RANKS OF FRINGE OPERATORS ON FINITE RUDIN
TYPE INVARIANT SUBSPACES II

KOU HEI IZUCHI AND SHUAIBING LUO

ABSTRACT. Let M be a finite Rudin type invariant subspace of
the Hardy space over the bidisk with variables z,w. Let F, be the
fringe operator on M ©wM. In this paper we determine the rank

of 77 on M o wM.

1. INTRODUCTION

This paper is a continuation of [2]. In [2], we have determined the
rank of the fringe operator F, on M & wM, where M is a fnite Rudin
type invariant subspace of the Hardy space over the bidisk. In this
paper we will determine the rank of 7 on M © wM.

Let H be a separable Hilbert space and T' = (11,...,T,),n > 1 a
tuple of commuting bounded linear operators on H. A closed subspace
M of H is called an invariant subspace for T if ;M Cc M,i=1,...,n.
If £ C H, then we let [Ely = [Elgp,,. 1, be the smallest invariant
subspace for T" containing E. A subset E of M is said to be a generating
set of M for T if [E]r = M. The minimum number of elements in the
generating sets of M is called the rank of M for T, and we denote it
by

rankp M.

Let H?> = H?*(D?) be the Hardy space over the bidisk with variables
z,w, and T, T, the multiplication operators with symbols z,w. If M
is an invariant subspace for 7., T,,, then we define the fringe operator
F.on M e wM by

-Fz = PM@wMTz|M9wJ\/[7

see [5].
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2 K. H. IZUCHI AND S. LUO

Let k be a fixed positive integer throughout this paper. Let ¢;(2),

Pa(2), -+ s or(2) and ¥y (w), Pa(w), -, Px(w) be non-constant one
variable inner functions such that
(1.1) or(2) < pr-1(2) < - < p1(2),

' Y1 (w) < hy(w) < -+ < hp(w),

where 0(z) < 01(2) means 6,(2)/05(2) € H*(z). Let

k
(1.2) M=\ ni1(2)thn(w)H?,

where @r1(2) = ¥o(w) = 1. Then M is an invariant subspace of
H? for T,,T,,. We call M a finite Rudin type invariant subspace. In
the following when we use the notation M, we always mean the finite
Rudin type invariant subspace defined by (1.2).

Let
_ ea(?) _ a(w)
(13) nl2) = Pny1(2)’ nluw) = Y1 (w)’ bensh
Then (,(z) and &,(w) are inner functions, & (w) = ¥y (w), ((z) =

vr(2), and
¢

k
p(2) = [[¢n(2) and w(w) =[] &(w), 1<C<k
n=~_

n=1
Without loss of generality, we assume that
(1.4) G(z), -, G(2), &1 (w), - -+, & (w) are non-constants.
Note that

M =g1(2)H? & @D ni1(2) Ke, (2) @ n(w) HA(w),

n=1
where K¢, (2) = H?*(2) © (.(2)H?(2), see e.g. [1,6]. Thus
k41

(L5)  MowM=pi(2)H(2) ® @ pa(2)tn-1(w)K,, (2).

Let Z be the set of non-constant one variable inner functions. The
main result in this paper is the following.

Theorem 1.6. Let M be the finite Rudin type invariant subspace de-

fined by (1.2).
(i) If 1 (0) # 0, then rankz: (M © wM) = 1.
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FINITE RUDIN TYPE INVARIANT SUBSPACE 3

(ZZ) ]f?/)k(o) = 0; and {1 <n<k: fn(O) = 0} = {nbn?a T 7nM};
00(2) = T1""  Cu(2), Mnyr = k + 1, then

n=ng—i

rankr: (M © wM) = r(ngixz#{2 <l<m+1:0(2) <0(2)}.
g(z)e
The proof of the above theorem is divided into two parts, see The-
orems 2.5 and 3.9. In section 4, we discuss the Fredholm index of F,

and the index of M.

2. THE CASE 9(0) # 0

Suppose ¢1(2),¢a(2), -, ¢i(2) and ¢y (w), Po(w), -- -, Pp(w) are
non-constant inner functions satisfying condition (1.1), and (;(z), (2(2),
oo Ge(2)y &(w), - &k (w) are defined by (1.3) satisfying (1.4). Let
©vo(z) be a zero function or a non-constant inner function such that

©1(2) < @o(2), and (o(2) = wo(2)/¢1(2). Let

k-+1
(2.1) I =P on(2)thn(w) K, (2),
n=1
and
k-+1

f = @ Spn(z)KCn—l (2)7

where ¢py1(2) = o(w) = 1, K¢, (2) = H*(2) © (u(2)H?*(2). Then
I= K, (2), and by (1.5), ' € M © wM. Note that when ¢y(z) = 0,
we have I' = M & wM, T = H*(z).

