Unimodality of k-Regular Partitions into Distinct Parts with Bounded Largest Part

Janet J.W. Dong¹ and Kathy Q. Ji²

^{1,2} Center for Applied Mathematics, Tianjin University, Tianjin 300072, P.R. China ¹dongjinwei@tju.edu.cn and ²kathyji@tju.edu.cn

Abstract. A k-regular partition into distinct parts is a partition into distinct parts with no part divisible by k. In this paper, we provide a general method to establish the unimodality of k-regular partitions into distinct parts where the largest part is at most km + k - 1. Let $d_{k,m}(n)$ denote the number of k-regular partitions of n into distinct parts where the largest part is at most km + k - 1. In line with this method, we show that $d_{4,m}(n) \ge d_{4,m}(n-1)$ for $m \ge 0$, $1 \le n \le 3(m+1)^2$ and $n \ne 4$ and $d_{8,m}(n) \ge d_{8,m}(n-1)$ for $m \ge 2$ and $1 \le n \le 14(m+1)^2$. When $1 \le k \le 10$ and $1 \le 10$ and

Keywords: Unimodal, symmetry, integer partitions, k-regular partitions, analytical method

AMS Classification: 05A17, 05A20, 11P80, 41A10, 41A58

1 Introduction

The main theme of this paper is to investigate the unimodality of k-regular partitions into distinct parts where the largest part is at most km + k - 1. A k-regular partition into distinct parts is a partition into distinct parts with no part divisible by k. For example, below are the 4-regular partitions of 10 into distinct parts,

$$(10)$$
, $(9,1)$, $(7,3)$, $(7,2,1)$, $(6,3,1)$, $(5,3,2)$.

Let $d_{k,m}(n)$ denote the number of k-regular partitions into distinct parts where the largest part is at most km+k-1. From the example above, we see that $d_{4,1}(10) = 4$ and $d_{4,2}(10) = 6$. By definition, it is easy to see that the generating function of $d_{k,m}(n)$ is given by

$$D_{k,m}(q) := \sum_{n=0}^{N(k,m)} d_{k,m}(n) q^n = \prod_{j=0}^m \left(1 + q^{jk+1}\right) \left(1 + q^{jk+2}\right) \cdots \left(1 + q^{jk+k-1}\right), \quad (1.1)$$

where

$$N(k,m) = \frac{k(k-1)(m+1)^2}{2}.$$

Recall that a polynomial $a_0 + a_1q + \cdots + a_Nq^N$ with integer coefficients is called unimodal if for some $0 \le j \le N$,

$$a_0 \le a_1 \le \dots \le a_j \ge a_{j+1} \ge \dots \ge a_N$$

and is called symmetric if for all $0 \le j \le N$, $a_j = a_{N-j}$, see [16, p. 124, Ex. 50]. It is well-known that the Gaussian polynomials

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{(1-q^n)(1-q^{n-1})\cdots(1-q^{n-k+1})}{(1-q)(1-q^2)\cdots(1-q^k)}$$

are symmetric and unimodal, as conjectured by Cayley [4] in 1856 and confirmed by Sylvester [18] in 1878 based on semi-invariants of binary forms. For more information, we refer to [3,9,11,13]. Since then, the unimodality of polynomials (or combinatorial sequences) has drawn great attention in recent decades. In particular, the unimodality of several special k-regular partitions have been investigated by several authors. For example, the polynomials

$$(1+q)(1+q^2)\cdots(1+q^m) (1.2)$$

are proved to be symmetric and unimodal for $m \geq 1$. The first proof of the unimodality of the polynomials (1.2) was given by Hughes [8] resorting to Lie algebra results. Stanley [15] provided an alternative proof by using the Hard Lefschetz Theorem. Stanley [14] also established the general result of this type based on a result of Dynkin [6]. An analytic proof of the unimodality of the polynomials (1.2) was attributed to Odlyzko and Richmond [10] by extending the argument of van Lint [19] and Entringer [7].

Stanley [15] conjectured the polynomials

$$(1+q)(1+q^3)\cdots(1+q^{2m+1}) (1.3)$$

are symmetric and unimodal for $m \geq 26$, except at the coefficients of q^2 and $q^{(m+1)^2-2}$. More precisely, let

$$\sum_{n=0}^{(m+1)^2} d_{2,m}(n)q^n = (1+q)(1+q^3)\cdots(1+q^{2m+1}).$$

Stanley conjectured that $d_{2,m}(n) \geq d_{2,m}(n-1)$ for $m \geq 26$, $1 \leq n \leq \left\lfloor \frac{(m+1)^2}{2} \right\rfloor$ and $n \neq 2$. This conjecture has been proved by Almkvist [1] via refining the method of Odlyzko and Richmond [10]. Pak and Panova [12] showed that the polynomials (1.3) are strict unimodal by interpreting the differences between numbers of certain partitions as Kronecker coefficients of representations of S_n . By refining the method of Odlyzko and Richmond [10], we show that the polynomials

$$\prod_{j=0}^{m} (1+q^{3j+1})(1+q^{3j+2}) \tag{1.4}$$

are symmetric and unimodal for $m \geq 0$, see [5].

In this paper, we aim to establish the symmetry and unimodality of $D_{k,m}(q)$ for $k \geq 4$. It should be noted that the polynomial (1.2) is associated with $D_{1,m}(q)$, while the polynomial (1.3) is associated with $D_{2,m}(q)$. When k = 3, $D_{k,m}(q)$ reduces to the polynomial (1.4).

One main result of this paper is to show that $D_{4,m}(q)$ is almost unimodal.

Theorem 1.1. The polynomials

$$\prod_{i=0}^{m} (1+q^{4j+1})(1+q^{4j+2})(1+q^{4j+3})$$
(1.5)

are symmetric and unimodal for $m \ge 0$, except at the coefficients of q^4 and $q^{6(m+1)^2-4}$. More precisely, let

$$\sum_{n=0}^{6(m+1)^2} d_{4,m}(n)q^n = \prod_{j=0}^m (1+q^{4j+1})(1+q^{4j+2})(1+q^{4j+3}).$$

Then for $m \ge 0$, $d_{4,m}(n) \ge d_{4,m}(n-1)$ for $1 \le n \le 3(m+1)^2$ and $n \ne 4$.

We also provide an effective way to establish the unimodality of $D_{k,m}(q)$ for $k \geq 5$.

Theorem 1.2. For $k \geq 5$, if there exists $m_0 \geq 0$ such that $D_{k,m_0}(q)$ is unimodal and for $m_0 < m < 8k^{\frac{3}{2}}$ and $\left\lceil \frac{k(k-1)m^2}{4} \right\rceil \leq n \leq \left\lceil \frac{k(k-1)(m+1)^2}{4} \right\rceil$,

$$d_{k,m}(n) \ge d_{k,m}(n-1),$$
 (1.6)

then $D_{k,m}(q)$ is unimodal for $m \geq m_0$.

