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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION

ARLEY SIERRA AND ELMAR WAGNER

ABSTRACT. Closed quantum surfaces of any genus are defined as subalgebras of the Toeplitz algebra
by mimicking the classical construction of identifying arcs on the boundary of the (quantum) unit disk.
Isomorphism classes obtained from different arrangements of arcs are classified. It is shown that the
K-groups are isomorphic to the classical counterparts and explicit generators of the C*-algebras and of
the K-groups are given.

1. Introduction

Quantization of a compact topological space or manifold means, roughly speaking, the replacement
of the C*-algebra of continuous functions by a noncommutative C*-algebra. However, there is no
universal procedure that tells us how to pass from a commutative C*-algebra to a noncommutative
one while maintaining certain topological features of the space. This reflects a recurrent problem in
quantum physics, where no functorial method for the quantization of classical observables or fields
is known [7]. On the other hand, the relevance of noncommutative geometry [4] in mathematics and
theoretical physics can only be evidenced by providing a proper amount of useful examples. The aim of
this paper is to present a whole family of noncommutative topological spaces, namely quantizations of
all closed two-dimensional surfaces. This can been seen as a first step of the wider project of quantizing
(finite) CW-complexes [5].

Our staring point will be the Toeplitz quantization of the unit disk [9]. It replaces the continuous
functions on the closed disk by their corresponding Toeplitz operators, see Section 2 for more details.
The C*-algebra T generated by all these Toeplitz operators yields a non-trivial C*-algebra extension
of C (S1) by the compact operators K on a separable Hilbert space. Then the so-called symbol map
σ : T →T /K ∼= C (S1) may be viewed as the restriction of continuous functions on the quantum
disk to the boundary circle S1. Based on the premise that the quantum disk admits a classical boundary
circle, we will define in Section 3 closed quantum surfaces by considering C*-subalgebras of T that
correspond to glueing pairs of arcs on the boundary circle in such a way that the commutative analog
yields a C*-algebra isomorphic to the continuous functions on a specific closed surface.

Classically, a closed surface can be obtained from different arrangements of arcs. The standard
method for providing an homeomorphism is based on a “cut and glue” technique, which is not available
in the quantum case. In fact, we will show in Section 4 that isomorphism classes of closed quantum
surfaces are labeled by the number of projective spaces and tori that are used when the arrangements
of arcs are directly interpreted as a connected sum of these building blocks. In this sense, the Toeplitz
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 2

quantization decreases degeneracy. Furthermore, for each isomorphism class, we will give a essentially
normal generator of the corresponding C*-algebra in terms of unilateral and bilateral shift operators.

Since the definition of closed quantum surfaces will be given just by analogy to the classical case,
there arises the question of whether the quantization changes topological invariants. The topological
invariants that we consider in this paper are the K-groups of the C*-algebras. In Section 5, we will
prove that the K-groups of the closed quantum surfaces are isomorphic to the classical counterparts.
Finally, for eventual future use, explicit descriptions of the generators of the K-groups are given.

2. Quantum disk view on the Toeplitz algebra

Let D := {z ∈C : |z|< 1} and D̄ := {z ∈C : |z| ≤ 1} denote the open and closed unit disk, respectively.
We write L2(D) for the Hilbert space of square-integrable functions with respect to the Lebesgue
measure and A2(D) for the subspace of square-integrable holomorphic functions on D. Since A2(D)⊂
L2(D) is closed, there exists an orthogonal projection, say P, from L2(D) onto A2(D). Now the Toeplitz
operator Tf ∈B(A2(D)) with continuous symbol f ∈ C (D̄) is given by

Tf (ψ) := P( f ψ), ψ ∈ A2(D)⊂ L2(D),

and the Toeplitz algebra T may be defined as the C*-subalgebra generated by all Tf in the C*-algebra
of bounded operators B := B(A2(D)).

It can be shown (see e. g. [11]) that the operador ideal of compact operators K := K (A2(D))∼=
K (`2(N0)) belongs to T and that the quotient T /K is isomorphic to C (S1), where we view S1 = ∂ D̄
as the boundary of D̄. This gives rise to the C*-algebra extension

(1) 0 // K
ι // T

σ // C (S1) // 0 ,

with the so-called symbol map σ : T −→ C (S1) given by σ(Tf ) = f �S1 for all f ∈ C (D̄).
The application C (D̄) 3 f 7→ Tf ∈B(A2(D)) will be viewed as a quantization of the commutative

unital C*-algebra C (D̄). In agreement with [9], we refer to the Toeplitz algebra T =: C (D̄q) as
the algebra of continuous functions on the quantum disk. In the commutative case, the C*-algebra
extension (1) corresponds to the exact sequence

(2) 0 // C0(D)
ι // C (D̄)

ρ
// C (S1) // 0 ,

where ρ( f ) = f �S1 .
Let z ∈ C (D̄), z(x) = x denote the identity function. By the Stone–Weierstrass Theorem, the

functions 1, z and z∗ := z̄ generate the C*-algebra C (D̄). For this reason, 1, Tz and Tz̄ generate T .
On the orthonormal basis {en :=

√
n+1√

π
zn : n ∈ N0} of A2(D), the operator Tz acts by Tzen =

√
n+1√
n+2

en+1.
Next, consider the unilateral shift

(3) Sen := en+1, n ∈ N0.

