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Abstract. Let M be a finite Rudin type invariant subspace of
the Hardy space over the bidisk with variables z, w. Let Fz be the
fringe operator on M⊖wM. In this paper we determine the rank
of F∗

z
on M⊖ wM.

1. Introduction

This paper is a continuation of [2]. In [2], we have determined the
rank of the fringe operator Fz on M⊖wM, where M is a fnite Rudin
type invariant subspace of the Hardy space over the bidisk. In this
paper we will determine the rank of F∗

z on M⊖ wM.
Let H be a separable Hilbert space and T = (T1, . . . , Tn), n ≥ 1 a

tuple of commuting bounded linear operators on H . A closed subspace
M of H is called an invariant subspace for T if TiM ⊂M, i = 1, . . . , n.
If E ⊆ H , then we let [E]T = [E]{T1,...,Tn} be the smallest invariant
subspace for T containing E. A subset E ofM is said to be a generating
set of M for T if [E]T =M . The minimum number of elements in the
generating sets of M is called the rank of M for T , and we denote it
by

rankTM.

Let H2 = H2(D2) be the Hardy space over the bidisk with variables
z, w, and Tz, Tw the multiplication operators with symbols z, w. If M
is an invariant subspace for Tz, Tw, then we define the fringe operator
Fz on M ⊖ wM by

Fz = PM⊖wMTz|M⊖wM ,

see [5].

2010 Mathematics Subject Classification. 47A15, 32A35, 47B38.
Key words and phrases. Hardy space over the bidisk, finite Rudin type invariant

subspace, rank of fringe operator.
K. H. Izuchi was supported by JSPS KAKENHI Grant Number JP18K03335.

S. Luo was supported by NNSFC (# 12271149).
1

12 Sep 2023 08:09:06 PDT
230330-ShuaibingLuo Version 2 - Submitted to Rocky Mountain J. Math.



2 K. H. IZUCHI AND S. LUO

Let k be a fixed positive integer throughout this paper. Let ϕ1(z),
ϕ2(z), · · · , ϕk(z) and ψ1(w), ψ2(w), · · · , ψk(w) be non-constant one
variable inner functions such that{

ϕk(z) ≺ ϕk−1(z) ≺ · · · ≺ ϕ1(z),

ψ1(w) ≺ ψ2(w) ≺ · · · ≺ ψk(w),
(1.1)

where θ2(z) ≺ θ1(z) means θ1(z)/θ2(z) ∈ H2(z). Let

M =

k∨

n=0

ϕn+1(z)ψn(w)H
2,(1.2)

where ϕk+1(z) = ψ0(w) = 1. Then M is an invariant subspace of
H2 for Tz, Tw. We call M a finite Rudin type invariant subspace. In
the following when we use the notation M, we always mean the finite
Rudin type invariant subspace defined by (1.2).
Let

ζn(z) =
ϕn(z)

ϕn+1(z)
, ξn(w) =

ψn(w)

ψn−1(w)
, 1 ≤ n ≤ k.(1.3)

Then ζn(z) and ξn(w) are inner functions, ξ1(w) = ψ1(w), ζk(z) =
ϕk(z), and

ϕℓ(z) =

k∏

n=ℓ

ζn(z) and ψℓ(w) =

ℓ∏

n=1

ξn(w), 1 ≤ ℓ ≤ k.

Without loss of generality, we assume that

ζ1(z), · · · , ζk(z), ξ1(w), · · · , ξk(w) are non-constants.(1.4)

Note that

M = ϕ1(z)H
2 ⊕

k⊕

n=1

ϕn+1(z)Kζn(z)⊗ ψn(w)H
2(w),

where Kζn(z) = H2(z)⊖ ζn(z)H
2(z), see e.g. [1, 6]. Thus

M⊖ wM = ϕ1(z)H
2(z)⊕

k+1⊕

n=2

ϕn(z)ψn−1(w)Kζn−1
(z).(1.5)

Let I be the set of non-constant one variable inner functions. The
main result in this paper is the following.

Theorem 1.6. Let M be the finite Rudin type invariant subspace de-
fined by (1.2).

(i) If ψk(0) 6= 0, then rankF∗

z
(M⊖ wM) = 1.

