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Abstract

The aim of this paper is to study the Fréchet-Urysohn property of the space Qp(X, R) of
real-valued quasicontinuous functions, defined on a Hausdorff space X, endowed with the
pointwise convergence topology.

It is proved that under Suslin’s Hypothesis, for an open Whyburn space X, the space
Qp(X, R) is Fréchet-Urysohn if and only if X is countable. In particular, it is true in the
class of first-countable regular spaces X.

In ZFC, it is proved that for a metrizable space X, the space Qp(X, R) is Fréchet-
Urysohn if and only if X is countable.
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1. Introduction

A function f from a topological space X into R is quasicontinuous, f ∈ Q(X, R), if for
every x ∈ X and open sets U 3 x and V 3 f(x) there exists a nonempty open W ⊆ U
with f(W ) ⊆ V .

The condition of quasicontinuity can be found in the paper of R. Baire [2] in study of
continuity point of separately continuous functions from R

2 into R. The formal definition
of quasicontinuity were introduced by Kempisty in 1932 in [7]. Quasicontinuous functions
were studied in many papers, see for examples [3, 14, 15, 16, 17, 18], [20, 26, 22] and other.
They found applications in the study of topological groups [4, 23, 25], in the study of
dynamical systems [5], in the the study of CHART groups [24] and also used in the study
of extensions of densely defined continuous functions [19] and of extensions to separately
continuous functions on the product of pseudocompact spaces [27], etc.

Levine [10] studied quasicontinuous maps under the name of semi-continuity using the
terminology of semi-open sets. A subset A of X is semi-open if A ⊂ Int(A). A function
f : X → Y is called semi-continuous if f−1(V ) is semi-open in X for every open set V of
Y . A map f : X → R is quasicontinuous if and only if f is semi-continuous [10].
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Let X be a Hausdorff topological space, Q(X, R) be the space of all quasicontinuous
functions on X with values in R and τp be the pointwise convergence topology. Denote by
Qp(X, R) the topological space (Q(X, R), τp).

A subset U of a topological space X is called a regular open set or an open domain if
U = IntU holds. A subset F of a topological space X is called a regular closed set or
a closed domain if F = IntF holds. The family of regular open sets of (X, τ) is not a
topology. But it is a base for a topology τs called the semi-regularization of τ . If τs = τ ,
then (X, τ) is called semi-regular (or quasi-regular).

In ([11], Corollary 1), it is proved that a semi-regular topology is the coarsest topol-
ogy of its α-class. Note that all topologies of a given α-class on X determine the same
class of qusicontinuous mappings into an arbitrary topological space (Proposition 9, [11]).
Since a Hausdorff topology τ has a Hausdorff semi-regularization τs and Qp((X, τ), R) =
Qp((X, τs), R), we can further assume that X is a Hausdorff semi-regular space.

In this paper we study the Fréchet-Urysohn property of the space Qp(X, R).

2. Preliminaries

Let us recall some properties and introduce new property of a topological space X.
(1) A space X is Fréchet-Urysohn provided that for every A ⊂ X and x ∈ A there

exists a sequence in A converging to x.
(2) A space X is said to be Whyburn if A ⊂ X and p ∈ A \ A imply that there is a

subset B ⊆ A such that B = B ∪ {x}.
(3) A space X is said to be k-Fréchet-Urysohn if for every open subset U of X and

every x ∈ U , there exists a sequence (xn)n∈N ⊂ U converging to x.

Definition 2.1. A topological space X is called open Whyburn if for every open set A ⊂ X
and every x ∈ A \ A there is an open set B ⊆ A such that B \ A = {x}.

Let X be a Tychonoff topological space, C(X, R) be the space of all continuous functions
on X with values in R and τp be the pointwise convergence topology. Denote by Cp(X, R)
the topological space (C(X, R), τp).

Let us recall that a cover U of a set X is called
• an ω-cover if each finite set F ⊆ X is contained in some U ∈ U ;
• a γ-cover if for any x ∈ X the set {U ∈ U : x 6∈ U} is finite.

A topological space X is called a γ-space if each ω-cover U of X contains a γ-subcover
of X. γ-Spaces were introduced by Gerlits and Nagy in [12] and are important in the
theory of function spaces as they are exactly those X for which the space Cp(X, R) has
the Fréchet-Urysohn property [13].