As lim
n→∞

√
n+1√
n+2
−1 = 0, it follows that Tz−S ∈K . Knowing that the C*-algebra generated by 1, S and

S∗ contains the compact operators, it can be inferred that 1, S and S∗ also generate T . Moreover,

(4) σ(S) = σ(Tz) =: u ∈ C (S1), u(eit) = eit .
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 3

Comparing the C*-algebra extensions (1) and (2), it seems that the Toeplitz quantization f 7→ Tf
amounts to replacing C0(D) by K . The following chain of K-theoretic identities gives an additional
motivation for this interpretation:

Ki(C0(D))∼= Ki(Σ
2C)∼= Ki(C)∼= Ki(K ⊗C)∼= Ki(K ), i = 0,1.

Here, ΣA denotes the suspension of a C*-algebra A . The first isomorphism comes from an isomor-
phism of C*-algebras, the second one from Bott periodicity, the third one holds by stabilization, and
the last one is trivial. Using K0(C) = Z[1], K1(C) = 0, K0(C (S1)) = Z[1] and K1(C (S1)) = Z[u], with
u being the unitary defined in (3), the K-groups of T can easily be computed from the 6-term exact
sequence of K-theory:

(5) Z[1−SS∗]∼= K0(K )
ι∗ // K0(T )

σ∗ // K0(C (S1))∼= Z[1]

exp
��

Z[u]∼= K1(C (S1))

ind

OO

K1(T )
σ∗oo K1(K )∼= 0 .

ι∗oo

The index map ind : K1(C (S1))→ Z∼= K0(K ) relates closely to the winding number wind(Φ) ∈ Z
of continuous functions Φ : S1→ S1 and to the Fredholm index Ind(F) ∈ Z of invertible elements
[F ] ∈ C in the Calkin algebra C := B/K . Applying the fact that K0(B) = K1(B) = 0, the index map
ind : K1(C)→ Z∼= K0(K ) in the 6-term exact sequence corresponding to the C*-algebra extension
0→K →B→ C→ 0 yields an isomorphism. Moreover, the unitary element u = σ(S) ∈ C admits
obviously a lift by the isometry S from (3). By [12, Ex. 8.C], ind[u] = −[1−SS∗], where [1−SS∗]
represents a generator of K0(K ). Since ind is a group homomorphism, we may write, for all k ∈ Z,

(6) k = wind[uk] =−ind[uk] =

{
−Ind(S∗|k|), k < 0,
−Ind(Sk), k ≥ 0,

and since the K-theory of C*-algebras is homotopy invariant, we get

(7) ind[Φ] = Ind(FΦ) =−wind[Φ]

for any invertible function Φ ∈ C (S1)∼= T /K ⊂ C, where FΦ denotes a lift of Φ.
There is also an analogy to the famous Bott projection of C0(D), which illustrates nicely the

interpretation of T as a quantization of C (D̄). Given an unitary function υ ∈ C (S1), let ζ := rυ ∈
C (D̄) be an extension to an continuous function on the closed disk, where r denotes the radius function
of the points in D̄. Then, by [12, Ex. 8.D],

ind[υ ] =

 ζ ζ̄ ζ

√
1− ζ̄ ζ√

1− ζ̄ ζ ζ̄ 1− ζ̄ ζ

−[(1 0
0 0

)]
∈ K0(C0(D))

and

(8) ind[υ ] =

 Tζ T ∗
ζ

Tζ

√
1−T ∗

ζ
Tζ√

1−T ∗
ζ

Tζ T ∗
ζ

1−T ∗
ζ

Tζ

−[(1 0
0 0

)]
∈ K0(K ).
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 4

Note the striking similarity between these projections. For υ = u ∈ C (S1) and ζ = ru = z ∈ C (D̄)
(the identity function on D̄), the first formula renders the Bott projection of C0(D).

3. Definition of closed quantum surfaces

Classical closed surfaces (compact and without boundary) can be described by simply connected
polygons in the 2-dimensional plane with a prescribed identification of the boundary edges [6]. There
is no loss in generality if we replace the polygon by the closed unit disk D̄ ⊂ C and turn the edges
into arcs on the boundary circle maintaining their orientations. These arcs may be labeled by pairs
of letters a1,a2, . . . and b1,b2, . . . if they have the same orientation, or by pairs of letters a1,a2, . . . and
a−1

1 ,a−1
2 , . . . if they are given the opposite orientation. Assume that these arcs are parametrized by

continuous curves on the interval [0,1], e.g. [0,1] 3 t 7→ a j(t) ∈ ∂ D̄, always in the direction of their
orientation. Then glueing pairs of the arcs means identifying the points a j(t) and b j(t) if two numbered
sets of letters correspond to each other, or the points a j(t) and a−1

j (t) if the arc a j occurs exactly once
with its negative orientation a−1

j and has thus no companion b j.
In this paper, only the following arrangements will be considered. Given g ∈ N, we use the notation

Tg if the boundary ∂ D̄∼= S1 is divided into 4g arcs a1, . . . ,a2g,a−1
1 , . . . ,a−1