12 Sep 2023 08:09:06 PDT
230330-ShuaibingLuo Version 2 - Submitted to Rocky Mountain J. Math.



FINITE RUDIN TYPE INVARIANT SUBSPACE 3

(ii) If ψk(0) = 0, and {1 ≤ n ≤ k : ξn(0) = 0} = {n1, n2, · · · , nm},

θℓ(z) =
∏nℓ−1

n=nℓ−1
ζn(z), nm+1 = k + 1, then

rankF∗

z
(M⊖ wM) = max

σ(z)∈I
#
{
2 ≤ ℓ ≤ m+ 1 : σ(z) ≺ θℓ(z)

}
.

The proof of the above theorem is divided into two parts, see The-
orems 2.5 and 3.9. In section 4, we discuss the Fredholm index of Fz

and the index of M.

2. The case ψk(0) 6= 0

Suppose ϕ1(z), ϕ2(z), · · · , ϕk(z) and ψ1(w), ψ2(w), · · · , ψk(w) are
non-constant inner functions satisfying condition (1.1), and ζ1(z), ζ2(z),
. . . , ζk(z), ξ1(w), · · · , ξk(w) are defined by (1.3) satisfying (1.4). Let
ϕ0(z) be a zero function or a non-constant inner function such that
ϕ1(z) ≺ ϕ0(z), and ζ0(z) = ϕ0(z)/ϕ1(z). Let

Γ =

k+1⊕

n=1

ϕn(z)ψn−1(w)Kζn−1
(z),(2.1)

and

Γ̃ =
k+1⊕

n=1

ϕn(z)Kζn−1
(z),

where ϕk+1(z) = ψ0(w) = 1, Kζn(z) = H2(z) ⊖ ζn(z)H
2(z). Then

Γ̃ = Kϕ0
(z), and by (1.5), Γ ⊆ M⊖ wM. Note that when ϕ0(z) = 0,

we have Γ = M⊖ wM, Γ̃ = H2(z).
Suppose ψk(0) 6= 0. Since ψn(w) ≺ ψk(w), we have an := ψn(0) 6=

0, 1 ≤ n ≤ k. Note that a0 = ψ0(0) = 1. Let Φ : Γ → Γ̃ be defined by

ΦG =
k+1⊕

n=1

an−1ϕn(z)gn−1(z) ∈ Γ̃ = Kϕ0
(z),

where G =
⊕k+1

n=1 ϕn(z)ψn−1(w)gn−1(z) ∈ Γ, and Ψ : Γ̃ → Γ be defined
by

ΨF =

k+1⊕

n=1

an−1ϕn(z)ψn−1(w)fn−1(z) ∈ Γ,

where F =
⊕k+1

n=1 ϕn(z)fn−1(z) ∈ Γ̃ = Kϕ0
(z). Then Φ and Ψ are

bounded invertible operators.
Let Fz,Γf = PΓ(zf), f ∈ Γ, and

Sz,ϕ0
f(z) = PKϕ0

(z)Tzf(z), f(z) ∈ Kϕ0
(z)
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4 K. H. IZUCHI AND S. LUO

be the compression of Tz on Kϕ0
(z), where PE is the orthogonal pro-

jection onto E. The following result is Theorem 2.1 in [2].

Theorem 2.2 ( [2]). Suppose that ψk(0) 6= 0. Then

〈ΨF,F j
z,ΓG〉 = 〈F, Sjz,ϕ0

ΦG〉, G ∈ Γ, F ∈ Γ̃, j ≥ 0.

The following is a key observation.

Theorem 2.3. Suppose that ψk(0) 6= 0. Then Ψ = Φ∗, and

ΦFz,Γ = Sz,ϕ0
Φ, F∗

z,ΓΨ = ΨS∗
z,ϕ0

.

Proof. Let j = 0 in Theorem 2.2, we have 〈ΨF,G〉 = 〈F,ΦG〉, G ∈

Γ, F ∈ Γ̃. So Ψ = Φ∗. Now let j = 1, we obtain 〈ΨF,Fz,ΓG〉 =
〈F, Sz,ϕ0

ΦG〉. The conclusion then follows from this. �

Corollary 2.4. Suppose that ψk(0) 6= 0.

(i) Let G ∈ Γ. Then [G]Fz,Γ
= Γ if and only if [ΦG]Sz,ϕ0

= Kϕ0
(z).

(ii) Let F ∈ Γ̃. Then [ΨF ]F∗

z,Γ
= Γ if and only if [F ]S∗

z,ϕ0
= Kϕ0

(z).

