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ABSTRACT. In the present paper, an equality is proved for the case of twice-differentiable functions
whose second derivatives in absolute value are convex. By using this equality, some Maclaurin-type
inequalities are established for the case of the well-known Riemann-Liouville fractional integrals.
More precisely, some Maclaurin-type inequalities are obtained by using Hoélder and power-mean
inequalities. Furthermore, sundry Maclaurin-type inequalities are given by using special cases of
obtained theorems.

1. INTRODUCTION

Fractional analysis has been investigated by sundry researchers and they have established the frac-
tional derivatives and integrals in different methods with numerous notations. It is well known that
the first fractional integral operator is the Riemann-Liouville fractional integral operator. Nowadays,
fractional calculus has become one of the famous fields owing to its natural applications in differ-
ent fields like fluid mechanics, biological modeling, numerical physical science, and so on. Because
of significance of fractional calculus, it can be proved the bounds of new inequalities by using not
only Hermite-Hadamard type inequalities but also and Simpson, Newton, and Euler-Maclaurin-type
inequalities.

Definition 1 (See [12,18]). Let us consider F € L;o, §]. The Riemann-Liouville integrals Jg*, F and
J§t F of order a > 0 with o > 0 are described by

o F (@) = ﬁ /: (z—t)* ' F)dt, x>0
and
1
J5s_F(x) = ﬁ/ (t —2)* ' F(t)dt, =<,

respectively. Here, I'(a) denotes the Gamma function and its described as

F(a):/ e tu*tdu.
0

The fractional integral reduces to the classical integral for the case of a = 1.

Simpson’s inequality has Simpson’s following rules:

i. Simpson’s quadrature formula (Simpson’s 1/3 rule) is defined as follows:

(1) /j]—'(:c)dx%(sgo[]—'(o)+4]—'(0—;§>+}'(5)}
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2 F. HEZENCI

ii. Simpson’s second formula or Newton-Cotes quadrature formula (Simpson’s 3/8 rule (cf. [5]))
is described as follows:

2) /:f(x)dm ‘S_TU {}'(o) +3]—'<20;6> +3f<"+32‘5) +]—‘(6)] .

iii. The corresponding dual Simpson’s 3/8 formula - the Maclaurin rule based on the Maclaurin
formula (cf. [5]) is defined as follows:

50 4§ 1 50
(3) /;f sF(2250) for (250) farp (2220
6 2 6
Formulae (1), (2), and (3) provide for the case of any function F with continuous 4*"derivative on
[0, d].
The well-known Newton-Cotes quadrature featuring the Simpson type with three-point inequality
is as follows:

Theorem 1 (See [5]). Let F : [0,0] — R be a four times differentiable and continuous function on

(0,9), and ||.7-'(4)HOo = sup |]—'(4) (x)| < 00. Then, one has the following inequality
€(0,6)

é{]’(o)+4}'<0;6)+}“ ] /]-' )dz

Dragomir [8] presented an estimation of remainder for Simpson’s quadrature formula to the case of
bounded variation functions and applications in theory of special means. In addition, several fractional
Simpson type inequalities for the case of function whose second derivatives in absolute value are convex
given in [13]. Furthermore, Park [17] proved several estimates of Simpson-like type integral inequalities
for the case of functions whose first derivatives in absolute value at certain powers are preinvex. The
reader is referred to [1-4,22] and the references therein for more information about Simpson type
inequalities and sundry properties of Riemann—Liouville fractional integrals.

Classical closed type quadrature rules is the Simpson 3/8 rule based on the Simpson 3/8 inequality
as follows:

< L “" —o)*.
= 2830 H]: (0-0)

Theorem 2 (See [5]). If F : [0,0] — R is a four times differentiable and continuous function on

(0,9), and ||.7-'(4‘)HOo = sup {.7-'(‘;) x)| < 00, then one has the inequality
z€(0,0)

;[f(a)+3f(2"3+5>+3f<"+325>+f } _a/]-' dz

Simpson’s second rule has the rule of three-point Newton-Cotes quadrature, therefore evaluations
for the case of three steps quadratic kernel are sometimes called Newton type results in the literature.
There has been a growing tendency to investigate such type of inequalities particularly for Newton type
inequalities. For example, Erden et al. [16] established several Newton-type inequalities for the case
of functions whose the local fractional derivatives in modulus. Noor et al. [19] proved several Newton
type integral inequalities for the case of p-harmonic convex functions and some special cases were
also investigated as applications. Moreover, several Newton type inequalities based on convexity were
presented and some applications for special cases of real functions were also given in [11]. Furthermore,
several Newton type inequalities were established with the aid of Riemann-Liouville fractional integrals
and several fractional Newton type inequalities for the case of bounded variation functions were also
presented in [21]. It can be referred to [9,14,15] and the references therein for details and for the
unexplained subject about Newton type of inequalities involving convex differentiable functions.