Suppose ¥, (0) # 0. Since ¥, (w) < Yi(w), we have a, := 1,(0) #
0,1 < n < k. Note that ag = ¥(0) = 1. Let ® : I' — I be defined by

k+1

OG = P an10n(2)gn-1(2) €T = Ky (2),
n=1
where G = @Z:;ll On(2)Un_1(w)gn_1(2) €T, and U : T T be defined
by
k+1
VF = @an_lﬁpn(z)@bn—l(w)fn_l(z) c F,
n=1

where F' = @sz on(2)fu1(z) € T = Ky, (2). Then @ and ¥ are
bounded invertible operators.
Let F.rf = Pr(zf), f €T, and

SZ#Pof(Z) = PKwo(Z)TZf(Z)> f(Z) S K%o(z)
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4 K. H. IZUCHI AND S. LUO

be the compression of T, on K,,(z), where Pf is the orthogonal pro-
jection onto E. The following result is Theorem 2.1 in [2].

Theorem 2.2 ( [2]). Suppose that 1y(0) # 0. Then
(VF, FI.G) = (F,S!_, ®G), Gel,Fel,j>0.

Z,%0

The following is a key observation.
Theorem 2.3. Suppose that 1, (0) # 0. Then ¥ = ®*, and
OF.r=S5.,P, Fr¥=US5]

2,00"
Proof. Let j = 0 in Theorem 2.2, we have (VF,G) = (F,®G), G €
IF eTl. SoW¥ = &. Now let j = 1, we obtain (VF, F. G) =
(F, S0, PG). The conclusion then follows from this. U
Corollary 2.4. Suppose that 1. (0) # 0.
(i) Let G € T'. Then [G]F, . =T if and only if [®G]s,
(ii) Let F € . Then [(VF]F: . =T if and only if [F]s:

Sz,wo

= KSDO(Z)'
= KSDO(Z)'

Recall that when @o(z) =0, = MewM, T = H2(z). In this case,
F.r=F,and S, ,, =T, on H*(z).

Theorem 2.5. Suppose that 1 (0) # 0. Then
rank r: (M © wM) = ranky (M & wM) = 1.

Proof. Note that 1—(;(0)(x(2) is an outer function contained in K¢, (2).

Let G = p(w)(1 — (x(0)¢k(2)). Then G € T, and ®G = ax(1 —
C(0)Ck(2)) is cyclic for T, on H?(z). So by Corollary 2.4 (i), rank z, (M
wM) = 1.

It is known that there exists F' € K, (2) such that [F]g: == K,.(2),

where ¢o(z) = 0 or an inner function, see [4]. So by Corollary 2.4 (ii),
rankz: (M o wM) = 1. O

3. THE CASE ¢(0) =0
Suppose ¥;(0) = 0. Recall that &,(w) = Lw)) and g (w) =

Yn—1(w
Hﬁ:l En(w). So there exits 1 < n < k such that &,(0) = 0. Sup-
pose
(3.1) {1<n<k:&(0)=0}={ny,no - ,nm},

where 1 <n; <ng <---<n, < k. Set ng =0 and n,,,, = k+ 1. For
each 1 </ <m+1, let

ne

(3.2) o= @B enl2)na(w)Ke, ,(2).

n=np_1+1
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FINITE RUDIN TYPE INVARIANT SUBSPACE 5

Then I' = @' Ty, where T is defined by (2.1). Tt was shown in [2]
that

(33) JT‘.Z,FFgCFg, 1</ <m+1.
In fact, if ny_1 +1 < n <ny t <ng_q ori>ny then
(Un-1(w), i1 (w)) = 0.

It then follows from the definition of I'y that F, rI'y C I'y, 1 < £ < m+1.
Let © = (61(2),02(2), -+ ,0a4(z)) be a d-tuple consisting of zeros or
non-constant inner functions. Let

Ko(z) = Ko, (2) @ Ko, (2) © - ® Ky, (2)

be the direct sum of Ky (2). If F'= (f1, f2,---, fa) € Ke(z), then we
define

S.el"= (Szﬂlfla Sz0.f2, 7Sz,9dfd) € Ko(z).

Theorem 3.4. Suppose that ¥ (0) =0. For 1 <{<m+1, let

! Py 1( z)
(3.5) Hc =y

and © = (01(2),05(2), -+ ,0mi1(2)). Then there is a bounded invertible
operator T : I' — Kg(z) such that TF,r = S, eT.

Proof. Let
ng
(Pn(z) ¢n—1(w)
F/ = K n— (Z)
! n=§+1 SOW(Z> ¢nz71(w> G
Note that
en(2) (Z)
Py (2) _ _¥n — Cn(z), ne—1+1<n<ny,
ent1@ o, 4(2)
‘Png(z)
and by (3.1),
Q/} ne—1
(L) = [ & #0
wnlfl n=ny_1+1
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6 K. H. IZUCHI AND S. LUO

Hence we can apply Theorem 2.3 for I'; and F_ r,. To be precise, let

h- @ jj ; Ko (2)
_ T ¢n(2) 2(, Pn—1(2) 2(,
- 9D e e S
— H2) e QO;:;;S) H2(2) = Ky, (2).

