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ABSTRACT. In this paper, we consider the nonlinear boundary value problem y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = λf(x, y(x)), x ∈ [0, 1],

y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

where k1 and k2 are constants, λ is a parameter. Based on this, by using the fixed-point

index theory in cones and upper and lower solution method, the criteria of the existence,

multiplicity and nonexistence of positive solutions are established in terms of different values

of λ.

1. Introduction. In this paper, we are concerned with a nonlinear Euler-Bernoulli beam

equation with Neumann boundary conditions (NBVP){
y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = λf(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

(1.1)

where k1 and k2 are constants, λ is a parameter, f ∈ C([0, 1]×R,R). This problem is always used

to describes the sliding braces at both ends of an elastic beam.

With the emergence and development of a large number of edge sciences such as electromagnetic

hydrodynamics, chemistry, hydrodynamics, dynamic meteorology, ocean dynamics and groundwa-

ter dynamics, many new differential equations have appeared. Fourth-order boundary value prob-

lems (BVPs) have been used to describe the deformations of elastic beam. In particular, the elastic

beam equation is also called the Euler-Bernoulli beam equation. As we all know, the following

fourth-order Euler-Bernoulli beam equation problem{
y(4)(x) + ηy′′(x) + ζy(x) = λf(x, y(x)), x ∈ [0, 1],
y(0) = y(1) = y′(0) = y′(1) = 0

(1.2)

has attracted the attention of many scholars, where η, ζ and λ are parameters, it describes the

deformations of elastic beams with both fixed end-point, see [3, 25, 30, 31]; In particular, the
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equation (1.2) with Lidstone boundary condition

y(0) = y(1) = y′′(0) = y′′(1) = 0 (1.3)

also has received a lot of attention in the last decades, it models the stationary states of the

deflection of an elastic beam with both hinged ends, see [4, 6, 12, 18, 20, 21, 22, 23, 24]

and the references therein. In addition to the mentioned fourth-order problem under the above

boundary conditions, Webb and Infante [29] have also obtained excellent results on the fourth-

order problems with local and nonlocal boundary conditions, and extended this kind of problem

to arbitrary order boundary value problems, see [14].

Some of nonlinear analysis tools have been used to investigate the existence of solutions for the

elastic beam equation with boundary conditions (1.2) and (1.3), such as, lower and upper solutions

[3, 23, 24, 26], monotone iterative technique [2, 13, 28], Krasnosel’skii fixed point theorem

[11, 23, 31], fixed point index [17, 18, 29], Leray-Schauder degree [1] and bifurcation theory

[20, 21, 25, 27, 30].

On the research of equation (1.2), the existence results can be summarized into two situations.

The first case is single parameter: η = ζ = 0, λ > 0; another situation is double parameter:

η, ζ 6= 0, λ = 1; In the case of single parameter, there are many results due to its simple structure.

In particular, we found that if η = ζ = 0, the existence of positive solutions for problem

y(4)(x) + ηy′′(x)− ζy(x) = f(x, y(x)), x ∈ (0, 1) (1.4)

with boundary value condition (1.3) has been studied by Ma and Wang [22]. They showed the

existence of positive solutions under that f(x, y) is either superlinear or sublinear on y by employing

the fixed point theorem of cone extension or compression. When η, ζ 6= 0, λ = 1, Li [18] discussed

the existence of positive solution for fourth-order boundary value problem (1.3), (1.4) with two

parameters by fixed-point index theory in cones under the following assumptions:

(F1) f : [0, 1]× [0,∞)→ [0,∞) is continuous;

(F2) η, ζ ∈ R and η < 2π2, ζ ≥ −π
2

4 ,
ζ
π4 + η

π2 < 1.

For convenience, we introduce the following notations:

f0 = lim inf
y→0

min
x∈[0,1]

f(x, y)

y
, f∞ = lim inf

y→∞
min
x∈[0,1]

f(x, y)

y
,

f0 = lim sup
y→0

max
x∈[0,1]

f(x, y)

y
, f∞ = lim sup

y→∞
max
x∈[0,1]

f(x, y)

y
.

The main results of paper [18] are as follows:

Theorem A. Assume (F1) and (F2) hold. Then in each of the following case hold:

(i) f0 < π4 − ηπ2 − ζ, f∞ > π4 − ηπ2 − ζ;
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OPTIMAL POSITIVE SOLUTIONS FOR NONLINEAR EULER-BERNOULLI BEAM EQUATION 3

(ii) f0 > π4 − ηπ2 − ζ, f∞ < π4 − ηπ2 − ζ,
the problem (1.3), (1.4) has at least one positive solution.

From Theorem A, we notice that π4 − ηπ2 − ζ is an eigenvalue of linear boundary value

corresponding to problem (1.3), (1.4), if the strict inequalities in (i) or (ii) of Theorem A are

weakened to nonstrict inequalities, the existence of solution for problem (1.3), (1.4) can not be

guaranteed. In addition to, they derive the following corollary from Theorem A.

Corollary B. Assume (F1) and (F2) hold. Then in each of the following cases hold:

(i) f0 = 0, f∞ = +∞(superlinear case);

(ii) f0 = +∞, f∞ = 0(sublinear case),

the problem (1.3), (1.4) has a positive solution.

We summarize the many studies on simply supported beams introduced earlier, from the

conditions given in the article, the parameters η and ζ are satisfied the key condition η
π2 + ζ

π4 < 1.

Under this condition, we can use the same method as literature [10, 17] to transform the solution

of the boundary value problem into the solution of an integral equation with the help of Green’s

function. A natural question is: when the limiting conditions of parameters η and ζ change,

that is, the condition (F2) of Theorem A is broken, and more specifically, what is the result of

the existence of the solution of the problem when the method described above cannot be used

smoothly? Further, when the parameter λ appears, is it possible to find λ∗ which is exactly the

point at which the solution to the problem does and does not exist? This is the next question we

have to consider, in this paper, we will discuss the problems with three parameters and overcome

these difficulties.

In recently, Vrabel [26] was interested in establishing the existence of solution of the fourth-

order differential equation which models the stationary states of the deflection of an elastic beam,

namely, the ordinary differential equation

y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = f(x, y(x)), x ∈ [0, 1] (1.5)

subject to the Lidstone boundary condition (1.3), where k1 < k2 < 0. It is correspond to

hinged ends when there is no bending moment at the ends, see Gupta [6], Lazer and McKenna

[16]. Recently, Ma [23, 24] are considered with the problem (1.3), (1.5) under the assumption

k1 < 0 < k2 < π2 and 0 < k1 < k2 < π2, they proved non-negative of its Green’s function and

established the method of lower and upper solutions for problem (1.3), (1.5).

An interesting question arises, does the equation (1.5) still have a solution when the boundary

conditions are change? By using the fixed point index and the critical group, Li [17] discussed

the existence of positive solutions to the equation (1.5) with Neumann boundary condition, where

k1 + k2 = −2 and k1k2 = 1. Obviously, this problem is a special case of literature [26]. Same
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research see Yang [32, 33], Li [19] and the references therein. Then, Guo [10] discussed the

existence of positive solutions for NBVP (1.1), where k1 + k2 = η and k1k2 = −ζ, η, ζ are positive

parameters and satisfy ζ
π4 + η

π2 < 1, ζ 6= −η
2

4 , η > −2π2. We noticed that although the study of

[10] expanded the work of [17], it still had great limitations on parameters.

Inspired by the above literatures, we aim to investigate the problem of existence, multiplicity

and nonexistence of positive solutions for NBVP (1.1), and our work is still valid for the conclusions

of Ma [23, 24] and Vrabel [26], where f : [0, 1] × R → R is continuous, k1 and k2 are constants,

λ is a positive parameter. And we make the following assumptions:

(H1) f(x, y) > 0 for any x ∈ [0, 1] and y > 0;

(H2) f0 =∞ and f∞ =∞;

(H3) f0 = 0 and f∞ = 0.

The main results that we will establish are as follows:

Theorem 1.1 Assume that (H1) and (H2) hold. Then there exists λ∗ > 0 such that NBVP (1.1)

has at least two positive solutions for λ ∈ (0, λ∗), at least one positive solution for λ = λ∗ and no

positive solution for λ > λ∗.

Theorem 1.2 Assume that (H1) and (H3) hold. Then there exists λ∗ > 0 such that NBVP (1.1)

has at least two positive solutions for λ > λ∗, at least one positive solution for λ = λ∗ and no

positive solution for λ ∈ (0, λ∗).

