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FREIMAN’S (3k−4)-LIKE RESULTS FOR SUBSET AND SUBSEQUENCE SUMS

MOHAN, JAGANNATH BHANJA, AND RAM KRISHNA PANDEY†

ABSTRACT. For a nonempty finite set A of integers, let S(A) = {∑b∈B b : /0 6= B⊆ A} be the set of all
nonempty subset sums of A. In 1995, Nathanson determined the minimum cardinality of S(A) in terms
of |A| and described the structure of A for which |S(A)| is the minimum. He asked to characterize the
underlying set A if |S(A)| is a small increment to its minimum size. Problems of such nature are inspired
by the well-known Freiman’s 3k−4 theorem. In this paper, some results in the direction of Freiman’s
3k−4 theorem for the set of subset sums S(A) are proved. Such results are also extended to the set of
subsequence sums S(A) = {∑b∈B b : /0 6= B⊆ A} of sequence A, where the notation B⊆A, is used for B
is a subsequence of A. The results are further generalized to a generalization of subset and subsequence
sums. The main idea of the proofs of the results is to write the set of subset sums S(A) and the set of
subsequence sums S(A) in terms of the h-fold sumset hA and the h-fold restricted sumset h∧A. Such
representation also gives other proof of some of the results of Nathanson and Mistri et al.

1. Notation

Throughout the paper, we follow the following notations. We write A= {a1,a2, . . . ,ak}~r with a1 <
a2 < · · · < ak and~r = (r1,r2, . . . ,rk) to mean that A is a sequence consisting of k distinct integers
a1,a2, . . . ,ak with ai appearing ri times in A for i = 1,2, . . . ,k. By |A| we mean the number of terms
(including multiplicities) in A. By the size of sequence A = {a1,a2, . . . ,ak}~r we mean the number
∑

k
i=1 ri. For integers α and β , we define α ∗A= {αa1,αa2, . . . ,αak}~r, A+β = {a+β : a ∈ A} and

[α,β ]~r = {α,α +1, . . . ,β}~r for α ≤ β . We use the usual set notation A to write the set {a1,a2, . . . ,ak}
of distinct elements of sequence A. If A = {a1,a2, . . . ,ak} is a nonempty finite set of integers, the
notations defined above for sequences have the usual set theoretical meaning: |A| denotes the number
of elements in A, α ∗A = {αa1,αa2, . . . ,αak}, A+β = {a+β : a∈ A} and [α,β ] = {α,α +1, . . . ,β}
for α ≤ β . We denote the greatest common divisor of the integers x1,x2, . . . ,xk by (x1,x2, . . . ,xk) and
write d(A) in short, when A = {x1,x2, . . . ,xk} is a set. In addition, for a sum of the form ∑

b
x=a f (x) with

integers a,b such that a > b, we mean zero. Furthermore, we write N for the set of natural numbers
and θ for the golden mean 1+

√
5

2 .

2. Introduction

Let A be a nonempty finite set of integers and h be a positive integer. The h-fold sumset, denoted by hA,
is defined as the set of integers that can be written as a sum of h elements (not necessarily distinct) of
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A, and the restricted h-fold sumset, denoted by h∧A, is defined as the set of integers that can be written
as a sum of h distinct elements of A (see [1, 21]).

Two problems associated with sumsets that are studied extensively in the literature are direct and
inverse problems. A direct problem is to determine the minimum cardinality and properties of the
sumset and the inverse problem is to characterize the underlying set(s) when the cardinality of the
sumset is known. The following are some of the classical results that give the minimum cardinality of
h-fold sumset hA and h∧A and also describe the underlying set A when the cardinality of the sumset is
minimum.

Theorem 2.1. [21, Theorem 1.4, Theorem 1.6] Let A be a nonempty finite set of integers. Then, for
h≥ 1, we have

|hA| ≥ h |A|−h+1.
Moreover, if h≥ 2 and |hA|= h|A|−h+1, then A is an arithmetic progression.

Theorem 2.2. [21, Theorem 1.9, Theorem 1.10] Let A be a nonempty finite set of integers, and
1≤ h≤ |A|. Then

|h∧A| ≥ h |A|−h2 +1.
Moreover, if |h∧A|= h |A|−h2+1 with |A| ≥ 5 and 2≤ h≤ |A|−2, then A is an arithmetic progression.

Freiman [10, 11] proved the following inverse theorem for the 2-fold sumset 2A, which is well
known as Freiman’s 3k−4 theorem.

Theorem 2.3. [11, Theorem 1.9] Let k ≥ 3. Let A be a set of k integers. If |2A|= 2k−1+b≤ 3k−4,
then A is a subset of an arithmetic progression of length at most k+b.

This inverse theorem is a consequence of the following result.

Theorem 2.4. [11, Theorem 1.10] Let k ≥ 3. Let A = {a0,a1, . . . ,ak−1} be a set of integers such that
0 = a0 < a1 < · · ·< ak−1 and d(A) = 1. Then

|2A| ≥

{
ak−1 + k, if ak−1 ≤ 2k−3;
3k−3, if ak−1 ≥ 2k−2.

Lev [16] extended Theorem 2.4 to the sumsets hA for h≥ 2.

Theorem 2.5. [16, Theorem 1] Let k ≥ 3. Let A = {a0,a1, . . . ,ak−1} be a set of integers such that
0 = a0 < a1 < · · ·< ak−1 and d(A) = 1. Then, for h≥ 2, we have

|hA| ≥ |(h−1)A|+min{ak−1,h(k−2)+1}.

For the restricted sumset 2∧A, the following was conjectured by Freiman and Lev [15], indepen-
dently.

Conjecture 2.6. Let k > 7. Let A = {a0,a1, . . . ,ak−1} be a set of integers such that 0 = a0 < a1 <
· · ·< ak−1 and d(A) = 1. Then∣∣2∧A

∣∣≥{ak−1 + k−2, if ak−1 ≤ 2k−5;
3k−7, if ak−1 ≥ 2k−4.
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The lower bounds in Conjecture 2.6 are tight, as letting A = {0,1, . . . ,k−3}∪{ak−1−1,ak−1}, we
get 2∧A = {1,2, . . . ,2k− 7}∪{ak−1− 1, . . . ,ak−1 + k− 3}∪{2ak−1− 1}. Freiman et al. [12] made
some progress on Conjecture 2.6 by proving the following result.

Theorem 2.7. [12, Theorem 1, Theorem 2] Let k ≥ 3. Let A = {a0,a1, . . . ,ak−1} be a set of integers
such that 0 = a0 < a1 < · · ·< ak−1 and d(A) = 1. Then∣∣2∧A

∣∣≥{0.5(ak−1 + k)+ k−3.5, if ak−1 ≤ 2k−3;
2.5k−5, if ak−1 ≥ 2k−2.

A year later, Lev [15] improved Freiman et al. [12] results in the following theorem.

Theorem 2.8. [15, Theorem 1] Let k ≥ 3. Let A = {a0,a1, . . . ,ak−1} be a set of integers such that
0 = a0 < a1 < · · ·< ak−1 and d(A) = 1. Then∣∣2∧A

∣∣≥{ak−1 + k−2, if ak−1 ≤ 2k−5;
(θ +1)k−6, if ak−1 ≥ 2k−4.

In a recent paper, Daza et al. [7] have almost solved Conjecture 2.6, but we shall not make use of
their result in this paper.

The purpose of this article is to prove results similar to Theorem 2.4 and Theorem 2.8 for the set of
subset sums and the set of subsequence sums, which are defined below.

Let A be a nonempty finite set of k integers. For a nonempty subset B of A, the subset sum of B
is defined as s(B) = ∑b∈B b. The collection of all nonempty subset sums of A, denoted by S(A), is
defined as

S(A) :=
{

s(B) : /0 6= B⊆ A
}
.

Nathanson [22] initiated the study of direct and inverse problems for S(A) over the group of integers.
Such studies are done on other groups also (see [2, 4, 8, 13], and the references therein). However,
in this article, we restrict ourselves to the group of integers only. Nathanson [22] determined the
minimum cardinality of S(A) in terms of |A|, and also gave a characterization of set A when |S(A)|
is the minimum (see Lemma 3.1). Lev [17] extended Nathanson’s direct theorem to sequences of
nonnegative integers (see Lemma 4.3). Mistri et al. [18] (also see [19]) extended Nathanson’s inverse
theorem to sequences of nonnegative integers (see Lemma 4.1 and Lemma 4.3) while giving a new
proof of Lev’s result. Jiang and Li [14] later proved the direct and inverse results for the subsequence
sums when the sequence contains both positive and negative integers. For the sake of completeness,
we define the subsequence sums below.