2g such that the topological
quotient D̄/∼ under the equivalence relations

(9) z∼ z, ∀z ∈ D̄, a j(t)∼ a−1
j (t), j = 1, . . . ,2g, t ∈ [0,1],

yields a realization of a closed orientable surface of genus g.
For k,n ∈ N with k ≤ n, we write Pn

k for a division of the boundary ∂ D̄ ∼= S1 into 2n arcs
a1, . . . ,ak,b1, . . . ,bk,ak+1, . . . ,an,a−1

k+1, . . . ,a
−1
n such that the topological quotient D̄/∼ ,

(10) z∼ z, ∀z ∈ D̄, ai(t)∼ bi(t), a j(t)∼ a−1
j (t), i≤ k, j > k, t ∈ [0,1],

is homeomorphic to a closed non-orientable surface of Euler genus n, and shrinking the arcs ak+1, . . .an,
a−1

k+1, . . .a
−1
n to a point yields a closed non-orientable surface of Euler genus n− k, whereas shrinking

the arcs a1, . . . ,ak, b1, . . . ,bk to a point yields an orientable surface of genus (n− k)/2. Obviously,
n− k has to be an even number. The equivalence relation in (10) corresponds to the connected sum

(11) Pn
k := D̄/∼ ∼= P1

1# · · ·#P1
1︸ ︷︷ ︸

k times

# T1# · · ·#T1︸ ︷︷ ︸
(n−k)/2 times

∼= Pk
k #T(n−k)/2,

which is known to be homeomorphic to the closed non-orientable surface Pn := Pn
n of Euler genus n.

The C*-algebras of continuous functions C (Tg) and C (Pn
k) on the surfaces Tg and Pn

k are then
isomorphic to the respective subalgebras of all functions f ∈C(D̄) such that f (x) = f (y) whenever
x∼ y, where the equivalence relations are given in (9) and (10), respectively. Comparing the C*-algebra
extensions (1) and (2), and viewing the symbol map σ : T → C (S1) as the restriction of continuous
functions on the quantum disk to the boundary, the next definition of closed quantum surfaces becomes
fairly obvious.

Definition 1. For g ∈ N, let the boundary ∂ D̄ ∼= S1 be divided into 4g arcs a1, . . . ,a2g,a−1
1 , . . . ,a−1

2g
such that the topological quotient Tg := D̄/∼ with the equivalence relation given in (9) yields a
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 5

realization of a closed orientable surface of genus g. Then an orientable closed quantum surface of
genus g is defined by the C*-algebra

(12) C (Tg
q) := { f ∈T : σ( f )(x) = σ( f )(y), ∀x,y ∈ ∂ D̄ such that x∼ y},

where σ : T → C (S1) denotes the symbol map. Likewise, a quantum 2-sphere is given by

(13) C (S2
q) := { f ∈T : σ( f )(eπit) = σ( f )(e−πit), t ∈ [0,1]}.

For n ∈ N and k ≤ n, assume that the boundary ∂ D̄ is divided into 2n arcs a1, . . . ,ak,b1, . . . ,bk,
ak+1, . . .an,a−1

k+1, . . .a
−1
n such that the topological quotient Pn

k := D̄/∼ with the equivalence relation
(10) is homeomorphic to a closed non-orientable surface of Euler genus n. Then the C*-algebra

(14) C (Pn
k,q) := { f ∈T : σ( f )(x) = σ( f )(y), ∀x,y ∈ ∂ D̄ such that x∼ y}

defines a non-orientable closed quantum surface of Euler genus n.

Formally, we have defined a collection of quantum surfaces of the same genus. That is, all different
arrangements with the same number of oriented arcs that give classically the same surface define
different quantum versions. For instance, the two different orders a1a2a−1

1 a−1
2 . . .a2g−1a2ga−1

2g−1a−1
2g

and a1a2 . . .a2g−1a2ga−1
1 a−1

2 . . .a−1
2g−1a−1

2g yield different subalgebras of T , but an orientable quantum
surfaces of the same genus. The classical cut-and-glue procedure for the classification of closed
surfaces does not apply here because the simple C*-algebra C0(Dq) := K has no closed ideals, so
it cannot be divided into two pieces with a common boundary. In particular, we don’t have any
topological technique at our disposal to prove that C (Pn

k,q) and C (Pn
k′,q) are isomorphic for k 6= k′. In

fact, we shall show in Section 4 that these C*-algebras are isomorphic if and only if k = k′. On the
other hand, all C*-algebras associated to the same orientable quantum surface are actually isomorphic.

As illustrative examples and for the convenience of the reader, we will give an explicit description
of a closed quantum surfaces for each genus. For g ∈ N, define 4g arcs on the circle S1 by

ak, a−1
k : [0,1]−→ S1, ak(t) := eπi k−1+t

2g , a−1
k (t) := eπi 2g+k−t

2g , k = 1, . . . ,2g.

Apparently, this arrangement differs from the usual “normal form” [6]. Nevertheless Tg := D̄/∼ with
the equivalence relation given in (9) yields a closed orientable surface of genus g and therefore (12)
defines an orientable closed quantum surface of genus g. For an example of a non-orientable closed
quantum surface of Euler genus n, we may consider the 2n arcs

ak, bk : [0,1] −→ S1, ak(t) := eπi k−1+t
n , bk(t) := eπi−k+t

n , k = 1, . . . ,n.