Recall that when ϕ0(z) = 0, Γ = M⊖wM, Γ̃ = H2(z). In this case,
Fz,Γ = Fz and Sz,ϕ0

= Tz on H
2(z).

Theorem 2.5. Suppose that ψk(0) 6= 0. Then

rankF∗

z
(M⊖ wM) = rankFz

(M⊖ wM) = 1.

Proof. Note that 1−ζk(0)ζk(z) is an outer function contained inKζk(z).

Let G = ψk(w)(1 − ζk(0)ζk(z)). Then G ∈ Γ, and ΦG = ak(1 −

ζk(0)ζk(z)) is cyclic for Tz onH
2(z). So by Corollary 2.4 (i), rankFz

(M⊖
wM) = 1.
It is known that there exists F ∈ Kϕ0

(z) such that [F ]S∗

z,ϕ0
= Kϕ0

(z),

where ϕ0(z) = 0 or an inner function, see [4]. So by Corollary 2.4 (ii),
rankF∗

z
(M⊖ wM) = 1. �

3. The case ψk(0) = 0

Suppose ψk(0) = 0. Recall that ξn(w) = ψn(w)
ψn−1(w)

and ψk(w) =
∏k

n=1 ξn(w). So there exits 1 ≤ n ≤ k such that ξn(0) = 0. Sup-
pose

{1 ≤ n ≤ k : ξn(0) = 0} = {n1, n2, · · · , nm},(3.1)

where 1 ≤ n1 < n2 < · · · < nm ≤ k. Set n0 = 0 and nm+1 = k+ 1. For
each 1 ≤ ℓ ≤ m+ 1, let

Γℓ =

nℓ⊕

n=nℓ−1+1

ϕn(z)ψn−1(w)Kζn−1
(z).(3.2)
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FINITE RUDIN TYPE INVARIANT SUBSPACE 5

Then Γ =
⊕m+1

ℓ=1 Γℓ, where Γ is defined by (2.1). It was shown in [2]
that

Fz,ΓΓℓ ⊂ Γℓ, 1 ≤ ℓ ≤ m+ 1.(3.3)

In fact, if nℓ−1 + 1 ≤ n ≤ nℓ, i ≤ nℓ−1 or i > nℓ, then

〈ψn−1(w), ψi−1(w)〉 = 0.

It then follows from the definition of Γℓ that Fz,ΓΓℓ ⊂ Γℓ, 1 ≤ ℓ ≤ m+1.
Let Θ =

(
θ1(z), θ2(z), · · · , θd(z)

)
be a d-tuple consisting of zeros or

non-constant inner functions. Let

KΘ(z) = Kθ1(z)⊕Kθ2(z)⊕ · · · ⊕Kθd(z)

be the direct sum of Kθj (z). If F = (f1, f2, · · · , fd) ∈ KΘ(z), then we
define

Sz,ΘF =
(
Sz,θ1f1, Sz,θ2f2, · · · , Sz,θdfd

)
∈ KΘ(z).

Theorem 3.4. Suppose that ψk(0) = 0. For 1 ≤ ℓ ≤ m+ 1, let

θℓ(z) =

nℓ−1∏

n=nℓ−1

ζn(z) =
ϕnℓ−1

(z)

ϕnℓ
(z)

,(3.5)

and Θ =
(
θ1(z), θ2(z), · · · , θm+1(z)

)
. Then there is a bounded invertible

operator T : Γ → KΘ(z) such that TFz,Γ = Sz,ΘT .

Proof. Let

Γ′
ℓ =

nℓ⊕

n=nℓ−1+1

ϕn(z)

ϕnℓ
(z)

ψn−1(w)

ψnℓ−1
(w)

Kζn−1
(z).

Note that

ϕn(z)
ϕnℓ

(z)

ϕn+1(z)
ϕnℓ

(z)

=
ϕn(z)

ϕn+1(z)
= ζn(z), nℓ−1 + 1 ≤ n ≤ nℓ,

and by (3.1),

(ψnℓ−1

ψnℓ−1

)
(0) =

nℓ−1∏

n=nℓ−1+1

ξn(0) 6= 0.
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6 K. H. IZUCHI AND S. LUO

Hence we can apply Theorem 2.3 for Γ′
ℓ and Fz,Γ′

ℓ
. To be precise, let

Γ̃′
ℓ =

nℓ⊕

n=nℓ−1+1

ϕn(z)

ϕnℓ
(z)

Kζn−1
(z)

=

nℓ⊕

n=nℓ−1+1

[
ϕn(z)

ϕnℓ
(z)

H2(z)⊖
ϕn−1(z)

ϕnℓ
(z)

H2(z)

]

= H2(z)⊖
ϕnℓ−1

(z)

ϕnℓ
(z)

H2(z) = Kθℓ(z).