By utilizing Theorem 1.2 and conducting tests with Maple, we obtain the following two consequences.

Corollary 1.3. When $5 \le k \le 10$ and $k \ne 8$, the polynomials

$$\prod_{j=0}^{m} (1+q^{jk+1}) (1+q^{jk+2}) \cdots (1+q^{jk+k-1})$$

are symmetric and unimodal for $m \geq 0$.

Corollary 1.4. The polynomials

$$\prod_{j=0}^{m} (1+q^{8j+1}) (1+q^{8j+2}) \cdots (1+q^{8j+7})$$

are symmetric and unimodal for $m \geq 2$.

2 A key lemma

This section is devoted to the proof of the following lemma. It turns out that this lemma figures prominently in the proofs of Theorem 1.1 and Theorem 1.2.

Lemma 2.1. If
$$k \ge 4$$
, $m \ge 8k^{\frac{3}{2}}$ and $\frac{k(k-1)m^2}{4} \le n \le \frac{k(k-1)(m+1)^2}{4}$, then $d_{k,m}(n) > d_{k,m}(n-1)$. (2.1)

Before demonstrating Lemma 2.1, we collect several identities and inequalities which will be useful in its proof.

$$e^{ix} = \cos(x) + i\sin(x),\tag{2.2}$$

$$\cos(2x) = 2\cos^2(x) - 1, (2.3)$$

$$\sin(2x) = 2\sin(x)\cos(x),\tag{2.4}$$

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha + \beta) + \sin(\alpha - \beta),\tag{2.5}$$

$$\sin(x) \ge xe^{-x^2/3}$$
 for $0 \le x \le 2$, (2.6)

$$cos(x) \ge e^{-\gamma x^2}$$
 for $|x| \le 1$, $(\gamma = -\log cos(1) = 0.615626...)$, (2.7)

$$x - \frac{x^3}{6} \le \sin(x) \le x \quad \text{for } x \ge 0,$$
(2.8)

$$\cos(x) \le e^{-x^2/2} \quad \text{for } |x| \le \frac{\pi}{2},$$
 (2.9)

$$|\cos(x)| \le \exp\left(-\frac{1}{2}\sin^2(x) - \frac{1}{4}\sin^4(x)\right),$$
 (2.10)

$$\left| \frac{\sin(nx)}{\sin(x)} \right| \le n \quad \text{for } x \ne i\pi, \ i = 0, 1, 2, \dots,$$
 (2.11)

$$\sum_{k=1}^{n} \sin^2(kx) = \frac{n}{2} - \frac{\sin((2n+1)x)}{4\sin(x)} + \frac{1}{4} \quad \text{for } x \neq i\pi, \ i = 0, 1, 2, \dots,$$
 (2.12)

$$\sum_{k=1}^{n} \sin^4(kx) = \frac{3n}{8} - \frac{\sin((2n+1)x)}{4\sin(x)} + \frac{\sin((2n+1)2x)}{16\sin(2x)} + \frac{3}{16}$$

for
$$x \neq \frac{i\pi}{2}$$
, $i = 0, 1, 2, \dots$ (2.13)

The identity (2.2) is Euler's identity, see [17, p. 4]. The formulas (2.3)–(2.5) of trigonometric functions can be found in [2, Chap. 8]. The inequalities (2.6)–(2.11) are due to Odlyzko and Richmond [10, p. 81]. The identities (2.12) and (2.13) have been proved in [5].

We are now in a position to prove Lemma 2.1 by considering $d_{k,m}(n)$ as the Fourier coefficients of $D_{k,m}(q)$ and proceeding to estimate its integral.

Proof of Lemma 2.1: Putting $q = e^{2i\theta}$ in (1.1), we get

$$D_{k,m}(e^{2i\theta}) = \prod_{j=0}^{m} (1 + (e^{2i\theta})^{jk+1})(1 + (e^{2i\theta})^{jk+2}) \cdots (1 + (e^{2i\theta})^{jk+k-1})$$

$$\stackrel{(2.2)}{=} \prod_{j=0}^{m} \prod_{l=1}^{k-1} (1 + \cos(2(jk+l)\theta) + i\sin(2(jk+l)\theta))$$

$$\stackrel{(2.3)\&(2.4)}{=} \prod_{j=0}^{m} \prod_{l=1}^{k-1} (2\cos^{2}((jk+l)\theta) + 2i\sin((jk+l)\theta)\cos((jk+l)\theta))$$

$$\stackrel{(2.2)}{=} \prod_{j=0}^{m} \prod_{l=1}^{k-1} 2\cos((jk+l)\theta) \exp(i(jk+l)\theta)$$

$$= 2^{(k-1)(m+1)} \exp(iN(k,m)\theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta). \tag{2.14}$$

Using Taylor's theorem [17, pp. 47–49], we derive that

$$d_{k,m}(n) = \frac{1}{2\pi i} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{D_{k,m} \left(e^{2i\theta}\right)}{\left(e^{2i\theta}\right)^{n+1}} d\left(e^{2i\theta}\right)$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} D_{k,m} \left(e^{2i\theta}\right) e^{-2in\theta} d\theta$$

$$\stackrel{(2.14)}{=} \frac{2^{(k-1)(m+1)}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \exp(i(N(k,m)-2n)\theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta$$

$$\stackrel{(2.2)}{=} \frac{2^{(k-1)(m+1)}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\cos((N(k,m)-2n)\theta) + i\sin((N(k,m)-2n)\theta)\right)$$

$$\times \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta.$$

Observe that

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin((N(k,m) - 2n)\theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta = 0,$$

so we conclude that

$$d_{k,m}(n) = \frac{2^{(k-1)(m+1)+1}}{\pi} \int_0^{\frac{\pi}{2}} \cos((N(k,m) - 2n)\theta) \prod_{i=0}^m \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta.$$

To show that $d_{k,m}(n)$ increases with n, we take the derivative with respect to n,

$$\frac{\partial}{\partial n} d_{k,m}(n) = \frac{2^{(k-1)(m+1)+2}}{\pi} \int_0^{\frac{\pi}{2}} \theta \sin((N(k,m)-2n)\theta) \prod_{j=0}^m \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta.$$

Let $N(k, m) - 2n = \mu$, and let

$$I_{k,m}(\mu) = \int_0^{\frac{\pi}{2}} \theta \sin(\mu \theta) \prod_{j=0}^m \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta.$$

Thus it suffices to show that

$$I_{k,m}(\mu) > 0 \text{ for } k \ge 4, \ m \ge 8k^{\frac{3}{2}} \text{ and } 0 < \mu \le \frac{k(k-1)(2m+1)}{2}.$$
 (2.15)

We will separate the integral $I_{k,m}(\mu)$ into three parts,

$$I_{k,m}(\mu) = \left\{ \int_0^{\frac{2\pi}{k(k-1)(2m+1)}} + \int_{\frac{2\pi}{k(k-1)(2m+1)}}^{\frac{\pi}{2km+2(k-1)}} + \int_{\frac{\pi}{2km+2(k-1)}}^{\frac{\pi}{2}} \right\} \theta \sin(\mu\theta) \prod_{j=0}^m \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta$$
$$= I_{k,m}^{(1)}(\mu) + I_{k,m}^{(2)}(\mu) + I_{k,m}^{(3)}(\mu),$$

and aim to show that when $k \ge 4$, $m \ge 8k^{\frac{3}{2}}$ and $0 < \mu \le \frac{k(k-1)(2m+1)}{2}$

$$I_{k,m}^{(1)}(\mu) > \left| I_{k,m}^{(2)}(\mu) \right| + \left| I_{k,m}^{(3)}(\mu) \right|,$$
 (2.16)

from which, it is immediate that (2.15) is valid.