Theorem 1.3 Let ρ1 be the first eigenvalue of the linear boundary value problem{
y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = ρy(x), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

(1.6)

where ρ1 > 0. Then

(i) if 0 ≤ f∞ < f0 ≤ +∞, then NBVP (1.1) has at least one positive solution for any

λ ∈ (ρ1f0 ,
ρ1
f∞ );

(ii) if 0 ≤ f0 < f∞ ≤ +∞, then NBVP (1.1) has at least one positive solution for any

λ ∈ ( ρ1f∞ ,
ρ1
f0 ).

Remark 1.1 Notice that the conditions given by the Theorem 1.3 is to guarantee of the sharp

existence condition for the positive solutions of the problem (1.1). Let k1 + k2 = 5, k1 · k2 = 4,

consider the following fourth-order Neumann boundary value problem{
y(4)(x) + 5y′′(x) + 4y(x) = λf(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

(1.7)
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OPTIMAL POSITIVE SOLUTIONS FOR NONLINEAR EULER-BERNOULLI BEAM EQUATION 5

where f(x, s) = s+ a(s) for any x ∈ [0, 1],

a(s) =


2s

s2 + 1
, s ∈ (−∞,−1) ∪ (1,+∞),

2s3

s2 + 1
, s ∈ [−1, 1].

Clearly, f0 = f∞ = 1, it follows from Theorem 1.3 that the problem (1.7) has no positive

solution. In fact, suppose that λ = ρ1 = 4, there is a positive solution y(x) of the problem (1.7),

where ρ1 is the first eigenvalue of problem (1.6). Let ϕ1(x) > 0 is the eigenfunction corresponding

to ρ1, multiplying the equation of (1.7) by ϕ1(x) and integrating on [0,1], we can get

ρ1

∫ 1

0

ϕ1(s)y(s)ds = ρ1

∫ 1

0

ϕ1(s)y(s)ds+ ρ1

∫ 1

0

ϕ1(s)a(y(s))ds.

Hence ρ1

∫ 1

0
ϕ1(s)a(y(s))ds = 0, this contradict with the fact

ρ1

∫ 1

0

ϕ1(s)a(y(s))ds > 0.

Corollary 1.1 Assume that f : [0, 1] × R → R is continuous, yf(x, y) ≥ 0 for any x ∈ [0, 1] and

y ∈ R. Then

(i) if 0 ≤ f∞ < f0 ≤ +∞, the NBVP (1.1) has at least one positive solution and one negative

solution for any λ ∈ (ρ1f0 ,
ρ1
f∞ );

(ii) if 0 ≤ f0 < f∞ ≤ +∞, the NBVP (1.1) has at least one positive solution and one negative

solution for any λ ∈ ( ρ1f∞ ,
ρ1
f0 ).

From the previous discussion, we find that the appearance of k1 and k2 lead to the absence

of the positivity of Green’s function in NBVP (1.1), which greatly increases the complexity of

the calculation of Green’s function. On this basis, in the second part of this paper, we discuss

the properties of Green’s function in detail according to the different classification of k1 and k2.

Including the case of k1 ≤ k2 < 0, k1 < 0 < k2 ≤ π2

4 and 0 < k1 < k2 ≤ π2

4 , respectively. In the

third part of this paper, based on the second part, the corresponding proofs of Theorem 1.1 and

1.2 are given. And Section 4 shows the results of Theorems 1.3 and Corollary 1.1. In the last part,

some numerical examples are given to verify our conclusion.

2. Preliminaries. Let X = C[0, 1] be a Banach space, with its usual normal ‖y‖ =

max{|y(x)|, x ∈ [0, 1]} for all y ∈ X.

2.1 Green’s function and its sign properties in case k1 ≤ k2 < 0

From k1 ≤ k2 < 0, let k1 = −α2, k2 = −β2, where α and β are constants greater than zero that
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satisfy α ≥ β. Then, the NBVP (1.1) is transformed into the following boundary value problem{
y(4)(x)− (α2 + β2)y′′(x) + α2β2y(x) = f(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0.

(2.1)

Define linear operator L : D(L)→ X as follows

Ly := y(4) − (α2 + β2)y′′ + α2β2y, y ∈ D(L),

where D(L) := {y ∈ C4[0, 1] : y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0}.

To get the Green’s function G(x, s) of Ly = 0, we define another linear operator

L1y := y′′ − α2y, D(L1) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

It’s not difficult to calculate that the Green’s function of L1y = 0 is

G1(t, s) = −


cosh[α(1− t)] cosh(αs)

α sinhα
, 0 ≤ s ≤ t ≤ 1,

cosh[α(1− s)] cosh(αt)

α sinhα
, 0 ≤ t ≤ s ≤ 1.

Define linear operator

L2y := y′′ − β2y, D(L2) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

Then the Green’s function of L2y = 0 is

G2(t, s) = −


cosh[β(1− t)] cosh(βs)

β sinhβ
, 0 ≤ s ≤ t ≤ 1,

cosh[β(1− s)] cosh(βt)

β sinhβ
, 0 ≤ t ≤ s ≤ 1.

It’s easy to verify that the Green’s function of Ly = L2 ◦ (L1y), and Ly = 0 is

G(x, s) :=

∫ 1

0

G2(x, t)G1(t, s)dt, (x, s) ∈ [0, 1]× [0, 1]. (2.2)

Notice that if α = β, then the characteristic equation µ4 − 2α2µ2 + α4 = 0 of (2.1) has double

roots µ1 = α, µ2 = −α. In this case, the expression of G(x, s) can not be directly obtained from

(2.2).

Therefore, we divide two cases as follows:

Case 1. α = β > 0

In this case,

y(x) = C1 cosh(αx) + C2 sinh(αx) + C3x cosh(αx) + C4x sinh(αx)
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is the general solution of y(4)(x) − (α2 + β2)y′′(x) + α2β2y(x) = 0. It’s easy to compute that

ϕ(x) = αx cosh(αx)−sinh(αx)
2α3 is the solution of initial value problem

{
ϕ(4)(x)− 2α2ϕ′′(x) + α4ϕ(x) = 0, x ∈ [0, 1],
ϕ(0) = ϕ′(1) = ϕ′′(0) = 0, ϕ′′′(1) = 1.

From the theory of Green’s function, we can obtain the explicit expression of Green’s function

of (2.1) as follows

G(x, s) =



sinhα cosh[α(1− s)][cosh(αx)− αx sinh(αx)]

2α3 sinh2 α

+
α cosh(αx)[cosh(αs+ s sinhα sinh[α(1− s)]]

2α3 sinh2 α
, s ≤ x,

sinhα cosh[α(1− x)][cosh(αs)− αs sinh(αs)]

2α3 sinh2 α

+
α cosh(αs)[cosh(αx+ x sinhα sinh[α(1− x)]]

2α3 sinh2 α
, x ≤ s.

(2.3)

In order to better characterize the properties of Green’s function and verify the correctness

of the results in this paper, the mathematical software Matlab is used to simulate the figures of

Green’s function under different values of α and β for reference.

Next, we first give the figure of Green’s function when α = β of Case 1, at this time, α and β

take the concrete real numbers, see illustration Fig. 1.

(1-a) α = β = 0.5 in G(x, s) (1-b) α = β = 2 in G(x, s)

Figure 1. Figure of G(x, s) when α = β > 0.

Case 2. α > β > 0
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In this case, if 0 ≤ x ≤ s ≤ 1, then

G(x, s) =

∫ x

0

cosh[β(1− x)] cosh(βt)

β sinhβ

cosh[α(1− s)] cosh(αt)

α sinhα
dt

+

∫ s

x

cosh[β(1− t)] cosh(βx)

β sinhβ

cosh[α(1− s)] cosh(αt)

α sinhα
dt

+

∫ 1

s

cosh[β(1− t)] cosh(βx)

β sinhβ

cosh[α(1− t)] cosh(αs)

α sinhα
dt

=
1

α2 − β2

[−β sinhβ cosh(αx) cosh[α(1− s)]
αβ sinhα coshβ

+
α sinhα cosh[β(1− s)] cosh(βx)

αβ sinhα coshβ

]
=

1

α2 − β2

[cosh(βx) cosh[β(1− s)]
β sinhβ

− cosh(αx) cosh[α(1− s)]
α sinhα

]
.

By a similar calculation, when 0 ≤ s ≤ x ≤ 1,

G(x, s) =
1

α2 − β2

[cosh[β(1− x)] cosh(βs)

β sinhβ
− cosh[α(1− x)] cosh(αs)

α sinhα

]
.

