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BOUNDARY CONTINUITY OF ROTATIONALLY SYMMETRIC PRESCRIBED MEAN
CURVATURE HYPERSURFACES

MOZHGAN “NORA” ENTEKHABI AND KIRK E. LANCASTER

ABSTRACT. We examine the boundary behavior of variational solutions of Dirichlet problems for the
prescribed mean curvature equation in smooth domains in Rn, n ≥ 3, when the appropriate boundary
curvature conditions are not satisfied, the Dirichlet data may be discontinuous and the Dirichlet problem
has rotational symmetry. We establish the existence of the radial limits at points of the boundary and
illustrate by example that the variational solution can be continuous on the closure of the domain even
though the Dirichlet boundary data has no limit at some boundary points.

1. Introduction

The study of the geometry of fluid interfaces has generated interest for centuries (e.g. [22]), illustrated,
for example, by the study of Plateau’s problem (e.g. [19, Chap. V]). In this note, we wish to develop
and study of higher dimensional prototypes of (generalized) nonparametric Plateau problems. Let
n ≥ 2, T f = ∇ f√

1+|∇ f |2
and Nn f = ∇ ·T f = div(T f ) for f ∈C2(Ω) when Ω is a bounded open set in

IRn with C2,λ boundary, for some λ ∈ (0,1). Let H ∈C1,λ (IRn+1) such that H(x,z) is a non-decreasing
function of z ∈ IR for each x ∈ Ω and nH satisfies the hypotheses of [9, Proposition 1.1]. Here and
throughout the paper, we adopt the sign convention that the mean curvature of Ω is nonnegative when
Ω is convex. We consider the following Dirichlet problem

Nn f = nH(·, f ) in Ω(1)

f = φ on ∂Ω(2)

for φ ∈ L∞(∂Ω). The solvability of this problem depends on the mean curvature of the boundary of the
domain Ω and the continuity (and smoothness) of the Dirichlet data φ .

When n = 2 and H ≡ 0, Bernstein ([1]) observed in 1912 that convexity of the domain was a
sufficient condition for the existence of a minimal surface which is a classical solution (i.e. f ∈C0(Ω)
and f = φ on ∂Ω when φ ∈C0(∂Ω)) and a necessary condition for the existence of a classical solution
for all φ ∈C0(∂Ω) ([19, §406]). In this case with φ ∈C0(∂Ω), a classical solution of (1)-(2) represents
a nonparametric solution of the Plateau problem in the cylinder Ω× IR which spans the graph of φ .

In general, a generalized (e.g. variational) solution f of (1)-(2) will satisfy limΩ∋x→x0 f (x) = φ(x0)
if x0 ∈ ∂Ω, φ is continuous at x0 and (n−1)H∂Ω(x0)> n|H(x0, f (x0))|, where H∂Ω(x) is the mean
curvature of ∂Ω at x ∈ ∂Ω (e.g. [9, Theorem 3.2], [18]). If the appropriate curvature condition (i.e.
(n−1)H∂Ω(x)≥ n|H(x,φ(x))| for all x ∈ ∂Ω) is not satisfied, then a classical solution will not exist
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ROTATIONALLY SYMMETRIC HYPERSURFACES 2

for certain φ ∈C∞(∂Ω) and one can ask about the boundary behavior of “generalized solutions” of
(1)-(2). When φ ∈C1,λ (∂Ω) for some λ ∈ (0,1), the remarkable paper [2] states “Our goal is to study
the regularity of such a solution (of (1)-(2)) without imposing any curvature conditions for ∂Ω,” studies
an associated integral n−current and establishes the regularity of the support of this current.

We shall examine some special cases where φ may not be in C0(∂Ω) and the curvature condition
may not be satisfied and consider the BV (Ω) solution f of (1)-(2); that is, the function f ∈ BV (Ω)
minimizes over BV (Ω) the functional

(3) J(h) =
∫

Ω

√
1+ |Dh|2 +

∫ ∫
Ω

∫ h(x,y)

0
nH(x,y,s) ds dxdy+

∫
∂Ω

|h−φ |dHn−1

for h ∈ BV (Ω).
Suppose C = CM is a smooth, open subset of ∂Ω for which

(4) HC (x)<
n

n−1
inf

|z|≤M
|H (x,z) | for each x ∈ C ,

where HC is the mean curvature of C and M ≥ 0. Now [8, Corollary 14.13] (see also [11, 20]) implies
that there exist φ ∈C∞(∂Ω) such that (1)-(2) has no classical solution if C ̸= /0 and H(x,z) = H(x).
Combining [9, Theorem 3.2] and [8, Theorem 14.12], we see that for each M > 0 and x0 ∈ CM, there
exists φ ∈ C∞(∂Ω) with sup∂Ω |φ | < M such that f (x) = φ(x) when x ∈ ∂Ω and (n− 1)HC (x) >
n|H(x,φ(x))| and limΩ∋x→x0 f (x) ̸= φ(x0), where f denotes the variational solution of (1)-(2). When
φ ∈C1,λ (∂Ω) (and Ω need only be a bounded C1,λ domain), the boundary regularity of the variational
solution is determined in [2, Theorem 4.2] (see also [17, 21]). What is the boundary behavior at x0 ∈ C
of the variational solution of (1)-(2) when φ /∈C0,1(C ) or φ is discontinuous at x0?