The corresponding dual Simpson’s 3/8 formula-the Maclaurin rule based on the Maclaurin inequality
is as follows:

(6 —o)t.

< g 7.
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Theorem 3 (See [5]). Suppose F : [0,0] — R is a four times differentiable and continuous function

on (0,0), and H]—"(‘l) | = sup |.7:(4)(a:)‘ < oo. Then, the following inequality holds:
z€(0,0)

1 50+ 46 o+6 o+ 59 1 o
! {sr( - ) +2]~'< ! >+3}'< ' ﬂ s [ Fas
Dedié et al. [6] established a set of inequalities with the help of the Euler-Maclaurin formulae and
the results were applied to obtain some error estimates for the case of the Maclaurin quadrature rules.
Moreover, a set of inequalities is established by using the Euler-Simpson 3/8 formulae. The results are
implemented to obtain some error estimates for the case of the Simpson 3/8 quadrature rules in [7].
For details and for the unexplained subject about these kinds of inequalities, the reader is referred
to [5,10,20] and the references therein.

The purpose of this paper is to establish Maclaurin-type inequalities for the case of twice-differentiable
convex functions by using the Riemann-Liouville fractional integrals. The fundamental definition of
fractional calculus and other studies in this field are given in Section 1. We will prove an integral
equality in Section 2 that is critical in proving the primary results of this paper. Furthermore, it will
be established some Maclaurin-type inequalities for the case of twice-differentiable convex functions
by using the Riemann-Liouville fractional integrals. In Section 3, several ideas about Maclaurin type
inequalities for the further directions of research will be presented.

o0

7
< (®H —o)t.
= 51840 HF L0=9)

2. MAIN RESULTS

Lemma 1. Let F : [0,0] — R be an absolutely continuous function (o,d) so that F' € Ly ([0,4]).
Then, the following equality holds:

(4)
1 50 + 6 o+ o+ 50 _F(a—l—l) o o - __(6—0)2 4 _
< [3.7—'( 5 )+2J—'( 5 >+3]-"< . )} 26 o) [J& F(8) + J§F(0)] = 72(0[“);11,
where

L= [ (% 4 ) [F7 (15 + (1 — ) o) + F" (to + (1 — 1) §)] dt,

0

I = f (et — 2=3a) [F (6 + (1 —t) o) + F" (to + (1 — t) 6)] dt,

I3 = f (ot — TZ2) [F (t6 + (1 — t) o) + F" (to + (1 — t) §)] dt,

Iy = jl‘ (Lt — ) [F" (t0+ (1 —t) o) + F" (to + (1 — t) §)] dt.

Proof. By using the integration by parts, we can obtain

(5) I = / (T +at) [F'(t6+ (1 —t) o) + F" (to + (1 —t) §)] dt
0

ol

= 5% (T +at) [F (t6+ (1 —t)o) — F (to+ (1 —t)6)]
7 0
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_5i0/é((OH'l)ta*’a)[]:’(t5+(1—t)a)—]-"(ta+(1—t)6)]dt
0
s (e d) (= (5) = (557)

ala+1) /tml [f(t6+(1t)0)+f(ta+(1t)5)]dt]

1
6

O(‘;Oi+)12> /ta—l [F(t0+ (1 —t)o) + F (to + (1 —t) §)] dt.

In a similar manner, we get

! 1 3a-5 (5046 [0 +50
® L=t (g ) (7 (750) -7 (550))
1 a+1l 3a-5 o+
- 2
(5—0)2{ ( 3 T8 )f( 2 )

m (@) ) ()
e G ) ()
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a+l a-T o+0
= ()7 ()]

5

+7/t“—1[J—'(t5+(1—t)a)+I(to—+(1—t)5)]dt,

[N

—

W/w—l [F(t6+ (1 —t)o) + F (to + (1 —t) 6)] dt.