Thus the concrete expression of Green’s function of problem (2.1) is

G(x, s) =


1

α2 − β2

[cosh[β(1− s)] cosh(βx)

β sinhβ
− cosh[α(1− s)] cosh(αx)

α sinhα

]
, 0 ≤ x ≤ s ≤ 1,

1

α2 − β2

[cosh[β(1− x)] cosh(βs)

β sinhβ
− cosh[α(1− x)] cosh(αs)

α sinhα

]
, 0 ≤ s ≤ x ≤ 1.

(2.4)

Theorem 2.1 If α, β ∈ (0,+∞) with α ≥ β, then the Green’s function of problem (2.1) satisfies

G(x, s) > 0, (x, s) ∈ [0, 1]× [0, 1].

Proof. According to literature [15], we know

Gi(t, s) < 0, i = 1, 2, (t, s) ∈ [0, 1]× [0, 1],

and from (2.2), we can get G(x, s) > 0, (x, s) ∈ [0, 1]× [0, 1]. 2

Then give the figure of Green’s function in Case 2, where α, β ∈ (0,+∞) with α ≥ β. In this

case, α and β take the specific real numbers, as shown in Fig. 2.

2.2 Green’s function and its sign properties in case k1 < 0 < k2 ≤ π2

4

From k1 < 0 < k2 ≤ π2

4 , let k1 = −α2, k2 = β2 and α ∈ (0,+∞), β ∈ (0, π2 ], Then the NBVP

(1.1) can be written as the following boundary value problem{
y(4)(x) + (β2 − α2)y′′(x)− α2β2y(x) = f(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0.

(2.5)
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(2-a) α = 0.7, β = 0.5 × 10−3 in G(x, s) (2-b) α = 0.7, β = 0.5 in G(x, s)

Figure 2. Figure of G(x, s) when α, β ∈ (0,+∞) with α ≥ β.

Define linear operator L : D(L)→ X as follows

Ly := y(4) + (β2 − α2)y′′ − α2β2y, y ∈ D(L),

where D(L) := {y ∈ C4[0, 1] : y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0}.

To get the Green’s function G̃(x, s) of the operator Ly = 0, define linear operator

L1y := y′′ − α2y, D(L1) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

It’s not difficult to calculate G1(t, s) is the Green’s function of L1y = 0.

Define a linear operator

L3y := y′′ + β2y, D(L3) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0},

then the Green’s function of L3y = 0 is

G3(t, s) =


cos[β(1− t)] cos(βs)

β sinβ
, 0 ≤ s ≤ t ≤ 1,

cos[β(1− s)] cos(βt)

β sinβ
, 0 ≤ t ≤ s ≤ 1.

Obviously, if α > 0, then G1(t, s) < 0, (t, s) ∈ [0, 1] × [0, 1]. If 0 < β < π
2 , then G3(t, s) > 0; If

β = π
2 , then G3(t, s) ≥ 0. Especially, G3(t, s) = 0 with t = s = 0 or t = s = 1.

Hence, Ly = L3 ◦ (L1y), the Green’s function of Ly = 0 is

G̃(x, s) :=

∫ 1

0

G3(x, t)G1(t, s)dt, (x, s) ∈ [0, 1]× [0, 1]. (2.6)
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Moreover, if 0 ≤ x ≤ s ≤ 1, then

−G̃(x, s) =

∫ x

0

cos[β(1− x)] cos(βt)

β sinβ

cosh[α(1− s)] cosh(αt)

α sinhα
dt

+

∫ s

x

cos[β(1− t)] cos(βx)

β sinβ

cosh[α(1− s)] cosh(αt)

α sinhα
dt

+

∫ 1

s

cos[β(1− t)] cos(βx)

β sinhβ

cosh[α(1− t)] cosh(αs)

α sinhα
dt

=
cosh[α(1− s)]
αβ sinβ sinhα

β cosh(αx) sinβ

α2 + β2
+

cos(βx)

αβ sinβ sinhα

α cos[β(1− s)] sinhα

α2 + β2

=
1

α2 + β2

[cos(βx) cos[β(1− s)]
β sinβ

+
cosh(αx) cosh[α(1− s)]

α sinhα

]
.

By a similar calculation, if 0 ≤ s ≤ x ≤ 1, then we can get

−G̃(x, s) =
1

α2 + β2

[cos[β(1− x)] cos(βs)

β sinβ
+

cosh[α(1− x)] cosh(αs)

α sinhα

]
.

Thus, the concrete expression of Green’s function of problem (2.5) is

−G̃(x, s) =


1

α2 + β2

[cos[β(1− s)] cos(βx)

β sinβ
+

cosh[α(1− s)] cosh(αx)

α sinhα

]
, 0 ≤ x ≤ s ≤ 1,

1

α2 + β2

[cos[β(1− x)] cos(βs)

β sinβ
+

cosh[α(1− x)] cosh(αs)

α sinhα

]
, 0 ≤ s ≤ x ≤ 1.

(2.7)

The properties of Green’s function G̃(x, s) are given as follows:

Theorem 2.2 If α ∈ (0,+∞), β ∈ (0, π2 ], then

G̃(x, s) < 0, (x, s) ∈ [0, 1]× [0, 1].

Proof. When α ∈ (0,+∞), β ∈ (0, π2 ], it can be obtained directly from literature [14] that

G1(t, s) < 0, G3(t, s) > 0, (t, s) ∈ [0, 1]× [0, 1].

Combining (2.3), we know

G̃(x, s) < 0, (x, s) ∈ [0, 1]× [0, 1].

When α ∈ (0,+∞), β = π
2 , we can get G1(t, s) < 0 and G3(x, t) ≥ 0.

In particular, G3(x, t) = 0 if and only if x = t = 0 or x = t = 1. Therefore, if x = 0, combining

this with (2.7), we can obtain

−G̃(0, s) =
1

α2 + β2

[cos[β(1− s)]
β sinβ

+
cosh[α(1− s)]

α sinhα

]
, 0 ≤ s ≤ 1.

Because x sinx is increasing on x ∈ (0, π2 ), cosx is decreasing, so cos x
x sin x is a decreasing function,

however, cos x
x sin x is positive on x ∈ (0, π2 ). Apparently, sinhx and coshx are increasing and positive

on x ∈ (0,+∞). Therefore, −G̃(0, s) > 0, s ∈ [0, 1], then we can get G̃(0, s) < 0, s ∈ [0, 1];
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If x = 1,

−G̃(1, s) =
1

α2 + β2

[cos(βs)

β sinβ
+

cosh(αs)

α sinhα

]
, 0 ≤ s ≤ 1.

Similar to reachable G̃(1, s) < 0, s ∈ [0, 1]. Figure 2.2.1 and Figure 2.2.1 are images of −G̃(0, s)

and −G̃(1, s) when α = 2, β = 0.2× 10−3, where s ∈ [0, 1]. From the images we can see that the

result we want to prove is correct.

(3-a) α = 2, β = 0.2 × 10−3 in −G̃(0, s) (3-b) α = 2, β = 0.2 × 10−3 in −G̃(1, s)

Figure 3. Figure of −G̃(0, s) and −G̃(1, s) when α = 2, β = 0.2× 10−3, where s ∈ [0, 1].

To sum up,

G̃(x, s) < 0, (x, s) ∈ [0, 1]× [0, 1].

2

Next, we give in Case α ∈ (0,+∞), β ∈ (0, π2 ) the figures of the Green’s function, when α, β

take specific real numbers, see Fig. 4 (4-a,4-b). In particular, we also simulated the figures of the

Green’s function of case β = π
2 , where α takes specific real number, see Fig. 4 (4-c,4-d).

Remark 2.1 It is worth noting that we get G̃(x, s) < 0 with the case of k1 < 0 < k2 ≤ π2

4 . At

this point, if the problem we are studying (1.1) is transformed into the following form{
y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) + λf(x, y(x)) = 0, x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

(2.8)

then the results obtained in this paper still held true for the above problems.

2.3 Green’s function and its sign properties in case 0 < k1 < k2 ≤ π2

4

From 0 < k1 < k2 ≤ π2

4 , let k1 = α2, k2 = β2 and 0 < α < β ≤ π
2 , then the NBVP (1.1) can be

written as the following boundary value problem{
y(4)(x) + (α2 + β2)y′′(x) + α2β2y(x) = f(x, y(x)), x ∈ (0, 1),
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0.