For a nonempty finite sequence A of integers, we denote by S(A), the set of all subsequence sums
of A, i.e.,

S(A) := {s(B) : /0 6= B⊆ A},
where s(B) = ∑b∈B b.

The direct and inverse results for the usual subset and subsequence sums are further extended by
Bhanja and Pandey [5, 6] considering the α-analog of subset and subsequence sums, which are defined
below. For a given positive integer α , let

Sα(A) := {s(B) : B⊆ A, |B| ≥ α},
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and

Sα(A) := {s(B) : B⊆ A, |B| ≥ α}.

Recently, Dwivedi and Mistri [9] reproved some results of Bhanja and Pandey using a generalization
of h-fold sumset hA. The reader is also directed to see the article of Balandraud [3], where Sα(A) is
introduced in this context, and also the minimum cardinality of Sα(A) is obtained over the finite cyclic
groups of prime order.

In [22], Nathanson asked to prove Theorem 2.4-like result for S(A). In this paper, we prove some
results (see Theorems 3.2, 3.3, 4.2, 4.4, and 4.5) for S(A) and S(A) which are similar to Theorem 2.4
and Theorem 2.8. Our idea is to write S(A) and S(A) in terms of sumsets hA and h∧A, and then use
Theorem 2.4 and Theorem 2.8 to obtain Freiman like results for S(A) and S(A). Such representation
will also lead us to give new proofs of some results of Nathanson [22] (see Lemma 3.1) and Mistri et
al. [18] (see Lemma 4.1 and Lemma 4.3). Further, we prove analogous results for Sα(A) and Sα(A) in
the last two sections of this paper. The proofs of the results of sections 5 and 6 are quite similar to the
ones in sections 3 and 4, however, in sections 5 and 6 the proofs are more involved and depend heavily
on α .

To prove the main results of sections 3 and 4 of this article, we first reprove the direct and inverse
results for the usual subset and subsequence sums. In other results that we prove in sections 5 and
6, we directly use the already proven results for the α-analog of subset and subsequence sums. The
following are the two results that we use to prove our results in sections 5 and 6.

Theorem 2.9. [5, Theorem 2.1, Theorem 2.2] Let A be a set of k positive integers. Let 1≤ α ≤ k be
an integer. Then

|Sα(A)| ≥
k(k+1)

2
− α(α +1)

2
+1.

Moreover, if k ≥ 4, α ≤ k−2, and |Sα(A)|= k(k+1)
2 − α(α+1)

2 +1, then A = d ∗ [1,k] for some positive
integer d.

Theorem 2.10. [5, Theorem 3.1, Theorem 3.2] Let A = {a1,a2, . . . ,ak}~r be a sequence of positive
integers such that a1 < a2 < · · ·< ak and~r = (r1,r2, . . . ,rk) with ri ≥ 1 for all i ∈ [1,k]. Let 1≤ α ≤
∑

k
i=1 ri be an integer. Then there exists an integer m ∈ [1,k] such that ∑

m−1
i=1 ri ≤ α < ∑

m
i=1 ri and

|Sα(A)| ≥
k

∑
i=1

iri−
m

∑
i=1

iri +m

(
m

∑
i=1

ri−α

)
+1.

Moreover, if k ≥ 4, α ≤ ∑
k
i=1 ri − 2, and |Sα(A)| = ∑

k
i=1 iri −∑

m
i=1 iri + m(∑m

i=1 ri − α) + 1, then
A= d ∗ [1,k]~r for some positive integer d.

3. Freiman’s theorem for subset sum

In the following lemma, we reprove the direct and inverse results of Nathanson for S(A) when the set
A contains positive integers. Then, in the next two theorems, we prove Freiman-like results for S(A) in
the cases in which A contains positive integers and A contains nonnegative integers with 0 ∈ A.
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Lemma 3.1. [22, Theorem 3, Theorem 5] Let A be a set of k positive integers. Then

(3.1) |S(A)| ≥ k(k+1)
2

.

Moreover, if k ≥ 4 and |S(A)|= k(k+1)
2

, then A = d ∗ [1,k] for some positive integer d.

Proof. Let A = {a1,a2, . . . ,ak} with 0 < a1 < a2 < · · · < ak. It is easy to see that the result holds
for k = 1,2. Assume that k ≥ 3 and the result holds for all sets that have less than k elements. Let
B = A \ {ak−1,ak}. Then 2∧(A∪{0}) and S(B)+ ak−1 + ak are two disjoint subsets of S(A). By
Theorem 2.2 and the induction hypothesis, we get

|S(A)| ≥
∣∣2∧(A∪{0})∣∣+ |S(B)+ak−1 +ak|(3.2)

≥ 2(k+1)−3+
(k−2)(k−1)

2

=
k(k+1)

2
.

Now, suppose that k≥ 4 and |S(A)|= k(k+1)
2

. Then by (3.2), we have |2∧(A∪{0})|= 2(k+1)−3.

Applying Theorem 2.2 on A∪{0}, we get that A∪{0} is an arithmetic progression. Hence A =
a1 ∗ [1,k]. �

Theorem 3.2. Let k ≥ 3. Let A = {a1,a2, . . . ,ak} be a set of k positive integers such that a1 < a2 <
· · ·< ak and d(A) = 1. Then

|S(A)| ≥


ak +

k(k−1)
2

, if ak ≤ 2k−3;

θ(k+1)−4+
k(k−1)

2
, if ak ≥ 2k−2.

Proof. From equation (3.2), we have the following inequality

|S(A)| ≥
∣∣2∧(A∪{0})∣∣+ |S(B)+ak−1 +ak| ,

where B = A\{ak−1,ak}. Applying Theorem 2.8 on A∪{0} and Lemma 3.1 on B we obtain

|S(A)| ≥
∣∣2∧(A∪{0})∣∣+ |S(B)|
≥


ak + k−1+

(k−1)(k−2)
2

, if ak ≤ 2(k+1)−5;

(θ +1)(k+1)−6+
(k−1)(k−2)

2
, if ak ≥ 2(k+1)−4,

≥


ak +

k(k−1)
2

, if ak ≤ 2k−3;

θ(k+1)−4+
k(k−1)

2
, if ak ≥ 2k−2.

�
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Theorem 3.3. Let k ≥ 4 and A = {a0,a1, . . . ,ak−1} be a set of k nonnegative integers such that
0 = a0 < a1 < · · ·< ak−1 and d(A) = 1. Then

|S(A)| ≥


ak−1 +

(k−1)(k−2)
2

+1, if ak−1 ≤ 2k−5;

θk−3+
(k−1)(k−2)

2
, if ak−1 ≥ 2k−4.

Proof. Set B = {a1,a2, . . . ,ak−1}. Then B is a set of k−1 positive integers with d(B) = 1. Further, we
have S(A) = S(B)∪{0}. Thus, by Theorem 3.2, it follows that

|S(A)| ≥ |S(B)|+1≥


ak−1 +

(k−1)(k−2)
2

+1, if ak−1 ≤ 2k−5;

θk−3+
(k−1)(k−2)

2
, if ak−1 ≥ 2k−4.

�

4. Freiman’s theorem for subsequence sum

In this section, we start by giving a new proof of direct and inverse results of Mistri et al. [18] for S(A)
in Lemma 4.1. Then, using Lemma 4.1, we prove a Freiman-like result for S(A) in Theorem 4.2 when
the sequence A contains positive integers. In Theorem 4.4, we improve our previous bound assuming
that every element of the sequence appears at least twice. To prove Theorem 4.4 we first prove Lemma
4.3. Further, in Theorem 4.5, we prove a similar Freiman’s 3k− 4-like theorem for S(A) when the
sequence A contains nonnegative integers with 0 ∈ A.