2
6

If we add equalities from (5) to (8), then we readily obtain

0 B b () ) ()

-1 1
T F (6 + (1 —t) o) dt + /ta‘lf(to* +(1-1)9) dt] :
0 0

+a(a+1)

If we apply the change of the variable = t6+ (1 — t) 0 and « = to + (1 — ¢) 0 for ¢ € [0, 1] respectively,
then equality (9) will be rewritten as follows

(a+1) [ (50+5> (0+5> <0+55)]
10 I, =———% |3F + 2F + 3F
1) ; 45 —o0)? 6 2 6
Fla+1) (o o
m [JO.+F((S) + J(;_‘F(O')] .
Multiplying of (10) by —;‘z;i)lj, the equality (4) is obtained. This ends the proof of Lemma 1. O

Theorem 4. If the conditions of Lemma 1 satisfy and the function |F"| is convex on [0,d], then we
get

() enr (15) e (75)] - Ee

§—0)

(
S CICES)

(1 (@) + Q2 (@) + Q3 (@) + Qu (@) |77 (o) + [F7 ()]
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Here,
Ql (Oé):f|ta+1+04t’dt:m+%, Q3 (a):f‘ta—‘rl_?_Tat’dt,
0 1
2
2 1 5-3 ; 1 11 1 5\a+2
Qs () = [ e+t = 2pee]dt, Qu(a) = [ [t —tfdt = 2+ 25 ((3)™ - 1)
5 3

Proof. If we take modulus in Lemma 1. Then, we readily have the following inequality

(11) ‘é [3}' (5”; 5) +oF (" ; 5) +3F (" a 55)} - ;(E;O‘fail [J2, F (8) + J&F (0)]

6

(570—)2 /G a+1 17 1

S o7 — —

=2t 1) [ttt L at| |[F (t6+ (1 —t)o) + F" (to + (1 —t) )| dt
0

W=

+/ gt = 230 45 4 (1 1)) + F (o + (1— 1) 8)] dt
; 7
+/ t‘*“——go‘t |F" (6 + (L —t) o) + F" (to + (1 — t) 9)| dt

2

+/|t““ —t||F" 6+ (1 —t)o) + F" (to + (1 —t) 6)|dt

ol

From the fact that |F"| is convex, it yields

! [3F(5°’6+5) +zf<"‘2“5> +3f(0256>} - j(gajl (T2 F (6) + JEF (o)

< =0 /yta+1+aty[t|f”(5)|+(1—t)|f”(a)|+t|f”(o>|+(1—t)|f”(5>l]dt
0

(
2(a+1)

[N

0= 2250 [ ) + (L= ) [P )]+ 1 1F (o) + (L= 1) [ (9)]

!/

6

olw

o = T2 [ @)+ (1= 0|7 (0)] 4 F (0)] + (1~ )| 7" ()]t

!/

2
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+/ [t — | [t|F" (8)] + (1 — &) [F" (o) + t|F" (o) + (1 — t) |[F" (6)[] dt

[N

ta+175_3a

t| dt

6

(6= | [ s
=t [t + at| dt +
0 1

5

6 1
+/ et — LTO‘t dt+/|t°‘+1 —t|dt| [|F" (o) + |F" (8)]].
1 5
2 6
This completes the proof of Theorem 4. O

Corollary 1. If we choose a =1 in Theorem 4, then the following Maclaurin-type inequality holds:

5
1 50 4+ 0 o+ o+ 50 1
8[3f< - )+2f( ! )+3f( . )}—60/}'(15)(115

Theorem 5. Let us note that the assumptions of Lemma 1 are valid and the function |F"|?, ¢ > 1 is
convex on [o,0]. Then, the following inequality

‘; {3]? (5a6+5> toF (";F‘S) +3F (‘7255” - 2F(Esa_+a§l [J2, F (5) + Jg"}'(o)]‘

(6 —0)*

<
- 64

I (@) + [F" ()]

Q

(6 — o)’
2(a+1)

WO O (1 L)

< (1 (a,p) + ¢a () K ™ 72

11

+(p2 (0.) + 03 (c0.p) [(2 oL e FOR T (ol 2700 H

is valid. Here, % + % =1 and

P

= TP

1
P

é
¢1 (o, p) = (flt““wtlpdt) : ©3 (a,p)=<
0

e

T l=

1
1 P
, P4 (a7p) = (f’ta—i-l _t|pdt> )
5

6

%
o2 (a,p) = <f et — %t‘p dt)