(2.9)

Define linear operators L : D(L)→ X

Ly := y(4) + (α2 + β2)y′′ + α2β2y, y ∈ D(L),

7 Mar 2023 04:03:37 PST
221115-Wang Version 2 - Submitted to Rocky Mountain J. Math.



12 JINGJING WANG∗, CHENGHUA GAO, YANQIONG LU AND XINGYUE HE

(4-a) α = 0.8, β = 0.5 in −G̃(x, s) (4-b) α = 0.8 × 10−3, β = 1.5 in −G̃(x, s)

(4-c) α = 0.8, β = π
2

in −G̃(x, s) (4-d) α = 0.8 × 10−3, β = π
2

Figure 4. Figure of −G̃(x, s) when α ∈ (0,+∞), β ∈ (0, π2 ) or β = π
2 .

where

D(L) := {y ∈ C4[0, 1] : y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0}.

To get the Green’s function G(x, s) of the operator Ly = 0, define another linear operator

L4y := y′′ + α2y, D(L4) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

It’s not difficult to calculate the Green’s function of L4y = 0 is

G4(t, s) =


cos[α(1− t)] cos(αs)

α sinα
, 0 ≤ s ≤ t ≤ 1,

cos[α(1− s)] cos(αt)

α sinhα
, 0 ≤ t ≤ s ≤ 1.

Define the linear operator

L3y := y′′ + β2y, D(L3) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

G3(t, s) is the Green’s function of L3y = 0.

It is easy to verify Ly = L3 ◦ (L4y), then the Green’s function of Ly = 0 is

G(x, s) :=

∫ 1

0

G3(x, t)G4(t, s)dt, (x, s) ∈ [0, 1]× [0, 1]. (2.10)
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OPTIMAL POSITIVE SOLUTIONS FOR NONLINEAR EULER-BERNOULLI BEAM EQUATION 13

Notice that if α = β, then the characteristic equation µ4 + 2α2µ2 + α4 = 0 of (2.5) has double

roots µ1 = αi, µ2 = −αi. In this case, the expression of G(x, s) can not be directly obtained from

(2.6).

Therefore, we divide two cases as follows:

Case 3. α = β < π
2

In this case, y(x) = C1 cos(αx) +C2 sin(αx) +C3x cos(αx) +C4x sin(αx) is the general solution

of y(4)(x) + (α2 + β2)y′′(x) + α2β2y(x) = 0. It is easy to compute that ϕ(x) = sin(αx)−αx cos(αx)
2α3 is

the solution of initial value problem{
ϕ(4)(x) + 2α2ϕ′′(x) + α4ϕ(x) = 0, x ∈ [0, 1],
ϕ(0) = ϕ′(1) = ϕ′′(0) = 0, ϕ′′′(1) = 1.

Then, we can obtain the concrete expression of Green’s function of problem (2.5) as follows

G(x, s) =



sinα cos[α(1− s)][cos(αx) + αx sin(αx)]

2α3 sin2 α

+
α cos(αx)[cos(αs− s sinα sin[α(1− s)]]

2α3 sin2 α
, s ≤ x,

sinα cos[α(1− x)][cos(αs) + αs sin(αs)]

2α3 sin2 α

+
α cos(αs)[cos(αx− x sinα sin[α(1− x)]]

2α3 sin2 α
, x ≤ s.

(2.11)

Next, we first give the figure of Green’s function when α = β in Case 3. In this case α and β

take the concrete real numbers, as shown in Fig. 5.

(5-a) α = β = 0.5 × 10−3 in G(x, s) (5-b) α = β = 1.5 in G(x, s)

Figure 5. Figure of G(x, s) when α = β < π
2 .

In particular, if α = β = π
2 , then t = s = 0 or t = s = 1, G(x, s) contains zero.

Case 4. 0 < α < β < π
2
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14 JINGJING WANG∗, CHENGHUA GAO, YANQIONG LU AND XINGYUE HE

In this case, if 0 ≤ x ≤ s ≤ 1, then

G(x, s) =

∫ x

0

cos[α(1− s)] cos(αt)

α sinα

cos[β(1− x)] cos(βt)

β sinβ
dt

+

∫ s

x

cos[α(1− s)] cos(αt)

α sinα

cos[β(1− t)] cos(βx)

β sinβ
dt

+

∫ 1

s

cos[α(1− t)] cos(αs)

α sinα

cos[β(1− t)] cos(βx)

β sinβ
dt

=
1

β2 − α2

[β sinβ cos(αx) cos[α(1− s)]
αβ sinα sinβ

− α sinα cos[β(1− s)] cos(βx)

αβ sinα sinβ

]
=

1

β2 − α2

[cos(αx) cos[α(1− s)]
α sinα

− cos(βx) cos[β(1− s)]
β sinβ

]
.

Similarly, if 0 ≤ s ≤ x ≤ 1, then

G(x, s) =
1

β2 − α2

[cos[α(1− x)] cos(αs)

α sinα
− cos[β(1− x)] cos(βs)

β sinβ

]
.

So the concrete expression of Green’s function of problem (2.5) is

G(x, s) =


1

β2 − α2

[cos[α(1− s)] cos(αx)

α sinα
− cos[β(1− s)] cos(βx)

β sinβ

]
, 0 ≤ x ≤ s ≤ 1,

1

β2 − α2

[cos[α(1− x)] cos(αs)

α sinα
− cos[β(1− x)] cos(βs)

β sinβ

]
, 0 ≤ s ≤ x ≤ 1.

(2.12)

The properties of Green’s function G(x, s) are given as follows:

Theorem 2.3 If 0 < α < β ≤ π
2 , then

G(x, s) > 0, (x, s) ∈ [0, 1]× [0, 1].

Proof. According to literature [15], we know that

Gi(t, s) > 0, i = 3, 4, (t, s) ∈ [0, 1]× [0, 1].

Combining (2.6), we can obtain

G(x, s) > 0, (x, s) ∈ [0, 1]× [0, 1].

If 0 < α < β = π
2 , then we can get G4(t, s) > 0 and G3(x, t) ≥ 0. Especially, G3(x, t) = 0 if and

only if x = t = 0 or x = t = 1. Therefore, when x = 0, by combining (2.12), we can obtain

G(0, s) =
1

β2 − α2

[cos[α(1− s)]
α sinα

− cos[β(1− s)]
β sinβ

]
, 0 ≤ s ≤ 1.

Because x sinx is increasing on x ∈ (0, π2 ), cosx is decreasing, so cos x
x sin x is a decreasing function.

Therefore G(0, s) > 0, s ∈ [0, 1];
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When x = 1,

G(1, s) =
1

β2 − α2

[cos(αs)

α sinα
− cos(βs)

β sinβ

]
, 0 ≤ s ≤ 1.

Similarly, we can get G(1, s) > 0, s ∈ [0, 1]. Figure (6-a) and Figure (6-b) are images of G(0, s)

and G(1, s) when α = 0.2× 10−3, β = 1.5, where s ∈ [0, 1]. From the images we can see that the

result we want to prove is correct.

(6-a) α = 0.2 × 10−3 β = 1.5 in G(0, s) (6-b) α = 0.2 × 10−3 β = 1.5 in G(1, s)

Figure 6. Figure of G(0, s) and G(1, s) when α = 0.2× 10−3, β = 1.5, where s ∈ [0, 1].

To sum up,

G(x, s) > 0, (x, s) ∈ [0, 1]× [0, 1].

2

The figure of Green’s function at 0 < α < β < π
2 in Case 4 is given. At this point, α and β

take the concrete real numbers, as is shown in Fig. 7 (7-a,7-b). In particular, the figure of Green’s

function at 0 < α < β = π
2 is also simulated, as shown in Fig. 7 (7-c,7-d).

Remark 2.2 It should be noted that in the three cases discussed in this section, if the parameter

k1 = 0 or k2 = 0, the operator Ly has eigenvalue λ0 = 0 and Ly = 0 has nontrivial solution

y ≡ C (C 6= 0). Therefore, according to the Fredholm alternative theorem, there is no solution to

the problem (1.1), so the parameters in this paper meet the requirement that k1k2 6= 0 are always

valid. In particular, the parameter k1 = k2 = π2

4 , if t = s = 0 or t = s = 1, then G(x, s) contains

zero.

2.4 Some lemmas

Based on the sign of Green’s function of NBVP (1.1), without loss of generality, we discuss the

case of k1 ≤ k2 < 0.

Obviously, y(x) is a solution of the problem{
y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = h(x), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,
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16 JINGJING WANG∗, CHENGHUA GAO, YANQIONG LU AND XINGYUE HE

(7-a) α = 0.8 × 10−3, β = 1.0005 in G(x, s) (7-b) α = 0.8, β = 1.5 in G(x, s)

(7-c) α = 0.1 × 10−3, β = π
2

in G(x, s) (7-d) α = 1, β = π
2

in G(x, s)

Figure 7. Figure of G(x, s) when 0 < α < β < π
2 and 0 < α < β = π

2 .

then

y(x) =

∫ 1

0

G(x, s)h(s)ds, x ∈ [0, 1],

where G(x, s) is given by (2.4).