Lemma 4.1. [18, Theorem 3.1, Theorem 3.2] Let A = {a1,a2, . . . ,ak}~r be a sequence of positive
integers such that a1 < a2 < · · ·< ak,~r = (r1,r2, . . . ,rk) and ri ≥ 1 for all i ∈ [1,k]. Then

(4.1) |S(A)| ≥
k

∑
i=1

iri.

Moreover, if k ≥ 4 and |S(A)|= ∑
k
i=1 iri, then A= d ∗ [1,k]~r for some positive integer d.

Proof. To prove (4.1), we use induction on k. For k = 1, we have A = (a1)~r1 , and so S(A) =
{a1,2a1, . . . ,r1a1}. For k = 2, we have A = (a1,a2)~r with~r = (r1,r2). It is easy to see, in this case,
that

S(A)⊇ {ia1 : i ∈ [1,r1]}∪{(r1−1)a1 + ia2 : i ∈ [1,r2]}∪{r1a1 + ia2 : i ∈ [1,r2]},
where the three sets on the right hand side are pairwise disjoint. Therefore (4.1) holds for k = 1,2.
Assume that k ≥ 3 and (4.1) holds for all sequences whose number of distinct terms is less than k.
Set B= {a1,a2, . . . ,ak−2}~s with~s = (r1,r2, . . . ,rk−2). Then 2∧(A∪{0}) and S(B)+ak−1 +ak are two
disjoint subsets of S(A). For 1≤ i≤ rk−1−1 and 1≤ j ≤ k−2, define

si, j =
k−2

∑
t=1,t 6=k− j−1

rtat +(rk− j−1−1)ak− j−1 +(i+1)ak−1 +ak,
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and

si,k−1 =
k−2

∑
t=1

rtat +(i+1)ak−1 +ak.

Similarly, for 1≤ i≤ rk−1 and 1≤ j ≤ k−1, define

ui, j =
k−1

∑
t=1,t 6=k− j

rtat +(rk− j−1)ak− j +(i+1)ak,

and

ui,k =
k−1

∑
t=1

rtat +(i+1)ak.

It is easy to see that
si,1 < si,2 < · · ·< si,k−2 < si,k−1 < si+1,1,

srk−1−1,k−1 < u1,1,

and
ui,1 < ui,2 < · · ·< ui,k−1 < ui,k < ui+1,1.

Therefore, the elements si, j and ui, j are all distinct, all are in the set S(A), and bigger than the elements
of 2∧(A∪{0}) and S(B)+ ak−1 + ak. Note also that si, j is not defined for rk−1 = 1 and ui, j are not
defined for rk = 1. By Theorem 2.2 and the induction hypothesis we get

|S(A)| ≥
∣∣2∧(A∪{0})∣∣+ |S(B)+ak−1 +ak|+

∣∣∣∣∣
rk−1−1⋃

i=1

k−1⋃
j=1

si, j

∣∣∣∣∣+
∣∣∣∣∣
rk−1⋃
i=1

k⋃
j=1

ui, j

∣∣∣∣∣
=
∣∣2∧(A∪{0})∣∣+ |S(B)|+ rk−1−1

∑
i=1

k−1

∑
j=1

1+
rk−1

∑
i=1

k

∑
j=1

1

≥ 2(k+1)−3+
k−2

∑
i=1

iri +(k−1)(rk−1−1)+ k(rk−1)

=
k

∑
i=1

iri.(4.2)

Now suppose that k ≥ 4 and |S(A)| = ∑
k
i=1 iri. Then from (4.2) it follows that |2∧(A∪{0})| =

2(k+1)−3. Theorem 2.2 implies that A∪{0} is an arithmetic progression. Hence A= a1 ∗ [1,k]~r. �

Theorem 4.2. Let A= {a1,a2, . . . ,ak}~r be a sequence of positive integers such that a1 < a2 < · · ·< ak,
~r = (r1,r2, . . . ,rk) and ri ≥ 1 for all i ∈ [1,k]. Let d(A) = 1. Then

|S(A)| ≥

{
∑

k
i=1 iri +ak− k, if ak ≤ 2k−3;

∑
k
i=1 iri +θ(k+1)− k−4, if ak ≥ 2k−2.

Proof. Set B= {a1,a2, . . . ,ak−2}~s with~s = (r1,r2, . . . ,rk−2). From (4.2) we have

|S(A)| ≥
∣∣2∧(A∪{0})∣∣+ |S(B)|+(k−1)(rk−1−1)+ k(rk−1).
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Applying Theorem 2.8 on A∪{0} and Lemma 4.1 on B, we get

|S(A)|

≥

{
ak + k−1+∑

k−2
i=1 iri +(k−1)(rk−1−1)+ k(rk−1), if ak ≤ 2(k+1)−5;

(θ +1)(k+1)−6+∑
k−2
i=1 iri +(k−1)(rk−1−1)+ k(rk−1), if ak ≥ 2(k+1)−4,

≥

{
∑

k
i=1 iri +ak− k, if ak ≤ 2k−3;

∑
k
i=1 iri +θ(k+1)− k−4, if ak ≥ 2k−2.

This completes the proof of the theorem. �

In the next theorem, we prove an improved bound for |S(A)| than that in Theorem 4.2, when every
element of A appears at least twice in A. Before that, we prove the following lemma, which is crucial
for our next theorem.

Lemma 4.3. Let A = {a1,a2, . . . ,ak}~r be a sequence of positive integers such that k ≥ 2, a1 <
a2 < · · · < ak, ~r = (r1,r2, . . . ,rk), and ri ≥ 2 for all i ∈ [1,k]. Let r := min{r1,r2, . . . ,rk} and B′ =
{a1,a2, . . . ,ak−1}~t with~t = (r1,r2, . . . ,rk−1). Then

|S(A)| ≥ |r(A∪{0})\{0}|+
∣∣S(B′)∣∣+ k(rk− r).(4.3)

Proof. If rk = r, then r(A∪{0})\{0} and S(B′)+ rak are two disjoint subsets of S(A). Thus

|S(A)| ≥ |r(A∪{0})\{0}|+
∣∣S(B′)+ rak

∣∣= |r(A∪{0})\{0}|+ ∣∣S(B′)∣∣ .
If rk > r, for 1≤ i≤ rk− r and 1≤ j ≤ k−1 we define

vi, j =
k−1

∑
t=1,t 6=k− j

rtat +(rk− j−1)ak− j +(r+ i)ak,

and

vi,k =
k−1

∑
t=1

rtat +(r+ i)ak.

Then
vi,1 < vi,2 < · · ·< vi,k−1 < vi,k < vi+1,1.

Therefore, the elements vi, j are all distinct, all are in the set S(A), and bigger than the elements of
r(A∪{0}) and S(B′)+ rak. Thus

|S(A)| ≥ |r(A∪{0})\{0}|+
∣∣S(B′)+ rak

∣∣+ ∣∣∣∣∣
rk−r⋃
i=1

k⋃
j=1

vi, j

∣∣∣∣∣
= |r(A∪{0})\{0}|+

∣∣S(B′)∣∣+ k(rk− r).

�

Theorem 4.4. Let A= {a1,a2, . . . ,ak}~r be a sequence of positive integers such that k ≥ 2, a1 < a2 <
· · ·< ak,~r = (r1,r2, . . . ,rk) and ri ≥ 2 for all i ∈ [1,k]. Let d(A) = 1 and min{r1,r2, . . . ,rk}= r. Then

|S(A)| ≥ |(r−1)(A∪{0})|+min{ak,r(k−1)+1}−1+
k−1

∑
i=1

iri + k(rk− r).
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Proof. Set B′ = {a1,a2, . . . ,ak−1}~t with~t = (r1,r2, . . . ,rk−1). Then from (4.3) we have

|S(A)| ≥ |r(A∪{0})\{0}|+
∣∣S(B′)∣∣+ k(rk− r).

Applying Theorem 2.5 on A∪{0} and Lemma 4.1 on B′, we obtain

|S(A)| ≥ |(r−1)(A∪{0})|+min{ak,r(k−1)+1}−1+
k−1

∑
i=1

iri + k(rk− r).

This completes the proof of the theorem. �

In the following theorem we prove a result similar to Theorem 4.2 and Theorem 4.4, when the
sequence A contains nonnegative integers with 0 ∈ A.