In the two-dimensional case Ω ⊂ IR2 with H(x,y,z) is independent of z for (x,y) ∈ Ω, this behavior
is investigated in [5, 6]. For simplicity of notation, we shall subsequently write (x,y) for points in IR2

and x for points in IRn−1.
In [5], we assume the curvature HC of C satisfies

HC (x,y)<−2|H(x,y)| for each (x,y) ∈ C

and, in [6], we assume

HC (x,y)< 2|H(x,y)| for each (x,y) ∈ C .

The conclusion is that if φ ∈ L∞(∂Ω) and f is the variational solution of (1)-(2), then the radial limit

(5) R f (θ ,(x,y)) def
= lim

r↓0
f ((x,y)+ r(cosθ ,sinθ))

exists for each (x,y) ∈ C and each θ ∈ (α(x,y),β (x,y)), where β (x,y) = α(x,y)+π, θ = α(x,y)
and θ = β (x,y) are the tangent rays to ∂Ω at (x,y) (in polar coordinates centered at (x,y)) and the
tangent cone to Ω at (x,y) is {(x,y)+(r cosθ ,r sinθ) : r ≥ 0,α(x,y)≤ θ ≤ β (x,y)}. In both [5] and
[6], R f (·,(x,y)) ∈C0(α(x,y),β (x,y)) and R f (·,(x,y)) behaves in one of the following ways:

(i) R f (·,(x,y)) is a constant function and the nontangential limit of f at (x,y) exists.
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(ii) There exist α1,α2 ∈ [α(x,y),β (x,y)] with α1 < α2 such that

R f (θ) is


constant for α(x,y)< θ ≤ α1

strictly monotonic for α1 ≤ θ ≤ α2
constant for α2 ≤ θ < β (x,y).

An additional conclusion in [5] is that the tangential radial limits R f (α(x,y),(x,y)) and R f (β (x,y),(x,y))
exist, R f (·,(x,y)) ∈C0([α(x,y),β (x,y)]) and in case (i), f is continuous at (x,y), even if φ is discon-
tinuous at (x,y) or has no limit at (x,y) (e.g. [5, Example 1.4]).

One would like to extend conclusions like those above to general smooth domains in IRn. However
the techniques required to do this are unclear and two dimensional surfaces are somewhat special; for
example Bourni ([2, Theorem 4.11]) only considers φ with jump discontinuities in the two-dimensional
case and Taylor ([23]) only considers two-dimensional capillary surfaces in smooth three-dimensional
containers. In §2, we consider extensions of [5, 6] to rotationally symmetric Dirichlet problems in
IRn and offer examples in §3; the study of such symmetric geometries occurs in other cases (e.g.
[12, 13, 14]) and can act as prototypes for the general situation (e.g. [3]).

2. Rotationally Symmetric Dirichlet Problems

Consider a bounded, simply-connected open set (i.e. a bounded domain) U ⊂ IR2 with C2,λ boundary
such that U ⊂ IR2

+, where IR2
+ = {(x,y) ∈ IR2 : x > 0}. Let µ = µ(x,y) be the interior unit normal

to U at (x,y) ∈ ∂U. For a small δ = δ (x,y) > 0, ∂U ∩Bδ (x,y) \ {(x,y)} consists of disjoint, open
arcs ∂−U(x,y) and ∂+U(x,y) whose tangent rays approach the rays θ = α(x,y) and θ = β (x,y)
respectively, as the point (x,y) is approached and such that the interior directions from (x,y) into
U are the rays r⃗(θ) = {(x,y)+ r(cosθ ,sinθ) : 0 < r < ε(θ)} for θ ∈ (α(x,y),β (x,y)); here ε(·) :
(α(x,y),β (x,y))→ (0,δ ) depends on U.

Fix n ≥ 3 and define Ω ⊂ IRn by

(6) Ω = {(xτ,y) ∈ IRn : (x,y) ∈U,τ ∈ Sn−2}.

Let µ̂ = µ̂(x,y) be the interior unit normal to Ω at (x,y) ∈ ∂Ω. For (x,y) ∈ ∂Ω, define ∂−Ω(x,y) =
{(|x|τ,y) : τ ∈ Sn−2, (|x|,y)∈ ∂−U(|x|,y)} and ∂+Ω(x,y)= {(|x|τ,y) : τ ∈ Sn−2, (|x|,y)∈ ∂+U(|x|,y)}.
If we set Γ(x,y) = {(|x|τ,y) : τ ∈ Sn−2} and Tδ (x,y) = {(sτ, t) ∈ IRn : (s, t) ∈ Bδ (|x|,y),τ ∈ Sn−2},
then ∂Ω∩Tδ (x,y)\Γ(x,y) = ∂+Ω(x,y)∪∂−Ω(x,y).

Let C be a fixed, designated open subset of ∂U ; we might consider C to be connected but this is not
essential. Let us define a hypersurface C in IRn by

(7) C = {(xτ,y) : (x,y) ∈C, τ ∈ Sn−2}.