From Theorem 2.3, there exist 0 < m < M such that

m = min
x,s∈[0,1]

G(x, s), M = max
x,s∈[0,1]

G(x, s).

Consider 4-dimensional Banach space

E = {y ∈ C4[0, 1] : y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0}

with the norm ‖y‖ = max0≤x≤1 |y(x)| for all y ∈ E and the cone P in E given by

P = {y ∈ E, y(x) ≥ 0, y(x) ≥ m

M
‖y‖}.

For u, v ∈ E, we write u ≤ v if u(x) ≤ v(x) for any x ∈ [0, 1]. For any r > 0, let

Br = {y ∈ E : ‖y‖ < r} and ∂Br = {y ∈ E : ‖y‖ = r}. We denote θ is the zero element in

E.
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Lemma 2.1 Define operators K, f , A : E → E, by

(Ky)(x) =

∫ 1

0

G(x, s)y(s)ds, y ∈ E, x ∈ [0, 1]; (2.13)

(fy)(x) = f(x, y(x)), y ∈ E, x ∈ [0, 1];

A = Kf . (2.14)

Then K(P ) ⊂ P, A(P ) ⊂ P and K : E → E, A : E → E are completely continuous.

Proof. By the definitions of m and M , it follows that

Ay(x) =

∫ 1

0

G(x, s)f(s, y(s))ds ≥ m
∫ 1

0

f(s, y(s))ds, x ∈ [0, 1],

Ay(x) =

∫ 1

0

G(x, s)f(s, y(s))ds ≤M
∫ 1

0

f(s, y(s))ds, x ∈ [0, 1].

Accordingly,

Ay(x) ≥ m

M
max
x∈[0,1]

Ay(x) =
m

M
‖Ay‖.

So A(P ) ⊂ P , by using the Arzelà-Ascoli theorem, A is a completely continuous operator.

By using similar method it yields that K(P ) ⊂ P and K : E → E is completely continuous. 2

It is evident that y ∈ P is a fixed point of the operator λA if and only if y is a solution of

NBVP (1.1). K defined by (2.13) is an important operator in our later discussion. We present

some properties of it as follows.

Lemma 2.2 The spectral radius r(K) > 0 and there exist ξ ∈ E with ξ > 0 on [0,1] such that

Kξ = r(K)ξ and
∫ 1

0
ξ(s)ds = 1

r(K) . Moreover, ρ1 = 1
r(K) is the first positive eigenvalue of the

linear NBVP (1.1) and ∫ 1

0

(Ky)(s)ξ(s)ds =
1

ρ1

∫ 1

0

y(s)ξ(s)ds, ∀y ∈ E. (2.15)

Proof. Define the cone P0 = {y ∈ E : y(x) ≥ 0,∀ x ∈ [0, 1]}. Then the cone P0 is normal and

has nonempty interiors int P0. It is clear that P0 is also a total cone of E, that is, E = P0 − P0,

which means that the set P0 − P0 = {u− v : u, v ∈ P0} is dense in E. It follows from Lemma 2.1

that K is strongly positive, that is, K(y) ∈ intP0 for y ∈ P0\{θ}. Obviously, K(P0) ⊆ P0. By

the Krein-Rutman theorem ([5], Theorem 19.3; [34], Theorem 7.C), the spectral radius r(K) > 0

and there exists ξ0 ∈ E with ξ0 > 0 on [0,1] such that Kξ0 = r(K)ξ0. Let ξ = ξ0
r(K)

∫ 1
0
ξ0(s)ds

.

Obviously, ξ > 0 on [0,1], Kξ = r(K)ξ and
∫ 1

0
ξ(s)ds = 1

r(K) .

Notice that Kξ = r(K)ξ is equivalent to the following NBVP ξ(4)(x) + (k1 + k2)ξ′′(x) + k1k2ξ(x) =
1

r(K)
ξ(x), x ∈ [0, 1],

ξ′(0) = ξ′(1) = ξ′′′(0) = ξ′′′(1) = 0,
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we can obtain that ρ1 =
1

r(K)
is an eigenvalue of the linear NBVP (1.6). From the strong positivity

of K, we know that there exist η ∈ P0 and a constant c > 0 such that cKη ≥ η on [0,1]. Then ρ1

is the first positive eigenvalue of the linear problem (1.6).

Since ξ′(0) = ξ′(1) = ξ′′′(0) = ξ′′′(1) = 0, that we have

ρ1

∫ 1

0

(Ky)(s)ξ(s)ds =

∫ 1

0

(Ky)(s){ξ(4)(s) + (k1 + k2)ξ′′(s) + k1k2ξ(s)}ds

=

∫ 1

0

ξ(s)(Ky)(4)(s)ds+ (k1 + k2)

∫ 1

0

ξ(s)(Ky)′′(s)ds

+ k1k2

∫ 1

0

ξ(s)(Ky)(s)ds

=

∫ 1

0

y(s)ξ(s)ds.

Then (2.15) holds. 2

The proof of the main theorems are based on the fixed point index theory. The following three

well-known theorem in [5, 7, 34] are needed in our argument.

Lemma 2.3 Let E be a Banach space and X ⊂ E be a cone in E. Assume that Ω is a bounded open

subset of E. Suppose that A : X∩Ω→ X is a completely continuous operator. If inf
x∈X∩∂Ω

‖Ax‖ > 0

and µAx 6= x for x ∈ X ∩ ∂Ω, µ ≥ 1, then the fixed point index i(A,X ∩ Ω, X) = 0.

Lemma 2.4 Let E be a Banach space and X ⊂ E be a cone in E. Assume that Ω is a bounded

open subset of E. Suppose that A : X ∩Ω→ X is a completely continuous operator. If there exist

x0 ∈ X\{θ} such that x − Ax 6= µx0 for all x ∈ X ∩ ∂Ω and µ ≥ 0, then the fixed point index

i(A,X ∩ Ω, X) = 0.

Lemma 2.5 Let E be a Banach space and X ⊂ E be a cone in E. Assume that Ω is a bounded

open subset of E with θ ∈ Ω. Suppose that A : X ∩ Ω → X is a completely continuous operator.

If Ax 6= µx for all x ∈ X ∩ ∂Ω and µ ≥ 1, then the fixed point index i(A,X ∩ Ω, X) = 1.

3. Proofs of Theorems 1.1 and 1.2. Firstly, we introduce the following notations:

Φ = {(λ, y) : λ > 0, y is a positive solution of NBVP (1.1)};

Λ = {λ > 0 : there exist y such that (λ, y) ∈ Φ};

λ∗ = sup Λ, λ∗ = inf Λ.

Lemma 3.1 Assume that f0 =∞. Then Φ 6= ∅.

Proof. Let R > 0 is a fixed number. Then we can choose λ0 > 0 small enough such that

λ0(supy∈P∩BR
‖Ay‖) < R. It is easy to see that

λ0Ay 6= µy, ∀y ∈ P ∩ ∂BR, µ ≥ 1.
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By Lemma 2.5, it follows that

i(λ0A,P ∩BR, P ) = 1. (3.1)

From f0 =∞, it follows that there exists r ∈ (0, R) such that

f(x, y) ≥ ρ1

λ0
y, ∀ y ∈ [0, r], x ∈ [0, 1], (3.2)

where ρ1 > 0 is given in Lemma 2.2. We may suppose that λ0A has no fixed point on P ∩ ∂Br.
Otherwise, the proof is finished. Now we shall prove

y 6= λ0Ay + µξ, ∀P ∩ ∂Br, µ ≥ 0, (3.3)

where ξ is given in Lemma 2.2. Suppose on the contrary that there exist y1 ∈ P ∩ ∂Br and µ1 ≥ 0

such that y1 = λ0Ay1 + µ1ξ. Then µ1 > 0. Multiplying the equality y1 = λ0Ay1 + µ1ξ by ξ and

integrating on [0,1], by using (2.8) and (3.2), it follows that∫ 1

0

y1(s)ξ(s)ds =

∫ 1

0

(λ0Ay1)(s)ξ(s)ds+ µ1

∫ 1

0

ξ2(s)ds

=
λ0

ρ1

∫ 1

0

f(s, y1(s))ξ(s)ds+ µ1

∫ 1

0

ξ2(s)ds

≥
∫ 1

0

y1(s)ξ(s)ds+ µ1

∫ 1

0

ξ2(s)ds,

which contradicts ξ > 0 on [0,1]. Thus, (3.3) holds. It follows from Lemma 2.4 that

i(λ0A,P ∩Br, P ) = 0. (3.4)

According to the additivity of the fixed point index, it follows from (3.1) and (3.4) that

i(λ0A,P ∩ (BR\Br), P ) = i(λ0A,P ∩BR, P )− i(λ0A,P ∩Br, P ) = 1,

which implies that the nonlinear operator λ0A has one fixed point y0 ∈ P ∩ (BR\Br).