1
6

Proof. Let us consider Holder inequality in (11). Then, we can easily have

1 50 40 o4 o450 T(a+1) (6 — o)
= 2 _ « (o4 <7
‘8[3}-< 5 )+ I( 5 )+3f( G )} 26 o) [Jg+f(5)+J5f(a)}’_2(a+1)
X /|to‘+1+atpdt /|]~‘” o+ (1 —t)o)|%dt | + /\J-‘“ (to+ (1 —t)0)| at
0 0 0
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% B , P % q 1
4 /t("+1—5 830‘t dt /|]-""(t6+(1—t)a)|th + /\]—"”(t0+(1—t)5)|th
+ /t““— G| at /\}"’(t5+(1—t)0’)|th + /If”(to+(1—t)5)lth

Q=
Q=

p

1
/|f” (to+ (1 —t)o)|dt

6 6

1 1
+ /]t‘”‘“ —t|" dt + /\}"” (to + (1 —t)0)|*dt
5 5
5 5

Since it is known that |F”|? is convex, we obtain

() (15) o (59 -He

6 2(6—0)"
2 p ’ i E
cW—o) /|ta+1 +at|"dt /t|f” @)+ (=) [F" ()] dt
~ 2(a+1)
0 0

z q 1 o »
+ /tl]—"” ()| + (1 —t)|F"(5)|" at + / ot | at
0

Q=
Q=

X /t|}"’ "+ A=) |F (o)|"at | + /t|}"’ ()" + (1 —t)|F"(5)|" at

|
S
Q=

at1 [ — O P 11 q 11 q
t — ———t| dt tIF O+ A =2t)|F" (o) dt

Nl
ol

Nl

1
1 P

tF ()" + (1 —t) |F (8)|" dt + /|t°‘+1 —t|"dt

Q=

+
N‘H\oﬂm

oo

x /t|f” O+ 1A=t |F" (o) %at | + /t|f” ()" + (1 —t)|F" ()| dt

5 5
6 6
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1

U|F" ()" + | F" (8)]*

72

)

1
q

_|_

1
P

(

1 p

6
/]taH—f—at]pdt - /\tf’“ —t|"dt
0

2
6

7" (o) + 11| F" (9)|*

72

)

Q=

1
P

p
gt _ 2739, ot _ T

9 9

'<2f” @) +1F" (5)|q>‘11 + ('f” N (6)q)iH '

Hence, the proof of Theorem 5 is finished.

Theorem 6. Suppose that the assumptions of Lemma 1 hold and the function |F"|?

on [0,0]. Then, the following inequality

() () o

- Q(iOé_:)].) |:(Ql (O‘))l_% [(95 (OK) |]:” ((5)|q + (Ql (a) — Q5 (Oé)) |]:// (0_)|q)

7 [(9 (@) 1F" (0)| + (22 () = 96 () |F" (0)])

)

(2 (@) [(2 (@) |7 ()" + (25 () = 7 () |7 (o))

)

+( (a) [(Qs (@) [F7(8)]" + (4 () — Qs (@) [F" (0)[")

/)

, q > 1 1is convex

o+ 56
6

50 +§
6

I'la+1)
2(6—0)”

‘; i [J2.F (6) + J§_F (o)

Q=

+ (9 () |77 ()" + (@1 (@) = Qs () |77 (9)1%)

Q=

+ (R (@)

+(Q6 () |77 ()" + (Q2 (@) = Q6 (o)) |7 (8)1%)

Q=

Q=

+(Q7 () |7 () + (Q3 () = Q7 () |7 (9)])

Q=

E

+(Qs () |77 ()" + (Qa (@) — Qs () |77 (9)1%)
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is valid. Here, Q1 (), Q2 (a), Q3 () and Q4 () are given in Theorem 4 and

1 5
6 6
Qs (a) = [ [t*T +at|tdt = ygigers + a5 Q7 (@) = [ |07 = 52t tdt,
0 1
2
% 1
Q5 (@) = 1f [ttt — 5239 ¢4t Qs (@) = f [ttt — | tdt = s + 25 ((3)“*3 — 1) :
6 6

Proof. If we apply power-mean inequality in (11), then we have

‘1 [3]__<5a+6)+2}_<o+5>+3]__(o+55ﬂ ~ T(a+1) [J?+J"(5)+J§s”f(0)}’