In both cases, the sign before t determines the orientation of the arcs.
Note that, as σ is a *-homomorphism and therefore norm decreasing, our definitions yield indeed C*-

subalgebras of T . Moreover, C0(Dq)⊂ C (Tg
q) and C0(Dq)⊂ C (Pn

k,q) since C0(Dq) := K = kerσ .
On the boundary, the functions σ(C (Tg

q)) ⊂ C (S1) and σ(C (Pn
k,q)) ⊂ C (S1) do not separate the

identified points along two equivalent arcs. For C (Tg
q) and C (Pn

k,q), it can be checked that all arcs
start and end at the same point. Hence σ(C (Tg

q)) and σ(C (Pn
k,q)) separate the points of 2g and n arcs,
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 6

respectively, all starting and ending at the same point. As a consequence,

σ(C (Tg
q))
∼=C(

2g
∨

k=1
S1), σ(C (Pn

k,q))
∼=C(

n
∨

k=1
S1),

where
N
∨

k=1
S1 denotes the wedge product of N circles. In the case of C (S2

q), the image of the symbol

map yields only the continuous functions on a half circle S1
+ := {x ∈ S1 : Im(x)≥ 0}. This observation

leads to the following C*-algebra extensions:

0 // K
ι // C (Tg

q)
σ // C

( 2g
∨

k=1
S1
)

// 0 ,(15)

0 // K
ι // C (Pn

k,q)
σ // C

( n
∨

k=1
S1
)

// 0 ,(16)

0 // K
ι // C (S2

q)
σ // C (S1

+) // 0 .(17)

The surjectivity can be verified by lifting a function f ∈ C
( N
∨

k=1
S1
)
⊂ C (S1) (or f ∈ C (S1

+)⊂ C (S1))

to a continuous function f̂ ∈ C (D̄), f̂ (reiθ ) := r f (eiθ ), and recalling that σ(T f̂ ) = f .
It is well known (see e. g. [12]) that a C*-extension gives rise to an isomorphic description as a

pullback of C*-algebras via the Busby invariant. Let

(18) ρN : S1 −→
(
S1/∼

) ∼= N
∨

k=1
S1

denote the quotient map defined by restricting the quotients in (9) and (10) to the boundary, where

N = 2g and N = n, respectively. Then the inclusion C
( N
∨

k=1
S1
)
⊂ C (S1) corresponds to the pullback

ρ∗N : C
( N
∨

k=1
S1
)
→ C (S1) and the Busby invariant is determined by

τN : C
( N
∨

k=1
S1)−→ C= B/K , τN( f ) = σ

(
T

ρ̂∗N( f )

)
,

where ρ̂∗N( f ) stands for the extension of ρ∗N( f ) ∈ C (S1) to the closed disk as described below (17). By
[12, Prop. 3.2.11], our closed quantum surfaces are naturally isomorphic to the pullback

(19) B ⊕
(σ ,τN)

C
( N
∨

k=1
S1
)

pr1ww
pr2 ))

B

σ (( ((

C
( N
∨

k=1
S1
)
,

τNtt
B/K
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 7

where σ : B→B/K denotes the quotient map. As the image of τN lies in σ(T ) = T /K ∼= C (S1),
we obtain the same pullback C*-algebra by the reduced pullback diagram

(20) C (D̄q) ⊕
(σ ,ρ∗N)

C
( N
∨

k=1
S1
)

pr1vv pr2 ))

C (D̄q)

σ ** **

C
( N
∨

k=1
S1
)
,

ρ∗Ntt
C (S1)

where we made use of the quantum disk picture C (D̄q) := T .
The pullback diagram (20) allows a nice interpretation of closed quantum surfaces as noncommuta-

tive CW-complexes [5]. Classically, we may view (20) as a dualization of the pushout diagrams

(21) Tg

D̄

;;

2g
∨

k=1
S1 ,

ee

S1
1 Qι

bb

ρ2g

99

Pn

D̄

;;

n
∨

k=1
S1 ,

ff

S1
1 Qι

cc

ρn

99

where ρ2g in the left diagram and ρn in the right diagram are given by the restriction to the boundary
of the topological quotients defined by the equivalence relations in (9) and (10), respectively, and

ι : S1 ∼= ∂ D̄ ↪→ D̄ denotes the inclusion. Clearly, we may view
N
∨

k=1
S1 as a 1-skeleton obtained by

attaching N arcs to a 0-skeleton consisting of a single point. Then the diagrams in (21) amount to
attaching a 2-cell to the 1-skeletons, so that (20) becomes a dualized and quantized version of it. A
generalization of this construction to higher dimensions, including K-theoretic computations by using
spectral sequences, will be given in [10].

4. Isomorphism classes of quantum surfaces

In section we address the question of isomorphism classes of closed quantum surfaces. As in Defini-
tion 1, we will only allow the assignment of 4g arcs for C (Tg

q) and 2n arcs for C (Pn
k,q) in such a way

that the construction yields the classical counterpart if the quantum disk gets replaced by the closed
unit disk. Thus, in the orientable case, only arcs of opposite orientation are pairwise identified, and in
the non-orientable case, there exists at least one pair of identified arcs having the same orientation on
the boundary circle.

For the purpose of applying Brown-Douglas-Fillmore theory [2, 3], we will use the pullback diagram
(19) and characterize the C*-algebra extension (15) and (16) by a single, essentially normal generator.