We first estimate the value of $I_{k,m}^{(1)}(\mu)$. Recall that

$$I_{k,m}^{(1)}(\mu) = \int_0^{\frac{2\pi}{k(k-1)(2m+1)}} \theta \sin(\mu\theta) \prod_{j=0}^m \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta.$$
 (2.17)

When $0 \le \theta \le \frac{4}{k(k-1)(2m+1)}$, we see that $0 \le \mu\theta \le 2$ and $0 \le (jk+l)\theta \le 1$ for $0 \le j \le m$ and $1 \le l \le k-1$. Using (2.6) and (2.7), we deduce that

$$\sin(\mu\theta) \ge \mu\theta \exp\left(-\frac{\mu^2\theta^2}{3}\right) \text{ and } \cos((jk+l)\theta) \ge \exp\left(-\gamma(jk+l)^2\theta^2\right).$$

Hence

$$\theta \sin(\mu \theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta)$$

$$\geq \mu \theta^{2} \exp\left(-\frac{\mu^{2} \theta^{2}}{3}\right) \exp\left(-\gamma \theta^{2} \sum_{j=0}^{m} \sum_{l=1}^{k-1} (jk+l)^{2}\right)$$

$$\geq \mu \theta^{2} \exp\left(-\frac{k^{2} (k-1)^{2} (m+\frac{1}{2})^{2} \theta^{2}}{3}\right)$$

$$\times \exp\left(-\gamma \theta^{2} k (k-1) \left(\frac{km^{3}}{3} + km^{2} + \frac{(6k-1)m}{6} + \frac{2k-1}{6}\right)\right).$$

Put

$$c_k(m) = k^2(k-1)^2 \left(\frac{1}{3m} + \frac{1}{3m^2} + \frac{1}{12m^3} \right) + \gamma k(k-1) \left(\frac{k}{3} + \frac{k}{m} + \frac{6k-1}{6m^2} + \frac{2k-1}{6m^3} \right).$$

When $k \geq 4$ and $m \geq 8k^{\frac{3}{2}}$, we find that

$$c_{k}(m) \leq c_{k} \left(8k^{\frac{3}{2}}\right)$$

$$= k^{\frac{1}{2}}(k-1)^{2} \left(\frac{1}{3 \cdot 8} + \frac{1}{3 \cdot 8^{2}k^{\frac{3}{2}}} + \frac{1}{12 \cdot 8^{3}k^{3}}\right)$$

$$+ \gamma k^{2}(k-1) \left(\frac{1}{3} + \frac{1}{8k^{\frac{3}{2}}} + \frac{6 - k^{-1}}{6 \cdot 8^{2}k^{3}} + \frac{2 - k^{-1}}{6 \cdot 8^{3}k^{\frac{9}{2}}}\right)$$

$$\leq k^{3} \left(\frac{1}{24} + \frac{1}{192k^{\frac{3}{2}}} + \frac{1}{6144k^{3}} + \gamma \left(\frac{1}{3} + \frac{1}{8k^{\frac{3}{2}}} + \frac{1}{64r^{3}} + \frac{1}{1536k^{\frac{9}{2}}}\right)\right)$$

$$\leq k^{3} \left(\frac{1}{24} + \frac{1}{192 \cdot 4^{\frac{3}{2}}} + \frac{1}{6144 \cdot 4^{3}} + \frac{1}{6144 \cdot 4^{3}} + \frac{1}{1536 \cdot 4^{\frac{9}{2}}}\right)\right) \quad \text{(by } k \geq 4)$$

$$< 0.26k^{3} := c_{k},$$

and so

$$\theta \sin(\mu \theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) \ge \mu \theta^2 \exp(-c_k m^3 \theta^2). \tag{2.18}$$

Applying (2.18) to (2.17), we deduce that when $k \geq 4$, $m \geq 8k^{\frac{3}{2}}$ and $0 < \mu \leq \frac{k(k-1)(2m+1)}{2}$,

$$I_{k,m}^{(1)}(\mu) = \int_{0}^{\frac{2\pi}{k(k-1)(2m+1)}} \theta \sin(\mu\theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta$$

$$\geq \int_{0}^{\frac{4}{k(k-1)(2m+1)}} \theta \sin(\mu\theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta$$

$$\geq \int_{0}^{\frac{4}{k(k-1)(2m+1)}} \mu \theta^{2} \exp\left(-c_{k}m^{3}\theta^{2}\right) d\theta$$

$$= \left\{ \int_{0}^{\infty} -\int_{\frac{4}{k(k-1)(2m+1)}}^{\infty} \mu \theta^{2} \exp\left(-c_{k}m^{3}\theta^{2}\right) d\theta \right\}$$

$$= \frac{\mu}{2c_{k}^{\frac{3}{2}} m^{\frac{9}{2}}} \left(\int_{0}^{\infty} v^{\frac{1}{2}} e^{-v} dv - \int_{\frac{16c_{k}m^{3}}{k^{2}(k-1)^{2}(2m+1)^{2}}}^{\infty} v^{\frac{1}{2}} e^{-v} dv \right)$$

$$= \frac{\mu}{2c_{k}^{\frac{3}{2}} m^{\frac{9}{2}}} \left(\frac{\sqrt{\pi}}{2} - \int_{\frac{16c_{k}m^{3}}{k^{2}(k-1)^{2}(2m+1)^{2}}}^{\infty} v^{\frac{1}{2}} e^{-v} dv \right).$$