8 6 2 6 2(0—0)"
1 -7 1 3
(570—)2 6 6
< 2@t D / [t + at| dt / [t +at| |F" (t6+ (1 —t)o)|" dt
0 0
1 a

6
+ /|ta+1+aty|f” (to+ (1 —1)8)[" dt
0

Q=

1

dt /

6 6

|
Q=

5-3 5-3
potl 27 0% gt = 272G E (45 4 (1 — t) o) dt

Q=

g1 _ 27 3ay |F" (to + (1 —t)8)|* dt

Q=

5

6
dt /
1

2

totl LTat |F" (t5+ (1 —t)o)|? dt

Q=

U |F" (to + (1 — ) 6)|* dt

1 -3 1 v
/ [ttt — ¢ dt /|t“+1 —t||F" (6 + (1 —t)o)|"dt

5 5
5 5

6

30 May 2023 03:53:24 PDT
221223-Hezenci Version 2 - Submitted to Rocky Mountain J. Math.



FRACTIONAL MACLAURIN-TYPE INEQUALITIES 11

1
+ /|to‘+1 t||F" (to+ (1—1t)6)|" dt

oot

From the fact that |F”|? is convex, it yields

é [37(5‘7;5) +2}'(0;6) +3F(0255>} - ;(gajail [J&4F (8) + J5_F (0)]

1—

Q=

1 q
6

( (0% (6%
< 72 CES |t 4 at|dt [ttt at| [t (5)|* + (1 —t)|F" (0)|*] dt
0

+ / [t +at| [t|F" (0)|" 4+ (1 —t) [F" (6)|"] dt
0

Q=

o+t — So‘t o+t — ﬂt [L|F" (&) + (1 —t)|F" (0)]"] dt

/

Q=

ta+1 3

t{[t1F" (@) + (1 =) |F" ()] dt

\/

Q=
Sl
Q=

ta+1_7_a

t [ 177 (6)|" + (1 — 1) |7 ()] dt

[N

Q=

o — —— | [t|F" ()" + (L= ) |[F" (9)["] dt

\/

1
q 1 q

+

[ttt — / [ttt — | [t|F"(8)| + (1 —t) | (0)|"] dt

5
6

!
!
+(/ n-zzzja) (]
!
[

Q=

/]ta“ [t|F" (o) 4+ (1 —t) |F" (6)|"] at

Finally, This is the end of proof of Theorem 6. g

30 May 2023 03:53:24 PDT
221223-Hezenci Version 2 - Submitted to Rocky Mountain J. Math.



12 F. HEZENCI

Corollary 2. If we assign a = 1 in Theorem 6, then the following Maclaurin-type inequality holds:
s
1 50 + 9 o446 o+56 1
- 9 _
! [3]—‘( - )+ ]-‘( ! >+3]—"< . )] o [Faa

PECRT.) lfﬂ‘é <<9f" @) +7LIF" <o>q)3 (2 (9)|" + 71 |F" <a>q)3>

- 324 4 16 16

+

7177 (235 F" (6)9 +333|F (0)|"\ T (235 |F" (o)]% + 333 |F" (8)|"\
64 8 + 8

109' 75 [ (539|F" (5)|" + 333|F" (0)[*\ © _ (539|F" (0)|" +333|F" (8)["\ ¥
T e 8 " 8

571" () + TIF" (@)°\ 7 | (S5TIF (@) +71F" (3)|"\*
(e e R e e |

3. CONCLUSION

In the present paper, an equality is proved for the case of the well-known Riemann-Liouville frac-
tional integrals. By using this equality, some Maclaurin-type inequalities are given for the case of
twice-differentiable functions whose second derivatives in absolute value are convex. Moreover, several
Maclaurin-type inequalities are presented by using special cases of obtained theorems.

In the forthcoming works, the ideas and strategies for our results about corrected Maclaurin-type
inequalities by Riemann-Liouville fractional fractional integrals may open new avenues for further
research in this area. More precisely, one can obtain Maclaurin-type inequalities for convex functions
by using quantum calculus. Furthermore, interested readers can apply these resulting inequalities
to different types of fractional integrals such as k-Riemann-Liouville fractional integral, conformable
fractional integral, Hadamard fractional integrals, Katugampola fractional integrals, etc.
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