For each P = (x,y) ∈ C , we define

TP = {ω ∈ Sn−1 : {P+ rω : 0 < r < ε} ⊂ Ω for some ε > 0},

T o
P = {ω ∈ TP : ω is not tangent to C at P} and T i

P = {ω ∈ TP : ω is not tangent to ∂Ω at P}. Let

R f (ω,P) def
= lim

r↓0
f (P+ rω) for each ω ∈ TP for which this limit exists.

Set τ0 = (1,0, . . . ,0) ∈ Sn−2.
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Let us assume that φ ∈ L∞(∂Ω) satisfies

(8) φ(x,y) = φ(|x|τ0,y)

for almost all (x,y) ∈ ∂Ω and H satisfies

(9) H(x,y,z) = H(|x|τ0,y,z)

for each (x,y) ∈ Ω, z ∈ IR. If f ∈ BV (Ω) minimizes (3), then uniqueness (e.g. [7, Theorem 1]) implies
that

(10) f (x,y) = f (|x|τ0,y) for (x,y) ∈ Ω.

For each τ ∈ Sn−2, let Lτ ∈ SO(n) be the rotation about the xn−axis which maps (τ,y) to (τ0,y) for
each y ∈ IR; we write Lτ(ω) = (Lτ(ω)1, . . . ,Lτ(ω)n) . We note using hyperspherical/polyspherical
coordinates that∫

Ω

√
1+ |D f |2 =

∫
U

∫
π

0
· · ·

∫
π

0

∫ 2π

0

√
1+ |Dg(r,y)|2 rn−2F

(
θ⃗

)
dθ1 . . .dθn−2drdy

=Vn−2

∫
U

√
1+ |Dg(r,y)|2 rn−2drdy,

where F (⃗θ) = Π
n−2
k=1 sinn−2−k(θk) and Vn−2 = Hn−2(Sn−2) = 2π

n−1
2

Γ( n−1
2 )

is the surface area of the (n−
2)−sphere. Similar calculations imply that (3) can be written as

J( f )
Vn−2

=
∫

U
rn−2

√
1+ |Dg(r,y)|2 drdy+

∫ ∫
U

rn−2
∫ g(r,y)

0
nH(r,y,s) ds drdy

+
∫

∂U
rn−2|g(r,y)−φ(r,y)|drdy

We shall impose different conditions on C, and so C , in the following.

2.1. For an (x0,y0) ∈C, κ(x0,y0)< n|H(x0τ0,y0,z)|− n−2
x0

.

Let us suppose first that (x0,y0) ∈C and the curvature (with respect to µ) κ of C satisfies

(11) κ(x0,y0)< n|H(x0τ0,y0,z)|−
n−2

x0
for z ∈ [−M,M]

and either

(12) H(x0τ0,y0,z)<−n−2
nx0

for |z| ≤ M,

or

(13) H(x0τ0,y0,z)>
n−2
nx0

for |z| ≤ M,

where M ≥ 0 will depend on the solution of (1)-(2) under consideration.
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Theorem 1. Let Ω, H, C, C and φ satisfy the conditions above. Let f ∈ C2(Ω)∩L∞(Ω)∩BV (Ω)
minimizes the functional (3) for h ∈ BV (Ω). Suppose κ satisfies (11) and either (12) or (13) when
M = supΩ | f |. Then there exists a neighborhood V ⊂ IR2 of (x0,y0) such that for each (x,y) ∈C∩V
and τ ∈ Sn−2, R f (ω,(xτ,y)) exists for each ω ∈ T i

(xτ,y).

Define g : U → IR by g(x,y) = f (xτ0,y). Then for each (x,y) ∈ C∩V , τ ∈ Sn−2 and ω ∈ T i
P, we

have
R f (ω,P) = R f (Lτ(ω),P0) = Rg(θ ,(x,y)) def

= lim
r↓0

g(x+ r cosθ ,y+ r sinθ),

where P = (xτ,y) ∈ C , P0 = (xτ0,y) ∈ C , θ ∈ (α(x,y),β (x,y)) and

(14) (cosθ ,sinθ) =
1√

(Lτ(ω)1)2 +(Lτ(ωn)2
(Lτ(ω)1,Lτ(ω)n) .

Further, Rg(θ ,(x,y)) behaves as in one of the following cases:

(a) Rg(·,(x,y)) is constant on (α(x,y),β (x,y)) and g has a nontangential limit at (x,y).
(b) there exist θ1,θ2 ∈ [α(x,y),β (x,y)] with θ1 < θ2 such that

(15) Rg(θ ,(x,y)) is


constant if α(x,y)< θ ≤ θ1

strictly monotonic if θ1 ≤ θ ≤ θ2

constant if θ2 ≤ θ < β (x,y).

If case (a) holds, then f has a nontangential limit at (xτ,y) for each τ ∈ Sn−2.

2.2. For an (x0,y0) ∈C, κ(x0,y0)<−n|H(x0τ0,y0,z)|− n−2
x0

.

Let us suppose second that (x0,y0) ∈C and the curvature (with respect to µ) κ of C satisfies

(16) κ(x0,y0)<−n|H(x0τ0,y0,z)|−
n−2

x0
for z ∈ [−M,M],

where M ≥ 0 will depend on the solution of (1)-(2) under consideration.