Clear that Cp(X, R) is a subspace of Qp(X, R). Thus, if Qp(X, R) is Fréchet-Urysohn
then Cp(X, R) is Fréchet-Urysohn, too. Hence, the property Fréchet-Urysohn of Qp(X, R)
for a Tychonoff space X implies that X is a γ-space.
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A set A is called minimally bounded with respect to the topology τ in a topological
space (X, τ) if IntA ⊇ A and IntA ⊆ A ([1], p.101). Clearly this means A is semi-open
and X \ A is semi-open. In the case of open sets, minimal boundedness coincides with
regular openness.

Note that if U is a minimally bounded (e.g. regular open) set of X such that U is not
dense subset in X and B ⊂ U \ U then there is a quasicontinuous function f : X → R

such that f(U ∪ B) = 0 and f(X \ (U ∪ B)) = 1 (see Lemma 4.2 in [18]).

Proposition 2.2. Let Qp(X, R) be a Fréchet-Urysohn space. Then W \ W is countable
for every minimally bounded set W of X.

Proof. Let W be a minimally bounded set W of X. Note that W ∪ B is a minimally
bounded set in X for any B ⊆ W \ W .

Let MK = W ∪ (W ∩ K) for each K ∈ [X]<ω.
Suppose that D = W \ W is uncountable.
Consider the set C = {fK : K ∈ [X]<ω} of quasicontinuous functions fK where

fK :=

{

0 on MK

1 on X \ MK .

Let

g :=

{

0 on W
1 on X \ W.

Note that g ∈ Qp(X, R) and g ∈ C. Since Qp(X, R) is Fréchet-Urysohn there is a
sequence {fKi

: i ∈ N} ⊂ C such that fKi
→ g (i → ∞). Since D is uncountable, there

is z ∈ D \
⋃

i

Ki. Consider [z, (−1

2
, 1

2
)] = {f ∈ Qp(X, R) : f(z) ∈ (−1

2
, 1

2
)}. Note that

g ∈ [z, (−1

2
, 1

2
)] and fKi

/∈ [z, (−1

2
, 1

2
)] for any i ∈ N (fKi

(z) = 1 for every i ∈ N), it is a
contradiction.

3. Main results

Lemma 3.1. Let X be an open Whyburn space such that Qp(X, R) is Fréchet-Urysohn.
Then every nowhere subset in X is countable.

Proof. Since the closure of a nowhere dense subset in X is a nowhere dense set, we can
consider only closed nowhere dense sets in X.

Assume that A is an uncountable closed nowhere dense set in X. Since X is open
Whyburn, for every point a ∈ A there is a regular open set Oa ⊆ X \ A such that
Oa \ (X \ A) = {a}.

For every a finite subset K of X we consider the set
MK = SK ∪

⋃

{Oa ∪ {a} : a ∈ K ∩ A} where SK is a regular open set such that
K ∩ (X \ A) ⊆ SK ⊆ X \ A. Note that MK is minimally bounded set in X.

Consider the set S = {fK : K ∈ [X]<ω} of quasicontinuous functions fK where
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fK :=

{

0 on MK

1 on X \ MK .

Note that 0 ∈ S where 0 denote the constant function on X with value 0. Since
Qp(X, R) is Fréchet-Urysohn, there is a sequence {fKi

: i ∈ N} ⊂ S such that fKi
→ 0

(i → ∞). Since A is uncountable, there is z ∈ A \
⋃

i

Ki. Consider [z, (−1

2
, 1

2
)] = {f ∈

Qp(X, R) : f(z) ∈ (−1

2
, 1

2
)}. Note that 0 ∈ [z, (−1

2
, 1

2
)] and fi /∈ [z, (−1

2
, 1

2
)] for any i ∈ N

(fi(z) = 1 for every i ∈ N), it is a contradiction.

Definition 3.2. ([9]) A Hausdorff space X is called a Lusin space (in the sense of Kunen)
if

(a) Every nowhere dense set in X is countable;
(b) X has at most countably many isolated points;
(c) X is uncountable.

Theorem 3.3. Let X be an uncountable open Whyburn space such that Qp(X, R) is
Fréchet-Urysohn. Then X is a Lusin space.

Proof. By Lemma 3.1, it is enough to prove that X has at most countably many isolated
points.