Then by Theorem 2.3, there are invertible operators Φ′
ℓ : Γ

′
ℓ → Γ̃′

ℓ =

Kθℓ(z) and Ψ′
ℓ : Γ̃

′
ℓ → Γ′

ℓ such that Φ′
ℓFz,Γ′

ℓ
= Sz,θℓΦ

′
ℓ. Note that

Γℓ = ϕnℓ
(z)ψnℓ−1

(w)Γ′
ℓ.

We define Φℓ : Γℓ → Kθℓ(z) by

Φℓ
(
ϕnℓ

(z)ψnℓ−1
(w)f

)
= Φ′

ℓf ∈ Γ̃′
ℓ = Kθℓ(z), f ∈ Γ′

ℓ.

Then Φℓ : Γℓ → Kθℓ(z) is an invertible operator. We have

ΦℓFz,Γℓ
[ϕnℓ

(z)ψnℓ−1
(w)f ]

= Φℓ[ϕnℓ
(z)ψnℓ−1

(w)Fz,Γ′

ℓ
f ]

= Φ′
ℓFz,Γ′

ℓ
f = Sz,θℓΦ

′
ℓf

= Sz,θℓΦℓ[ϕnℓ
(z)ψnℓ−1

(w)f ], f ∈ Γ′
ℓ.

Hence

ΦℓFz,Γℓ
= Sz,θℓΦℓ, 1 ≤ ℓ ≤ m+ 1.(3.6)

Now we define T : Γ → KΘ(z) by

Tf =
m+1⊕

ℓ=1

Φℓfℓ ∈
m+1⊕

ℓ=1

Kθℓ(z) = KΘ(z),

where f =
⊕m+1

ℓ=1 fℓ ∈
⊕m+1

ℓ=1 Γℓ = Γ. Then T : Γ → KΘ(z) is an
invertible operator. By (3.3),

Fz,Γ =
m+1⊕

ℓ=1

Fz,Γℓ
on Γ =

m+1⊕

ℓ=1

Γℓ.
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FINITE RUDIN TYPE INVARIANT SUBSPACE 7

Thus

TFz,Γf = T

m+1⊕

ℓ=1

Fz,Γℓ
fℓ =

m+1⊕

ℓ=1

ΦℓFz,Γℓ
fℓ

=
m+1⊕

ℓ=1

Sz,θℓΦℓfℓ = Sz,ΘTf, f =
m+1⊕

ℓ=1

fℓ ∈ Γ.

So TFz,Γ = Sz,ΘT . The proof is complete. �

Let I be the set of non-constant one variable inner functions.

Lemma 3.7. Let θ1(z), θ2(z), · · · , θd(z) be non-constant inner func-
tions. Then

rankS∗

z,Θ
KΘ(z) = rankSz,Θ

KΘ(z) = max
σ(z)∈I

#
{
1 ≤ j ≤ d : σ(z) ≺ θj(z)

}
,

where #A denotes the number of elements in A.

Proof. It is known that

rankSz,Θ
KΘ(z) = max

σ(z)∈I
#
{
1 ≤ j ≤ d : σ(z) ≺ θj(z)

}
,

see [4, p. 269].
Let τθ : Kθ(z) → Kθ(z) be defined by

τθf(z) = zθ(z)f (z), f(z) ∈ Kθ(z).

Then τθ is an antilinear onto isometry on Kθ(z), τθ(τθf(z)) = f(z) and
τθS

∗
z,θ = Sz,θτθ. Now we define τΘ on KΘ(z) by

τΘF = (τθ1f1, τθ2f2, · · · , τθdfd) ∈ KΘ(z),

where F = (f1, f2, · · · , fd) ∈ KΘ(z). Then τΘ is an antilinear onto
isometry and τΘS

∗
z,Θ = Sz,ΘτΘ. Thus it follows that rankS∗

z,Θ
KΘ(z) =

rankSz,Θ
KΘ(z). �

Lemma 3.8. Suppose that ψk(0) = 0. Let θℓ be given by (3.5) and

Θ1 =
(
θ2(z), θ3(z), · · · , θm+1(z)

)
.