Theorem 4.5. Let A = {a0,a1, . . . ,ak−1}~r be a sequence of nonnegative integers such that 0 =
a0 < a1 < · · · < ak−1, ~r = (r0,r1, . . . ,rk−1) and ri ≥ 1 for all i ∈ [0,k− 1]. Let d(A) = 1 and
min{r1,r2, . . . ,rk−1}= r.

(1) If r ≥ 2, then

|S(A)| ≥ |(r−1)A|+min{ak−1,r(k−2)+1}+
k−1

∑
i=1

(i−1)ri−1 +(k−1)(rk−1− r).

(2) If r = 1, then

|S(A)| ≥

{
ak−1− k+2+∑

k
i=1(i−1)ri−1, if ak−1 ≤ 2k−5;

θk− k−2+∑
k
i=1(i−1)ri−1, if ak−1 ≥ 2k−4.

Proof. Let B′′ := {a1,a2, . . . ,ak−1}~v with~v := (r1,r2, . . . ,rk−1). Then d(B′′) = 1 and S(A) = S(B′′)∪
{0}. If r ≥ 2, then applying Theorem 4.4 on B′′, we obtain

|S(A)| ≥
∣∣S(B′′)∣∣+1

≥ |(r−1)A|+min{ak−1,r(k−2)+1}−1+
k−2

∑
i=1

iri +(k−1)(rk−1− r)+1

≥ |(r−1)A|+min{ak−1,r(k−2)+1}+
k−1

∑
i=1

(i−1)ri−1 +(k−1)(rk−1− r).

If r = 1, then by Theorem 4.2, we have

|S(A)| ≥
∣∣S(B′′)∣∣+1

≥

{
ak−1− k+1+∑

k−1
i=1 iri +1, if ak−1 ≤ 2(k−1)−3;

θk− k−3+∑
k−1
i=1 iri +1, if ak−1 ≥ 2(k−1)−2,

=

{
ak−1− k+2+∑

k
i=1(i−1)ri−1, if ak−1 ≤ 2k−5;

θk− k−2+∑
k
i=1(i−1)ri−1, if ak−1 ≥ 2k−4.

This completes the proof of the theorem. �
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5. Freiman’s theorem for α-subset sum

In this section, we prove Freiman-like theorems for Sα(A), when the set A contains positive integers and
when the set A contains nonnegative integers with 0 ∈ A, in Theorem 5.1 and Theorem 5.2, respectively.
To prove our results, we define

Sα
1 (A) := {s(B) : B⊆ A,1≤ |B| ≤ |A|−α} .

Then Sα(A) = ∑a∈A a− (Sα
1 (A)∪{0}). Therefore, |Sα(A)| = |Sα

1 (A)|+ 1 if 0 /∈ A and |Sα(A)| =
|Sα

1 (A)| if 0 ∈ A.

Theorem 5.1. Let k ≥ 3. Let A = {a1,a2, . . . ,ak} be a set of k positive integers such that a1 < a2 <
· · ·< ak and d(A) = 1. Let α ≤ k−2 be a positive integer. Then

|Sα(A)| ≥


ak +

k(k−1)
2

− α(α +1)
2

+1, if ak ≤ 2k−3;

θ(k+1)−4+
k(k−1)

2
− α(α +1)

2
+1, if ak ≥ 2k−2.

Proof. Set B = A\{ak−1,ak}. Then

2∧(A∪{0})∪ (Sα
1 (B)+ak−1 +ak)⊂ Sα

1 (A).

Here we are assuming that Sα
1 (B)+ak−1 +ak = /0 if α = |B|. Observe that 2∧(A∪{0}) and Sα

1 (B)+
ak−1 +ak are disjoint. Thus

|Sα(A)|= |Sα
1 (A)|+1≥

∣∣2∧(A∪{0})∣∣+ |Sα
1 (B)|+1 =

∣∣2∧(A∪{0})∣∣+ |Sα(B)| .

If ak ≤ 2k−3 = 2(k+1)−5, then applying Theorem 2.8 on A∪{0} and Theorem 2.9 on B, we obtain

|Sα(A)| ≥ ak + k−1+
(k−2)(k−1)

2
− α(α +1)

2
+1

= ak +
k(k−1)

2
− α(α +1)

2
+1.

If ak ≥ 2k−2 = 2(k+1)−4, then again by Theorem 2.8 and Theorem 2.9, we get

|Sα(A)| ≥ (θ +1)(k+1)−6+
(k−2)(k−1)

2
− α(α +1)

2
+1

= θ(k+1)−4+
k(k−1)

2
− α(α +1)

2
+1.

This proves the theorem. �

We also have the following theorem when the set A has 0 as an element.

Theorem 5.2. Let k ≥ 4. Let A = {a0,a1, . . . ,ak−1} be a set of nonnegative integers such that 0 =
a0 < a1 < · · ·< ak−1 and d(A) = 1. Let α ≤ k−2 be a positive integer. Then

|Sα(A)| ≥


ak−1 +

(k−1)(k−2)
2

− α(α−1)
2

+2, if ak−1 ≤ 2k−5;

θk−4+
(k−1)(k−2)

2
− α(α−1)

2
+2, if ak−1 ≥ 2k−4.
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Proof. Set B′ = {a1,a2, . . . ,ak−1}. Then B′ is a set of k−1 positive integers, d(B′) = 1 and Sα
1 (A) =

Sα−1
1 (B′)∪{0}. Then, from Theorem 5.1, it follows that

|Sα(A)|= |Sα
1 (A)|

=
∣∣Sα−1

1 (B′)
∣∣+1

≥


ak−1 +

(k−1)(k−2)
2

− α(α−1)
2

+2, if ak−1 ≤ 2k−5;

θk−4+
(k−1)(k−2)

2
− α(α−1)

2
+2, if ak−1 ≥ 2k−4.

This proves the theorem. �

6. Freiman’s theorem for α-subsequence sum

Let A= {a1,a2, . . . ,ak}~r be a sequence of positive integers, where~r = (r1,r2, . . . ,rk) with ri ≥ 1 for
all i ∈ [1,k]. Let min{r1,r2, . . . ,rk}= r, and let α ≤ ∑

k
i=1 ri−2 be a positive integer. In this section,

we prove Freiman’s 3k−4-like results for Sα(A). The proofs are quite similar to the ones in Section
4, however, in this section, the proofs are more involved and depend heavily on α . In Theorem 6.1,
we assume that α = ∑

k
i=1 ri− 2. Then, in Theorems 6.2 and 6.3, we consider the case that r ≥ 2

and α < ∑
k
i=1 ri− 2. Further, in Theorems 6.4 and 6.5, we assume that r = 1 and α < ∑

k
i=1 ri− 2.

In Theorem 6.4, we consider all possible cases with r = 1, except the one that rk−1 = 1 and rk 6= 1,
with which we deal in Theorem 6.5. In all the above-mentioned theorems the sequence A contains
positive integers. We prove similar results in Theorems 6.6, 6.7 and 6.8, when the sequence A contains
nonnegative integers with 0 ∈ A.

Before proceeding to the results of this section, we first define

Sα
1 (A) :=

{
s(B) : B⊆ A,1≤ |B| ≤

k

∑
i=1

ri−α

}
.

Then Sα(A) = ∑a∈A a− (Sα
1 (A)∪{0}). Therefore, |Sα(A)| = |Sα

1 (A)|+ 1 if 0 /∈ A and |Sα(A)| =
|Sα

1 (A)| if 0 ∈ A.

Theorem 6.1. Let k ≥ 3. Let A = {a1,a2, . . . ,ak}~r be a sequence of positive integers such that
a1 < a2 < · · · < ak, ~r = (r1,r2, . . . ,rk) and ri ≥ 1 for all i ∈ [1,k]. Let r = min{r1,r2, . . . ,rk}. Let
α = ∑

k
i=1 ri−2 and d(A) = 1. If r = 1, then

|Sα(A)| ≥

{
ak + k, if ak ≤ 2k−3;
(θ +1)(k+1)−4, if ak ≥ 2k−2.

If r ≥ 2, then

|Sα(A)| ≥

{
ak + k+1, if ak ≤ 2k−1;
3k, if ak ≥ 2k.

Proof. If r = 1, then
Sα

1 (A) = 2∧(A∪{0}).
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Therefore, by Theorem 2.8, we get

|Sα(A)|= |Sα
1 (A)|+1≥

{
ak + k, if ak ≤ 2k−3;
(θ +1)(k+1)−4, if ak ≥ 2k−2.