Assume that X has uncountable many isolated points D.
Let D = D1 ∪ D2 where D1 ∩ D2 = ∅ and |Di| > ℵ0 for i = 1, 2. Consider the set

W = IntD1. Clear that W ∩ D2 = ∅. By Lemma 3.1, |W \ D1| ≤ ω.
Since X is open Whyburn, for every point d ∈ W \D1 there is an open subset Od ⊆ D1

such that Od \ D1 = {d}.
(a) Suppose that for every point d ∈ W \D1 there is a neighborhood Vd of d such that

|Od ∩ Vd| ≤ ω. Let Wd = Od ∩ Vd. Then Wd \ D1 = {d}, Wd ⊂ D1 and |Wd| ≤ ω.
For every a finite subset K of W we consider the set
PK =

⋃

{{d} : d ∈ K ∩ D1} ∪
⋃

{Wd : d ∈ K ∩ (W \ D1)}.
Consider the set C = {gK : K ∈ [W ]<ω} of quasicontinuous functions gK where

gK :=

{

0 on PK

1 on X \ PK .

Let

g :=

{

0 on W
1 on X \ W.

Note that g ∈ Qp(X, R) and g ∈ C. Since Qp(X, R) is Fréchet-Urysohn there is a
sequence {gKi

: i ∈ N} ⊂ C such that gKi
→ g (i → ∞). Since D1 is uncountable, there

is z ∈ D1 \
⋃

i

PKi
. Consider [z, (−1

2
, 1

2
)] = {f ∈ Qp(X, R) : f(z) ∈ (−1

2
, 1

2
)}. Note that

g ∈ [z, (−1

2
, 1

2
)] and gi /∈ [z, (−1

2
, 1

2
)] for any i ∈ N (gi(z) = 1 for every i ∈ N), it is a

contradiction.
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(b) Suppose that there is a point d ∈ W \ D1 such that |Od ∩ Vd| > ω for every
neighborhood Vd of d. Let Od = O1 ∪ O2 such that O1 ∩ O2 = ∅ and |Oi| > ω for i = 1, 2.

There are two cases:
(1) Vd ∩ Oi 6= ∅ for every neighborhood Vd of d and i = 1, 2;
(2) Vd ∩ Oi = ∅ for some neighborhood Vd of d and some i = 1, 2.
Suppose that the case (2) is true for i = 1. Note that in this case d ∈ O2.
Then, for cases (1) and (2), we consider the set C = {gK : K ∈ [O1]

<ω} of continuous
functions gK where

gK :=

{

0 on K
1 on X \ K.

Let

g :=

{

0 on O1

1 on X \ O1.

Note that g ∈ Qp(X, R) (for cases: (1) and (2)) and g ∈ C. Since Qp(X, R) is Fréchet-
Urysohn there is a sequence {gKi

: i ∈ N} ⊂ C such that gKi
→ g (i → ∞). Since O1

is uncountable, there is z ∈ O1 \
⋃

i

Ki. Consider [z, (−1

2
, 1

2
)] = {f ∈ Qp(X, R) : f(z) ∈

(−1

2
, 1

2
)}. Note that g ∈ [z, (−1

2
, 1

2
)] and gi /∈ [z, (−1

2
, 1

2
)] for any i ∈ N (gi(z) = 1 for every

i ∈ N), it is a contradiction.

Let I(X) denote the set of isolated points of X. Note that a Lusin space has at most
countably many isolated points.

Corollary 3.4. Let X be an open Whyburn space such that I(X) is an uncountable dense
subset in X. Then Qp(X, R) is not Fréchet-Urysohn.

Proposition 3.5. Let X be a k-Fréchet-Urysohn regular space with countable pseudochar-
acter. Then X is open Whyburn.

Proof. Let x ∈ U \ U for an open set U in X. Since X is k-Fréchet-Urysohn, there is a
sequence {xn : n ∈ N} ⊂ U such that xn → x (n → ∞). Since X is a regular space with
countable pseudocharacter, there is a sequence {Vi : i ∈ N} of open neighborhoods of x
such that

⋂

Vi = {x} and Vi+1 ⊂ Vi for each i ∈ N. We can assume that xi ∈ Vi \Vi+1. Let
Wi be a neighborhood of xi such that Wi ⊂ U ∩ (Vi \Vi+1). Then W =

⋃

{Wi : i ∈ N} ⊂ U
and W \ U = {x}.

Corollary 3.6. Let X be an uncountable k-Fréchet-Urysohn (Fréchet-Urysohn) regular
space with countable pseudocharacter such that Qp(X, R) is Fréchet-Urysohn. Then X is
a Lusin space.

In particular, if X is an uncountable first-countable regular space such that Qp(X, R)
is Fréchet-Urysohn then X is a Lusin space.

