Pseudo asymptotically Bloch periodic solutions with measures for some differential Equations.

Mounir Ben Salah ^a, Youssef Khemili^b and Mohsen Miraoui^c

^a IPEIK, Kairouan University, Tunisia.

^b FSS, Sfax University, Tunisia.

^c IPEIK, Kairouan University, Tunisia. E-mail: miraoui.mohsen@yahoo.fr

Abstract: In this work we focus on upon the (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodicity and its applications. Firstly, we define a new notion of (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic functions and some fundamental properties. Then, the obtained results are applied to investigate the existence and uniqueness of (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic mild solutions to Semi-linear Evolution equation in Banach spaces. Finally, we gave an application that facilitates the work.

Keywords: Bloch periodic functions, (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic functions, Semilinear Evolution Equation.

MSC CLASSIFICATION: 34K14; 35B15.

1 Introduction

This work is based on the principle of Bloch τ -periodicity, which introduces for the first time by Hasler and N'Guérékata in [14], where they treat τ -periodicity, τ -anti-periodicity cases, and some fundamental results of Bloch type τ -periodic functions, such as the completeness of space and the composition and convolution product theorems.

In [18], Oueama-Guengai and N'Guérékata introduced the existence and uniqueness of Bloch τ -periodic mild solutions to semi-linear fractional differential equation in Banach spaces.

On the other hand, we can speak of asymptotic S-asymptotic τ -periodicity which is an extension of classical τ -periodicity, for more results on S-asymptotic τ -periodicity and some applications, we can refer to [11, 13, 15, 18].

Recently, Yong-Kui Chang and Yangean Wei [9] introduced a new concept, the pseudo S-asymptotically Bloch τ -periodicity and give some applications to evolution equation.

In this paper, we generalize pseudo S-asymptotic Bloch τ -periodicity into (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic by measure theory.

A function $f \in \mathcal{C}_b(\mathbb{R}, X)$ is said to be (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic if for given $\tau, \rho \in \mathbb{R}$,

$$\lim_{r \to +\infty} \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) = 0,$$

where μ_1 and μ_2 are two positives measures that we will define then later (See [1, 4, 4]). we say that $f \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

The main purpose of this paper is to consider the following semi-linear integro-differential equation

$$u'(s) = Tu(s) + a \int_{-\infty}^{s} \frac{(s-t)^{m-1}}{\Gamma(m)} e^{-b(s-t)} Tu(t) dt + g(s, u(s)), \ s \in \mathbb{R},$$
(1.1)

where $T: D(T) \subseteq X \to X$ is a closed linear operator on a Banach space X, $a \neq 0$, b > 0, $m \geq 1$, $g \in \mathcal{C}_b(\mathbb{R} \times X, X)$, and $\Gamma(.)$ is the Gamma function.

The equation (1.1) arises from the thermodynamics of materials with memory (as in [2]).

The next part of this article is outlined as follows: Section 2 is Preliminaries composing some basic definitions, remarks and notations. Section 3 we treat some results on (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic functions. Section 4 is concerned with the existence and uniqueness of (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic solutions to (1.1). Finally, in section 5, we give an application which explains the work.

2 Preliminaries

we consider the following notations:

- (X, ||.||): Banach space.
- $\bullet \|f\|_{\infty} = \sup_{t \in \mathbb{R}} \|f\|.$
- $C_b(\mathbb{R}, X)$ (resp $C_b(\mathbb{R} \times X, X)$): Banach space of bounded continuous functions from \mathbb{R} (resp $\mathbb{R} \times X$) to X with super-norm $\|.\|_{\infty}$.
- $\mathcal{B}(X)$: Space of all bounded linear operators from X into itself.
- $f_a(.) := f(.+a)$, with $a \in \mathbb{R}$ and $f \in \mathcal{C}_b(\mathbb{R}, X)$
- $\Omega_r := [-r, r], r > 0.$
- $\Re(z)$: real part of z, with $z \in \mathbb{C}$.

Definition 2.1. [14] For given $\tau, \rho \in \mathbb{R}$, a function $f \in \mathcal{C}_b(\mathbb{R}, X)$ is said to be Bloch τ -periodic if for all $s \in \mathbb{R}$, $f(s+\tau) = e^{i\rho\tau}f(s)$.

We denote by $BP_{\tau,\rho}(\mathbb{R},X)$, the space of all Bloch τ -periodic functions from \mathbb{R} to X.

Remark 2.1. From definition 2.1, we can see that f is τ -periodic if $\rho\tau = 0$, and f is τ -anti-periodic if $\rho\tau = \pi$.

Definition 2.2. [13] A function $f \in \mathcal{C}_b(\mathbb{R}, X)$ is said to be S-asymptotically τ -periodic if for a given $\tau \in \mathbb{R}$,

$$\lim_{|s| \to \infty} ||f(s+\tau) - f(s)|| = 0, s \in \mathbb{R}.$$

we denote the set of its functions by $SAP_{\tau}(\mathbb{R}, X)$.

Definition 2.3. [20] A function $f \in \mathcal{C}_b(\mathbb{R}, X)$ is said to be pseudo-S-asymptotically τ -periodic if for a given $\tau \in \mathbb{R}$,

$$\lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} ||f(s+\tau) - f(s)|| ds = 0.$$

The set of such functions will be denoted by $PSAP_{\tau}(\mathbb{R}, X)$.

3 (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic functions

We denote by \mathcal{B} the Lebesgue σ -field of \mathbb{R} and by \mathcal{M} the set of all positive measures μ on \mathcal{B} satisfying $\mu(\mathbb{R}) = +\infty$ and $\mu([a_1, a_2]) < +\infty$, for all $a_1, a_2 \in \mathbb{R}$, $(a_1 \leq a_2)$.