Theorem 2. Let Ω, H, C, C and φ satisfy the conditions above. Let f ∈C2(Ω)∩L∞(Ω) minimizes
the functional J(h) given in (3) for h ∈ BV (Ω) and define g : U → IR by g(x,y) = f (xτ0,y). Suppose κ

satisfies (16) when M = supΩ | f |. Then there exists a neighborhood V ⊂ IR2 of (x0,y0) such that for
each (x,y) ∈C∩V , the limits

lim
∂−U(x,y)∋(w,v)→(x,y)

g(w,v) = z−(x,y)

and
lim

∂+U(x,y)∋(w,v)→(x,y)
g(w,v) = z+(x,y)

exist. For each (x,y) ∈C∩V , τ ∈ Sn−2 and ω ∈ T o
P ,

R f (ω,P) = R f (Lτ(ω),P0) = Rg(θ ,(x,y))
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exists, where P = (xτ,y) ∈ C , P0 = (xτ0,y) ∈ C , Rg(α(x,y),(x,y)) = z−(x,y), Rg(β (x,y),(x,y)) =
z+(x,y) and θ ∈ [α(x,y),β (x,y)] satisfies (14). Further Rg(·,(x,y)) ∈ C0([α(x,y),β (x,y)]) and
Rg(·,(x,y)) behaves as in one of the following cases:

(a) z−(x,y) = z+(x,y) and g ∈C0(U ∪{(x,y)}).
(b) z−(x,y) ̸= z+(x,y) and there exist θ1,θ2 ∈ [α(x,y),β (x,y)] with θ1 < θ2 such that

(17) Rg(θ ,(x,y)) is


z−(x,y) if α(x,y)≤ θ ≤ θ1

strictly monotonic if θ1 ≤ θ ≤ θ2

z+(x,y) if θ2 ≤ θ ≤ β (x,y).

If case (a) holds for (x,y) ∈C∩V , then f ∈C0(Ω∪{(xτ,y)}) for each τ ∈ Sn−2.

3. Examples

Example 1. Let a ∈
(1

2 ,1
)
, b ∈ (0,1−a), H ∈ IR with −1

b <−3H − 1
a−b and H ∈ [0,1]. Set

Ω = {(r cosθ ,r sinθ ,y) ∈ IR3 : r2 + y2 < 1,0 ≤ θ < 2π,r ≥ 0,(r−a)2 + y2 > b2}

(see Figure 1). Define φ ∈C∞
(
IR3 \Z0

)
by φ(x,y) = (1−|x|2 − y2)cos

(
1
y

)
, where Z0 = {(x1,x2,0) :

(x1,x2) ∈ IR2}. Let f ∈C2(Ω) minimize the functional J(·) given in (3). Then f ∈C0(Ω) (but f is not
equal to φ on portions of B1(O3)∩∂Ω, where O3 = (0,0,0)).

FIGURE 1. Ω

Example 2. Let n= 3, ε ∈ (0,1),U = {(x,y)∈ IR2 : (x−1−ε)2+y2 < 1} and Ω= {(xcosσ ,xsinσ ,y)∈
IR3 : (x,y) ∈U,σ ∈ [0,2π]}. Notice that ∂Ω is a torus and its mean curvature (with respect to µ̂) at
((1+ ε + cos χ)cosσ ,(1+ ε + cos χ)sinσ ,sin χ) is

H∂Ω((1+ ε + cos χ)cosσ ,(1+ ε + cos χ)sinσ ,sin χ) =
1+ ε +2cos χ

2(1+ ε + cos χ)

for 0 ≤ σ ≤ 2π, −π

2 ≤ χ ≤ 3π

2 . Here M = 1, κ ≡ 1 and

α(1+ ε + cos χ,sin χ) =
π

2
−χ and β (1+ ε + cos χ,sin χ) =

3π

2
−χ
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ROTATIONALLY SYMMETRIC HYPERSURFACES 7

if χ ∈
[
−π

2 ,
π

2

]
while

α(1+ ε + cos χ,sin χ) = χ − π

2
and β (1+ ε + cos χ,sin χ) = χ +

π

2

if χ ∈
[

π

2 ,
3π

2

]
. The isoperimetric inequality for Caccioppoli sets A in IR3 says H3(A)≤

4π
3

(4π)
3
2
(
∫
|DφA|)

3
2

or
∫
|DφA| ≥ 3

(4π

3

) 1
3 (H3(A))

2/3 . Let A be a Caccioppoli set in Ω and write |A| def
= H3(A) and

|∂A| def
=

∫
|DφA|. Then |A| ≤ H3(Ω) = 2π2(1+ ε) = 3π(1+ε)

2
4π

3 and so
(4π

3

) 1
3 ≥

(
2

3π(1+ε)

) 1
3 |A| 1

3 with

equality only if |A|= |Ω|. Thus
∫
|DφA| ≥ 3

(
2

3π(1+ε)

) 1
3 |A|. Set H1 =

(
2

3π(1+ε)

) 1
3
, so that

(18) |
∫

A
3H1dx|= 3H1|A| ≤

∫
|DφA|.

Notice that (18) is a strict inequality if A ̸= /0,Ω and if we calculate, we obtain |
∫

Ω
3H1dx| =

6π2
(

2
3π(1+ε)

) 1
3
(1+ ε) =

(
9

4π(1+ε)

) 1
3

4π2(1+ ε) < 4π2(1+ ε) =
∫
|DφA|. Thus (18) is a strict in-

equality for all Caccioppoli sets A in Ω with |A|> 0. From [10, Theorem 1.1], we see that there is a
function f ∈C2(Ω) which satifies (1) for each constant H ∈ (0,H1).