When $m \ge 8k^{\frac{3}{2}}$, we see that

$$\frac{16c_k m^3}{k^2 (k-1)^2 (2m+1)^2} \ge \frac{16 \cdot 0.26k^3 \cdot 8^3 k^{\frac{9}{2}}}{k^2 (k-1)^2 (2 \cdot 8k^{\frac{3}{2}} + 1)^2}$$

$$\ge \frac{16 \cdot 0.26k^3 \cdot 8^3 k^{\frac{9}{2}}}{k^2 k^2 (17k^{\frac{3}{2}})^2}$$

$$= \frac{2129.92\sqrt{k}}{289}$$

$$\ge \frac{2129\sqrt{4}}{289} > 14.7 \text{ (by } k \ge 4), \tag{2.19}$$

SO

$$\int_{\frac{16c_km^3}{k^2(k-1)^2(2m+1)^2}}^{\infty} v^{\frac{1}{2}}e^{-v} dv < \int_{14.7}^{\infty} v^{\frac{1}{2}}e^{-v} dv < 1.64 \times 10^{-6}.$$

As a result, we can assert that when $k \ge 4$, $m \ge 8k^{\frac{3}{2}}$ and $0 < \mu \le \frac{k(k-1)(2m+1)}{2}$,

$$I_{k,m}^{(1)}(\mu) > \frac{\mu}{2c_k^{\frac{3}{2}}m^{\frac{9}{2}}} \left(\frac{\sqrt{\pi}}{2} - 1.64 \times 10^{-6}\right) > \frac{3.34\mu}{k^{\frac{9}{2}}m^{\frac{9}{2}}}.$$
 (2.20)

We now turn to estimate the value of $I_{k,m}^{(2)}(\mu)$ given by

$$I_{k,m}^{(2)}(\mu) = \int_{\frac{2\pi}{k(k-1)(2m+1)}}^{\frac{\pi}{2km+2(k-1)}} \theta \sin(\mu\theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta.$$
 (2.21)

When $\frac{2\pi}{k(k-1)(2m+1)} \leq \theta \leq \frac{\pi}{2km+2(k-1)}$, we have $0 \leq (jk+l)\theta \leq \frac{\pi}{2}$ for $0 \leq j \leq m$ and $1 \leq l \leq k-1$. In light of (2.9), we derive that

$$\cos((jk+l)\theta) \le \exp\left(-\frac{(jk+l)^2\theta^2}{2}\right).$$

Hence

$$\left| \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) \right|$$

$$\leq \exp\left(-\frac{1}{2} \theta^2 \sum_{j=0}^{m} \sum_{l=1}^{k-1} (jk+l)^2 \right)$$

$$= \exp\left(-\frac{1}{2} k(k-1) \theta^2 \left(\frac{km^3}{3} + km^2 + \frac{(6k-1)m}{6} + \frac{2k-1}{6} \right) \right)$$

$$\leq \exp\left(-\frac{\pi^2}{2k(k-1) \left(m + \frac{1}{2} \right)^2} \left(\frac{km^3}{3} + km^2 + \frac{(6k-1)m}{6} + \frac{2k-1}{6} \right) \right)$$

$$\left(\text{by } \frac{2\pi}{k(k-1)(2m+1)} \leq \theta \leq \frac{\pi}{2km + 2(k-1)} \right)$$

$$= \exp\left(-\frac{\pi^2}{2k(k-1)} \cdot \frac{km}{3} \cdot \frac{m^2 + 3m + \frac{6k-1}{2k} + \frac{2k-1}{2km}}{m^2 + m + \frac{1}{4}} \right)$$

$$\leq \exp\left(-\frac{\pi^2}{2k(k-1)} \cdot \frac{km}{3} \right) = \exp\left(-\frac{\pi^2 m}{6(k-1)} \right) < \exp\left(-\frac{\pi^2 m}{6k} \right). \tag{2.22}$$

Applying (2.22) to (2.21), and in view of (2.8) and (2.20), we derive that when $k \ge 4$, $m \ge 8k^{\frac{3}{2}}$ and $0 < \mu \le \frac{k(k-1)(2m+1)}{2}$,

$$\begin{split} |I_{k,m}^{(2)}(\mu)| & \stackrel{(2.8)}{\leq} \mu \exp\left(-\frac{\pi^2 m}{6k}\right) \int_{\frac{2\pi}{k(k-1)(2m+1)}}^{\frac{\pi}{2km+2(k-1)}} \theta^2 \mathrm{d}\theta \\ & \stackrel{\leq}{\leq} \frac{\mu \pi^3}{3} \left(\frac{1}{(2km+2(k-1))^3} - \frac{8}{(k(k-1)(2m+1))^3}\right) \exp\left(-\frac{\pi^2 m}{6k}\right) \\ & \stackrel{\leq}{\leq} \frac{\mu \pi^3}{3(2km+2(k-1))^3} \exp\left(-\frac{\pi^2 m}{6k}\right) \\ & \stackrel{\leq}{\leq} \frac{\mu \pi^3}{3(8m)^3} \exp\left(-\frac{\pi^2 m}{6k}\right) \quad \text{(by } k \geq 4) \end{split}$$

$$\stackrel{(2.20)}{\leq} \frac{\pi^3 k^{\frac{9}{2}} m^{\frac{3}{2}}}{5130} \exp\left(-\frac{\pi^2 m}{6k}\right) I_{k,m}^{(1)}(\mu). \tag{2.23}$$

Define

$$f_k(m) := \frac{\pi^3 k^{\frac{9}{2}} m^{\frac{3}{2}}}{5130} \exp\left(-\frac{\pi^2 m}{6k}\right).$$

We claim that $f'_k(m) < 0$ for $k \ge 4$ and $m \ge 8k^{\frac{3}{2}}$. Since $f_k(m) > 0$ for $k \ge 4$ and $m \ge 8k^{\frac{3}{2}}$, we have

$$\frac{\mathrm{d}}{\mathrm{d}m}f_k(m) = \frac{\mathrm{d}}{\mathrm{d}m}e^{\ln f_k(m)} = f_k(m)\frac{\mathrm{d}}{\mathrm{d}m}\ln f_k(m). \tag{2.24}$$

Observe that when $k \ge 4$ and $m \ge 8k^{\frac{3}{2}}$,

$$\frac{\mathrm{d}}{\mathrm{d}m}\ln f_k(m) = \frac{3}{2m} - \frac{\pi^2}{6k} \le \frac{3}{2 \cdot 8k^{\frac{3}{2}}} - \frac{\pi^2}{6k} = \frac{\pi^2}{6k} \left(\frac{9}{8\pi^2 k^{\frac{1}{2}}} - 1\right) < 0,$$

and this yields that $f_k'(m) < 0$ for $k \ge 4$ and $m \ge 8k^{\frac{3}{2}}$ as claimed. Consequently,

$$f_k(m) \le f_k(8k^{\frac{3}{2}}) = \frac{8^{\frac{3}{2}}\pi^3}{5130}k^{\frac{27}{4}}\exp\left(-\frac{4\pi^2k^{\frac{1}{2}}}{3}\right).$$
 (2.25)