Then there is an invertible operator T0 : M⊖wM → H2(z)⊕KΘ1
(z)

such that T0Fz = (Tz ⊕ Sz,Θ1
)T0.

Proof. Let ϕ0(z) = 0. In this case Γ = M⊖ wM. Recall that Γℓ are
defined by (3.2), i.e.

Γℓ =

nℓ⊕

n=nℓ−1+1

ϕn(z)ψn−1(w)Kζn−1
(z), 1 ≤ ℓ ≤ m+ 1.
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8 K. H. IZUCHI AND S. LUO

Set Λ =
⊕m+1

ℓ=2 Γℓ. Then M⊖wM = Γ1⊕Λ, FzΓ1 ⊂ Γ1 and FzΛ ⊂ Λ.

Note that when ϕ0(z) = 0, ζ0(z) = 0. So θ1(z) =
∏n1−1

n=0 ζn(z) = 0,
and Sz,θ1 = Tz on H2(z). Thus the conclusion follows from Theorem
3.4. �

Now we can prove the main result in this section. The rank of Fz

on M⊖ wM was obtained in [2], we include a slightly different proof
in the following.

Theorem 3.9. Suppose that ψk(0) = 0. Let θℓ be given by (3.5) and

Θ1 =
(
θ2(z), θ3(z), · · · , θm+1(z)

)
.

Then

rankFz
(M⊖ wM) = 1 + max

σ(z)∈I
#
{
2 ≤ ℓ ≤ m+ 1 : σ(z) ≺ θℓ(z)

}
,

and

rankF∗

z
(M⊖ wM) = max

σ(z)∈I
#
{
2 ≤ ℓ ≤ m+ 1 : σ(z) ≺ θℓ(z)

}
.

Proof. We first study the rank of Fz. Let

s1 = max
σ(z)∈I

#
{
2 ≤ ℓ ≤ m+ 1 : σ(z) ≺ θℓ(z)

}
.

By Lemma 3.8, we have

rankFz
(M⊖ wM)

= rank{Tz⊕Sz,Θ1
}(H

2(z)⊕KΘ1
(z))

≤ rankTzH
2(z) + rankSz,Θ1

KΘ1
(z)

= 1 + s1.

Let θ(z) =
∏m+1

n=2 θn(z1) and Θ̃ =
(
θ(z), θ2(z1), · · · , θm+1(z1)

)
. Then

rankFz
(M⊖ wM)

= rank{Tz⊕Sz,Θ1
}(H

2(z)⊕KΘ1
(z))

≥ rankS
z,Θ̃

KΘ̃(z)

= 1 + max
σ(z)∈I

#
{
2 ≤ ℓ ≤ m+ 1 : σ(z) ≺ θℓ(z)

}

= 1 + s1.

Thus rankFz
(M⊖ wM) = 1 + s1.

Now we study the rank of F∗
z . By Lemma 3.8, we have

F∗
zT

∗
0 = T ∗

0 (T
∗
z ⊕ S∗

z,Θ1
) on H2(z)⊕KΘ1

(z),
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FINITE RUDIN TYPE INVARIANT SUBSPACE 9

and

rankF∗

z
(M⊖ wM) = rank{T ∗

z ⊕S
∗

z,Θ1
}(H

2(z)⊕KΘ1
(z)).

Lemma 3.7 implies that

rank{T ∗

z ⊕S
∗

z,Θ1
}(H

2(z)⊕KΘ1
(z)) ≥ rankS∗

z,Θ1
KΘ1

(z) = s1.

Thus it is left to show rankF∗

z
(M⊖ wM) ≤ s1. Let F1, F2, · · · , Fs1 ∈

KΘ1
(z) be such that

[F1, F2, · · · , Fs1]S∗

z,Θ1
= KΘ1

(z),

and let f1(z) ∈ H2(z) satisfy [f1(z)]T ∗

z
= H2(z). Set

η(z) =

m+1∏

ℓ=2

θℓ(z)

and

F0 = η(z)f1(z)⊕ F1 ∈ H2(z)⊕KΘ1
(z).

We show that

[F0, F2, · · · , Fs1]{T ∗

z ⊕S
∗

z,Θ1
} = H2(z)⊕KΘ1

(z).(3.10)

Let Sη,θ be defined by Sη,θf(z) = PKθ(z)(η(z)f(z)), f(z) ∈ Kθ(z),
and let

Sη,Θ1
= Sη,θ2 ⊕ Sη,θ3 ⊕ · · · ⊕ Sη,θm+1

on KΘ1
(z).