Notice that there exists δ0 ∈ (0,1) such that for each ε ∈ (0,δ0],

H =
1

2+ ε
+

ε

6
=

ε2 +2ε +6
6(2+ ε)

≤ H1;

this follows from the facts that limε↓0
1

2+ε
+ ε

6 = 1
2 and limε↓0

(
2

3π(1+ε)

) 1
3
=

( 2
3π

) 1
3 is approximately

0.5965. Now condition (11) is

1 < 3|H(1+ ε + cos χ,sin χ)|− 1
1+ ε + cos χ

.

Assume ε ∈ (0,δ0) and H = 1
2+ε

+ ε

6 ; then 1< 3H− 1
1+ε+cos χ

if and only if χ ∈
(
−cos−1

(
2−ε2−ε3

2+ε2

)
,cos−1

(
2−ε2−ε3

2+ε2

))
.

Let us fix ε ∈ (0,δ0) and set H = 1
2+ε

+ ε

6 and C = {(1+ε +cos χ,sin χ)∈ IR2 : cos(χ)> 2−ε2−ε3

2+ε2 }.

Let φ(x1,x2,y) = cos
(

1
y

)
for y ̸= 0 and let f ∈C2(Ω) minimize (3). Then we can apply Theorem 1 to

see that the radial limits of f exist at each point of C . Due to the symmetry of φ and Ω, case (a) of
Theorem 1 holds, g has a nontangential limit at (ε,0) ∈C and R f (·,(ε cosσ ,ε sinσ ,0)) is a constant
function for each σ ∈ [0,2π).

4. Proofs

Proof of Theorem 1: First note that

(19) f (x,y) = f (Lτ(x,y)) for each (x,y) ∈ Ω, τ ∈ Sn−2.

Notice that g : U → IR, given by g(x,y) = f (xτ0,y), satisfies

(20) Nn( f )(x,0, . . . ,0,y) = N2(g)(x,y)+(n−2)
gx(x,y)

x
√

1+ |∇g(x,y)|2
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ROTATIONALLY SYMMETRIC HYPERSURFACES 8

and so the mean curvature Hg(x,y) at (x,y,g(x,y)) ∈U × IR of the graph of g satisfies

(21) 2Hg(x,y)
def
= N2(g)(x,y) = nH(xτ0,y,g(x,y))− (n−2)

gx(x,y)

x
√

1+ |∇g(x,y)|2
.

For (x,y)∈U, nH(xτ0,y,g(x,y))− n−2
x < 2Hg(x,y)< nH(xτ0,y,g(x,y))+ n−2

x . Thus |N2(g)| ≤ n|H|+
sup(x,y)∈U

n−2
x < ∞ shows N2(g) is bounded and the calculation on p. 170 of [16] shows that the area

A(S) of the graph of g over U is finite.
Since c0 = inf{r : (r,y) ∈U for some y ∈ IR}> 0, we see that∫

U

√
1+ |Dg|2 ≤ 1

cn−2
0 Vn−2

∫
Ω

√
1+ |D f |2.

Since |
∫ ∫

Ω

∫ f (x,y)
0 nH(x,y,s) ds dxdy|+

∫
∂Ω

| f −φ |dHn−1 < ∞ and J( f )< ∞, we see again that the
area A(S) of the graph of g over U is finite.

It follows from (11) that there exists a neighborhood V1 ⊂ IR2 of (x0,y0) such that

(22) κ(x,y)< inf
z∈[−M,M]

|nH(xτ0,y,z)|−
n−2

x
for (x,y) ∈C∩V1.

If (12) holds, then there exists a neighborhood V2 ⊂ IR2 of (x0,y0) such that

(23) limsup
U∋(x,y)→(x1,y1)

Hg(x,y)< 0 for all (x1,y1) ∈C∩V2.

If (13) holds, then there exists a neighborhood V2 ⊂ IR2 of (x0,y0) such that

(24) liminf
U∋(x,y)→(x1,y1)

Hg(x,y)> 0 for all (x1,y1) ∈C∩V2.

Set V = V1 ∩V2. Let us fix (x1,y1) ∈C∩V .
If g has a nontangential limit at (x1,y1), then Rg(θ ,(x1,y1)) exists for each θ ∈ (α(x1,y1),β (x1,y1))

and case (a) holds; that is, for each nontangential direction (cosθ ,sinθ) from (x1,y1) into U, the limit
Rg(θ ,(x1,y1)) exists and these limits are all the same.

Let us now suppose that g does not have a nontangential limit at (x1,y1). Since we are only interested
in interior radial limits (i.e. θ ∈ (α(x1,y1),β (x1,y1)), we may replace U by a subdomain U∗ such that
∂U∗∩∂U = {(x1,y1)}, ∂U∗ has the same tangent rays at (x1,y1) as does ∂U, g ∈C0

(
U∗ \{(x1,y1)}

)
and the curvature κ∗ of ∂U∗ satisfies

(25) κ
∗(x1,y1)< inf

z∈[−M,M]
|nH(x1τ0,y1,z)|−

n−2
x1

.