Therefore, (λ0, y0) ∈ Φ, i.e. Φ 6= ∅. 2

Lemma 3.2 Assume that (H1) and (H2) hold. Then Λ is a bounded set.

Proof. Let (λ, y) ∈ Φ. It follows from (H1) and (H2) that there exists C > 0 such that

f(x, y) ≥ Cy for all y ≥ 0 and x ∈ [0, 1]. By Lemma 2.1, we obtain that K−1 : E → E is

the inverse mapping of K, and (K−1y)(x) = λ(fy)(x) for x ∈ [0, 1]. Since λKfy = y, we assume

that y(x0) = ‖y‖ = maxx∈[0,1] |y(x)| for x0 ∈ [0, 1]. Then,

‖K−1‖‖y‖ ≥ ‖K−1y‖ ≥ |(K−1y)(x0)| = λf(x0, y(x0)) ≥ λC‖y‖,

where ‖K−1‖ = sup‖y‖=1 ‖K−1y‖. By Matrix theory([8], Vol.2, Page105, Theorem 13, [9], Page87,

Theorem 6), ‖K−1‖ = ρ1. Thus, λ ≤ ρ1C
−1. 2
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Lemma 3.3 Assume that (H1) and (H2) hold. Then (0, λ∗) ⊂ Λ. Moreover, for any λ ∈ (0, λ∗),

NBVP (1.1) has at least two positive solutions.

Proof. For any fixed λ ∈ (0, λ∗), by the definition of λ∗, there exists λ2 ∈ Λ such that λ < λ2 ≤ λ∗

and (λ2, y2) ∈ Φ. Fixed R < minx∈[0,1] y2(x). From the proof of Lemma 3.1, we see that there

exist λ1 < λ,R > r and y1 ∈ P ∩ (BR\Br) such that (λ1, y1) ∈ Φ. It is easy to see that

0 < y1(x) < y2(x), x ∈ [0, 1]. Then by (H1), we have

y
(4)
1 (x) + (k1 + k2)y′′1 (x) + k1k2y1(x) = λ1f(x, y1(x)) < λf(x, y1(x)), x ∈ [0, 1]

and

y
(4)
2 (x) + (k1 + k2)y′′2 (x) + k1k2y2(x) = λ2f(x, y2(x)) > λf(x, y2(x)), x ∈ [0, 1]. (3.5)

Now, we consider the modified boundary value problem{
y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = λf1(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

(3.6)

where

f1(x, y) =

 f(x, y1(x)), y(x) < y1(x),
f(x, y(x)), y1(x) ≤ y(x) ≤ y2(x),
f(x, y2(x)), y(x) > y2(x).

Clearly, the function λf1 is bounded for x ∈ [0, 1]. Define the operator A1 : E → E by

(A1y)(x) =

∫ 1

0

G(x, s)f1(s, y(s))ds, x ∈ [0, 1].

Then A1 : P → P is completely continuous and y(x) is a solution of (3.6) if and only if y = y(x) ∈ E
is a fixed point of operator λA1. It is easy to see that there exists r0 > ‖y2‖ such that ‖λA1y‖ < r0

for any y ∈ E. It follows from Lemma 2.5 that

i(λA1, P ∩Br0 , P ) = 1. (3.7)

Choose

U = {y ∈ P : y1(x) ≤ y(x) ≤ y2(x),∀x ∈ [0, 1]}.

We claim that if y ∈ P is a fixed point of operator λA1, then y ∈ U . We first prove that y(x) ≤ y2(x)

on [0,1]. Suppose on the contrary that there exist some x ∈ [0, 1] such that y(x) > y2(x). Thus,

there exists x0 ∈ [0, 1] such that

y(x0)− y2(x0) = max
x∈[0,1]

{y(x)− y2(x)} > 0.
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Consequently, we have

(y − y2)(4)(x0) + (k1 + k2)(y − y2)′′(x0) + k1k2(y − y2)(x0)

=λf1(x0, y(x0))− λf(x0, y2(x0))

<λf(x0, y(x0))− λf(x0, y2(x0)) = 0.

It’s easy verify that there exists h ∈ C[0, 1] satisfying h(x) ≤ 0, h(x) 6≡ 0 on any subinterval

and h(x0) 6= 0 such that the linear boundary value problem{
(y − y2)(4)(x) + (k1 + k2)(y − y2)′′(x) + k1k2(y − y2)(x) = h(x), x ∈ [0, 1],
(y − y2)′(0) = (y − y2)′(1) = (y − y2)′′′(0) = (y − y2)′′′(1) = 0

has a unique solution

(y − y2)(x) =

∫ 1

0

G(x, s)h(s)ds ≤ 0.

Especially, (y − y2)(x0) =
∫ 1

0
G(x0, s)h(s)ds ≤ 0. This is a contradiction. It follows that

y(x) ≤ y2(x) on [0,1].

Using the similar methods, we can prove that y(x) ≥ y1(x) on [0,1]. By virtue of the claim, the

excision property of the fixed point index and (3.7), we can obtain

i(λA1, U, P ) = i(λA1, P ∩Br0 , P ) = 1.

From the definition of A1, we know that A1 = A on U . Then,

i(λA,U, P ) = 1. (3.8)

Hence, the nonlinear operator λA has at least one fixed-point v1 ∈ U . That is, v1(x) is a positive

solution of NBVP (1.1). This means (λ, v1) ∈ Φ and (0, λ∗) ⊂ Λ.

Now, we find the second positive solution of NBVP (1.6). By f∞ = ∞ and the continuity of

f(x, y), there exists C > 0 such that

f(x, y) ≥ 2ρ1λ
−1y − C, ∀y ≥ 0, x ∈ [0, 1]. (3.9)

Set Ω = {y ∈ P : y = λAy + τξ for some τ ≥ 0}, where ξ is given in Lemma 2.3. We claim

that Ω is bounded in E. In fact, for any y ∈ Ω, there exists τ ≥ 0 such that y = λAy + τξ ≥ λAy.

Then, by (3.9), we have

y(x) ≥ 2ρ1(Ky)(x)− λC(Kv0)(x), x ∈ [0, 1],

where v0(x) ≡ 1. Multiplying the above inequality by ξ(x) and integrating on [0,1], it follows from
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Lemma 2.3 that ∫ 1

0

y(s)ξ(s)ds ≥ 2ρ1

∫ 1

0

(Ky)(s)ξ(s)ds− λC
∫ 1

0

(Kv0)(s)ξ(s)ds

= 2

∫ 1

0

y(s)ξ(s)ds− λC.

This implies that
∫ 1

0
y(s)ξ(s)ds ≤ λC. Let δ = minx∈[0,1]{ξ(x)} > 0. Thus, ‖y‖ ≤ λδ−1C. Then

we can conclude that Ω is bounded in E. Therefore there exists R1 > max{‖y2‖, λ∗δ−1C} such

that

y 6= λAy + τξ, ∀y ∈ P ∩ ∂BR1 , τ ≥ 0.

This together with Lemma 2.4 implies that

i(λA,P ∩BR1
, P ) = 0. (3.10)

Using a similar argument as in deriving (3.4), we have

i(λA,P ∩Br1 , P ) = 0,

where 0 < r1 < minx∈[0,1]{y1(x)}. Then according to the additivity of the fixed point index, by

(3.8) and (3.10), we deduce that

i(λA,P ∩ (BR1\(U ∪Br1)), P )

=i(λA,P ∩BR1 , P )− i(λA,U, P )− i(λA,P ∩Br1 , P ) = −1,

which implies that the nonlinear operator λA has at least one fixed point v2 ∈ P ∩(BR1\(U∪Br1)).

Therefore, NBVP (1.1) has another positive solution. 2

Lemma 3.4 Assume that (H1) and (H2) hold. Then Λ = (0, λ∗].