Note that if X is Tychonoff and Cp(X, R) is Fréchet-Urysohn then Cp(X
2, R) is Fréchet-

Urysohn [13]. However, this is not true for quasicontinuous functions.

5

8 Mar 2023 20:31:11 PST
230308-Osipov Version 1 - Submitted to Rocky Mountain J. Math.



Corollary 3.7. Let X be an uncountable first-countable regular space such that Qp(X, R)
is Fréchet-Urysohn. Then Qp(X

2, R) is not Fréchet-Urysohn space.

Proof. Since R
κ is not Fréchet-Urysohn for any κ ≥ ω1, X is not discrete space provided

that X is an uncountable and Qp(X, R) is Fréchet-Urysohn. Clear that X2 = X × X is
not Lusin space provided that X is a Lusin space and X with a non-isolated point.

By Theorem 3.3 and results in [9] (Lemmas 1.2 and 1.5), we get that if X is an uncount-
able open Whyburn Hausdorff semi-regular space such that Qp(X, R) is Fréchet-Urysohn
then X is hereditarily Lindelöf (hence, X is perfect normal (see 3.8.A. in [6])) and X is
zero-dimensional.

Since a Lusin space X is hereditarily Lindelöf and Hausdorff, it has cardinality at most
c = 2ω (de Groot, [28]).

Corollary 3.8. Let X be an open Whyburn space of cardinality > c. Then Qp(X, R) is
not Fréchet-Urysohn space.

In particular, if X is first-countable regular space of cardinality > c then Qp(X, R) is
not Fréchet-Urysohn space.

Let us note however that Kunen (Theorem 0.0. in [9]) has shown that under Suslin’s
Hypothesis (SH) there are no Lusin spaces at all. K.Kunen proved that under MA(ℵ1,ℵ0-
centred) there is a Lusin space if and only if there is a Suslin line.

The Suslin Hypothesis is neither provable nor refutable in ZFC, even if we assume CH

or ¬CH. A typical model of ZFC + ¬SH is the Gödel constructible universe L, while a
typical model of ZFC + SH is the Solovay-Tennenbaum model of ZFC + MA(ℵ1) (see
p.266 in [21]).

Theorem 3.9. (SH). Let X be an open Whyburn space. The space Qp(X, R) is Fréchet-
Urysohn if and only if X is countable.

In particular, for first-countable regular spaces, we have the following corollary.

Corollary 3.10. (SH). Let X be a first-countable regular space. The space Qp(X, R) is
Fréchet-Urysohn if and only if X is countable.

However, the following result holds in ZFC.

Theorem 3.11. Let X be a metrizable space. The space Qp(X, R) is Fréchet-Urysohn if
and only if X is countable.

Proof. Note that a Lusin subspace of a metrizable space is a Lusin set:an uncountable
subset of R that meets every nowhere dense set in a countable set. Hence, if Qp(X, R) is
Fréchet-Urysohn then X is a Lusin set and it is a γ-space. But any γ-space X ⊂ R is
always first category (see Definition in [29]) and a Lusin set is not always first category (p.
159 in [12]). Hence, X is countable.

If X is countable then Qp(X, R) is first countable (Theorem 4.1 in [18]) and, hence,
Qp(X, R) is Fréchet-Urysohn.
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4. Selection principle S1 and Fréchet-Urysohn at the point 0

Let A and B be collections of covers of a topological space X.

The symbol S1(A,B) denotes the selection principle that for each sequence 〈Un : n ∈ N〉
of elements of A there exists a sequence 〈Un : n ∈ N〉 such that for each n, Un ∈ Un and
{Un : n ∈ N} ∈ B (see [31]).

In this paper A and B will be collections of the following covers of a space X:
Ω : the collection of open ω-covers of X.
Γ : the collection of open γ-covers of X.
Ωs : the collection of minimally bounded ω-covers of X.
Γs : the collection of minimally bounded γ-covers of X.

In [13], it is proved that Cp(X, R) is Fréchet-Urysohn if and only if X has the property
S1(Ω, Γ).

Lemma 4.1. Let Qp(X, R) be Fréchet-Urysohn at the point 0. Then X has the property
S1(Ω

s, Γs).