Definition 3.1. Let $\mu_1, \mu_2 \in \mathcal{M}$. The measures μ_1 and μ_2 are said to be equivalent $(\mu_1 \sim \mu_2)$ if there exist a constants $c_1, c_2 > 0$ and a bounded interval $J \subset \mathbb{R}$ (eventually $J = \emptyset$) such that

$$c_1\mu_2(A) \le \mu_1(A) \le c_2\mu_2(A)$$

for all $A \in \mathcal{B}$ satisfying $A \cap J = \emptyset$.

Let $\mu_1, \mu_2 \in \mathcal{M}$ and r > 0, suppose that

$$\Theta_r = \frac{\mu_1(\Omega_r)}{\mu_2(\Omega_r)}.$$

In this paper, we need the following hypotheses:

(M1) Let $\mu_1, \mu_2 \in \mathcal{M}$ such that

$$\limsup_{r \to +\infty} \Theta_r < +\infty.$$

(M2) For $\mu \in \mathcal{M}$, $\omega \in \mathbb{R}$, there exist $\gamma > 0$ and a bounded interval J such that

 $\mu(a + \omega; a \in \mathcal{A}) \leq \gamma \mu(\mathcal{A}), \text{ when } \mathcal{A} \in \mathcal{B} \text{ satisfy } \mathcal{A} \cap \mathcal{J} = \emptyset.$

Definition 3.2. Let $\mu_1, \mu_2 \in \mathcal{M}$. A function $f \in \mathcal{C}_b(\mathbb{R}, X)$ is said to be (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic if for given $\tau, \rho \in \mathbb{R}$,

$$\lim_{r \to +\infty} \frac{1}{\mu_2(\Omega_r)} \int_{\Omega} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) = 0.$$

We denote the set of all such functions by $PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

• If $\rho \tau = 0$, we have

$$\lim_{r \to +\infty} \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} ||f(s+\tau) - f(s)|| d\mu_1(s) = 0,$$

then f is called (μ_1, μ_2) -Pseudo-asymptotically τ -periodic denoted by $PSAP_{\tau}(\mathbb{R}, X, \mu_1, \mu_2)$.

• If $\rho \tau = \pi$, we have

$$\lim_{r \to +\infty} \frac{1}{\mu_2(\Omega_r)} \int_{\Omega} \|f(s+\tau) + f(s)\| d\mu_1(s) = 0,$$

then f is called (μ_1, μ_2) -Pseudo-asymptotically τ -anti-periodic denoted by $PSAAP_{\tau}(\mathbb{R}, X, \mu_1, \mu_2)$.

• If $\mu_1 = \mu_2 = \mu$, we have

$$\lim_{r \to +\infty} \frac{1}{\mu(\Omega_r)} \int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu(s) = 0,$$

then f is called μ -Pseudo-asymptotically Bloch τ -periodic denoted by $PSABP_{\tau,\rho}(\mathbb{R}, X, \mu)$.

Lemma 3.1. Let $\mu_1, \mu_2 \in \mathcal{M}$ satisfy (M1) and (M2), $f, g, h \in PSABP_{\tau, \rho}(\mathbb{R}, X, \mu_1, \mu_2)$. Then we have the following results:

- (i) $g + h \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2), cf \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ for each $c \in \mathbb{R}$.
- (ii) The function $f_a \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ for any $a \in \mathbb{R}$.
- (iii) The space $PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ is a Banach space with the super-norm.

Proof. (i) Hence,

$$\frac{1}{\mu_{2}(\Omega_{r})} \int_{\Omega_{r}} \|(g+h)(s+\tau) - e^{i\rho\tau}(g+h)(s)\| d\mu_{1}(s)
\leq \frac{1}{\mu_{2}(\Omega_{r})} \int_{\Omega_{r}} \|g(s+\tau) - e^{i\rho\tau}g(s)\| d\mu_{1}(s)
+ \frac{1}{\mu_{2}(\Omega_{r})} \int_{\Omega_{r}} \|h(s+\tau) - e^{i\rho\tau}h(s)\| d\mu_{1}(s),$$

and

$$\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|(cf)(s+\tau) - e^{i\rho\tau}(cf)(s)\| d\mu_1(s) \le |c| \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau}f(s)\| d\mu_1(s).$$

Then

$$g + h, cf \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2).$$

(ii) For each $a \in \mathbb{R}$, hence,

$$\begin{split} &\frac{1}{\mu_{2}(\Omega_{r})}\int_{\Omega_{r}}\|f(s+a+\tau)-e^{i\rho\tau}f(s+a)\|d\mu_{1}(s)\\ &\leq \frac{\gamma}{\mu_{2}(\Omega_{r})}\int_{-r+a}^{r+a}\|f(s+\tau)-e^{i\rho\tau}f(s)\|d\mu_{1}(s)\\ &\leq \frac{\gamma}{\mu_{2}(\Omega_{r})}\int_{-r-|a|}^{r+|a|}\|f(s+\tau)-e^{i\rho\tau}f(s)\|d\mu_{1}(s)\\ &= \gamma\frac{\mu_{2}([-r-|a|,r+|a|])}{\mu_{2}([-r,r])}(\frac{1}{\mu_{2}([-r-|a|,r+|a|])}\int_{-r-|a|}^{r+|a|}\|f(s+\tau)-e^{i\rho\tau}f(s)\|d\mu_{1}(s)). \end{split}$$

For r sufficiently large we obtain $f_a \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

(iii) Let $\{f_n\}_n \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ converge to f as $r \to \infty$.