To begin, we describe
N
∨

k=1
S1 homeomorphically as a compact subset in C, for instance as a finite

Hawaiian earring:

(22) ϕN :
N
∨

k=1
S1 ∼=−→ XN :=

N
∪

k=1
S1

k+1
k
(−1

k ) =
N
∪

k=1
{x ∈ C : |x+ 1

k |=
k+1

k }.
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 8

Here, S1
k+1

k
(−1

k ) stands for the circle with radius k+1
k and centre −1

k ∈ C. All these circles have a

common base point at 1 ∈C. Let z : XN→C, z(x) = x denote the identity function. Clearly, z separates
the points of XN , hence z, z̄ and 1 generate the C*-algebra C (XN) by the Stone–Weierstrass theorem.
Thus the function ζN ∈ C (S1),

(23) ζN := (ϕN ◦ρN)
∗z : S1→ XN ⊂ C

separates exactly the points of the arcs after the identification by ρN . Therefore any function h ∈
C
( N
∨

k=1
S1
)∼=C (S1/∼)⊂C (S1)∼= σ(T ) satisfying the same “boundary conditions” from Definition 1

as the function ζN can be approximated by polynomials in ζN and ζ̄N . This means that any such h can
be approximated by polynomials in σ(T

ζ̂N
) and σ(T ∗

ζ̂N
) with the usual extension of ζN ∈ C (S1) to a

continuous function

(24) ζ̂N ∈ C (D̄), ζ̂N(reiθ ) = rζN(eiθ ), r ∈ [0,1], θ ∈ R.

Thus σ(C (Tg
q))∼= C (X2g) and σ(C (Pn

k,q))
∼= C (Xn), so the closure of the *-algebra generated by T

ζ̂N
,

T ∗
ζ̂N

, 1 and K defines a C*-algebra extension which has a Busby invariant that is isomorphic to τN in

(19) via the homeomorphisms XN ∼=
N
∨

k=1
S1 ∼=

(
S1/∼

)
. As a consequence, the C*-algebra extensions

are isomorphic, see Equation (25) below. By definition, the generator T
ζ̂N

yields an essentially normal
operator with essential spectrum XN ⊂ C.

Assume now that there exists an isomorphism of closed quantum surfaces α : C (Mq)→ C (M′q),
where Mq,M′q ∈ {T

g
q,Pn

k,q : g,n,k ∈ N, k ≤ n}. As all considered C*-algebras are subalgebras of
T and contain the Jacobson radical K = ker(σ), we get an isomorphism α : K →K . Any such
isomorphism can be implemented by a unitary operator Uα ∈B [8, Remark 2.5.3]. Moreover, each
isomorphism α : K →K has a unique extension to its multiplier algebra B = M (K ). For that
reason, α : C (Mq)→ C (M′q) can be given by α(t) = UαtU∗α with a unique unitary operator Uα .
Therefore the C*-algebras C (Mq),C (M′q)⊂T are isomorphic if and only if there exist essentially
normal operators T ∈ C (Mq) and T ′ ∈ C (M′q) that generate together with 1 and K the corresponding
C*-algebras and are unitarily equivalent up to a compact perturbation. The question of the existence of
such a unitary equivalence is exactly the starting point of Brown-Douglas-Fillmore theory. This theory
provides the principal tools for the classification of isomorphism classes in the next theorem.

Theorem 2. For g ∈ N, let C (Tg
q) denote an orientable closed quantum surface as defined in Defini-

tion 1. Then C (Tg
q) is isomorphic to the C*-algebra generated by 1, Tg, T ∗g and the compact operators

K := K (Hg), where

Hg :=
2g
⊕
j=1

`2(Z), Tg :=
2g
⊕
j=1

( j+1
j U− 1

j ),

and U stands for the unitary bilateral shift on `2(Z).
Given n,k ∈ N with k ≤ n, let C (Pn

k,q) denote a non-orientable closed quantum surface from
Definition 1. Then C (Pn

k,q) is isomorphic to the C*-algebra generated by 1, Tn,k, T ∗n,k and the compact
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 9

operators K := K (Hn,k), where

Hn,k :=
k
⊕
j=1

`2(N0)⊕
n
⊕

j=k+1
`2(Z), Tn,k :=

k
⊕
j=1

( j+1
j S2− 1

j )⊕
n
⊕

j=k+1
( j+1

j U− 1
j ),

and S stands for the unilateral shift from (3).
In particular, C (Tg

q) and C (Tg′
q ) are isomorphic if and only if g = g′. Furthermore, C (Pn

k,q) and

C (Pn′
k′,q) are isomorphic if and only if n = n′ and k = k′. Moreover, C (Tg

q) is never isomorphic to
C (Pn

k,q), and C (S2
q) is neither isomorphic to C (Tg

q) nor to C (Pn
k,q).

Proof. First observe that, if we replace in the diagram (20) the C*-algebra C
( N
∨

j=1
S1
)

by its isomorphic

image (ϕ∗N)
−1 : C

( N
∨

j=1
S1
) ∼=−→ C (XN), with ϕN given in (22), then we obtain isomorphic pullbacks

(25) φN : C (D̄q) ⊕
(σ ,ρ∗N◦ϕ

∗
N)

C (XN)
∼=−→ C (D̄q) ⊕

(σ ,ρ∗N)
C
( N
∨

j=1
S1), φN((t, f )) :=(t,ϕ∗N( f )).