Applying (2.25) to (2.23), we obtain

$$|I_{k,m}^{(2)}(\mu)| \le \frac{8^{\frac{3}{2}}\pi^3}{5130} k^{\frac{27}{4}} \exp\left(-\frac{4\pi^2 k^{\frac{1}{2}}}{3}\right) I_{k,m}^{(1)}(\mu). \tag{2.26}$$

Define

$$h_1(k) := \exp\left(-\frac{4\pi^2 k^{\frac{1}{2}}}{3}\right) k^{\frac{27}{4}}.$$

Since $h_1(k) > 0$ for $k \ge 4$, we find that

$$\frac{d}{dk}h_1(k) = \frac{d}{dk}e^{\ln h_1(k)} = h_1(k)\frac{d}{dk}\ln h_1(k),$$
(2.27)

and since

$$\frac{d}{dk} \ln h_1(k) = \frac{27}{4k} - \frac{2\pi^2}{3k^{\frac{1}{2}}}$$

$$= \frac{1}{k} \left(\frac{27}{4} - \frac{2\pi^2 k^{\frac{1}{2}}}{3} \right)$$

$$\leq \frac{1}{k} \left(\frac{27}{4} - \frac{4\pi^2}{3} \right) \quad \text{(by } k \geq 4\text{)}$$

$$< -\frac{6}{k} < 0,$$

it follows that $h'_1(k) < 0$ for $k \ge 4$. Hence $h_1(k) \le h_1(4)$ for $k \ge 4$. Therefore,

$$|I_{k,m}^{(2)}(\mu)| \stackrel{(2.26)}{\leq} \frac{8^{\frac{3}{2}}\pi^{3}}{5130} \exp\left(-\frac{8\pi^{2}}{3}\right) \cdot 4^{\frac{27}{4}} I_{k,m}^{(1)}(\mu)$$

$$< 5.89 \times 10^{-9} I_{k,m}^{(1)}(\mu). \tag{2.28}$$

Finally, we turn to estimate the value of $I_{k,m}^{(3)}(\mu)$ defined by

$$I_{k,m}^{(3)}(\mu) = \int_{\frac{\pi}{2km+2(k-1)}}^{\frac{\pi}{2}} \theta \sin(\mu\theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta.$$
 (2.29)

Let $C = \left\{ \frac{i\pi}{2k} | i = 1, 2, \dots, k \right\}$, it is easy to see that

$$\int_{C} \theta \sin(\mu \theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta = 0,$$

SO

$$I_{k,m}^{(3)}(\mu) = \int_{\left[\frac{\pi}{2km+2(k-1)}, \frac{\pi}{2}\right] \setminus C} \theta \sin(\mu\theta) \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) d\theta.$$
 (2.30)

When $\frac{\pi}{2km+2(k-1)} \le \theta \le \frac{\pi}{2}$ and $\theta \ne \frac{i\pi}{2k}$ (i = 1, 2, ..., k), by (2.10), (2.12) and (2.13), we deduce that

$$\left| \prod_{j=0}^{m} \prod_{l=1}^{k-1} \cos((jk+l)\theta) \right|$$

$$\stackrel{(2.10)}{\leq} \exp\left(-\frac{1}{2} \sum_{j=0}^{m} \sum_{l=1}^{k-1} \sin^{2}((jk+l)\theta) - \frac{1}{4} \sum_{j=0}^{m} \sum_{l=1}^{k-1} \sin^{4}((jk+l)\theta) \right)$$

$$= \exp\left(-\frac{1}{2} \left(\sum_{j=1}^{km+k-1} \sin^{2}(j\theta) - \sum_{j=1}^{m} \sin^{2}(jk\theta) \right) \right)$$

$$-\frac{1}{4} \left(\sum_{j=1}^{km+k-1} \sin^{4}(j\theta) - \sum_{j=1}^{m} \sin^{4}(jk\theta) \right) \right)$$

$$\stackrel{(2.12)\&(2.13)}{=} \exp\left(-\frac{11(k-1)(m+1)}{32} + \frac{3\sin((2km+2k-1)\theta)}{16\sin(\theta)} \right)$$

$$-\frac{\sin((2km+2k-1)2\theta)}{64\sin(2\theta)} - \frac{3\sin((2m+1)k\theta)}{16\sin(k\theta)} + \frac{\sin((2m+1)2k\theta)}{64\sin(2k\theta)} \right)$$

$$:= E_{km}(\theta). \tag{2.31}$$

We claim that for $k \geq 4$, $m \geq 8k^{\frac{3}{2}}$ and $\frac{\pi}{2km+2(k-1)} \leq \theta \leq \frac{\pi}{2}$ (where $\theta \neq \frac{i\pi}{2k}$, $i = 1, 2, \ldots, k$),

$$E_{k,m}(\theta) < \exp(-0.381m - 0.224).$$
 (2.32)

We approach the proof of (2.32) through a two-step process. First, we consider the interval $\frac{\pi}{2km+2(k-1)} \leq \theta < \frac{\pi}{2k}$. Since $\frac{\pi}{2km+2(k-1)} \leq \theta < 2\theta < k\theta < \frac{\pi}{2}$, by (2.8), we get

that,

$$\sin(i\theta) \ge \sin\left(\frac{i\pi}{2km + 2(k-1)}\right)$$

$$\ge \frac{i\pi}{2km + 2(k-1)} - \frac{\left(\frac{i\pi}{2km + 2(k-1)}\right)^3}{6}$$

$$\ge \frac{i\pi}{2km + 2(k-1)} \left(1 - \frac{\left(\frac{k\pi}{2km + 2(k-1)}\right)^2}{6}\right), \tag{2.33}$$

where i = 1, 2, k. Applying (2.11) and (2.33) in (2.31), we obtain

$$\begin{split} E_{k,m}(\theta) &\leq \exp\left(-\frac{11(k-1)(m+1)}{32} + \frac{3}{16\sin(\theta)} + \frac{1}{64\sin(2\theta)} + \frac{3}{16\sin(k\theta)} \right. \\ &+ \left| \frac{\sin((2m+1)2k\theta)}{64\sin(2k\theta)} \right| \right) \\ &\stackrel{(2.33)k(2.11)}{\leq} \exp\left(-\frac{11(k-1)(m+1)}{32} + \frac{2m+1}{64} + \frac{3}{16\left(\frac{\pi}{2km+2(k-1)}\left(1 - \frac{\frac{k\pi}{2km+2(k-1)}}{6}\right)^2\right)}\right) \\ &+ \frac{1}{64\left(\frac{2\pi}{2km+2(k-1)}\left(1 - \frac{\frac{k\pi}{2km+2(k-1)}}{6}\right)\right)} + \frac{3}{16\left(\frac{k\pi}{2km+2(k-1)}\left(1 - \frac{\frac{k\pi}{2km+2(k-1)}}{6}\right)\right)}\right) \\ &= \exp\left(\frac{(12-11k)m}{32} + \frac{23-22k}{64} + \frac{24+25k}{128k\left(\frac{\pi}{2km+2(k-1)}\left(1 - \frac{\frac{k\pi}{2km+2(k-1)}}{6}\right)\right)\right)}\right) \\ &= \exp\left(\frac{(12-11k)m}{32} + \frac{23-22k}{64} + \frac{(24+25k)(2km+2(k-1))}{128\pi k\left(1 - \frac{\pi}{2k(2k-1)k(k-1)}\right)^2}\right)\right). \end{split}$$