Then for any $\epsilon > 0$, we can choose suitable constants N > 0 and r_{ϵ} such that

$$\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|f_n(s+\tau) - e^{i\rho\tau} f_n(s)\| d\mu_1(s) \leq \frac{\epsilon}{3}; \|f_n - f\|_{\infty} \leq \frac{\epsilon}{3\Theta_r}, \text{ for } n > N \text{ and } r > r_{\epsilon}.$$

$$\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s)$$

$$= \frac{1}{\mu_2(\Omega_r)} \left(\int_{\Omega_r} \|f(s+\tau) - f_n(s+\tau) + f_n(s+\tau) - e^{i\rho\tau} f_n(s) + e^{i\rho\tau} f_n(s) - e^{i\rho\tau} f(s) \| d\mu_1(s) \right)$$

$$\leq \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|f(s+\tau) - f_n(s+\tau)\| d\mu_1(s)$$

$$+ \frac{1}{\mu_{2}(\Omega_{r})} \int_{\Omega_{r}} \|e^{i\rho\tau} f_{n}(s) - e^{i\rho\tau} f(s)\| d\mu_{1}(s)$$

$$+ \frac{1}{\mu_{2}(\Omega_{r})} \int_{\Omega_{r}} \|f_{n}(s+\tau) - e^{i\rho\tau} f_{n}(s)\| d\mu_{1}(s)$$

$$\leq 2\Theta_{r} \|f_{n} - f\|_{\infty} + \left(\frac{1}{\mu_{2}(\Omega_{r})} \int_{\Omega_{r}} \|f_{n}(s+\tau) - e^{i\rho\tau} f_{n}(s)\| d\mu_{1}(s)\right)$$

$$\leq 2\frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Which gives that the space $PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ is a closed sub-space of $C_b(\mathbb{R}, X)$, it is therefore a Banach space equipped with super-norm.

Theorem 3.2. Let $\mu_1, \mu_2 \in \mathcal{M}$ satisfies (M1) and J be a bounded interval (eventually $J = \emptyset$) and $f \in \mathcal{C}_b(\mathbb{R}, X)$, then the following assertions are equivalent:

(i) $f \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

(ii)
$$\lim_{r \to \infty} \frac{1}{\mu_2(\Omega_r \setminus \mathbf{J})} \int_{\Omega_r \setminus \mathbf{J}} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) = 0$$

(iii) For any $\epsilon > 0$,

$$\lim_{r \to \infty} \frac{\mu_1(s \in \Omega_r \setminus \mathbf{J}, ||f(s+\tau) - e^{i\rho\tau} f(s)|| > \epsilon)}{\mu_2(\Omega_r \setminus \mathbf{J})} = 0.$$

Proof. (i) \Leftrightarrow (ii) Denote by $A_1 = \mu_2(J), A_2 = \int_J \|f(s+\tau) - e^{i\rho\tau}f(s)\|d\mu_1(s), A_3 = \mu_1(J).$

Since the interval J is bounded and $f \in \mathcal{C}_b(\mathbb{R}, X)$, then A_1, A_2 and A_3 are finite.

for r > 0 such tat $J \subset \Omega_r$ and $\mu_2(\Omega_r \setminus J) > 0$, we have

$$\begin{split} &\frac{1}{\mu_2(\Omega_r \setminus \mathbf{J})} \int_{\Omega_r \setminus \mathbf{J}} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) = \frac{1}{\mu_2(\Omega_r) - A_1} (\int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) - A_2) \\ &= \frac{\mu_2(\Omega_r)}{\mu_2(\Omega_r) - A_1} (\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) - \frac{A_2}{\mu_2(\Omega_r)}). \end{split}$$

Since $\mu_2(\mathbb{R}) = \infty$, we deduce that $(ii) \Leftrightarrow (i)$.

 $(iii) \Rightarrow (ii)$ Denote by Φ_r^{ϵ} and Ψ_r^{ϵ} the following sets

$$\Phi_r^{\epsilon} = \{ s \in \Omega_r \backslash \mathbf{J}, \| f(s+\tau) - e^{i\rho\tau} f(s) \| > \epsilon \},$$

and

$$\Psi_r^{\epsilon} = \{ s \in \Omega_r \backslash \mathbf{J}, \| f(s+\tau) - e^{i\rho\tau} f(s) \| \le \epsilon \}.$$

Assume that (iii) holds, that is

$$\lim_{r \to \infty} \frac{\mu_1(\Phi_r^{\epsilon})}{\mu_2(\Omega_r \backslash \mathbf{J})} = 0.$$

We have $\int_{\Omega_r \setminus J} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) = \int_{\Phi_{\frac{s}{\mu}}} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) + \int_{\Psi_{\frac{s}{\mu}}} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) + \int_{\Psi_\frac{s}{\mu}} \|f(s) - e^{i\rho\tau$

$$\frac{1}{\mu_2(\Omega_r \setminus \mathbf{J})} \int_{\Omega_r \setminus \mathbf{J}} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s)$$

$$\leq 2\|f\|_{\infty} \frac{\mu_1(\Phi_r^{\epsilon})}{\mu_2(\Omega_r \backslash \mathbf{J})} + \frac{\mu_1(\Psi_r^{\epsilon})}{\mu_2(\Omega_r \backslash \mathbf{J})} \epsilon$$

$$\leq 2\|f\|_{\infty} \frac{\mu_1(\Phi_r^{\epsilon})}{\mu_2(\Omega_r \setminus J)} + \frac{\mu_1(\Omega_r \setminus J)}{\mu_2(\Omega_r \setminus J)} \epsilon$$

$$=2\|f\|_{\infty} \frac{\mu_1(\Phi_r^{\epsilon})}{\mu_2(\Omega_r \setminus \mathbf{J})} + \frac{\mu_1(\Omega_r) - A_3}{\mu_2(\Omega_r) - A_1} \epsilon$$

$$= 2\|f\|_{\infty} \frac{\mu_1(\Phi_r^{\epsilon})}{\mu_2(\Omega_r \backslash \mathbf{J})} + \frac{\mu_1(\Omega_r)(1 - \frac{A_3}{\mu_1(\Omega_r)})}{\mu_2(\Omega_r)(1 - \frac{A_1}{\mu_2(\Omega_r)})} \epsilon$$

$$\leq 2\|f\|_{\infty} \tfrac{\mu_1(\Phi_r^{\epsilon})}{\mu_2(\Omega_r\backslash \mathbf{J})} + \Theta_r \tfrac{1-\frac{A_3}{\mu_1(\Omega_r)}}{1-\frac{A_1}{\mu_2(\Omega_r)}} \epsilon$$

For r sufficiently large, since $\mu_1(\mathbb{R}) = \mu_2(\mathbb{R}) = \infty$, then for all $\epsilon > 0$ we have

$$\frac{1}{\mu_2(\Omega_r \setminus J)} \int_{\Omega_r \setminus J} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) \le \cot \epsilon$$

Then

$$\lim_{r \to \infty} \frac{1}{\mu_2(\Omega_r \setminus \mathbf{J})} \int_{\Omega_r \setminus \mathbf{J}} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) = 0$$

Consequently (ii) holds.