If r ≥ 2, then
Sα

1 (A) = 2(A∪{0})\{0}.
Therefore, by Theorem 2.3, we get

|Sα(A)|= |Sα
1 (A)|+1≥

{
ak + k+1, if ak ≤ 2k−1;
3k, if ak ≥ 2k.

�

Theorem 6.2. Let k ≥ 3. Let A = {a1,a2, . . . ,ak}~r be a sequence of positive integers such that
a1 < a2 < · · · < ak, ~r = (r1,r2, . . . ,rk) and ri ≥ 2 for all i ∈ [1,k]. Let min{r1,r2, . . . ,rk} = r and
d(A) = 1. Let α < ∑

k
i=1 ri− r be a positive integer. Then there exists an integer m ∈ [1,k] such that

∑
m−1
i=1 ri ≤ α < ∑

m
i=1 ri and

|Sα(A)| ≥ |(r−1)(A∪{0})|+min{ak,r(k−1)+1}+
k−1

∑
i=1

iri−
m

∑
i=1

iri +m

(
m

∑
i=1

ri−α

)
+ k(rk− r).

Proof. Set B1 = {a1,a2, . . . ,ak−1,ak}~s1 with ~s1 = (r1,r2, . . . ,rk−1,rk− r). Then

(r(A∪{0})\{0})∪ (Sα
1 (B1)+ rak)⊂ Sα

1 (A),

where (r(A∪{0})\{0})∩ (Sα
1 (B1)+ rak) = /0. Therefore

|Sα(A)|= |Sα
1 (A)|+1≥ |r(A∪{0})\{0}|+ |Sα

1 (B1)|+1 = |r(A∪{0})|+ |Sα(B1)|−1.

If m≤ k−1, then applying Theorem 2.5 on A∪{0} and Theorem 2.10 on B1, we obtain

|Sα(A)| ≥ |(r−1)(A∪{0})|+min{ak,r(k−1)+1}−1+
k−1

∑
i=1

iri + k(rk− r)−
m

∑
i=1

iri

+m

(
m

∑
i=1

ri−α

)
+1

= |(r−1)(A∪{0})|+min{ak,r(k−1)+1}+
k−1

∑
i=1

iri−
m

∑
i=1

iri +m

(
m

∑
i=1

ri−α

)
+ k(rk− r).

If m = k, then again applying Theorem 2.5 on A∪{0} and Theorem 2.10 on B1, we obtain

|Sα(A)| ≥ |(r−1)(A∪{0})|+min{ak,r(k−1)+1}+ k

(
k−1

∑
i=1

ri + rk− r−α

)
.

This proves the theorem. �
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In the following theorem, we prove a similar result for the remaining values of α , i.e., ∑
k
i=1 ri− r ≤

α < ∑
k
i=1 ri−2.

Theorem 6.3. Let k ≥ 3. Let A = {a1,a2, . . . ,ak}~r be a sequence of positive integers such that
a1 < a2 < · · · < ak, ~r = (r1,r2, . . . ,rk) and ri ≥ 2 for all i ∈ [1,k]. Let min{r1,r2, . . . ,rk} = r and
d(A) = 1. Let ∑

k
i=1 ri− r ≤ α < ∑

k
i=1 ri−2 be a positive integer. Then

|Sα(A)| ≥

ak− k+2+ k
(
∑

k
i=1 ri−α

)
, if ak ≤ 2k−1;

k+1+ k
(
∑

k
i=1 ri−α

)
, if ak ≥ 2k.

Proof. Set B2 = {a1,a2, . . . ,ak−1,ak}~s2 with ~s2 = (r1,r2, . . . ,rk−1,rk−2). Then

(2(A∪{0})\{0})∪ (Sα
1 (B2)+2ak)⊂ Sα

1 (A),

where (2(A∪{0})\{0})∩ (Sα
1 (B2)+2ak) = /0. Therefore,

|Sα(A)|= |Sα
1 (A)|+1≥ |2(A∪{0})\{0}|+ |Sα

1 (B2)|+1 = |2(A∪{0})|+ |Sα(B2)|−1.

Applying Theorem 2.4 on A∪{0} and Theorem 2.10 on B2 we obtain

|Sα(A)| ≥ |2(A∪{0})|−1+ k

(
k−1

∑
i=1

ri + rk−2−α

)
+1

≥

ak + k+1+ k
(
∑

k
i=1 ri−α

)
−2k, if ak ≤ 2(k+1)−3;

3(k+1)−3+ k
(
∑

k
i=1 ri−α

)
−2k, if ak ≥ 2(k+1)−2,

=

ak− k+1+ k
(
∑

k
i=1 ri−α

)
, if ak ≤ 2k−1;

k+ k
(
∑

k
i=1 ri−α

)
, if ak ≥ 2k.

�

The case r = 1 is considered in the following two theorems.

Theorem 6.4. Let k ≥ 3. Let A= {a1,a2, . . . ,ak}~r be a sequence of positive integers such that a1 <
a2 < · · ·< ak,~r = (r1,r2, . . . ,rk) and ri ≥ 1 for all i ∈ [1,k]. Let rk−1 6= 1 and rk 6= 1 or rk−1 = rk = 1
or rk−1 6= 1 and rk = 1. Let d(A) = 1. Let α < ∑

k
i=1 ri−2 be a positive integer. Then the following

holds.
(1) If α < ∑

k−1
i=1 ri−1, then there exists an integer m ∈ [1,k−1] such that ∑

m−1
i=1 ri ≤ α < ∑

m
i=1 ri

and

|Sα(A)| ≥

ak− k+1+∑
k
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α) , if ak ≤ 2k−3;

θ(k+1)− k−3+∑
k
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α) , if ak ≥ 2k−2.

(2) If ∑
k−1
i=1 ri−1≤ α < ∑

k
i=1 ri−2, then

|Sα(A)| ≥

ak− k+ k
(
∑

k
i=1 ri−α

)
, if ak ≤ 2k−3;

θ(k+1)− k−4+ k
(
∑

k
i=1 ri−α

)
, if ak ≥ 2k−2.
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Proof. Set B3 = {a1,a2, . . . ,ak−1,ak}~s3 with ~s3 = (r1,r2, . . . ,rk−2,rk−1−1,rk−1). Then

2∧(A∪{0})∪ (Sα
1 (B3)+ak−1 +ak)⊂ Sα

1 (A),

where 2∧(A∪{0})∩ (Sα
1 (B3)+ak−1 +ak) = /0. Therefore,

|Sα(A)|= |Sα
1 (A)|+1≥

∣∣2∧(A∪{0})∣∣+ |Sα
1 (B3)|+1 =

∣∣2∧(A∪{0})∣∣+ |Sα(B3)| .

Case I (rk−1 ≥ 2 and rk ≥ 2). If α < ∑
k−2
i=1 ri, then m≤ k−2 for both A and B3. Applying Theorem

2.8 on A∪{0} and Theorem 2.10 on B3, we get

|Sα(A)|
≥
∣∣2∧(A∪{0})∣∣+ |Sα(B3)|

≥


ak + k−1+∑

k
i=1 iri− (k−1)− k−∑

m
i=1 iri +m(∑m

i=1 ri−α)+1,
if ak ≤ 2k−3;

(θ +1)(k+1)−6+∑
k
i=1 iri− (k−1)− k−∑

m
i=1 iri +m(∑m

i=1 ri−α)+1,
if ak ≥ 2k−2,

=

ak− k+1+∑
k
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α) , if ak ≤ 2k−3;

θ(k+1)− k−3+∑
k
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α) , if ak ≥ 2k−2.