When $k \ge 4$ and $m \ge 8k^{\frac{3}{2}}$, we have

$$1 - \frac{\pi^2 k^2}{6(2km + 2(k - 1))^2} \ge 1 - \frac{\pi^2 k^2}{6\left(16k^{\frac{5}{2}} + 2(k - 1)\right)^2} \quad \text{(by } m \ge 8k^{\frac{3}{2}}\text{)}$$

$$= 1 - \frac{\pi^2}{6\left(16k^{\frac{3}{2}} + 2 - 2k^{-1}\right)^2}$$

$$\ge 1 - \frac{\pi^2}{6\left(16 \cdot 4^{\frac{3}{2}} + 2 - \frac{1}{2}\right)^2} \quad \text{(by } k \ge 4\text{)}$$

$$= 1 - \frac{\pi^2}{100621.5} > 0.9999.$$

It follows that for $k \geq 4$, $m \geq 8k^{\frac{3}{2}}$ and $\frac{\pi}{2km+2(k-1)} \leq \theta < \frac{\pi}{2k}$,

$$E_{k,m}(\theta) \le \exp\left(\frac{(12-11k)m}{32} + \frac{23-22k}{64} + \frac{(24+25k)(2km+2(k-1))}{0.9999 \cdot 128\pi k}\right)$$

$$= \exp\left(\left(\frac{12-11k}{32} + \frac{24+25k}{0.9999 \cdot 64\pi}\right)m + \frac{23-22k}{64} + \frac{(24+25k)(1-k^{-1})}{0.9999 \cdot 64\pi}\right)$$

$$\le \exp\left((0.495-0.219k)m + 0.479 - 0.219k\right)$$

$$\le \exp\left(-0.381m - 0.397\right) \quad \text{(by } k \ge 4\text{)}. \tag{2.34}$$

Next we consider the interval $\frac{\pi}{2k} \leq \theta \leq \frac{\pi}{2}$ and $\theta \neq \frac{i\pi}{2k}$ (i = 1, 2, ..., k). Employing (2.8) and (2.11), we deduce that

$$E_{k,m}(\theta) \leq \exp\left(-\frac{11(k-1)(m+1)}{32} + \frac{3}{16\sin(\theta)} + \left|\frac{\sin((2km+2k-1)2\theta)}{64\sin(2\theta)}\right| + \left|\frac{3\sin((2m+1)k\theta)}{16\sin(k\theta)}\right| + \left|\frac{\sin((2m+1)2k\theta)}{64\sin(2k\theta)}\right|\right)$$

$$\stackrel{(2.11)}{\leq} \exp\left(-\frac{11(k-1)(m+1)}{32} + \frac{3}{16\sin(\frac{\pi}{2k})} + \frac{2km+2k-1}{64} + \frac{3(2m+1)}{16} + \frac{2m+1}{64}\right)$$

$$\stackrel{(2.8)}{\leq} \exp\left(-\frac{11(k-1)(m+1)}{32} + \frac{3}{16\left(\frac{\pi}{2k}\left(1 - \frac{\left(\frac{\pi}{2k}\right)^2}{6}\right)\right)} + \frac{2km+2k-1}{64} + \frac{3(2m+1)}{16} + \frac{2m+1}{64}\right)$$

$$= \exp\left(\left(\frac{3}{4} - \frac{5k}{16}\right)m - \frac{5k}{16} + \frac{17}{32} + \frac{3k}{8\pi\left(1 - \frac{\pi^2}{24k^2}\right)}\right)$$

$$\leq \exp\left(\left(\frac{3}{4} - \frac{5k}{16}\right)m - \frac{5k}{16} + \frac{17}{32} + \frac{3k}{0.9742 \cdot 8\pi}\right) \quad \text{(by } k \geq 4\text{)}$$

$$\leq \exp\left(\left(\frac{3}{4} - \frac{5k}{16}\right)m + \frac{17}{32} - 0.189k\right)$$

$$\leq \exp\left(-0.5m - 0.224\right) \quad \text{(by } k \geq 4\text{)}. \tag{2.35}$$

Combining (2.34) and (2.35) yields (2.32), so the claim is verified. Substituting (2.32) to (2.30), and in view of (2.8) and (2.20), we derive that

$$|I_{k,m}^{(3)}(\mu)| \stackrel{(2.8)}{\leq} \mu \exp\left(-0.381m - 0.224\right) \int_{\frac{\pi}{2km+2(k-1)}}^{\frac{\pi}{2}} \theta^{2} d\theta$$

$$\leq \frac{\mu \pi^{3}}{3} \left(\frac{1}{8} - \frac{1}{(2km+2(k-1))^{3}}\right) \exp\left(-0.381m - 0.224\right)$$

$$\leq \frac{\mu \pi^{3}}{24} \exp\left(-0.381m - 0.224\right)$$

$$\stackrel{(2.20)}{\leq} \frac{\pi^{3} k^{\frac{9}{2}} m^{\frac{9}{2}}}{3.34 \cdot 24} \exp\left(-0.381m - 0.224\right) I_{k,m}^{(1)}(\mu). \tag{2.36}$$

Define

$$g_k(m) := \frac{\pi^3 k^{\frac{9}{2}} m^{\frac{9}{2}}}{3.34 \cdot 24} \exp(-0.381m - 0.224).$$

Since when $k \geq 4$ and $m \geq 8k^{\frac{3}{2}}$, we have $g_k(m) > 0$ and

$$\frac{\mathrm{d}}{\mathrm{d}m}g_k(m) = \frac{\mathrm{d}}{\mathrm{d}m}e^{\ln g_k(m)}$$

$$= g_k(m)\frac{\mathrm{d}}{\mathrm{d}m}\ln g_k(m)$$

$$= g_k(m)\left(\frac{9}{2m} - 0.381\right)$$

$$\leq g_k(m)\left(\frac{9}{2 \cdot 8 \cdot 4^{\frac{3}{2}}} - 0.381\right)$$

$$< -0.31g_k(m) < 0,$$

it follows that $g'_k(m) < 0$ when $k \ge 4$ and $m \ge 8k^{\frac{3}{2}}$, and so for $k \ge 4$ and $m \ge 8k^{\frac{3}{2}}$,

$$g_k(m) \le g_k(8k^{\frac{3}{2}}) = \frac{8^{\frac{9}{2}}\pi^3k^{\frac{45}{4}}}{3.34 \cdot 24} \exp\left(-3.048k^{\frac{3}{2}} - 0.224\right).$$
 (2.37)