 $(ii) \Rightarrow (iii)$ Assume that (ii) holds

$$\begin{split} &\frac{1}{\mu_2(\Omega_r\backslash \mathbf{J})} \int_{\Omega_r\backslash \mathbf{J}} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) \\ &\geq \frac{1}{\mu_2(\Omega_r\backslash \mathbf{J})} \int_{\Phi_r^\epsilon} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) \\ &\geq \epsilon \frac{\mu_1(\Phi_r^\epsilon)}{\mu_2(\Omega_r\backslash \mathbf{J})} \end{split}$$

For r sufficiently large, we obtain (iii).

Corollary 3.3. A continuous function $f : \mathbb{R} \to X$ satisfying

$$\lim_{|s| \to \infty} f(s) = 0$$

Then $f \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ for all $\mu_1, \mu_2 \in \mathcal{M}$ satisfies (M1).

Proof. By hypothesis, we have

$$\lim_{|s| \to \infty} (f(s+\tau) - e^{i\rho\tau} f(s)) = 0$$

for all $\epsilon > 0$, there exists $\nu > 0$ such that

$$|s| \ge v \Rightarrow ||f(s+\tau) - e^{i\rho\tau}f(s)|| \le \epsilon$$

Then for all r > v

$$\{s \in \Omega_r \setminus (-v, v); \|f(s+\tau) - e^{i\rho\tau} f(s)\| > \epsilon\} = \emptyset.$$

We conclude by using theorem 3.2.

Proposition 3.4. Assume that (M1) hold. If $\mu_1, \mu_2, \nu_1, \nu_2 \in \mathcal{M}$ and $\mu_1 \sim \nu_1, \mu_2 \sim \nu_2$, then $PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2) = PSABP_{\tau,\rho}(\mathbb{R}, X, \nu_1, \nu_2)$.

Proof. Since $\mu_1 \sim \nu_1$, $\mu_2 \sim \nu_2$, then for all $\mathcal{A} \in \mathcal{B}$ satisfying $\mathcal{A} \cap \Omega_r = \emptyset$, by definition 3.1, there exists $\alpha_1, \alpha_2 > 0$, $\beta_1, \beta_2 > 0$ such that $\alpha_1 \nu_1(\mathcal{A}) \leq \mu_1(\mathcal{A}) \leq \beta_1 \nu_1(\mathcal{A})$, and $\alpha_2 \nu_2(\mathcal{A}) \leq \mu_2(\mathcal{A}) \leq \beta_2 \nu_2(\mathcal{A})$.

For r sufficiently, we have

$$\frac{\alpha_1}{\beta_2} \times \frac{\nu_1(\{s \in \Omega_r \setminus \mathbf{J}; \|f(s+\tau) - e^{i\rho\tau}f(s)\| > \epsilon\})}{\nu_2(\Omega_r \setminus \mathbf{J})}$$

$$\leq \frac{\mu_1(\{s \in \Omega_r \setminus \mathbf{J}; \|f(s+\tau) - e^{i\rho\tau}f(s)\| > \epsilon\})}{\mu_2(\Omega_r \setminus \mathbf{J})}$$

$$\leq \frac{\beta_1}{\alpha_2} \times \frac{\nu_1(\{s \in \Omega_r \setminus J; \|f(s+\tau) - e^{i\rho\tau}f(s)\| > \epsilon\})}{\nu_2(\Omega_r \setminus J)}.$$

Hence $PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2) = PSABP_{\tau,\rho}(\mathbb{R}, X, \nu_1, \nu_2)$, by theorem 3.2.

Theorem 3.5. Let $\mu_1, \mu_2 \in \mathcal{M}$ and $\{S(s)\}_{s\geq 0} \subseteq \mathcal{B}(X)$ be a uniformly integrable and strongly continuous family.

If $f \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$, then

$$U(s) := \int_{-\infty}^{s} S(s-\xi)f(\xi)d\xi \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2).$$

Proof. Since $\{S(s)\}_{s>0} \subseteq \mathcal{B}(X)$ is uniformly integrable, we have

$$\int_0^\infty \|S(s)\| ds < \infty.$$

It follows from $f \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ that

$$\lim_{r \to \infty} \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) = 0.$$

On the other hand, by the Fubini theorem, we have

$$\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|U(s+\tau) - e^{i\rho\tau} U(s)\| d\mu_1(s)
= \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|\int_{-\infty}^{s+\tau} S(s+\tau-\xi) f(\xi) d\xi - e^{i\rho\tau} \int_{-\infty}^s S(s-\xi) f(\xi) d\xi \| d\mu_1(s)
= \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|\int_{-\infty}^s S(s-\xi) (f(\xi+\tau) - e^{i\rho\tau} f(\xi)) d\xi \| d\mu_1(s)$$

$$\leq \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \left[\int_{-\infty}^s \|S(s-\xi)(f(\xi+\tau) - e^{i\rho\tau}f(\xi))\|d\xi \right] d\mu_1(s)$$

$$\leq \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \int_0^\infty \|S(\xi)(f(s-\xi+\tau) - e^{i\rho\tau} f(s-\xi))\| d\xi d\mu_1(s)$$

$$\leq \int_0^\infty ||S(\xi)|| (\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} ||f(s-\xi+\tau) - e^{i\rho\tau} f(s-\xi)|| d\mu_1(s)) d\xi.$$

Since $f \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$, we use Lemma 3.1 (ii) and the Lebesgue dominated convergence theorem, we obtain

$$\lim_{r \to \infty} \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|U(s+\tau) - U(s)\| d\mu_1(s) = 0$$

ie: $U \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

Definition 3.3. Let $\mu_1, \mu_2 \in \mathcal{M}$.