Then by Theorem 2.3, there are invertible operators @, : I, — T’ =
Ky, (2) and W : Ty — T such that ®;F, r, = S, 5, ®;. Note that

Ly = 0n,(2)thn,_, (w)I
We define ¢, : I'y — Ky, (2) by

(Qpne( )ww 1( )f) = (1)2]0 € f@ = K@Z(Z), S F2

Then @, : I'y — Ky, (2) is an invertible operator. We have

T v, [on (2)n, (W) f]

= Oy[pn, (2)Vn,_, (W) F. 1, f]

= Oy F.r,f = S.0,P0f

= 520, Pe[Pn, (2)Vn,_, (W) f], feETy

Hence
(36) (I)gfzi‘[ = Sz,elq)e, 1</¢<m+1.

Now we define T': I' — Kg(z) by

m—+1 m—+1

Tf= ga‘befz € ZGBKW(Z) =Ko (2),
et —1

where f = @7 fr e @' Ty =T. Then T : T — Ke(z) is an
invertible operator. By (3.3),

m—+1 m—+1

-Fz,l":@fz,l"l on F:@Fg
=1 =1
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FINITE RUDIN TYPE INVARIANT SUBSPACE 7

Thus
m+1 m+1
TF.vf=T @ For,fo= @ Oy F.r, fe
=1 (=1
m+1 m+1
= @ Szﬂlq)gfg = SZ7@Tf, f = @ fg el
=1 (=1
So TF,r =8S.eT. The proof is complete. O

Let 7 be the set of non-constant one variable inner functions.

Lemma 3.7. Let 61(z),05(z),--- ,04(2) be non-constant inner func-
tions. Then

rankg:  Ke(z) = rankg, , Ke(z) = ar(ri?é(z#{l <j<d:o(z) <6;(2)},

where #A denotes the number of elements in A.
Proof. Tt is known that
ranks_ Ke(z) = r(ngixl#{l <j<d:o(z) <6;(z)},
’ o(z)e

see [4, p. 269].
Let 1y : Ky(2) — Ky(z) be defined by

T0f(2) =20(2)f(2),  [f(2) € Ky(2).

Then 7y is an antilinear onto isometry on Ky(z), 79(19f(2)) = f(2) and
7057 g = S.9Te. Now we define 7 on Keo(2) by

Tol = (1o, 1, Tos f2, - -+ o, fa) € Ko(2),

where F' = (fi1, fo, -+, fa) € Ko(2). Then T¢ is an antilinear onto
isometry and TeS] g = S; eTe. Thus it follows that ranks: [Ke(z) =
ranks_ ,Ke(2). O

Lemma 3.8. Suppose that ¢(0) = 0. Let 6, be given by (3.5) and

O = (92(2’), O3(2), - ,9m+1(2))-
Then there is an invertible operator Ty : M & wM — H?(2) ® Ko, (2)
such that ToF, = (T, & S, 6,)T0.

Proof. Let ¢o(z) = 0. In this case I' = M & wM. Recall that I'; are
defined by (3.2), i.e.

ne

= @ en(na(w)Ke, (2), 1<L<m+1.

TL:TL[71+1
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8 K. H. IZUCHI AND S. LUO

Set A = @5 Ty. Then MESwM =T, @A, F.Ty, C Ty and F.A C A,
Note that when ¢o(2) = 0, (o(2) = 0. So 61(2) = [["5 ¢u(2) = 0,
and S, 5, = T, on H?(z). Thus the conclusion follows from Theorem
3.4. U

Now we can prove the main result in this section. The rank of F,
on M & wM was obtained in [2], we include a slightly different proof
in the following.

Theorem 3.9. Suppose that 1,(0) = 0. Let 6, be given by (3.5) and

01 = (02(2),65(2), -+, O (2)).
Then

rankz, (M o wM) =1+ I(l’l?)(z#{2 <l<m+1:0(2)<0,(2)},
o(z)e

and

rankz: (M S wM) = max #{2 <L <m+1:0(z) <0,(2)}.

o(z)el
Proof. We first study the rank of F,. Let

s1 = r(n?xz#{Qgégm—l—l:U(z) < 0,(2)}.
o(z)e

By Lemma 3.8, we have
rankr, (M © wM)
= rank(r.es. o,}(H(2) ® Ke, (2))
< ranky, H?(z) + ranks. , Ko, (2)
=14+ s1.