Proof. In view of Lemma 3.3, it suffices to prove that λ∗ ∈ Λ. By the definition of λ∗, we can

choose {λn} ⊂ Λ with λn ≥ λ∗

2 (n = 1, 2, · · ·) such that λn → λ∗ as n → ∞. By Lemma 3.3, we

can choose yn ⊂ P\{θ} such that (λn, yn) ∈ Φ. Then from (H2) and the continuity of f , we know

that there exist c > 2ρ1
λ∗ and d > 0 such that f(x, y) ≥ cy − d for any y ≥ 0 and x ∈ [0, 1]. Then

yn(x) = (λnAyn)(x) ≥ cλ∗

2
(Kyn)(x)− dλ∗

2
(Kv0)(x), x ∈ [0, 1],

where v0(x) ≡ 1. Multiplying the above inequality by ξ(x) and integrating on [0,1], it follows from

Lemma 2.2 that∫ 1

0

yn(s)ξ(s)ds ≥ cλ∗

2

∫ 1

0

(Kyn)(s)ξ(s)ds− dλ∗

2

∫ 1

0

(Kv0)(s)ξ(s)ds

=
cλ∗

2ρ1

∫ 1

0

(yn)(s)ξ(s)ds− dλ∗

2
.

(3.11)
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Now we show that {yn} is bounded. Suppose on the contrary that there exists a subsequence

of {yn} (still denoted by {yn}) such that yn(x0)→ +∞ as n→∞ for some x0 ∈ [0, 1]. By (3.11),

we have

yn(x0)ξ(x0)(
cλ∗

2ρ1
− 1) ≤ (

cλ∗

2ρ1
− 1)

∫ 1

0

yn(s)ξ(s)ds ≤ dλ∗

2
,

which contradicts yn(x0) → +∞ as n → ∞. Hence, {yn} is bounded. Since E is a Banach space

and A is a compact operator, there exist a subsequence of {yn} (still denoted by {yn}) and y∗ ∈ P
such that yn → y∗ as n → ∞. By yn = λnAyn, n → ∞, we obtain that y∗ = λ∗Ay∗. Since

yn(x) = λn
∫ 1

0
G(x, s)f(s, yn(s))ds ≥ λ∗m

2 f(x, yn(x)) for all x ∈ [0, 1], then by {yn} ⊂ P\{θ} we

know that 1 ≥ λ∗

2 ·
f(x,yn(x))
yn(x) for all x ∈ [0, 1]. It follows from f∞ = ∞ that y∗ ∈ P\{θ}. So,

λ∗ ∈ Λ. 2

Proof of Theorem 1.1. Theorem 1.1 really follows from Lemmas 3.1-3.4.

Lemma 3.5 Assume that (H1) and (H3) hold. Then NBVP (1.1) has at least one positive solution

for λ large enough and has no positive solution for λ small enough.

Proof. Let r > 0 be fixed. From (H1) and the definition of cone P , it follows that there exists

C > 0 such that f(x, y(x)) ≥ C for all x ∈ [0, 1] and y ∈ P ∩ ∂Br. Then for any fixed λ > r
mC and

y ∈ P ∩ ∂Br, one has

λ(Ay)(x) = λ

∫ 1

0

G(x, s)f(s, y(s))ds ≥ λmC > r, x ∈ [0, 1].

This gives that infy∈P∩∂Br ‖λAy‖ > 0 and µλAy 6= y for y ∈ P ∩ ∂Br, µ ≥ 1. By Lemma 2.4, it

follows that

i(λA,P ∩Br, P ) = 0. (3.12)

From f∞ = 0, there exists R > r such that

f(x, y) ≤ 1

2λM
y, ∀ y ∈ [

m

M
R,∞), x ∈ [0, 1].

Then for y ∈ P ∩ ∂BR, by the definition of cone P , one has

min
x∈[0,1]

{y(x)} ≥ m

M
‖y‖ =

m

M
R,

and so

λ(Ay)(x) = λ

∫ 1

0

G(x, s)f(s, y(s))ds ≤ λM 1

2λM
‖y‖ < R, x ∈ [0, 1].

It follows from Lemma 2.5 that

i(λA,P ∩BR, P ) = 1. (3.13)

According to the additivity of the fixed point index, by (3.12) and (3.13), we have

i(λA,P ∩ (BR\Br), P ) = i(λA,P ∩BR, P )− i(λA,P ∩Br, P ) = 1,
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which implies that the nonlinear operator λA has at least one fixed point y ∈ P ∩ (BR\Br).
Therefore, NBVP (1.1) has at least one positive solution.

Next, we prove the nonexistence result. From (H3) and the continuity of f(x, y) with respect

to y, there exists C1 > 0 such that f(x, y) ≤ C1y for any x ∈ [0, 1] and y ≥ 0. Assume that NBVP

(1.1) has one positive solution y(x) for λ small enough such that λMC1 < 1. Then

‖y‖ = ‖λ
∫ 1

0

G(x, s)f(s, y(s))ds‖ ≤ λMC1

∫ 1

0

y(s)ds ≤ λMC1‖y‖ < ‖y‖,

which is a contradiction. 2

Lemma 3.6 Assume that (H1) and (H3) hold. Then 0 < λ∗ < ∞ and (λ∗,+∞) ⊂ Λ. Moreover,

for any λ ∈ (λ∗,+∞), NBVP (1.1) has at least two positive solutions.

Proof. By virtue of Lemma 3.5, we can easily obtain that 0 < λ∗ < ∞. For any fixed

λ ∈ (λ∗,+∞), we prove that λ ∈ Λ. By the definition of λ∗, there exists λ1 ∈ Λ such that

λ∗ ≤ λ1 < λ and (λ1, y1) ∈ Φ. Let r > M
m ‖y1‖ be fixed. From the proof of Lemma 3.5, we see that

there exist λ2 > λ,R > r and y2 ∈ P ∩ (BR\Br) such that (λ2, y2) ∈ Φ. By the definition of cone

P , it is easy to see that 0 < y1(x) < y2(x) for all x ∈ [0, 1]. Define

V = {y ∈ P : y1(x) ≤ y(x) ≤ y2(x),∀x ∈ [0, 1]}.

An argument similar to the one used in deriving (3.8) in the proof of Lemma 3.3 yields

i(λA, V, P ) = 1. (3.14)

Hence, the nonlinear operator λA has at least fixed point v1 ∈ V . Then v1(x) is a positive solution

of NBVP (1.1). This gives (λ, v1) ∈ Φ and (λ∗,+∞) ⊂ Λ.

Now we find the second positive solution of NBVP (1.1). From f0 = 0, there exists 0 < r0 <

min
x∈[0,1]

{y(x)} such that

f(x, y) ≤ 1

2λM
y, ∀y ∈ [0, r0], x ∈ [0, 1].

Then for y ∈ P ∩ ∂Br0 , we have

λ(Ay)(x) = λ

∫ 1

0

G(x, s)f(s, y(s))ds ≤ λM 1

2λM
‖y‖ < r0, x ∈ [0, 1].

It follows from Lemma 2.5 that

i(λA,P ∩Br0 , P ) = 1. (3.15)

Using a similar argument as in deriving (3.13), we have

i(λA,P ∩BR0
, P ) = 1, (3.16)
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where R0 > ‖y2‖. According to the fixed point index, by (3.14)-(3.16), we have

i(λA,P ∩ (V ∪Br0), P )

=i(λA,P ∩BR0
, P )− i(λA, V, P )− i(λA,P ∩Br0 , P ) = −1,

which implies that the nonlinear operator λA has at least one fixed point v2 ∈ P ∩(Br0\(V ∪Br0)).

Thus, NBVP (1.1) has another positive solution. 2

Lemma 3.7 Assume that (H1) and (H3) hold. Then Λ = [λ∗,+∞).

Proof. The proof is similar to Lemma 3.4, so we omit it here. 2

Proof of Theorem 1.2. Theorem 1.2 directly follows from Lemmas 3.5-3.7.

Remark 3.1 The results of Theorem 1.1 and 1.2 are satisfied for the case of 0 < k1 < k2 ≤ π2

4 .

Besides, the conclusion of Theorem 1.1 and 1.2 for k1 < 0 < k2 ≤ π2

4 also apply when NBVP (1.1)

is converted into the problem (2.8) as Remark 2.1. On account of the proof is similar to Theorems

1.1 and 1.2, so we omit it here.

4. Proofs of Theorem 1.3 and Corollary 1.1.

Proof of Theorem 1.3. (i) Fix λ ∈ (ρ1f0 ,
ρ1
f∞ ). Then f0 >

ρ1
λ and f∞ < ρ1

λ . By f0 >
ρ1
λ , there

exists r1 > 0 such that

f(x, y) ≥ ρ1

λ
y, ∀ y ∈ [0, r1], x ∈ [0, 1].