Set S0 = {(x,y,g(x,y)) : (x,y) ∈U∗}.
Now we have not shown that g is the variational solution of the two dimensional version of (1)-(2)

and so we cannot directly use the results of [6]. However, since we know that the area of S0 is finite,
we claim that the arguments used to prove [6, Theorem 2.3] and its conclusions continue to hold here.

Parametrizing the graph of g over U∗ in isothermal coordinates, we see that the Dirichlet integral
of the parametrization Y : E → IR3 is finite. We now argue as in the proof of [6, Theorem 2.3]. One
detail we need to mention is that, when (12) (and (23)) holds, the upper Bernstein pair (U+,ψ+)
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ROTATIONALLY SYMMETRIC HYPERSURFACES 9

required in the later part of the proof will be assumed to satisfy N2ψ+(x,y)≤ nH(xτ0,y,−M)− n−2
x

for (x,y) ∈U+ and

lim
U+∋(x,y)→(x2,y2)

∇ψ+(x,y) · ν̂(x,y)√
1+ |∇ψ+(x,y)|2

= 1

for almost every (x2,y2) ∈ Γ = Bδ (x1,y1)∩ ∂U+ and, when (24) holds, the lower Bernstein pair
(U−,ψ−) will be assumed to satisfy N2ψ−(x,y)≥ nH(xτ0,y,M)+ n−2

x for (x,y) ∈U− and

lim
U−∋(x,y)→(x2,y2)

∇ψ−(x,y) · ν̂(x,y)√
1+ |∇ψ−(x,y)|2

=−1

for almost every (x2,y2) ∈ Γ = Bδ (x1,y1)∩ ∂U−. It follows from this argument that Rg(θ ,(x1,y1))
exists for θ ∈ (α(x1,y1),β (x1,y1)) and Rg(·,(x1,y1)) ∈ C0((α(x1,y1),β (x1,y1))). Notice from [6]
that if 0 < r(t)→ 0 and θ(t)→ θ ∈ (α(x,y),β (x,y)) as t ↓ 0, then

(26) lim
t↓0

g(x1 + r(t)cosθ(t),y1 + r(t)sinθ(t)) = Rg(θ ,(x1,y1)).

We claim that if (x,y)∈C∩V , ω ∈T i
(xτ,y) and θ ∈ (α(x,y),β (x,y)) satisfies

√
ω2

1 +ω2
n (cosθ ,sinθ)=

(ω1,ωn), then R f (ω,(xτ0,y)) = Rg(θ ,(x,y)).
Pf: Fix (x,y) ∈C∩V and ω ∈ T i

(xτ,y). Set ω ′ = (ω1, . . . ,ωn−1) and τ = 1
∥xτ0+rω ′∥(xτ0 + rω ′). Notice

that

Lτ((xτ0,y)+ rω) = (
√

x2 +2rxω1 + r2|ω ′|2 τ0,y+ rωn) = ((x+ rω1 +O(r2))τ0,y+ rωn)

and
f ((xτ0,y)+ rω) = f (Lτ((xτ0,y)+ rω)) = g(x+ rω1 +O(r2),y+ rωn)

Thus
R f (ω,(xτ0,y)) = lim

r↓0
g(x+ rω1 +O(r2),y+ rωn) = Rg(θ ,(x,y)). □

The remainder of the claims in Theorem 1 follow from (19) and [6]. □

Proof of Theorem 2: We shall adopt the notation and results of the previous proof. It follows from
(16) that there exists a neighborhood V ⊂ IR2 of (x0,y0) such that

κ(x,y)≤−n|H(xτ0,y,z)|−
n−2

x
for (x,y) ∈C∩V ,z ∈ [−M,M]

and so, for (x,y) ∈C∩V ,

κ(x,y)≤−n|H̃(x,y)|− n−2
x

<−
∣∣∣∣nH̃(x,y)− n−2

x
gx(x,y)
W (x,y)

∣∣∣∣=−|2Hg(x,y)|.

where W =
√

1+ |∇g|2 and H̃(x,y) = H(xτ0,y,g(x,y)). It follows from the arguments in the proof of
[5, Theorem 1.1] that for each (x,y) ∈C∩V , the limits z1(x,y) and z2(x,y) exist, Rg(θ ,(x,y)) exists
for each θ ∈ [α(x,y),β (x,y)] and Rg(·,(x,y)) ∈C0([α(x,y),β (x,y)]). In addition, it follows from the
proof of [5, Theorem 1.1] that g ∈C0(U ∪{(x,y)}) when z1(x,y) = z2(x,y).

Fix (x,y) ∈ C∩V and set P0 = (xτ0,y). Consider ω ∈ TP0 . Notice that either (i) ω is tangent to

C(x,y) = {(xτ,y) : τ ∈ Sn−2} and ω1 = ωn = 0 or (ii) (ω1,ωn) =
√

ω2
1 +ω2

n (cosθ ,sinθ) ̸= (0,0) for
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ROTATIONALLY SYMMETRIC HYPERSURFACES 10

some θ ∈ [α(x,y),β (x,y)]. Notice that in case (i), ω /∈ T o
P0

and in case (ii), ω ∈ T o
P0
. Using (19) and

arguing as in the claim at the end of the previous proof, we see in case (ii) that

R f (ω,P0) = Rg(θ ,(x,y)).