Define

$$h_2(k) := \exp\left(-3.048k^{\frac{3}{2}} - 0.224\right)k^{\frac{45}{4}}.$$

When $k \geq 4$, we have $h_2(k) > 0$ and

$$\frac{d}{dk}h_2(k) = \frac{d}{dk}e^{\ln h_2(k)}$$

$$= h_2(k)\frac{d}{dk}\ln h_2(k)$$

$$= h_2(k)\left(\frac{45}{4k} - 3.048 \cdot \frac{3k^{\frac{1}{2}}}{2}\right)$$

$$\leq h_2(k)\left(\frac{45}{4 \cdot 4} - 3.048 \cdot \frac{3\sqrt{4}}{2}\right) \quad \text{(by } k \geq 4)$$

$$< -6.3h_2(k) < 0.$$

so $h'_2(k) < 0$ for $k \ge 4$, and hence for $k \ge 4$,

$$g_k(m) \le \frac{8^{\frac{9}{2}}\pi^3}{3.34 \cdot 24} \exp\left(-3.048 \cdot 4^{\frac{3}{2}} - 0.224\right) \cdot 4^{\frac{45}{4}} < 0.55.$$
 (2.38)

Substituting (2.38) into (2.36), we have

$$|I_{k\,m}^{(3)}(\mu)| < 0.55I_{k\,m}^{(1)}(\mu).$$
 (2.39)

Combining (2.28) and (2.39) yields (2.16), and so (2.15) is valid. This leads to (2.1) holds for $k \geq 4$, $m \geq 8k^{\frac{3}{2}}$ and $\frac{k(k-1)m^2}{4} \leq n \leq \frac{k(k-1)(m+1)^2}{4}$, and so Lemma 2.1 is verified.

3 Proofs of Theorem 1.1 and Theorem 1.2

This section is devoted to the proofs of Theorem 1.1 and Theorem 1.2. Prior to that, we demonstrate the symmetry of $D_{k,m}(q)$.

Theorem 3.1. For $k \geq 0$, the polynomials $D_{k,m}(q)$ are symmetric.

Proof. Replacing q by q^{-1} in (1.1), we find that

$$D_{k,m}(q^{-1}) = \prod_{j=0}^{m} \left(1 + q^{-(jk+1)}\right) \left(1 + q^{-(jk+2)}\right) \cdots \left(1 + q^{-(jk+k-1)}\right)$$
$$= q^{-N(k,m)} \prod_{j=0}^{m} \left(1 + q^{jk+1}\right) \left(1 + q^{jk+2}\right) \cdots \left(1 + q^{jk+k-1}\right)$$
$$= q^{-N(k,m)} D_{k,m}(q).$$

To wit,

$$D_{k,m}(q) = q^{N(k,m)} D_{k,m}(q^{-1}),$$

from which, it follows that $D_{k,m}(q)$ is symmetric. This completes the proof.

We give an inductive proof of Theorem 1.1 with the aid of Lemma 2.1.

Proof of Theorem 1.1: From Theorem 3.1, we see that $D_{4,m}(q)$ is symmetric. Hence in order to prove Theorem 1.1, it suffices to show that

$$d_{4,m}(n) \ge d_{4,m}(n-1)$$
 for $m \ge 0$, $1 \le n \le 3(m+1)^2$ and $n \ne 4$. (3.1)

Recall that $d_{4,m}(n)$ counts the number of 4-regular partitions into distinct parts where the largest part is at most 4m + 3, it is easy to check that for $m \ge 0$,

$$d_{4,m}(0) = d_{4,m}(1) = d_{4,m}(2) = 1, \ d_{4,m}(3) = 2, \ d_{4,m}(4) = 1.$$
 (3.2)

Here we assume that $d_{4,m}(n) = 0$ when n < 0. It can be checked that (3.1) holds when $0 \le m \le 63$. In the following, we will demonstrate its validity for the case when $m \ge 64$. However, our main objective is to show that when $m \ge 64$,

$$d_{4,m}(n) \ge d_{4,m}(n-1), \quad 5 \le n \le 12m + 20$$
 (3.3)

and

$$d_{4,m}(n) \ge d_{4,m}(n-1) + 1, \quad 12m + 21 \le n \le 3(m+1)^2,$$
 (3.4)

which are immediate led to (3.1). It can be checked that (3.3) and (3.4) are valid when m = 64. It remains to show that (3.3) and (3.4) hold when m > 64. We proceed by induction on m. Assume that (3.3) and (3.4) are valid for m-1, namely

$$d_{4,m-1}(n) \ge d_{4,m-1}(n-1), \quad 5 \le n \le 12m+8$$
 (3.5)

and

$$d_{4,m-1}(n) \ge d_{4,m-1}(n-1) + 1, \quad 12m + 9 \le n \le 3m^2. \tag{3.6}$$

We aim to show that (3.3) and (3.4) hold.

Comparing coefficients of q^n in

$$D_{4,m}(q) = (1 + q^{4m+1}) (1 + q^{4m+2}) (1 + q^{4m+3}) D_{4,m-1}(q),$$

we obtain the following recurrence relation:

$$d_{4,m}(n) = d_{4,m-1}(n) + d_{4,m-1}(n-4m-1) + d_{4,m-1}(n-4m-2)$$

$$+ d_{4,m-1}(n-4m-3) + d_{4,m-1}(n-8m-3) + d_{4,m-1}(n-8m-4)$$

$$+ d_{4,m-1}(n-8m-5) + d_{4,m-1}(n-12m-6),$$
(3.7)

thereby leading to

$$d_{4,m}(n) - d_{4,m}(n-1) = d_{4,m-1}(n) - d_{4,m-1}(n-1)$$

$$+ d_{4,m-1}(n-4m-1) - d_{4,m-1}(n-4m-4)$$

$$+ d_{4,m-1}(n-8m-3) - d_{4,m-1}(n-8m-6)$$

$$+ d_{4,m-1}(n-12m-6) - d_{4,m-1}(n-12m-7).$$
 (3.8)

When $5 \le n \le 12m + 20$ and $n \ne 12m + 10$, applying (3.5) and (3.6) to (3.8), we see that

$$d_{4,m}(n) - d_{4,m}(n-1) \ge 0.$$

When n = 12m + 10, we observe that

$$d_{4,m-1}(n-12m-6) - d_{4,m-1}(n-12m-7) = d_{4,m-1}(4) - d_{4,m-1}(3) = -1.$$

But by (3.6), we have

$$d_{4,m-1}(n) - d_{4,m-1}(n-1) = d_{4,m-1}(12m+10) - d_{4,m-1}(12m+9) \ge 1,$$

which leads to $d_{4,m}(n) - d_{4,m}(n-1) \ge 0$ when n = 12m + 10. To sum up, we get

$$d_{4,m}(n) - d_{4,m}(n-1) \ge 0, \quad 5 \le n \le 12m + 20,$$

and so (3.3) is valid. Applying (3.5) and (3.6) to (3.8) again, we infer that

$$d_{4,m}(n) - d_{4,m}(n-1) \ge 1, \quad 12m + 21 \le n \le 3m^2.$$
 (3.9)

In view of Lemma 2.1, we see that

$$d_{4,m}(n) - d_{4,m}(n-1) \ge 1, \quad 3m^2 < n \le 3(m+1)^2.$$
 (3.10)

Combining (3.9) and (3.10), we confirm that (3.4) holds. Together with (3.3), we deduce (3.1) holds, and so $D_{4,m}(q)$ is unimodal, except at the coefficients of q^4 and $q^{N(4,m)-4}$. This completes the proof of Theorem 1.1.