A continuous function $f: \mathbb{R} \times Y \to X$ is said to be (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic in s uniformly with respect to $y \in Y$ if the following conditions are true:

- (i) For all $y \in Y$, $f(.,y) \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.
- (ii) f is uniformly continuous on each compact K in Y with respect to the second variable y. ie: for each compact K in X, for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $y_1, y_2 \in K$, we have

$$||y_1 - y_2|| \le \delta \Rightarrow \sup_{s \in \mathbb{R}} ||f(s, y_1) - f(s, y_2)|| \le \epsilon$$

The collection of such function is denoted by $PSABP_{\tau,\rho}U(\mathbb{R}\times Y,X,\mu_1,\mu_2)$.

We use the following assumptions which will be applied in the rest of this work.

- (A1) Let $g \in \mathcal{C}_b(\mathbb{R} \times X, X)$, for all $(s, x) \in \mathbb{R} \times X$, $g(s + \tau, x) = e^{i\rho\tau}g(s, e^{-i\rho\tau}x)$.
- (A2) Let $L_g > 0$ and $g \in \mathcal{C}_b(\mathbb{R} \times X, X)$, such that, for all $x_1, x_2 \in X$, $s \in \mathbb{R}$, we have:

$$||g(s,x_1) - g(s,x_2)|| \le L_q ||x_1 - x_2||.$$

(A3) Let $\mu \in \mathcal{M}$ and $g \in \mathcal{C}_b(\mathbb{R} \times X, X)$, such that for all $x_1, x_2 \in X$, $s \in \mathbb{R}$, we have:

$$||g(s,x_1) - g(s,x_2)|| \le L_g(s)||x_1 - x_2||,$$

where $p \geq 1$, $L_g : \mathbb{R} \to \mathbb{R} \in \mathcal{L}^p(\mathbb{R}, d\mu) \cap \mathcal{L}^p(\mathbb{R}, dx)$.

Lemma 3.6. Let $\mu_1, \mu_2 \in \mathcal{M}$ verifying hypothesis (M1), then for all $p \geq 1$ we have

$$\mathcal{L}^p(\mathbb{R}, d\mu_1) \cap \mathcal{C}_b(\mathbb{R}, X) \subset PSABP_{\tau, \rho}(\mathbb{R}, X, \mu_1, \mu_2).$$

Proof. • If p > 1, posing $q = \frac{p}{p-1}$, then $\frac{1}{p} + \frac{1}{q} = 1$, and if $f \in \mathcal{L}^p(\mathbb{R}, d\mu_1) \cap \mathcal{C}_b(\mathbb{R}, X)$, we have :

$$\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s)$$

$$\leq \frac{1}{\mu_2(\Omega_r)} (\int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau} f(s)\|^p d\mu_1(s))^{\frac{1}{p}} \mu_1(\Omega_r)^{\frac{1}{q}}$$

$$\leq 2 \frac{\mu_1(\Omega_r)^{\frac{1}{q}}}{\mu_2(\Omega_r)} \|f\|_{\mathcal{L}^p(\mathbb{R}, d\mu_1)}$$

$$\leq 2\Theta_r \frac{\|f\|_{\mathcal{L}^p(\mathbb{R},d\mu_1)}}{\mu_1(\Omega_r)^{\frac{1}{p}}}.$$

Since

$$\lim_{r \to +\infty} \left(\frac{\|f\|_{\mathcal{L}^p(\mathbb{R}, d\mu_1)}}{\mu_1(\Omega_r)^{\frac{1}{p}}} \right) = 0,$$

there $f \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

• If p = 1, taking $f \in \mathcal{L}^1(\mathbb{R}, d\mu_1) \cap \mathcal{C}_b(\mathbb{R}, X)$, then

$$\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|f(s+\tau) - e^{i\rho\tau} f(s)\| d\mu_1(s) \le \frac{2\|f\|_{\mathcal{L}^1(\mathbb{R}, d\mu_1)}}{\mu_2(\Omega_r)}$$

Since

$$\lim_{r\to+\infty} \left(\frac{\|f\|_{\mathcal{L}^1(\mathbb{R},d\mu_1)}}{\mu_2(\Omega_r)}\right) = 0,$$

then $f \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

In the rest of this article, we will distinguish two cases: L_g constant and for this we will consider hypothesis (A2), or L_g variable and we will consider hypothesis (A3).

$*Case1: L_{g}constant$

Theorem 3.7. Let $\mu_1, \mu_2 \in \mathcal{M}$ and $g \in \mathcal{C}_b(\mathbb{R} \times X, X)$ satisfy (A1) and (A2). Then for each $\varphi \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2), g(., \varphi(.)) \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2).$

Proof. Let $\varphi \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2), s \in \mathbb{R}$, we have

$$\lim_{r \to +\infty} \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|\varphi(s+\tau) - e^{i\rho\tau} \varphi(s)\| d\mu_1(s) = 0$$

On the other hand,

$$\begin{split} &\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|g(s+\tau,\varphi(s+\tau)) - e^{i\rho\tau} g(s,\varphi(s))\| d\mu_1(s) \\ &= \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|e^{i\rho\tau} g(s,e^{-i\rho\tau} \varphi(s+\tau)) - e^{i\rho\tau} g(s,\varphi(s))\| d\mu_1(s) \\ &\leq \frac{L_g}{\mu_2(\Omega_r)} \int_{\Omega_r} \|e^{-i\rho\tau} \varphi(s+\tau) - \varphi(s)\| d\mu_1(s) \\ &= L_g(\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|\varphi(s+\tau) - e^{i\rho\tau} \varphi(s)\| d\mu_1(s)). \end{split}$$