Hence we can use the homeomorphism ϕN from (22) to order the circles from the wedge product in a
certain “normal form”. Suppose therefore without loss of generality that the closed quantum surface
is defined by the pairwise identification of 2N arcs such that the first k circles correspond to pairs of
arcs that had the same positive orientation, and the remaining N− k circles correspond to pairs of arcs
that have been identified in opposite orientation. Here the homeomorphism ϕN may be used to flip the
orientation and to change the order of the arcs. As our assignment of arcs leads in the classical case to
a closed surface, we get D̄/∼ ∼= PN

k
∼= Pk #T(N−k)/2 as in (11) and PN

0 = TN/2 for k = 0 by definition.
The operators σ(U),σ(S2) ∈ C= B/K have both the spectrum S1 ⊂ C, thus spec(TN,k) = XN ∼=

N
∨

j=1
S1. However, Ind(U) = 0 and Ind(S2) = −2. Furthermore, S∗⊕ S ∼= U +K, where the compact

operator K ∈K (`2(N0)⊕`2(N0))∼=K (`2(Z)) maps ker(S∗) unitarily onto Ran(S)⊥ ∼= coker(S). On
the other hand, it was explained in the beginning of this section that the C*-algebra of the closed
quantum surface is generated by T

ζ̂N
, T ∗

ζ̂N
, 1 and K , where ζN has been defined in (23) and ζ̂N denotes

its extension to the closed disk as in (24). So the proof of the theorem boils down to the question of
when T

ζ̂N
is unitarily equivalent to a compact perturbation of TN,k.

Recall, e. g. from [1, Section 16.2], that the essentially normal operators with essential spectrum
XN ⊂ C are classified, up to compact perturbations, by K1(XN)∼= K1(C (XN)). By (22), K1(C (XN))∼=
K1(C (

N
∨

j=1
S1)), and since the wedge sum of circles

N
∨

j=1
S1 can be obtained by the one-point compacti-

fication of N open, disjoint intervals, we have that K1(C (XN)) =
N
⊕
j=1

Z[u j], where u j ∈ C (XN) is any

invertible function with winding number 1 (or -1) on the j-th circle and winding number 0 on all the
others. Moreover, the winding number of an invertible function Φ ∈ C (S1) is related to the Fredholm
index of the Toeplitz operator T

Φ̂
by (7), and Brown-Douglas-Fillmore theory tells us that the Fredholm

index is a principal obstruction for unitary equivalence of essentially normal operators up to compacts.
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 10

Let ζN ∈ C (S1) and ζ̂N ∈ C (D̄) be given by (23) and (24), respectively. Then the essentially
normal generator T

ζ̂N
∈ T of the corresponding closed quantum surface has essential spectrum

Ran(σ(T
ζ̂N
)) = Ran(ζN) = XN . After applying ϕN from (22) to bring the circles into normal form,

the function ζN from (23) winds along an arc a j ⊂ S1 once around the circle S1
j+1

j
(−1

j ) in positive

direction, and along the arc a−1
j ⊂ S1 once around the same circle S1

j+1
j
(−1

j ), but in negative direction.

As the circles are ordered in normal form, and there are 2k arcs corresponding in the classical case to
the connected sum P1# · · ·#P1 of k projective spaces, the function ζN winds exactly twice in positive
direction around each of the first k circles. The remaining N−k circles correspond to the connected sum
T1# · · ·#T1 of (N−k)/2 tori, where any arc occurs also in the opposite direction, so the function ζN has
winding number 0 around each of these circles. From the classification of essentially normal operators
by winding numbers in [1, Theorem 16.2.1 and Example 16.2.4], together with the relation between
winding numbers and the Fredholm index of shift operators in (6) and (7), it follows that the generator
T

ζ̂N
is unitarily equivalent to a compact perturbation of TN,k defined in the theorem. Consequently the

C*-algebra generated by T
ζ̂N

, T ∗
ζ̂N

, 1 and K is isomorphic to the C*-algebra generated by TN,k, T ∗N,k, 1

and K .
Finally, two operators TN,k and TN′,k′ are unitarily equivalent up to a perturbation by a compact

operator if and only if they have the same essential spectrum, and σ(TN,k) and σ(TN′,k′) have the same
winding numbers, i.e., N = N′ and k = k′. This implies the last claims of the theorem. �

Theorem 2 has two interesting consequences. First, we did not use in the proof the condition that the
classical counterpart yields a closed surface. So there are assignments of arcs, always with starting and
endpoint identified, that do not give rise to a 2-dimensional manifold in the classical case, but define a
C*-algebra isomorphic to a closed quantum surface. Thus, on the one hand the Toeplitz quantization
decreases degeneracy by distinguishing between C (Pn

k,q) and C (Pn
k′,q) for k 6= k′, and on the other

hand it increases degeneracy by allowing for “non-admissible” prescriptions of arcs that do not even
yield topological manifolds in the classical case.

Second, there is an abuse of notation in Definition 1. Equations (12) and (14) define actually families
of different C*-subalgebras of T , i.e., different arrangements yield different subalgebras. However,
Theorem 2 shows that each admissible arrangement leads to a C*-algebra that is isomorphic to exactly
one from Definition 1.

5. K-theory of closed quantum surfaces

In Section 3, closed quantum surfaces were defined by analogy to the classical case. In this section, we
will show that the topological invariants in the disguise of K-groups are not changed by the quantization
process. A motivation for this fact was already given at the end of Section 2.
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 11

Theorem 3. Let C (Tg
q), C (S2

q) and C (Pn
k,q) be as defined in Definition 1. Then

K0(C (Tg
q))
∼= Z⊕Z, K1(C (Tg

q))
∼=

2g
⊕
j=1

Z,

K0(C (S2
q))
∼= Z⊕Z, K1(C (S2

q))
∼= 0,

K0(C (Pn
k,q))
∼= Z2⊕Z, K1(C (Pn

k,q))
∼=

n−1
⊕
j=1

Z.