If ∑
k−2
i=1 ri ≤ α < ∑

k−1
i=1 ri−1, then m = k−1 for both A and B3. Applying Theorem 2.8 on A∪{0}

and Theorem 2.10 on B3, we get

|Sα(A)|
≥
∣∣2∧(A∪{0})∣∣+ |Sα(B3)|

≥



ak + k−1+∑
k
i=1 iri− (2k−1)−

(
∑

k−1
i=1 iri− (k−1)

)
+(k−1)

(
∑

k−1
i=1 ri−1−α

)
+1,

if ak ≤ 2k−3;

(θ +1)(k+1)−6+∑
k
i=1 iri− (2k−1)−

(
∑

k−1
i=1 iri− (k−1)

)
+(k−1)

(
∑

k−1
i=1 ri−1−α

)
+1,

if ak ≥ 2k−2;

=

ak− k+1+∑
k
i=1 iri−∑

k−1
i=1 iri +(k−1)

(
∑

k−1
i=1 ri−α

)
, if ak ≤ 2k−3;

θ(k+1)− k−3+∑
k
i=1 iri−∑

k−1
i=1 iri +(k−1)

(
∑

k−1
i=1 ri−α

)
, if ak ≥ 2k−2.
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If ∑
k−1
i=1 ri−1≤ α < ∑

k
i=1 ri−2, then applying Theorem 2.8 on A∪{0} and Theorem 2.10 on B3,

we get

|Sα(A)|
≥
∣∣2∧(A∪{0})∣∣+ |Sα(B3)|

≥

ak + k−1+ k
(
∑

k
i=1 ri−2−α

)
+1, if ak ≤ 2k−3;

(θ +1)(k+1)−6+ k
(
∑

k
i=1 ri−2−α

)
+1, if ak ≥ 2k−2,

=

ak− k+ k
(
∑

k
i=1 ri−α

)
, if ak ≤ 2k−3;

θ(k+1)− k−4+ k
(
∑

k
i=1 ri−α

)
, if ak ≥ 2k−2.

Case II (rk−1 ≥ 2 and rk = 1). In this case, the sequence B3 has k− 1 distinct elements and the
vector ~s3 has k−1 terms. If α < ∑

k−2
i=1 ri, then m≤ k−2 for both A and B3. Applying Theorem 2.8 on

A∪{0} and Theorem 2.10 on B3, we get

|Sα(A)|
≥
∣∣2∧(A∪{0})∣∣+ |Sα(B3)|

≥


ak + k−1+∑

k−2
i=1 iri +(k−1)(rk−1−1)−∑

m
i=1 iri +m(∑m

i=1 ri−α)+1,
if ak ≤ 2k−3;

(θ +1)(k+1)−6+∑
k−2
i=1 iri +(k−1)(rk−1−1)−∑

m
i=1 iri +m(∑m

i=1 ri−α)+1,
if ak ≥ 2k−2,

=

ak− k+1+∑
k
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α) , if ak ≤ 2k−3;

θ(k+1)− k−3+∑
k
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α) , if ak ≥ 2k−2.

If ∑
k−2
i=1 ri ≤ α < ∑

k−1
i=1 ri−1 = ∑

k
i=1 ri−2, then m = k−1 for both A and B3. Applying Theorem 2.8

on A∪{0} and Theorem 2.10 on B3, we get

|Sα(A)|
≥
∣∣2∧(A∪{0})∣∣+ |Sα(B3)|

≥

ak + k−1+(k−1)
(
∑

k−2
i=1 ri + rk−1−1−α

)
+1, if ak ≤ 2k−3;

(θ +1)(k+1)−6+(k−1)
(
∑

k−2
i=1 ri + rk−1−1−α

)
+1, if ak ≥ 2k−2,

=

ak− k+1+∑
k
i=1 iri−∑

k−1
i=1 iri +(k−1)

(
∑

k−1
i=1 ri−α

)
, if ak ≤ 2k−3;

θ(k+1)− k−3+∑
k
i=1 iri−∑

k−1
i=1 iri +(k−1)

(
∑

k−1
i=1 ri−α

)
, if ak ≥ 2k−2.

Case III (rk−1 = rk = 1). In this case, the sequence B3 has k−2 distinct elements and the vector ~s3
has k−2 terms. Thus, m≤ k−2 for both A and B3. Applying Theorem 2.8 on A∪{0} and Theorem
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2.10 on B3, we get

|Sα(A)|
≥
∣∣2∧(A∪{0})∣∣+ |Sα(B3)|

≥

ak + k−1+∑
k−2
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α)+1, if ak ≤ 2k−3;

(θ +1)(k+1)−6+∑
k−2
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α)+1, if ak ≥ 2k−2,

=

ak− k+1+∑
k
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α) , if ak ≤ 2k−3;

θ(k+1)− k−3+∑
k
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α) , if ak ≥ 2k−2.

�

Theorem 6.5. Let k ≥ 3. Let A = {a1,a2, . . . ,ak}~r be a sequence of positive integers such that
a1 < a2 < · · ·< ak,~r = (r1,r2, . . . ,rk), ri ≥ 1 for all i ∈ [1,k−2], rk−1 = 1 and rk ≥ 2. Let d(A) = 1.
Let α < ∑

k
i=1 ri−2 be a positive integer. Then the following holds.

(1) If α < ∑
k−2
i=1 ri, then there exists an integer m ∈ [1,k−2] such that ∑

m−1
i=1 ri ≤ α < ∑

m
i=1 ri and

|Sα(A)| ≥



ak + k+∑
k−2
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α)+(k−m+1)(rk−1),
if ak ≤ 2k−3;

θ(k+1)+ k−4+∑
k−2
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α)+(k−m+1)(rk−1),
if ak ≥ 2k−2.

(2) If ∑
k−2
i=1 ri ≤ α < ∑

k
i=1 ri−2, then

|Sα(A)| ≥

ak− k+2+(k−1)
(
∑

k
i=1 ri−α

)
, if ak ≤ 2k−3;

θ(k+1)− k−2+(k−1)
(
∑

k
i=1 ri−α

)
, if ak ≥ 2k−2.

Proof. Set B4 = {a1,a2, . . . ,ak−2}~s4 with ~s4 = (r1,r2, . . . ,rk−2). If α < ∑
k−2
i=1 ri, then 2∧(A∪{0}) and

(Sα
1 (B4)+ ak−1 + ak) are two disjoint subsets of Sα

1 (A). For 1 ≤ i ≤ rk− 1 and 1 ≤ j ≤ k−m− 1,
define

vi, j =

(
m

∑
`=1

r`−α

)
am +

k−1

∑
t=m+1,t 6=k− j

rtat +(rk− j−1)ak− j +(i+1)ak,

vi,k−m =

(
m

∑
`=1

r`−α−1

)
am +

k−1

∑
t=m+1

rtat +(i+1)ak,

and

vi,k−m+1 =

(
m

∑
`=1

r`−α

)
am +

k−1

∑
t=m+1

rtat +(i+1)ak.

It is easy to see that

vi,1 < vi,2 < · · ·< vi,k−m−1 < vi,k−m < vi,k−m+1 < vi+1,1.
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Therefore, the elements vi, j are all distinct, all are in the set Sα
1 (A) and bigger than the elements of

2∧(A∪{0}) and Sα
1 (B4)+ak−1 +ak. Therefore, we have

|Sα(A)|= |Sα
1 (A)|+1

≥
∣∣2∧(A∪{0})∣∣+ |Sα

1 (B4)|+

∣∣∣∣∣
rk−1⋃
i=1

k−m+1⋃
j=1

vi, j

∣∣∣∣∣+1

=
∣∣2∧(A∪{0})∣∣+ |Sα(B4)|+

rk−1

∑
i=1

k−m+1

∑
j=1

1.

By Theorem 2.8 and Theorem 2.10, we have

|Sα(A)|

≥


ak + k−1+∑

k−2
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α)+1+(k−m+1)(rk−1),
if ak ≤ 2(k+1)−5;

(θ +1)(k+1)−6+∑
k−2
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α)+1+(k−m+1)(rk−1),
if ak ≥ 2(k+1)−4,

=


ak + k+∑

k−2
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α)+(k−m+1)(rk−1),
if ak ≤ 2k−3;

θ(k+1)+ k−4+∑
k−2
i=1 iri−∑

m
i=1 iri +m(∑m

i=1 ri−α)+(k−m+1)(rk−1),
if ak ≥ 2k−2.