Thus

$$\lim_{r \to +\infty} \frac{1}{\mu_2(\Omega_r)} \int_{\Omega} \|g(s+\tau, \varphi(s+\tau)) - e^{i\rho\tau} g(s, \varphi(s)) \| d\mu_1(s) = 0$$

ie: $g(., \varphi(.)) \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

 $*Case2: L_gVariable$

Theorem 3.8. Let $\mu_1, \mu_2 \in \mathcal{M}$ satisfies (M1) and $g \in \mathcal{C}_b(\mathbb{R} \times X, X)$ satisfy (A1) and (A3). For each $\varphi \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$, then $g(.,\varphi(.)) \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

Proof. Let $\varphi \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2), s \in \mathbb{R}$, we have

$$\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|\varphi(s+\tau) - e^{i\rho\tau} \varphi(s)\| d\mu_1(s) = 0$$

On the other hand,

$$\begin{split} &\frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|g(s+\tau,\varphi(s+\tau)) - e^{i\rho\tau} g(s,\varphi(s))\| d\mu_1(s) \\ &= \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|e^{i\rho\tau} g(s,e^{-i\rho\tau} \varphi(s+\tau)) - e^{i\rho\tau} g(s,\varphi(s))\| d\mu_1(s) \\ &\leq \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} L_g(s) \|e^{-i\rho\tau} \varphi(s+\tau) - \varphi(s)\| d\mu_1(s) \\ &\leq \frac{1}{\mu_2(\Omega_r)} \left(\int_{\Omega_r} \|L_g\|^p d\mu_1(s) \right)^{\frac{1}{p}} \left(\int_{\Omega_r} \|\varphi(s+\tau) - e^{i\rho\tau} \varphi(s)\|^q d\mu_1(s) \right)^{\frac{1}{q}} \\ &\leq \frac{\|L_g\|_{\mathcal{L}^p(\mathbb{R},d\mu_1)}}{\mu_2(\Omega_r)} 2\|\varphi\|_{\infty} (\mu_1(\Omega_r))^{\frac{1}{q}} \right). \\ &= 2\Theta_r \|\varphi\|_{\infty} \left(\frac{\|L_g\|_{\mathcal{L}^p(\mathbb{R},d\mu_1)}}{\mu_1(\Omega_r)} \right)^{\frac{1}{p}}. \end{split}$$

Since

$$\lim_{r \to +\infty} \frac{\|L_g\|_{\mathcal{L}^p(\mathbb{R}, d\mu_1)}}{\mu_1(\Omega_r)^{\frac{1}{p}}} = 0.$$

Thus

$$\lim_{r \to +\infty} \frac{1}{\mu_2(\Omega_r)} \int_{\Omega_r} \|g(s+\tau, \varphi(s+\tau)) - e^{i\rho\tau} g(s, \varphi(s))\| d\mu_1(s) = 0$$

ie: $g(., \varphi(.)) \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

4 Semi-Linear Evolution Equation

In this section we consider the following semi-linear integro-differential equation

$$u'(s) = Tu(s) + a \int_{-\infty}^{s} \frac{(s-t)^{m-1}}{\Gamma(m)} e^{-b(s-t)} Tu(t) dt + g(s, u(s)), \ s \in \mathbb{R}.$$

Where $T: D(T) \subseteq X \to X$ is a closed linear operator on a Banach space X, $a \neq 0$, b > 0, $m \geq 1$, $g \in \mathcal{C}_b(\mathbb{R} \times X, X)$, and $\Gamma(.)$ is the Gamma function.

In the remainder of this work we assume that the following hypotheses are satisfied:

- (H1) The operator T generates an immediately norm continuous C_0 -semigroup on a Banach space X.
- (H2) $\Re((-a)^{\frac{1}{m}} b) < 0$ and

$$\sup \{\Re(\lambda_T), \lambda_T \in \mathbb{C} : \lambda_T(\lambda_T + b)^m ((\lambda_T + b)^m + a)^{-1} \in \sigma(T)\} < 0.$$

Using [[8], Proposition 3.1], we obtain a uniformly exponentially stable and strongly continuous family of operators $\{S(s)\}_{s\geq 0} \subseteq \mathcal{B}(X)$ verifying conditions (H1) and (H2), i.e.: there exist constants $\delta > 0$, M > 0 such that for all $s \geq 0$,

$$||S(s)|| \le Me^{-\delta s}. (4.1)$$

For [8], Theorem 3.2], the following linear equation,

$$u'(s) = Tu(s) + a \int_{-\infty}^{s} \frac{(s-t)^{m-1}}{\Gamma(m)} e^{-b(s-t)} Tu(t) dt + g(s), s \in \mathbb{R},$$
(4.2)

admits the mild solutions given by

$$u(s) = \int_{-\infty}^{s} S(s - \xi)g(\xi)d\xi, s \in \mathbb{R}.$$
 (4.3)

Lemma 4.1. If $g \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$, then the mild solution u(s) given by (4.3) belongs to $PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$.

Proof. We use Theorem 3.5.
$$\Box$$

Definition 4.1. We say that the function $u: \mathbb{R} \to X$ is a mild solution to the equation (4.2) if the function $\xi \mapsto S(s-\xi)g(\xi,u(\xi))$ is integrable on $(-\infty,s]$ for all $s \in \mathbb{R}$ and

$$u(s) = \int_{-\infty}^{s} S(s - \xi)g(\xi, u(\xi))d\xi, s \in \mathbb{R}.$$

Theorem 4.2. Let $\mu_1, \mu_2 \in \mathcal{M}$ satisfies (M1) and (M1), assume that (H1) and (H2) hold, we have:

(i) If $g \in C_b(\mathbb{R} \times X, X)$ satisfies (A1).