We conclude this paper with the proof of Theorem 1.2 by the utilization of Lemma 2.1.

Proof of Theorem 1.2: Given $k \geq 5$ and $m_0 \geq 0$, assume that $D_{k,m_0}(q)$ is unimodal. We proceed to show that the polynomial $D_{k,m}(q)$ is unimodal for $m \geq m_0$ by induction on m. Considering the symmetry of $D_{k,m}(q)$, it suffices to show that for $m > m_0$ and $1 \leq n \leq \lfloor \frac{k(k-1)(m+1)^2}{4} \rfloor$,

$$d_{k,m}(n) \ge d_{k,m}(n-1). \tag{3.11}$$

Assume that (3.11) is valid for m-1, that is, for $m>m_0$ and $1\leq n\leq \lfloor\frac{k(k-1)m^2}{4}\rfloor$,

$$d_{k,m-1}(n) \ge d_{k,m-1}(n-1). \tag{3.12}$$

We intend to show that (3.11) holds for $m > m_0$ and $1 \le n \le \lfloor \frac{k(k-1)(m+1)^2}{4} \rfloor$. By comparing the coefficients of q^n in the polynomial

$$D_{k,m}(q) = (1 + q^{km+1}) (1 + q^{km+2}) \cdots (1 + q^{km+k-1}) D_{k,m-1}(q),$$

it can be determined that

$$d_{k,m}(n) = \sum_{\substack{i_j = 0 \text{ or } km + j \\ 1 \le j \le k-1}} d_{k,m-1}(n - i_1 - \dots - i_{k-1}),$$

which leads to

$$d_{k,m}(n) - d_{k,m}(n-1) = \sum_{\substack{i_j = 0 \text{ or } km+j\\1 \le j \le k-1}} (d_{k,m-1}(n-i_1 - \dots - i_{k-1}) - d_{k,m-1}(n-i_1 - \dots - i_{k-1} - 1)).$$
(3.13)

Utilizing (3.12) in (3.13) yields that the validity of (3.11) for $m > m_0$ and $1 \le n \le \lfloor \frac{k(k-1)m^2}{4} \rfloor$. In view of Lemma 2.1, we see that (3.11) holds for $m \ge 8k^{\frac{3}{2}}$ and $\lceil \frac{k(k-1)m^2}{4} \rceil \le n \le \lfloor \frac{k(k-1)(m+1)^2}{4} \rfloor$. Given the condition that (3.11) holds for $m_0 < m < 8k^{\frac{3}{2}}$ and $\lceil \frac{k(k-1)m^2}{4} \rceil \le n \le \lfloor \frac{k(k-1)(m+1)^2}{4} \rfloor$, we reach the conclusion that (3.11) is valid for $m > m_0$ and $1 \le n \le \lfloor \frac{k(k-1)(m+1)^2}{4} \rfloor$. Therefore, $D_{k,m}(q)$ is unimodal for $m \ge m_0$. Thus, we complete the proof of Theorem 1.2.

Acknowledgment. This work was supported by the National Science Foundation of China.

References

- [1] G. Almkvist, Partitions into odd, unequal parts, J. Pure Appl. Algebra 38 (1985) 121–126.
- [2] A. C. Burdette, An Introduction to Analytic Geometry and Calculus, Academic Press International Edition, 1973.
- [3] W. Y. C. Chen and I. D. D. Jia, Semi-invariants of binary forms and Sylvester's theorem, Ramanujan J. 59 (2022) 297–311.
- [4] A. Cayley, A second memoir upon quantics, Philos. Trans. Roy. Soc. London 146 (1856) 101–126.
- [5] J. J. W. Dong and K. Q. Ji, Unimodality of partition polynomials related to Borwein's conjecture, Ramanujan J. 61 (2023) 1063–1076.
- [6] E. B. Dynkin, Some properties of the system of weights of a linear representation of a semisimple Lie group (Russian), Doklady Akad. Nauk SSSR (N.S.) 71 (1950) 221–224.
- [7] R. C. Entringer, Representations of m as $\sum_{k=-n}^{n} \epsilon_k k$, Canad. Math. Bull. 11 (1968) 289–293.
- [8] J. W. B. Hughes, Lie algebraic proofs of some theorems on partitions, Number theory and algebra, Academic Press, New York, (1977) 135–155.
- [9] K. M. O'Hara, Unimodality of Gaussian coefficients: a constructive proof, J. Combin. Theory Ser. A 53 (1990) 29–52.
- [10] A. M. Odlyzko and L. B. Richmond, On the unimodality of some partition polynomials, European J. Combin. 3 (1982) 69–84.

- [11] I. Pak and G. Panova, Strict unimodality of q-binomial coefficients, C. R. Math. Acad. Sci. Paris 351 (2013) 415–418.
- [12] I. Pak and G. Panova, Unimodality via Kronecker products, J. Algebraic Combin. 40 (2014) 1103–1120.
- [13] R. A. Proctor, Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly 89 (1982) 721–734.
- [14] R. P. Stanley, Unimodal sequences arising from Lie algebras, Combinatorics, representation theory and statistical methods in groups, pp. 127–136, Lecture Notes in Pure and Appl. Math., 57, Dekker, New York, 1980.
- [15] R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982) 132–161.
- [16] R. P. Stanley, Enumerative combinatorics, Vol. 1, (English summary) Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 1997.
- [17] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2003.
- [18] J. J. Sylvester, Proof of the hitherto undemonstrated fundamental theorem of invariants, Philos. Mag. 5 (1878) 178–188. Reprinted in: The Collected Mathematical Papers of James Joseph Sylvester, vol. 3, Cambridge University Press, Cambridge, (1909), pp. 117–126.
- [19] J. H. van Lint, Representation of 0 as $\sum_{k=-N}^{N} \epsilon_k k$, Proc. Amer. Math. Soc. 18 (1967) 182–184.