Now, let ∑
k−2
i=1 ri ≤ α < ∑

k
i=1 ri− 2 = ∑

k−2
i=1 ri + rk − 1. Set a′k−1 = ak, r′k−1 = rk − 1, and B5 =

{a1,a2, . . . ,ak−2,a′k−1}~s5 with ~s5 = (r1,r2, . . . ,rk−2,r′k−1). Then

2∧(A∪{0})∪ (Sα
1 (B5)+ak−1 +ak)⊂ Sα

1 (A),

where 2∧(A∪{0})∩ (Sα
1 (B5)+ak−1 +ak) = /0. Thus,

|Sα(A)|= |Sα
1 (A)|+1≥

∣∣2∧(A∪{0})∣∣+ |Sα
1 (B5)|+1 =

∣∣2∧(A∪{0})∣∣+ |Sα(B5)| .

As ∑
k−2
i=1 ri ≤ α < ∑

k−2
i=1 ri + r′k−1, by Theorem 2.10, we have

|Sα(B5)| ≥ (k−1)

(
k−2

∑
i=1

ri + r′k−1−α

)
+1 = (k−1)

(
k−2

∑
i=1

ri + rk−1−α

)
+1.
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This equation together with Theorem 2.8 applying on A∪{0}, give

|Sα(A)|=
∣∣2∧(A∪{0})∣∣+ |Sα(B5)|

≥

ak + k−1+(k−1)
(
∑

k−2
i=1 ri + rk−1−α

)
+1, if ak ≤ 2k−3;

(θ +1)(k+1)−6+(k−1)
(
∑

k−2
i=1 ri + rk−1−α

)
+1, if ak ≥ 2k−2,

=

ak− k+2+(k−1)
(
∑

k
i=1 ri−α

)
, if ak ≤ 2k−3;

θ(k+1)− k−2+(k−1)
(
∑

k
i=1 ri−α

)
, if ak ≥ 2k−2.

This proves the theorem. �

In the following three theorems, the sequence A contains nonnegative integers with 0 ∈ A.

Theorem 6.6. Let k ≥ 4. Let A = {a0,a1, . . . ,ak−1}~r be a sequence of nonnegative integers such
that 0 = a0 < a1 < · · ·< ak−1,~r = (r0,r1, . . . ,rk−1) and ri ≥ 1 for all i ∈ [0,k−1]. Let d(A) = 1 and
r = min{r1,r2, . . . ,rk−1}. Let α = ∑

k−1
i=0 ri−2. If r = 1, then

|Sα(A)| ≥

{
ak−1 + k−1, ak−1 ≤ 2k−5;
(θ +1)k−5, ak−1 ≥ 2k−4.

If r ≥ 2, then

|Sα(A)| ≥

{
ak−1 + k, ak−1 ≤ 2k−3;
3k−3, ak−1 ≥ 2k−2.

Proof. If r = 1, then
Sα(A) = 2∧A∪{0}.

Therefore, by Theorem 2.8, we get

|Sα(A)|=
∣∣2∧A

∣∣+1≥

{
ak−1 + k−1, ak−1 ≤ 2k−5;
(θ +1)k−5, ak−1 ≥ 2k−4.

If r ≥ 2, then
Sα(A) = 2A.

Therefore, by Theorem 2.3, we get

|Sα(A)|=
∣∣2∧A

∣∣+1≥

{
ak−1 + k, ak−1 ≤ 2k−3;
3k−3, ak−1 ≥ 2k−2.

�

Theorem 6.7. Let k ≥ 4. Let A = {a0,a1, . . . ,ak−1}~r be a sequence of nonnegative integers such
that 0 = a0 < a1 < · · ·< ak−1,~r = (r0,r1, . . . ,rk−1) and ri ≥ 1 for all i ∈ [0,k−1]. Let d(A) = 1 and
min{r1,r2, . . . ,rk−1}= r ≥ 2. Let α < ∑

k−1
i=0 ri−2 be a positive integer. Then the following holds.
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(1) If 0 < α < ∑
k−1
i=0 ri− r, then there exists an integer m ∈ [1,k] such that ∑

m−2
i=0 ri ≤ α < ∑

m−1
i=0 ri

and

|Sα(A)| ≥|(r−1)A|+min{ak−1,r(k−2)+1}+
k−1

∑
i=1

(i−1)ri−1−
m

∑
i=1

(i−1)ri−1

+(m−1)

(
m

∑
i=1

ri−1−α

)
+(k−1)(rk−1− r).

(2) If ∑
k−1
i=0 ri− r ≤ α < ∑

k−1
i=0 ri−2, then

|Sα(A)| ≥

ak−1− k+2+(k−1)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≤ 2k−3;

k−1+(k−1)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≥ 2k−2.

Proof. Set B6 := {a1,a2, . . . ,ak−1}~s6 with ~s6 := (r1,r2, . . . ,rk−1). Then d(B6) = 1. Observe that
Sα

1 (A) = S(B6)∪ {0} if 0 < α ≤ r0 and Sα
1 (A) = Sα−r0

1 (B6)∪ {0} if r0 < α ≤ ∑
k−1
i=0 ri− 2. Note

also that, if α > r0 and ∑
m−2
i=0 ri ≤ α < ∑

m−1
i=0 ri for some m ∈ [2,k], then ∑

m−2
i=1 ri ≤ α− r0 < ∑

m−1
i=1 ri.

Therefore the integer m for A will work as m−1 for B6.
If 0 < α ≤ r0, we have from Theorem 4.4 that

|Sα(A)|= |Sα
1 (A)|

= |S(B6)|+1

≥ |(r−1)A|+min{ak−1,r(k−2)+1}−1+
k−2

∑
i=1

iri +(k−1)(rk−1− r)+1

= |(r−1)A|+min{ak−1,r(k−2)+1}+
k−1

∑
i=1

(i−1)ri−1 +(k−1)(rk−1− r).
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If r0 < α < ∑
k−1
i=0 ri−2, then we have two possibilities: either r0 < α < ∑

k−1
i=0 ri− r or ∑

k−1
i=0 ri− r ≤

α < ∑
k−1
i=0 ri−2. In the first case, we have 0 < α− r0 < ∑

k−1
i=1 ri− r, so by Theorem 6.2, we obtain

|Sα(A)|
= |Sα

1 (A)|

=
∣∣∣Sα−r0

1 (B6)
∣∣∣+1

=
∣∣Sα−r0(B6)

∣∣
≥ |(r−1)A|+min{ak−1,r(k−2)+1}+

k−2

∑
i=1

iri−
m−1

∑
i=1

iri +(m−1)

(
m−1

∑
i=1

ri− (α− r0)

)
+(k−1)(rk−1− r)

= |(r−1)A|+min{ak−1,r(k−2)+1}+
k−1

∑
i=1

(i−1)ri−1−
m

∑
i=1

(i−1)ri−1

+(m−1)

(
m

∑
i=1

ri−1−α

)
+(k−1)(rk−1− r).

In the second case, we have ∑
k−1
i=1 ri− r ≤ α− r0 < ∑

k−1
i=1 ri−2. By Theorem 6.3, we get

|Sα(A)|=
∣∣Sα−r0(B6)

∣∣
≥

ak−1− k+2+(k−1)
(
∑

k−1
i=1 ri− (α− r0)

)
, if ak−1;≤ 2k−3

k−1+(k−1)
(
∑

k−1
i=1 ri− (α− r0)

)
, if ak−1 ≥ 2k−2,

=

ak−1− k+2+(k−1)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≤ 2k−3;

k−1+(k−1)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≥ 2k−2.

This completes the proof of the theorem. �

The following theorem is for r = 1.

Theorem 6.8. Let k ≥ 4. Let A = {a0,a1, . . . ,ak−1}~r be a sequence of nonnegative integers such
that 0 = a0 < a1 < · · ·< ak−1,~r = (r0,r1, . . . ,rk−1) and ri ≥ 1 for all i ∈ [0,k−1]. Let d(A) = 1 and
min{r1,r2, . . . ,rk−1}= r = 1. Let α < ∑

k−1
i=0 ri−2 be a positive integer. Then the following holds.
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(1) If 0 < α < ∑
k−2
i=0 ri−1 with rk−1 6= 1 and rk 6= 1 or rk−1 = rk = 1 or rk−1 6= 1 and rk = 1, then

there exists an integer m ∈ [1,k] such that ∑
m−2
i=0 ri ≤ α < ∑

m−1
i=0 ri and

|S(A)|

≥


ak−1− k+2+∑

k
i=1(i−1)ri−1−∑

m
i=1(i−1)ri−1 +(m−1)(∑m

i=1 ri−1−α) ,

if ak−1 ≤ 2k−5;

θk− k−2+∑
k
i=1(i−1)ri−1−∑

m
i=1(i−1)ri−1 +(m−1)(∑m

i=1 ri−1−α) ,

if ak−1 ≥ 2k−4.