Let 0(z) = [, 0.(21) and © = (0(2),02(21), -+, mr1(21)). Then

n=2
rankr (M S wM)

= rank{Tz@sz’el}(H2(2> ® Ke, (Z))
> ranks _Kg(2)

=1+ r(ngixz#{2§£§m+1:a(z)<95(z)}
o(z)e

:1+Sl-

Thus rankz, (M & wM) =1+ s5.
Now we study the rank of F;. By Lemma 3.8, we have

FiTy =Ty (T ®8Sie,) on H*(z) ®Ke,(2),
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FINITE RUDIN TYPE INVARIANT SUBSPACE 9

and
rankr: (M o wM) = rank{T;@s;el}(Hz(z) @ Ko, (2)).
Lemma 3.7 implies that

rankrses: , }(H?(z) ® Ke,(2)) > ranks;@lK@l(z) = S

z,@l}

Thus it is left to show rankz:(M © wM) < s1. Let Fy, Fy,--- | F;, €

Ko, (z) be such that
[Fla Fy,--- 7F81]S;(_)1 = K91 (Z)’

and let f(z) € H?(z) satisty [fi(2)]r: = H?*(z). Set

m—+1

n(z) = ]] (=)
(=2

and
Fy=n(2)fi(z) © Fi € H*(2) ©® Ko, (2).
We show that

(3'1()) [FOv TLIRERR FSl]{TJEBS;(—)l} = Hz(z) ® K®1(Z)-
Let S, be defined by S,0f(2) = Pr,»)(n(2)f(2)), f(2) € Ky(z),
and let

Sn.e1 = Snos ® Snos @D Spo,., on Kg, (2).
Then
(T ®Sy0,)F0 € [Fo, P, Fylirras: )
Note that S o F1 = 0, thus
(T, ®S}0,)F0
= TyIn(2) f1(2)] = fi(2)
c [Fo, Fy, - - - ,Fsl]{T;@s;@l}-
It follows that
[Fo, Fy, - - - anl]{Tz*eBS;@l}
D [fi(z), i Fay oo Folirres: o)

) [fl(z)]T; ® [Flv Fy, - ’FSl]S;@l
= H*(2) ® Ko, (2).
Therefore (3.10) is established, which finishes the proof. O
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10 K. H. IZUCHI AND S. LUO

4. RELATED TOPICS

A bounded linear operator T is called Fredholm if 7" has closed range,
dimkerT" < oo and dim ker 7™ < oco. In this case, the Fredholm index
is defined by indT = dimker T" — dim ker 7*. The following result is
well-known.

Lemma 4.1. The following hold.
(i) T, is a Fredholm operator on H*(z), ker T, = {0}, ker T* = C.
(i1) For a non-constant inner function 0(z), S, is a Fredholm op-
erator and

0, 6(0)#0

1, 6(0) =0.

Theorem 4.2. F, is a Fredholm operator on M & wM and ind F, =
—1. Moreover we have the following.

(1) If ¥ (0) # 0, then ker F, = {0} and dimker F} = 1.
(i1) If 1 (0) = 0, then
dimker F, = # {2 <{<m+1:6,(0) =0}

dimker S, y = dimker ST 5 = {

and
dimker 7} = 1+ # {2 <0 <m+1:6,(0) =0},

where 0y are defined by (3.5).
Proof. (i) Suppose that ¢4 (0) # 0. By Theorem 2.3, there is an invert-
ible operator ® : M & wM — H?(z) such that ®F, = T.®. Lemma
4.1 (i) then ensures that ker F, = {0} and dimker F} = 1.

(ii) Suppose that ¥,(0) = 0. By Lemma 3.8, there is an invertible
operator Ty : M & wM — H*(z) ® Ke, () such that
Tofz = (Tz b Sz,®1)TOa

where ©1 = (05(2),03(2), -+ ,0m41(2)). It is clear that T, & S. e, has
closed range. By Lemma 4.1 (ii), we have

dimker (7, @ S, o,) = dimker 7, + dimker S, g,

m—+1

= Z dimker S, g,

=2
=#{2<0<m+1:0,0) =0},
and
dimker (17 © S} ,) = dimker T} + dimker S? g,
=1+#{2<0<m+1:6,(0)=0}.
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Thus (ii) holds. O

We can also obtain the Fredholmness of F, as follows. Note that
M is a Hilbert-Schmidt submodule, so F, is a Fredholm operator,
see [3, Propositions 2.2 and 3.7].

For an invariant subspace N of H?2, let

indN = ind(0) N = dim (N O (zN + wN)).
ind g0V is called the index of N at (0,0). Note that
N & (zN + wN) = ker F,
see [3]. Hence by Theorems 4.2, we have the following.

Corollary 4.3. The following hold.
(1) If ¥ (0) # 0, then ind M = 1.
(1) If ¥y (0) = 0, then
indM =1+#{2<0<m+1:6,0)=0}.
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