Then equation (1.1) admits a unique mild solution $u \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ whenever

$$\frac{ML_g}{\delta} < 1.$$

(ii) If $g \in C_b(\mathbb{R} \times X, X)$ satisfies (A2).

Then system (1.1) admits a unique mild solution $u \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ whenever

$$||L_g||_{\mathcal{L}^p(\mathbb{R},dx)} < \frac{(\delta q)^{\frac{1}{q}}}{M}.$$

Proof. We define the operator $\mathcal{F}: PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2) \to PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ by

$$(\mathcal{F}u)(s) := \int_{-\infty}^{s} S(s-\xi)g(\xi,u(\xi))d\xi, \ s \in \mathbb{R},$$

where $\{S(s)\}_{s>0}$ verifies the relation (4.1).

For each $u \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$, using Theorem 3.7 and Theorem 3.8, the function $\xi \mapsto g(\xi, u(\xi))$ belongs to $PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$. From Lemma 4.1 we have $\mathcal{F}u \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$, which give \mathcal{F} is well defined.

(i) For $u_1, u_2 \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ and $s \in \mathbb{R}$, we have

$$\|(\mathcal{F}u_1)(s) - (\mathcal{F}u_2)(s)\| \le \int_{-\infty}^{s} \|S(s-\xi)[g(\xi,u_1(\xi)) - g(\xi,u_2(\xi))]\|d\xi$$

$$\leq \int_{-\infty}^{s} L_q ||S(s-\xi)|| ||u_1(\xi) - u_2(\xi)|| d\xi$$

$$\leq L_q ||u_1 - u_2||_{\infty} \int_0^{\infty} ||S(\xi)|| d\xi$$

$$\leq \frac{L_g M}{\delta} \|u_1 - u_2\|_{\infty}.$$

Therefore,

$$\|\mathcal{F}u_1 - \mathcal{F}u_2\|_{\infty} \le \frac{ML_g}{\delta} \|u_1 - u_2\|_{\infty},$$

which gives that \mathcal{F} is contractive for the assumption $\frac{ML_g}{\delta} < 1$.

So there is a unique $u \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$, such that $\mathcal{F}(u) = u$ via the Banach fixed point theorem.

(ii) For
$$u_1, u_2 \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$$
 and $s \in \mathbb{R}$, we have

$$\|(\mathcal{F}u_1)(s) - (\mathcal{F}u_2)(s)\| \le \int_{-\infty}^{s} \|S(s-\xi)[g(\xi,u_1(\xi)) - g(\xi,u_2(\xi))]\|d\xi$$

$$\leq M \int_{-\infty}^{s} e^{-\delta(s-\xi)} L_{a}(\xi) \|u_{1}(\xi) - u_{2}(\xi)\| d\xi$$

$$\leq M \|u_1 - u_2\|_{\infty} (\int_{-\infty}^{s} \|L_g(\xi)\|^p d\xi)^{\frac{1}{p}} (\int_{-\infty}^{s} (e^{-\delta(s-\xi)})^q d\xi)^{\frac{1}{q}}$$

$$\leq \frac{M\|L_g\|_{\mathcal{L}^p(\mathbb{R},dx)}}{(\delta q)^{\frac{1}{q}}}\|u_1-u_2\|_{\infty}.$$

Therefore,

$$\|\mathcal{F}u_1 - \mathcal{F}u_2\|_{\infty} \le \frac{M\|L_g\|_{\mathcal{L}^p(\mathbb{R},dx)}}{(\delta q)^{\frac{1}{q}}} \|u_1 - u_2\|_{\infty},$$

As well as the first result (i), the system (1.1) admits a unique mild solution $u \in PSABP_{\tau,\rho}(\mathbb{R}, X, \mu_1, \mu_2)$ for $||L_g||_{\mathcal{L}^p(\mathbb{R}, d\mu_1)} < \frac{(\delta q)^{\frac{1}{q}}}{M}$.

5 Application:

We consider the problem

$$\begin{cases} \frac{\partial u}{\partial s}(s,x) = \frac{\partial^2 u}{\partial x^2}(s,x) - \int_{-\infty}^s \frac{(s-t)}{2\Gamma(2)} e^{-(s-t)} \frac{\partial^2 u}{\partial x^2}(t,x) dt + g(s,u(s)) \\ u(0,s) = u(\pi,s) = 0, \end{cases}$$
 (5.1)

with $x \in [0, \pi], t \in \mathbb{R}$.

Let $X:=L^2([0,\pi]),\, T:=\frac{d^2}{dx^2},$ with domain $D(T)=\{h\in H^2([0,\pi]), h(0)=h(\pi)=0\}.$

Then we can write the problem (5.1) in the abstract form (1.1), with $a=-\frac{1}{2}$; b=1 and m=2. Since T generate an immediately norm continuous, with $\sigma(T)=\{-n^2,n\in\mathbb{N}\}$, then the solutions to equation

$$\frac{\lambda_T(\lambda_T + 1)^2}{(\lambda_T + 1)^2 - \frac{1}{2}} = -n^2,$$

are given by

$$\begin{split} \lambda_T^{n,1} &= \frac{-(n^2+2)}{3} - \frac{6a_n}{c_n} + \frac{1}{6}c_n, \\ \lambda_T^{n,2} &= \frac{-(n^2+2)}{3} + 3\frac{a_n}{c_n} - \frac{c_n}{12} + \frac{\sqrt{3}}{2}(\frac{1}{6}c_n + 6\frac{a_n}{c_n})i \\ \lambda_T^{n,3} &= \frac{-(n^2+2)}{3} + 3\frac{a_n}{c_n} - \frac{c_n}{12} - \frac{\sqrt{3}}{2}(\frac{1}{6}c_n + 6\frac{a_n}{c_n})i \end{split}$$

for all $n \geq 1$, where

$$a_n := -\frac{1}{9} + \frac{2}{9}n^2 - \frac{1}{9}n^4, c_n := (8 + 30n^2 + 24n^4 - 8n^6 + 6n\sqrt{24 + 9n^2 + 72n^4 - 24n^6})^{\frac{1}{3}}.$$