Proof. Let {Vi : i ∈ N} be a family of minimally bounded ω-covers of X. For each i ∈ N,
we consider the family Ai = {fi,V ∈ Qp(X, R) : V ∈ Vi} such that fi,V (V ) = 1

i
and

fi,V (X \ V ) = 1 for V ∈ Vi. Let A =
⋃

Ai. Then 0 ∈ A \ A. Since Qp(X, R) is Fréchet-
Urysohn at point 0, there is a sequence {fi,Vi

: i ∈ N} such that fi,Vi
∈ A for each i ∈ N

and fi,Vi
→ 0 (i → ∞). Note that {Vi : i ∈ N} is a minimally bounded γ-cover of X.

Theorem 4.2. Let X be an open Whyburn space. The space Qp(X, R) is Fréchet-Urysohn
at the point 0 if and only if X has the property S1(Ω

s, Γs).

Proof. By Lemma 4.1, it is enough to prove a sufficient condition.
Let 0 ∈ A \ A for some set A ⊂ Qp(X, R). For each i ∈ N, we consider the set

Ui = {f−1(−1

i
, 1

i
) : f ∈ A}. Clear that Ui is a semi-open ω-cover of X for each i ∈ N.

Let U ∈ Ui. Since X is an open Whyburn semi-regular space, for each finite subset K
of U , there is a minimally bounded set VK,U,i such that K ⊂ VK,U,i ⊂ U . Thus, the family
Vi = {VK,U,i : K ∈ [U ]<ω and U ∈ Ui} is a minimally bounded ω-cover of X for each i ∈ N.
Since X has the property S1(Ω

s, Γs) there exists a sequence (VKi,Ui,i : i ∈ N) such that for
each i, VKi,Ui,i ∈ Vi and {VKi,Ui,i : i ∈ N} is a minimally bounded γ-cover of X. Then the
sequence (fi : Ui = f−1

i (−1

i
, 1

i
), i ∈ N) → 0 (i → ∞).

For any space X and maps f, g : X → R such that f is continuous and g is quasicon-
tinuous, it is easy to show that the map f +g : X → R defined by (f +g)(x) = f(x)+g(x)
is quasicontinuous (Proposition 5.4 in [8]).

Corollary 4.3. Let Qp(X, R) be Fréchet-Urysohn at the point 0. Then Cp(X, R) is
Fréchet-Urysohn.

Corollary 4.4. Let X be an open Whyburn space and X has the property S1(Ω
s, Γs).

Then X has the property S1(Ω, Γ).
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5. Examples

Similarly the proof of Proposition 2.2, it is easy to see the following result.

Proposition 5.1. Let X be a space with a dense subset D of isolated points such that
D = D1 ∪D2 where D1 = X \D2 and D2 = X \D1 and let Qp(X, R) be a Fréchet-Urysohn
space. Then D is countable.

Proposition 5.2. There is a compact space X such that Cp(X, R) is Fréchet-Urysohn, but
Qp(X, R) is not.

Proof. Let X = ω1 + 1. Here ω1 + 1 is the space {α : α ≤ ω1} with the order topology. By
Proposition 5.1, Qp(X, R) is not Fréchet-Urysohn. It well known that Cp(Y, R) is Fréchet-
Urysohn for a compact space Y if and only if Y is scattered [12]. Hence, Cp(X, R) is
Fréchet-Urysohn.

Proposition 5.3. There is an uncountable separable metrizable space X such that Cp(X, R)
is Fréchet-Urysohn, but Qp(X, R) is not.

By Corollary 3.11, it is enough consider any uncountable γ-space X ⊂ R.

Proposition 5.4. There is an uncountable T1-space X such that Qp(X, R) is Fréchet-
Urysohn.

Let X be an uncountable set with the cofinite (or co-countable) topology. Then
Qp(X, R) is homeomorphic to R because any quasicontinuous function on X is a constant
function, and, hence, Qp(X, R) is Fréchet-Urysohn.

6. Open questions

Question 1. Suppose that X is a (first-countable, regular) submetrizable and Qp(X, R)
is Fréchet-Urysohn. Is the space X countable?

Question 2. Suppose that X is an open Whyburn T2 semi-regular space and Qp(X, R)
is Fréchet-Urysohn. Is the space X countable?

Question 3. Suppose that X is a T2 space and Qp(X, R) is Fréchet-Urysohn. Is the
space X Lusin?

Question 4. Suppose that X is a Lusin space and a γ-space. Is the space X countable?

Question 5. Suppose that a (an open Whyburn) space X has the property S1(Ω
s, Γs).

Will the space Qp(X, R) have the Fréchet-Urysohn property at each point?
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