) < J(k) or

T [ reipsps [ [ sugaxay+ [ - olam;

20

2 g/\/1+|Dh\2+//3thxdy+/ \h— ¢|dH,.
22 E E JENIQ

ZE Now define [ € C°(.#(R))NBV(.#(R)) by | = h+ (f — h)xg. Since h minimizes I over BV (.#(R)),
24 we have I(h) <I(l) or
25

2 /y/1+|Dh|2+//3thxdy§/\/1+|Df|2+//3Hfdxdy+/ \f — h|dH>.
E E E E JENIQ

27
2E Combining these and using the facts that |[f —¢|=¢ —f, |h—¢|=¢ —h, |f —h| =h— f and
29 |f—h|l+|h—9|=¢—f=|f—¢|ond Q(at,b), we see that

30

5 /E\/1+]Df!2+//E3Hfdxdy+/&EmaQ\f—(p\de

32

33
— = [ \/1+ Dh2+//3thXd +/ h—o|dH
84 /E DA E Y aEmaQ| 9|dH;

% or J(k) = J(f); that is, k also minimizes J and so k = f on ; then h = f on E. This is a contradiction

% and so case (b) cannot hold, z; = z» and case (a) holds. Therefore f € C? (ﬁ) O
37

38 .
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