An easy computation shows that

$$\sup\{\Re(\lambda_T); \lambda_T(\lambda_T+1)^2((\lambda_T+1)^2-\frac{1}{2})^{-1}\in\sigma(T)\}<0.$$

Therefore, from ([2], proposition 3.1) we conclude that there exists a strongly continuous family of operators $\{S(s)\}_{s\geq 0} \subset \mathcal{B}(X)$ such that $||S(s)|| \leq Me^{-\delta s}$ for some $M, \delta > 0$.

We take $g(s + \tau, \varphi)(t) := \eta(s)\varphi(t)$.

Assume that $\eta(s)$ is a bounded continuous τ -periodic function, i.e. $\eta(s+\tau)=\eta(s)$, then we have

$$g(s+\tau,\varphi)(t) = \eta(s+\tau)e^{i\rho\tau}e^{-i\rho\tau}\varphi(t) = e^{i\rho\tau}\eta(s)e^{-i\rho\tau}\varphi(t) = e^{i\rho\tau}g(s,e^{-i\rho\tau}\varphi)(t).$$

We also have

$$||g(s,\varphi_1) - g(s,\varphi_2)||_{L^2([0,\pi])}^2 \le |\eta(s)|^2 ||\varphi_1(t) - \varphi_2(t)||_{L^2([0,\pi])}^2.$$

Then the equation (5.1) has a unique (μ_1, μ_2) -Pseudo-asymptotically Bloch τ -periodic mild solution on \mathbb{R} provided that $\delta > \|\eta\|_{\infty} M$ by Theorem 4.2 (i).

6 Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

- [1] E. H. Ait Dads, K. Ezzinbi, and M. Miraoui. (μ, ν) -pseudo almost automorphic solutions for some non-autonomous differential equations. *International Journal of Mathematics*, 26(11):1550090, 2015.
- [2] B. Andrade, C. Cuevas, C. Silva and H. Soto, asymptotic periodicity for flexible structual systems and applications, Acta appl. Math. 143 (2016), 105-164.
- [3] C. Aouiti, H. Jallouli and M. Miraoui, Global exponential stability of pseudo almost automorphic solutions for delayed COHEN-GROSBERG neural networks with measure, APPLICATIONS OF MATHEMATICS, vol.67, n 03, 393–418 (2022).
- [4] N. Belmabrouk, M. Damak and M. Miraoui, Measure pseudo almost periodic solution for a class of nonlinear delayed stochastic evolution equations driven by Brownian motion. Filomat, 35(2), (2021).
- [5] J. Blot, P. Cieutat and K. Ezzinbi, New approch for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis, (2011), 1-34.
- [6] J. Blot, M. Mophou, G. M. N'Guérékata, and D. Pennequin, Weighted pseudo-almost automorphic functions and applications to abstract differential equations. Nonlinear Anal. 71 (2009), nos. 3-4, pp. 903-909.
- [7] J. Cao, Q. Yang, and Z. Huang, Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations. Comm. Nonlinear Sci.Numer. Simulat. 17 (2012), 277-283.
- [8] Y. K. Chang and R. Ponce, Uniform exponential stability and its applications to bounded solutions of integro-differential equations in Banach spaces. J. Integral Equ. Appl. 30 (2018), 347-369.
- [9] Y. K. Chang and Y. Wei, Pseudo S-asymptotically Bloch type periodicity with applications to some evolution equations, Z. Anal. Anwend., 40 (2021), 33-50.
- [10] E. Cuesta, Asymptotic behaviour of the solutions of fractional integrodifferential equations and some time discretizations. Discrete Contin. Dyn.Syst. (Suppl.) (2007), 277-285.

- [11] C. Cuevas, and J. C. Souza, Existence of S-asymptotically ω -periodic solutions for fractional order functional integro-differential equations with infinite delay. Nonlinear Anal. 72 (2010), 1683-1689.
- [12] W. Dimbour, Pseudo S-asymptotically periodic solution for a differential equation with piecewise constant argument in a Banach space. J. Differ. Equ. Appl. 26 (2020), 140-148.
- [13] H. Gao, K. Wang, F.Wei, and X. Ding, Massera-type theorem and asymptotically periodic logisite equations. nonlinear Anal. Real World Appl. 7(2006), 1268-1283.
- [14] M. F. Hasler, and G. M. N'Guérékata, Bloch-periodic functions and some applications. Nonlinear Stud. 21 (2014), 21-30.
- [15] H. R. Henriquez, C. Cuevas, and A. Caicedo, Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Comm. PureAppl. Anal. 12 (2013), 2031-2068.
- [16] M. Miraoui, Measure pseudo almost periodic solutions for differential equations with reflection. Applicable Analysis, vol.101, n 03, 938-951 (2022).
- [17] M Miraoui, T. Diagana, and K. Ezzinbi, Pseudo-Almost Periodic and Pseudo-Almost Automorphic Solutions to some Evolution Equations Involving Theoretical Measure Theory. Cubo a mathematical journal, vol.16, n 02, 01-31 (2014).
- [18] E. R. Oueama-Guengai, and G. M. N'Guérékata, On S-asymptotically ω -periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces. Math. Meth. Appl. Sci. 41 (2018), 9116-9122.
- [19] M. Pierri, On S-asymptotically ω -periodic functions and applications. Non-liner Anal. 75 (2012), 651-661.
- [20] M. Pierri, V. Rolnik, On pseudo S-asymptotically periodic functions. Bull. Aust. Math. Soc. 87 (2013), 238-254.