In particular, all closed quantum surfaces from Definition 1 have the same K-groups as their classical
counterparts.

Proof. The K-groups can easily be computed by applying the 6-term exact sequence of to the C*-alge-
bra extensions (15)–(17):

(26) K0(K )
ι∗ // K0(C (Mq))

σ∗ // K0(C (
N
∨

k=1
S1))

exp

��
K1(C (

N
∨

k=1
S1))

ind

OO

K1(C (Mq))
σ∗oo K1(K ) ,

ι∗oo

where Mq ∈ {C (Tg
q),C (Pn

k,q),C (S2
q) : g,n,k ∈ N,k ≤ n}. As discussed in Section 2, K1(K ) = 0 and

K0(K ) = Z[1−SS∗]. Moreover,

K0(C (
N
∨

k=1
S1)) = K0

(
(

N
⊕

k=1
C0(0,1))uC1

)
=
( N
⊕

k=1
K0(ΣC)

)
⊕Z[1] = Z[1],

K1(C (
N
∨

k=1
S1)) = K1

(
(

N
⊕

k=1
C0(0,1))uC1

)
=

N
⊕

k=1
K1(C0(0,1))) =

N
⊕
j=1

Z,

where A uC1 means adjoining a unity to the non-unital C*-algebra A and ΣA denotes the suspension
of A . Inserting these K-groups into (26) yields

(27) Z
ι∗ // K0(C (Mq))

σ∗ // Z[1]

exp
��

ZN

ind

OO

K1(C (Mq))? _
σ∗oo 0 ,

ι∗oo

Now 0→ ker(σ∗)→ K0(C (Mq))
σ∗−→ Z[1]→ 0 is split exact with a splitting homomorphism given by

[1] 7→ [1]. Thus it follows from the exactness of (27) that

(28) K0(C (Mq))∼= Z/Im(ind) ⊕ Z[1], K1(C (Mq))∼= Ker(ind).

Hence it remains to determine the index map ind : K1(C (
N
∨

k=1
S1))→ K0(K ).

Recall that C (Mq)⊂T and C (
N
∨

j=1
S1)⊂ C (S1) by Definition 1 and Equation (1). As explained at

the end of Section 2, describing the index map amounts to lifting a unitary (matrix) Φ in C (
N
∨

j=1
S1) to
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 12

a Fredholm operator FΦ in C (Mq)⊂ T and computing its Fredholm index Ind(FΦ) ∈ Z∼= K0(K ).
Moreover, the Fredholm index Ind(FΦ) coincides with the negative winding number −wind[Φ], see

(7). We mentioned in the proof of Theorem 2 that K1(C (XN)) =
N
⊕
j=1

Z[u j], where XN ∼=
N
∨

j=1
S1 and u j is

any invertible function that has winding number 1 (or -1) on the j-th circle and winding number 0 on

all the others. Moreover, it was stated below (18) that the inclusion C
( N
∨

j=1
S1
)
⊂ C (S1) corresponds

to the pullback ρ∗N : C
( N
∨

j=1
S1
)
→ C (S1) with ρN from (18).

Now let C (Mq) = C (Tg
q) and N = 2g. Then, by (9), each arc, say a j, occurs exactly once more

with its negative orientation a−1
j . As a consequence, the winding numbers of all invertible functions

Φ ∈ C
( 2g
∨

k=1
S1
)
⊂ C (S1) are 0, so ind≡ 0 and thus K0(C (Tg

q))∼= Z⊕ Z[1] and K1(C (Mq))∼= Z2g by

(27) and (28).
Next we consider C (Pn

k,q), n ∈ N and 1 ≤ k ≤ n. Assume that the circles of
n
∨

j=1
S1 are ordered

in such a way that the first k circles correspond to arcs that occur twice with the same orientation
(i.e. a j(t)∼ b j(t)) and the other pairs with opposite orientations (i.e. a j(t)∼ a−1

j (t)). Therefore, an

invertible function u ∈ C
( n
∨

k=1
S1
)
⊂ C (S1) with winding number m ∈ Z along a j has also winding

number m along b j if j ≤ k. On the other hand, if j > k, then a function with winding number m ∈ Z
along a j will have winding number −m along a−1

j so that these winding numbers add up to 0. For the

generators [u j] of K1(C (
n
∨

j=1
S1))∼=

n
⊕
j=1

Z[u j] described above, we get

ind[u j] = 2, j ≤ k, ind[u j] = 0, j > k,

so that ind(m1, . . . ,mn) = 2(m1+ · · ·+mk) in the exact sequence (27). In particular, Im(ind) = 2Z and
Ker(ind)∼= Zn−1 from which the result follows by (28).

In the case of C (S2
q) from (13), a complex number eπit ∈ S1 is identified with its complex conjugate

e−πit ∈ S1. The resulting quotient space S1/∼ is homeomorphic to an closed interval and therefore

contractable. Replacing C (
N
∨

j=1
S1) by C in (26), the lower row becomes 0 and the upper row becomes

exact, which yields the stated K-groups for C (S2
q).