(2) If ∑
k−2
i=0 ri− 1 ≤ α < ∑

k−1
i=0 ri− 2 with rk−1 6= 1 and rk 6= 1 or rk−1 = rk = 1 or rk−1 6= 1 and

rk = 1, then

|S(A)| ≥

ak−1− k+1+(k−1)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≤ 2k−5;

θk− k−3+(k−1)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≥ 2k−4.

(3) If 0 < α ≤ r0 with rk−2 = 1 and rk−1 6= 1, then

|Sα(A)| ≥

ak−1− k+2+∑
k
i=1(i−1)ri−1, if ak−1 ≤ 2k−5;

θk− k−2+∑
k
i=1(i−1)ri−1, if ak−1 ≥ 2k−4.

(4) If r0 < α < ∑
k−3
i=0 ri with rk−2 = 1 and rk−1 6= 1, then there exists an integer m ∈ [1,k] such that

∑
m−2
i=0 ri ≤ α < ∑

m−1
i=0 ri and

|Sα(A)|

≥


ak−1 +1+∑

k−1
i=1 (i−1)ri−1−∑

m
i=1(i−1)ri−1 +(m−1)(∑m

i=1 ri−1−α)+(k−m)(rk−1−1),
if ak−1 ≤ 2k−5;

θk−3+∑
k−1
i=1 (i−1)ri−1−∑

m
i=1(i−1)ri−1 +(m−1)(∑m

i=1 ri−1−α)+(k−m)(rk−1−1),
if ak ≥ 2k−4.

(5) If ∑
k−3
i=0 ri ≤ α < ∑

k−1
i=0 ri−2 with r = rk−2 = 1 and rk−1 6= 1, then

|Sα(A)| ≥

ak−1− k+3+(k−2)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≤ 2k−5;

θk− k−1+(k−2)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≥ 2k−4.

Proof. Set B7 := {a1,a2, . . . ,ak−1}~s7 with ~s7 := (r1,r2, . . . ,rk−1). Then d(B7) = 1. Observe that
Sα

1 (A) = S(B7)∪ {0} if 0 < α ≤ r0 and Sα
1 (A) = Sα−r0

1 (B7)∪ {0} if r0 < α ≤ ∑
k−1
i=0 ri− 2. Note

also that, if α > r0 and ∑
m−2
i=0 ri ≤ α < ∑

m−1
i=0 ri for some m ∈ [2,k], then ∑

m−2
i=1 ri ≤ α− r0 < ∑

m−1
i=1 ri.

Therefore the integer m for A will work as m−1 for B7.
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Case I (rk−1 6= 1 and rk 6= 1 or rk−1 = rk = 1 or rk−1 6= 1 and rk = 1). If 0 < α ≤ r0, we have from
Theorem 4.2 that

|Sα(A)|= |Sα
1 (A)|

= |S(B7)|+1

≥

ak−1− (k−1)+∑
k−1
i=1 iri +1, if ak−1 ≤ 2(k−1)−3;

θk− (k−1)−4+∑
k−1
i=1 iri +1, if ak−1 ≥ 2(k−1)−2.

=

ak−1− k+2+∑
k
i=1(i−1)ri−1, if ak−1 ≤ 2k−5;

θk− k−2+∑
k
i=1(i−1)ri−1, if ak−1 ≥ 2k−4.

If r0 < α < ∑
k−1
i=0 ri−2, then we have two possibilities: either 0 < α− r0 < ∑

k−2
i=1 ri−1 or ∑

k−2
i=1 ri−

1≤ α− r0 < ∑
k−1
i=1 ri−2. If α− r0 < ∑

k−2
i=1 ri−1, then by Theorem 6.4, we get

|Sα(A)|
= |Sα

1 (A)|

=
∣∣∣Sα−r0

1 (B7)
∣∣∣+1

=
∣∣Sα−r0(B7)

∣∣
≥


ak−1− k+2+∑

k−1
i=1 iri−∑

m−1
i=1 iri +(m−1)

(
∑

m−1
i=1 ri− (α− r0)

)
,

if ak−1 ≤ 2(k−1)−3;

θk− k−2+∑
k−1
i=1 iri−∑

m−1
i=1 iri +(m−1)

(
∑

m−1
i=1 ri− (α− r0)

)
,

if ak−1 ≥ 2(k−1)−2,

=


ak−1− k+2+∑

k
i=1(i−1)ri−1−∑

m
i=1(i−1)ri−1 +(m−1)(∑m

i=1 ri−1−α) ,

if ak−1 ≤ 2k−5;

θk− k−2+∑
k
i=1(i−1)ri−1−∑

m
i=1(i−1)ri−1 +(m−1)(∑m

i=1 ri−1−α) ,

if ak−1 ≥ 2k−4.

If ∑
k−2
i=1 ri−1≤ α− r0 < ∑

k−1
i=1 ri−2, then again by Theorem 6.4, we get

|Sα(A)|
=
∣∣Sα−r0(B7)

∣∣
≥

ak−1− k+1+(k−1)
(
∑

k−1
i=1 ri− (α− r0)

)
, if ak−1 ≤ 2(k−1)−3;

θk− k−3+(k−1)
(
∑

k−1
i=1 ri− (α− r0)

)
, if ak−1 ≥ 2(k−1)−2,

=

ak−1− k+1+(k−1)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≤ 2k−5;

θk− k−3+(k−1)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≥ 2k−4.
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Case II (rk−2 = 1 and rk−1 6= 1). If 0 < α ≤ r0, we have from Theorem 4.2 that

|Sα(A)|= |S(B7)|+1

≥

ak−1− (k−1)+∑
k−1
i=1 iri +1, if ak−1 ≤ 2(k−1)−3;

θk− (k−1)−4+∑
k−1
i=1 iri +1, if ak−1 ≥ 2(k−1)−2.

=

ak−1− k+2+∑
k
i=1(i−1)ri−1, if ak−1 ≤ 2k−5;

θk− k−2+∑
k
i=1(i−1)ri−1, if ak−1 ≥ 2k−4.

If r0 < α < ∑
k−3
i=0 ri, then 0 < α− r0 < ∑

k−3
i=1 ri. Thus, it follows from the proof of Theorem 6.5 that

|S(A)|
=
∣∣Sα−r0(B7)

∣∣
≥


ak−1 + k−1+∑

k−3
i=1 iri−∑

m−1
i=1 iri +(m−1)

(
∑

m−1
i=1 ri− (α− r0)

)
+(k−m)(rk−1−1),

if ak−1 ≤ 2(k−1)−3;

θk+ k−5+∑
k−3
i=1 iri−∑

m−1
i=1 iri +(m−1)

(
∑

m−1
i=1 ri− (α− r0)

)
+(k−m)(rk−1−1),

if ak ≥ 2(k−1)−2,

=


ak−1 +1+∑

k−1
i=1 (i−1)ri−1−∑

m
i=1(i−1)ri−1 +(m−1)(∑m

i=1 ri−1−α)+(k−m)(rk−1−1),
if ak−1 ≤ 2k−5;

θk−3+∑
k−1
i=1 (i−1)ri−1−∑

m
i=1(i−1)ri−1 +(m−1)(∑m

i=1 ri−1−α)+(k−m)(rk−1−1),
if ak ≥ 2k−4.

If ∑
k−3
i=0 ri ≤ α < ∑

k−1
i=0 ri−2, then we have again from Theorem 6.5 that

|S(A)|=
∣∣Sα−r0(B7)

∣∣
≥

ak−1− k+3+(k−2)
(
∑

k−1
i=1 ri− (α− r0)

)
, if ak−1 ≤ 2(k−1)−3;

θk− k−1+(k−2)
(
∑

k−1
i=1 ri− (α− r0)

)
, if ak−1 ≥ 2(k−1)−2,

=

ak−1− k+3+(k−2)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≤ 2k−5;

θk− k−1+(k−2)
(
∑

k
i=1 ri−1−α

)
, if ak−1 ≥ 2k−4.

This completes the proof of the theorem. �
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