Suppose that λA has no fixed point on P ∩ ∂Br1 . Otherwise, the proof of (i) is finished. From

(3.4), we have

i(λA,P ∩Br1 , P ) = 0. (4.1)

On the other hand, by f∞ < ρ1
λ and the continuity of f(x, y), there exist C > 0 and σ ∈ (0, 1)

such that

f(x, y) ≤ ρ1σ

λ
y + C, ∀ y ∈ [0,+∞), x ∈ [0, 1]. (4.2)

Define

W = {y ∈ P : y = sλAy for some s ∈ [0, 1]}.

Now we show that W is bounded in E. For any y ∈ W , then there exists s ∈ [0, 1] such that

y = sλAy. By (4.2), we have y = sλAy ≤ ρ1σKy + λCKv0, where v0(x) ≡ 1, x ∈ [0, 1]. Thus

(I −K1)y ≤ CKv0, (4.3)

where K1 = ρ1σK and I is the identity operator. Since r(K1) = ρ1σr(K) < 1, the inverse operator

(I −K1)−1 exists and is given by (I −K1)−1 = I +K1 +K2
1 + · · ·. This together with K1(P ) ⊂ P

yields that (I − K1)−1(P ) ⊂ P . Now, from (4.3), we have y ≤ (I − K1)−1CKv0. Hence, W is
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bounded. Then there exists R1 > max{r1, supy∈W ‖y‖} such that

y 6= sλAy, ∀y ∈ P ∩ ∂BR1
, s ∈ [0, 1].

This and Lemma 2.5 imply that i(λA,P ∩BR1
, P ) = 1. Taking (4.1) into account, we have

i(λA,P ∩ (BR1
\Br1), P ) = 1,

which means that λA has at least one fixed point in P ∩ (BR1\Br1). That is, NBVP (1.1) has at

least one positive solution.

(ii) Fix λ ∈ ( ρ1f∞ ,
ρ1
f0 ). Then f0 < ρ1

λ and f∞ > ρ1
λ . By f0 < ρ1

λ , there exist ε ∈ (0, 1) and r2 > 0

such that

f(x, y) ≤ ρ1

λ
(1− ε)y, ∀y ∈ [0, r2], x ∈ [0, 1]. (4.4)

Now we prove

λAy 6= µy, y ∈ P ∩ ∂Br2 , µ ≥ 1. (4.5)

If (4.5) holds, then there exist µ0 ≥ 1 and y0 ∈ P ∩ ∂Br2 such that λAy0 = µ0y0. Then, by (4.4),

we have

y0(x) ≤λ(Ay0)(x) ≤ λ
∫ 1

0

G(x, s)f(s, y0(s))ds

≤ρ1(1− ε)
∫ 1

0

G(x, s)y0(s)ds, x ∈ [0, 1].

This gives ρ1(1− ε)Ky0 ≥ y0. Multiplying this inequation by ξ and integrating on [0,1], it follows

from (2.9) that

(1− ε)
∫ 1

0

y0(s)ξ(s)ds = ρ1(1− ε)
∫ 1

0

(Ky0)(s)ξ(s)ds ≥
∫ 1

0

y0(s)ξ(s)ds.

This together with
∫ 1

0
y0(s)ξ(s)ds > 0 implies that ε ≤ 0, which contradicts the choice of ε, and

so (4.5) holds. It follows from Lemma 2.5 that

i(λA,P ∩Br2 , P ) = 1. (4.6)

By f∞ > ρ1
λ , using a similar argument, we have i(λA,P ∩ (BR2\Br2), P ) = −1, which implies that

λA has at least one fixed point in P ∩ (BR2
\Br2). Therefore, NBVP (1.1) has at least one positive

solution. 2

Proof of Corollary 1.1. (i) Fix λ ∈ (ρ1f0 ,
ρ1
f∞ ). In view of the fact that yf(x, y) ≥ 0 for any

x ∈ [0, 1] and y ∈ R, we know that A(P ) ⊂ P . It follows from Theorem 1.3 that NBVP (1.1) has

at least one positive solution.
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Set f2(x, y) = −f(x,−y),∀(x, y) ∈ [0, 1]×R. Define operators f2, A2 : E → E, respectively, by

(f2y)(x) = f2(x, y(x));

A2 = Kf2.

Obviously, A2(P ) ⊂ P . From the proof of Theorem 1.3, it is easy to see that λA2 has at least one

fixed point y0 ∈ P\{θ}. Then, λA(−y0) = λKf(−y0) = λK(−f2)y0 = −(λA2)y0 = −y0. That is,

λA(−y0) = −y0. Hence, NBVP (1.1) has at least one negative solution.

The proof of (ii) is similar and omitted. 2

Remark 4.1 Note that the results of Theorem 1.3 and Corollary 1.1 are satisfied for the cases

of 0 < k1 < k2 ≤ π2

4 . In particular, the conclusion of Theorem 1.3 and Corollary 1.1 for

k1 < 0 < k2 ≤ π2

4 also apply when NBVP (1.1) is converted into the problem (2.8) as Remark 2.1.

On account of the proof is similar to Theorem 1.3 and Corollary 1.1, so we omit it here.

5. Some examples and branching figures of solutions.

In this part, in order to verify the correctness of the main conclusions are obtained, we give

some corresponding numerical examples and figures of the solution branches, so as to judge the

number of solutions more directly.

Example 5.1 Let k1 + k2 = 5, k1 · k2 = 4, consider the following fourth-order Neumann boundary

value problems {
y(4)(x) + 5y′′(x) + 4y(x) = λf(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

(5.1)

where

f(x, y) =


4800 min

{
y2

2
√
x(1−x)

,
√
y
}
, y ∈ [0, 1],

2400, y ∈ (1, 24],
4800√

24
min

{ √
y

2
√
x(1−x)

, (y − 13)2
}
, y ∈ (24,+∞)

for any x ∈ [0, 1].

Next, we verify the contents of the condition (H2). Apparently, we get f0 = f∞ = ∞, it’s

follows from Theorem 1.1, then there exists λ∗ > 0 such that problem (5.1) has at least two

positive solutions for λ ∈ (0, λ∗), at least one positive solution for λ = λ∗ and no positive solution

for λ > λ∗. For an overview of the branching of the solution, see Figure (8-a).

Example 5.2 Consider the following fourth-order elastic beam boundary value problems{
y(4)(x) + π2+9

9 y′′(x) + π2

9 y(x) = λf(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0

(5.2)
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with Neumann boundary condition, where

f(x, y) =

{
[ln(y + e− 1)2 + sin2 1](ex + sin πx

2 ), y ∈ [0, 1],
( 2
y + sin 2)(ex + sin πx

2 ), y ∈ (1,∞)

for any x ∈ [0, 1], and k1 + k2 = π2+9
9 , k1 · k2 = π2

9 . Clearly, f0 = f∞ = 0, satisfy the condition of

Theorem 1.2, then there exists λ∗ > 0 such that problem (5.2) has at least two positive solutions

for λ > λ∗, at least one positive solution for λ = λ∗ and no positive solution for λ ∈ (0, λ∗). For

an overview of the branching of the solution, see Figure (8-b).

(8-a) Example 5.1 (8-b) Example 5.2

(8-c) Example 5.3 (8-d) Example 5.3

Figure 8. Figure of example 5.1-5.3.

Example 5.3 Let k1 + k2 = 4π2−π4

4 , k1 · k2 = −π
6

4 , consider the following fourth-order Neumann

boundary value problem{
y(4)(x) + 4π2−π4

4 y′′(x)− π6

4 y(x) + λf(x, y(x)) = 0, x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

(5.3)

where

f(x, y) =

{
ln(y + 1) + |x− 1|, y ∈ [0, 1],
y2|x− 1|+ log2(x+1) y + y ln 2, y ∈ (1,+∞)

for any x ∈ [0, 1], and obviously, we can get f(x, y) is a continuous function. Further, we get

f0 = f0 = ∞, f∞ = 0 and f∞ = ln 2. By the calculation, we can easily verify that there is

a positive solution y(x) of the problem (5.3), where ρ1 is the first eigenvalue of boundary value
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problem {
y(4)(x) + 4π2−π4

4 y′′(x)− π6

4 y(x) + ρ1y(x) = 0, x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0.

Clearly, we get 0 ≤ f∞ < f0 ≤ +∞, it follows from Theorem 1.3 that the problem (5.3) has at

least one positive solution for any λ ∈ (ρ1f0 ,
ρ1
f∞ ); and when 0 ≤ f0 < f∞ ≤ +∞, then problem

(5.3) has at least one positive solution for any λ ∈ ( ρ1f∞ ,
ρ1
f0 ). For an overview of the branching of

the solution, see Figure (8-c) and Figure (8-d).
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