Then

(T ∗
η ⊕ S∗

η,Θ1
)F0 ∈ [F0, F2, · · · , Fs1]{T ∗

z ⊕S
∗

z,Θ1
}

Note that S∗
η,Θ1

F1 = 0, thus

(T ∗
η ⊕ S∗

η,Θ1
)F0

= T ∗
η [η(z)f1(z)] = f1(z)

∈ [F0, F2, · · · , Fs1 ]{T ∗

z ⊕S
∗

z,Θ1
}.

It follows that

[F0, F2, · · · , Fs1]{T ∗

z ⊕S
∗

z,Θ1
}

⊃ [f1(z), F1, F2, · · · , Fs1 ]{T ∗

z ⊕S
∗

z,Θ1
}

⊃ [f1(z)]T ∗

z
⊕ [F1, F2, · · · , Fs1]S∗

z,Θ1

= H2(z)⊕KΘ1
(z).

Therefore (3.10) is established, which finishes the proof. �
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10 K. H. IZUCHI AND S. LUO

4. Related topics

A bounded linear operator T is called Fredholm if T has closed range,
dim ker T < ∞ and dimker T ∗ < ∞. In this case, the Fredholm index
is defined by indT = dimker T − dimker T ∗. The following result is
well-known.

Lemma 4.1. The following hold.

(i) Tz is a Fredholm operator on H2(z), ker Tz = {0}, ker T ∗
z = C.

(ii) For a non-constant inner function θ(z), Sz,θ is a Fredholm op-
erator and

dimker Sz,θ = dimker S∗
z,θ =

{
0, θ(0) 6= 0
1, θ(0) = 0.

Theorem 4.2. Fz is a Fredholm operator on M⊖ wM and indFz =
−1. Moreover we have the following.

(i) If ψk(0) 6= 0, then kerFz = {0} and dimkerF∗
z = 1.

(ii) If ψk(0) = 0, then

dimkerFz = #
{
2 ≤ ℓ ≤ m+ 1 : θℓ(0) = 0

}

and

dimkerF∗
z = 1 +#

{
2 ≤ ℓ ≤ m+ 1 : θℓ(0) = 0

}
,

where θℓ are defined by (3.5).

Proof. (i) Suppose that ψk(0) 6= 0. By Theorem 2.3, there is an invert-
ible operator Φ : M ⊖ wM → H2(z) such that ΦFz = TzΦ. Lemma
4.1 (i) then ensures that kerFz = {0} and dimkerF∗

z = 1.
(ii) Suppose that ψk(0) = 0. By Lemma 3.8, there is an invertible

operator T0 : M⊖ wM → H2(z)⊕KΘ1
(z) such that

T0Fz = (Tz ⊕ Sz,Θ1
)T0,

where Θ1 =
(
θ2(z), θ3(z), · · · , θm+1(z)

)
. It is clear that Tz ⊕ Sz,Θ1

has
closed range. By Lemma 4.1 (ii), we have

dim ker (Tz ⊕ Sz,Θ1
) = dimker Tz + dimkerSz,Θ1

=

m+1∑

ℓ=2

dimker Sz,θℓ

= #
{
2 ≤ ℓ ≤ m+ 1 : θℓ(0) = 0

}
,

and

dimker (T ∗
z ⊕ S∗

z,Θ1
) = dimker T ∗

z + dimkerS∗
z,Θ1

= 1 +#
{
2 ≤ ℓ ≤ m+ 1 : θℓ(0) = 0

}
.
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Thus (ii) holds. �

We can also obtain the Fredholmness of Fz as follows. Note that
M is a Hilbert-Schmidt submodule, so Fz is a Fredholm operator,
see [3, Propositions 2.2 and 3.7].
For an invariant subspace N of H2, let

indN = ind(0,0)N = dim
(
N ⊖ (zN + wN

))
.

ind(0,0)N is called the index of N at (0, 0). Note that

N ⊖ (zN + wN) = kerF∗
z ,

see [3]. Hence by Theorems 4.2, we have the following.

Corollary 4.3. The following hold.

(i) If ψk(0) 6= 0, then indM = 1.
(ii) If ψk(0) = 0, then

indM = 1 +#
{
2 ≤ ℓ ≤ m+ 1 : θℓ(0) = 0

}
.
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