Remark 1. When, for example, θ = α(x,y) and ω = (t cosα(x,y),ω ′′, t sinα(x,y)) with ω ′′ =

(ω2, . . . ,ωn−1), |ω ′′|< 1 and t =
√

1−|ω ′′|2 > 0, we mean by the symbols Rg and R f the limits

(27) Rg(α(x,y),(x,y)) = lim
∂−U(x,y)∋(w,v)→(x,y)

g∗(w,v)

and
R f (ω,P0) = lim

∂−Ω(xτ0,y)∋(w,v)→P0
f ∗(w,v),

where g∗ is the trace of g on ∂U and f ∗ is the trace of f on ∂Ω. (When, for example, {(x +
r cosα(x,y),y+ r sinα(x,y)) : 0 < r < δ} is contained in U for some small δ > 0 and the two limits
(5) and (27) for Rg(α(x,y),(x,y)) both exist, they agree. One feature of [5, Theorem 1] is that (5) and
(27) both exist and agree.)

In case (i) with ω1 = ωn = 0, (xτ0,y)+ rω may not be in Ω for any r > 0 and we interpret R f as

(28) R f (ω,P0) = lim
C(x,y)∋(w,v)→P0

f ∗(w,v).

When case (b) of Theorem 2 holds, lim∂−Ω(xτ0,y)∋(w,v)→P0
f ∗(w,v)= z−(x,y), lim∂+Ω(xτ0,y)∋(w,v)→P0

f ∗(w,v)=
z+(x,y) and (28) will not exist. When case (a) holds and g is continuous at (x,y), this together with
(19) implies

lim
Ω∋(w,v)→P0

f (w,v) = g(x,y), lim
∂Ω∋(w,v)→P0

f ∗(w,v) = g(x,y)

and f is continuous at P0. The conclusions of Theorem 2 then follow using (19) as in the proof of
Theorem 1. □

Proof of Example 1: Notice first that φ = 0 almost everywhere on ∂B1(O3), f ∈ C0(Ω \T ) and
f = 0 on ∂B1(O3), where T = {(r cosθ ,r sinθ ,y) ∈ IR3 : 0 ≤ θ < 2π,(r−a)2 + y2 = b2}.

FIGURE 2. Ω (left) W in blue, y0 = 0; W in green, y0 > 0. (right)

Set C = {(x,y) ∈ IR2 : (x− a)2 + y2 = b2} and fix (x0,y0) ∈ C. Since our interest is local (near
(x0,y0)), let us set U = {(x,y) : x2 + y2 < 1, x > 1

2(a−b), |y|< 2b}. Let W =W (δ ) = {(x,y) ∈ IR2 :
(x− a)2 + y2 > b2,(x− x0)

2 +(y− y0)
2 < δ 2}, where 0 < δ < min{b,1− a− b} (see Figure 2). If
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ROTATIONALLY SYMMETRIC HYPERSURFACES 11

y0 ̸= 0, we may assume that δ is small enough that y ̸= 0 for all (x,y) ∈W (δ ) and so φ is continuous
at (x0τ0,y0). Notice that (16) holds because κ =−1

b and x0 ≥ a−b.
Consider first y0 = 0. Since φ(x,y) = φ(x,−y) for (x,y) ∈ ∂Ω \Z0, f has this same symmetry;

f (x,y) = f (x,−y) for (x,y) ∈ Ω. Thus φ ∗(x,y) is an even function of y, z−(x0,0) = z+(x0,0), case (a)
of Theorem 2 holds and f ∈C0(Ω∪{(x0 cosθ ,x0 sinθ ,0)}) for each θ ∈ [0,2π).

Consider second y0 ̸= 0. From Theorem 2 and, if necessary, by choosing δ > 0 smaller (so that
W (δ ) ⊂ V ), we see that for each (x,y) ∈ W (δ )∩C, the radial limits Rg(θ ,(x,y)) exist for each
θ ∈ [α(x,y),β (x,y)] and either case (a) holds or case (b) holds. If case (b) holds, then we can modify the
argument in the proof of [5, Corollary 1.2] and obtain a contradiction. Set z1 = Rg(α(x0,y0),(x0,y0)),
z2 = Rg(β (x0,y0),(x0,y0)) and z3 = φ(x0,y0). Since we assume case (b) holds, we have z1 ̸= z2; we
may assume that z1 < z3 and z1 < z2 and we may assume δ > 0 is small enough that φ(xτ0,y) >
(z1 + z3)/2 for (x,y) ∈ ∂W (δ )∩C. Then there exist α1,α2 ∈ [α(x0,y0),β (x0,y0)] with α1 < α2 such
that

Rg(θ ,(x0,y0)) is


constant(= z1) for α(x0,y0)≤ θ ≤ α1

strictly increasing for α1 ≤ θ ≤ α2
constant(= z2) for α2 ≤ θ ≤ β (x0,y0)

and, for (x,y) ∈C∩W (δ ), τ ∈ S1 and ω ∈ T o
(xτ,y), R f (ω,P) = R f (Lτ(ω),P0) = Rg(θ ,(x,y)), where