The last claim follows by comparing with the classical K-groups. �

For concrete calculations, it is convenient to have a suitable description of the generators of the
K-groups. Let u ∈ C (S1) be the identity function u(eitθ ) := eitθ . Then the identity function z ∈ C (D̄),
z(reitθ ) := reitθ is an extension of u to the closed disk. Moreover, [u] generates K1(C (S1))∼= Z[u]. Set

PBott :=

(
TzT ∗z Tz

√
1−T ∗

z Tz√
1−T ∗z Tz T ∗z 1−T ∗z Tz

)
=

(
Tz√

1−T ∗z Tz

)
◦
(
T ∗z ,
√

1−T ∗z Tz
)

Since the index map in the diagram (5) is an isomorphism, it follows from (8) with z instead of ζ

that ind[u] = [PBott]− [1] generates K0(K ). Note that [PBott]− [1] is never in the image of the index
map from (26). Hence, for any closed quantum surface from Definition 1, the K0-group is generated
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CLOSED QUANTUM SURFACES FROM THE TOEPLITZ EXTENSION 13

by [1] and [PBott]. However, in the case of non-orientable quantum surfaces, we have the relation
2([PBott]− [1]) = 0 as this element belongs to the image of the index map. On the other hand, we
can lift u ∈ C (S1) to the shift operator S ∈ T , see (4). As described in the paragraph before (6),
ind[u] =−[1−SS∗], thus the relation [1]− [PBott] = [1−SS∗] holds in K0(K ).

To describe the generators of the K1-groups, consider the following (non-unitary) generators [v j]

of K1(C (
N
∨

k=1
S1))∼= K1(C (XN)) with winding number 1 along the j-th circle and winding number 0

along the others. More explicitly, set

(29) v j(x) = x, x ∈ S1
j+1

j
(−1

j )⊂ XN ∼=
N
∨

k=1
S1, v j(x) = 1 otherwise,

and u j := (ϕN ◦ρN)
∗(v j) ∈ C (S1) with ρN from (18) and ϕN from (22). Let û j ∈ C (D̄) denote the

extension of u j to the closed disk as given in (24). In the proof of the last theorem, we have seen that
ind(Tû j) =−wind(u j) = 0 in the orientable case, thus dim(Ker(Tû j)) = dim(Coker(Tû j)). Choosing a
compact isometry K j between Ker(Tû j) and Im(Tû j)

⊥ and defining Tj := Tû j +K j, we get an invertible
operator in C (Tg

q) such that σ(Tj) = u j. Hence Tj, or equivalently U j := Tj |Tj|−1, j = 1, . . . ,2g,

generate K1(C (Tg
q))∼= σ∗(K1(C (Tg

q)))∼= K1(C (
2g
∨

k=1
S1))∼= K1(C (X2g)). Under the isomorphism from

Theorem 2, the operator Tj corresponds to a compact perturbation of

Id⊕·· ·⊕ Id⊕ ( j+1
j U− 1

j )⊕ Id⊕·· ·⊕ Id ∈ B(Hg)

as both have the same essential spectrum and the same winding numbers.
In the non-oriented case, we consider the functions v1, j on Xn ∼=

n
∨

k=1
S1 given by

v1, j(x) = x̄, x ∈ S1
2(−1), v1, j(x) = x, x ∈ S1

j+1
j
(−1

j ), v1, j(x) = 1 otherwise,

for j = 2, . . . ,k, and v1, j := v j for j > k with v j from (29). As before, let u1, j := (ϕN ◦ ρN)
∗(v1, j)

denote its pullback to C (S1) and write û1, j ∈ C (D̄) for its extension to the closed disk as in (24).
Note that u1, j ∈ C (S1) has winding number 0 for all j = 2, . . . ,n so that ind[v1, j] = ind[u1, j] = 0. As a
consequence, ind(Tû1, j) = 0, or equivalently, dim(Ker(Tû1, j)) = dim(Coker(Tû1, j)). Choosing compact
isometries G j between Ker(Tû1, j) and Im(Tû1, j)

⊥, the operators Ri := Tû1,i+1
+Gi+1, i = 1, . . . ,n− 1,

become invertible in C (Pn
k,q) and σ(Ri) = u1,i+1. Thus Ri, or equivalently Vi := Ri |Ri|−1, defines an

element in K1(C (Pn
k,q)). Comparing the function u1,i+1 with the generators [v j] of K1(C (

n
∨

k=1
S1))∼=

K1(C (Xn)) given in (29), we see that σ∗([Ri]) = [u1,i+1] = −[v1] + [vi+1] by counting the winding
numbers along circles. In particular, σ∗([Ri]) ∈ Ker(ind). Moreover, [vi+1]− [v1], i = 1, . . . ,n− 1,
generate Ker(ind)∼=Zn−1. Therefore [R1] = [V1], . . . , [Rn−1] = [Vn−1] generate K1(C (Pn

k,q))
∼=Ker(ind).

Finally, under the isomorphism from Theorem 2, the operator Ri is a compact perturbation of

(2S∗2−1)⊕ Id⊕·· ·⊕ Id⊕ ( i+2
i+1S2− 1

i+1)⊕ Id⊕·· ·⊕ Id ∈ B(Hn,k), i < k,

Id⊕·· ·⊕ Id⊕ ( i+2
i+1U− 1

i+1)⊕ Id⊕·· ·⊕ Id ∈B(Hn,k), i≥ k,

as these operators (for i fixed) have the same essential spectrum and the same winding numbers.
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