P = (xτ,y) P0 = (xτ0,y) and Lτ(ω) and θ satisfy (14).
Let us adopt the terminology and arguments in the proof of [5, Corollary 1.2]. Let z0 ∈ (z1,min{z2,z3})

with z0 < (z1 + z3)/2 and let θ0 ∈ (α(x0,y0),β (x0,y0)) such that Rg(θ0,(x0,y0)) = z0. Let θb ∈
(θ0,β (x0,y0)) satisfy z0 <Rg(θb,(x0,y0))< (z1+z3)/2. Set T = {(x0+r cosθb,y0+r sinθb) : r ∈ IR}.
For each R > 0, let C(R) be the circle of radius R which passes through (x0,y0), is tangent at (x0,y0)
to the line T and intersects ∂−U(x0,y0) and let V (R) be the open disk inside C(R). Consider the torus
T = T (R) = {(xτ,y) ∈ IR3 : (x,y) ∈C(R),τ ∈ S1} and let S (R) = {(xτ,y) ∈ IR3 : (x,y) ∈V (R),τ ∈
S1} represent the solid torus. Choose R > 0 small enough that V (R)∩U ⊂ W (δ ) and that twice
the minimum mean curvature of the torus T is greater than 3H (this is similar to the requirement
that 2R|H(x)| ≤ 1 for all x ∈ B2R(y) in the proof of [5, Corollary 1.2] and implies that the Dirichlet
problem (1)-(2) is solvable (in S (R)) for all continuous Dirichlet data on T (R)). (See Figure 3 with
(x0,y0) = (a,b), α(a,b) = 0, β (a,b) = π, E0 (blue region), C(R) (green), U (yellow & blue regions),
z2 > z3, za =

1
2(z3 + z1), and the various values of z labeled by their subscripts (e.g. z0 is labeled by

0).)
Notice that C(R)∩ ∂U = {(x0,y0),(xp,yp)} for some (xp,yp) ∈ ∂−U(x0,y0). Let ψ ∈ C2(T (R))

satisfy ψ(x0τ,y0) = z0 for τ ∈ S1, ψ(x,y) = ψ(|x|τ0,y) for (x,y) ∈T (R), ψ < f on T (R)∩Ω (recall
Rg(θb,(x0,y0))>Rg(θ0,(x0,y0))= z0), supT (R)ψ = z0 and ψ(xpτ0,yp)< liminfU∋(x,y)→(xp,yp) g(x,y).

Let h ∈ C2
(
S (R)

)
satisfy N3h = 3H in S (R) and h = ψ on T (R). Since N3(h) = 3H ≥ 0,

h ≤ supT (R)ψ = z0. Since φ(xτ0,y)> (z1+ z3)/2 for (x,y) ∈ ∂W (δ )∩C, h ≤ z0 < φ on S (R)∩∂Ω.

Since h is a classical solution of the Dirichlet problem Qh = 0 in S (R) and h = ψ on ∂S (R)),
where Qk = N3k−3H, it is also the variational (i.e. BV (S (R))) solution and minimizes

I(k) =
∫

S (R)

√
1+ |Dk|2 +

∫ ∫
S (R)

∫ k(x,y)

0
3H ds dxdy+

∫
T (R)

|k−ψ|dH2
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T

y

x

z

1

0

b

a

3

2

FIGURE 3. U, E0 in blue (left) z1 < z0 < zb < za < z3 < z2 (right)

over BV (S (R)). Set E = {(x,y) ∈ Ω∩S (R) : h(x,y) > f (x,y)} and E0 = {(x,y) ∈ IR2 : (xτ0,y) ∈
E,x > 0}.

Define k ∈ C0(Ω)∩BV (Ω) by k = f +(h− f )χE , where χE is the characteristic function of E.
Since f minimizes J over BV (Ω), we have J( f )≤ J(k) or∫

E

√
1+ |D f |2 +

∫ ∫
E

3H f dxdy+
∫

∂E∩∂Ω

| f −φ |dH2

≤
∫

E

√
1+ |Dh|2 +

∫ ∫
E

3Hh dxdy+
∫

∂E∩∂Ω

|h−φ |dH2.

Now define l ∈C0(S (R))∩BV (S (R)) by l = h+( f −h)χE . Since h minimizes I over BV (S (R)),
we have I(h)≤ I(l) or∫

E

√
1+ |Dh|2 +

∫ ∫
E

3Hh dxdy ≤
∫

E

√
1+ |D f |2 +

∫ ∫
E

3H f dxdy+
∫

∂E∩∂Ω

| f −h|dH2.

Combining these and using the facts that | f − φ | = φ − f , |h− φ | = φ − h, | f − h| = h− f and
| f −h|+ |h−φ |= φ − f = | f −φ | on ∂−Ω(aτ0,b), we see that∫

E

√
1+ |D f |2 +

∫ ∫
E

3H f dxdy+
∫

∂E∩∂Ω

| f −φ |dH2

=
∫

E

√
1+ |Dh|2 +

∫ ∫
E

3Hh dxdy+
∫

∂E∩∂Ω

|h−φ |dH2

or J(k) = J( f ); that is, k also minimizes J and so k = f on Ω; then h = f on E. This is a contradiction
and so case (b) cannot hold, z1 = z2 and case (a) holds. Therefore f ∈C0(Ω). □
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