Pseudo asymptotically Bloch periodic solutions with measures for some differential Equations.

Mounir Ben Salah ${ }^{a}$, Youssef Khemili ${ }^{b}$ and Mohsen Miraoui ${ }^{c}$
${ }^{a}$ IPEIK, Kairouan University, Tunisia.
${ }^{b}$ FSS, Sfax University, Tunisia.
${ }^{c}$ IPEIK, Kairouan University, Tunisia. E-mail: miraoui.mohsen@yahoo.fr

Abstract

In this work we focus on upon the $\left(\mu_{1}, \mu_{2}\right)$-Pseudo-asymptotically Bloch τ-periodicity and its applications. Firstly, we define a new notion of $\left(\mu_{1}, \mu_{2}\right)$-Pseudo-asymptotically Bloch τ-periodic functions and some fundamental properties. Then, the obtained results are applied to investigate the existence and uniqueness of (μ_{1}, μ_{2})-Pseudo-asymptotically Bloch τ-periodic mild solutions to Semi-linear Evolution equation in Banach spaces. Finally, we gave an application that facilitates the work.

Keywords: Bloch periodic functions, $\left(\mu_{1}, \mu_{2}\right)$-Pseudo-asymptotically Bloch τ-periodic functions, Semilinear Evolution Equation.

MSC CLASSIFICATION: 34K14; 35B15.

1 Introduction

This work is based on the principle of Bloch τ-periodicity, which introduces for the first time by Hasler and N'Guérékata in [14], where they treat τ-periodicity, τ-anti-periodicity cases, and some fundamental results of Bloch type τ-periodic functions, such as the completeness of space and the composition and convolution product theorems.
In [18], Oueama-Guengai and N'Guérékata introduced the existence and uniqueness of Bloch τ-periodic mild solutions to semi-linear fractional differential equation in Banach spaces.
On the other hand, we can speak of asymptotic S-asymptotic τ-periodicity which is an extension of classical τ-periodicity, for more results on S-asymptotic τ-periodicity and some applications, we can refer to $[11,13,15,18]$.
Recently, Yong-Kui Chang and Yangean Wei [9] introduced a new concept, the pseudo S-asymptotically Bloch τ-periodicity and give some applications to evolution equation.
In this paper, we generalize pseudo S-asymptotic Bloch τ-periodicity into (μ_{1}, μ_{2})-Pseudo-asymptotically Bloch τ-periodic by measure theory.
A function $f \in \mathcal{C}_{b}(\mathbb{R}, X)$ is said to be $\left(\mu_{1}, \mu_{2}\right)$-Pseudo-asymptotically Bloch τ-periodic if for given $\tau, \rho \in \mathbb{R}$,

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)=0
$$

where μ_{1} and μ_{2} are two positives measures that we will define then later (See $[1,4,4]$). we say that $f \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

The main purpose of this paper is to consider the following semi-linear integro-differential equation

$$
\begin{equation*}
u^{\prime}(s)=T u(s)+a \int_{-\infty}^{s} \frac{(s-t)^{m-1}}{\Gamma(m)} e^{-b(s-t)} T u(t) d t+g(s, u(s)), s \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $T: D(T) \subseteq X \rightarrow X$ is a closed linear operator on a Banach space $\mathrm{X}, a \neq 0, b>0, m \geq 1$, $g \in \mathcal{C}_{b}(\mathbb{R} \times X, X)$, and $\Gamma($.$) is the Gamma function.$
The equation (1.1) arises from the thermodynamics of materials with memory (as in [2]).
The next part of this article is outlined as follows: Section 2 is Preliminaries composing some basic definitions, remarks and notations. Section 3 we treat some results on $\left(\mu_{1}, \mu_{2}\right)$-Pseudo-asymptotically Bloch τ-periodic functions. Section 4 is concerned with the existence and uniqueness of $\left(\mu_{1}, \mu_{2}\right)$-Pseudoasymptotically Bloch τ-periodic solutions to (1.1). Finally, in section 5, we give an application which explains the work.

2 Preliminaries

we consider the following notations:

- $(X,\|\cdot\|)$: Banach space.
- $\|f\|_{\infty}=\sup _{t \in \mathbb{R}}\|f\|$.
- $\mathcal{C}_{b}(\mathbb{R}, X)\left(\operatorname{resp} \mathcal{C}_{b}(\mathbb{R} \times X, X)\right)$: Banach space of bounded continuous functions from $\mathbb{R}($ resp $\mathbb{R} \times X)$ to X with super-norm $\|\cdot\|_{\infty}$.
- $\mathcal{B}(X)$: Space of all bounded linear operators from X into itself.
- $f_{a}():.=f(.+a)$, with $a \in \mathbb{R}$ and $f \in \mathcal{C}_{b}(\mathbb{R}, X)$
- $\Omega_{r}:=[-r, r], r>0$.
- $\Re(z)$: real part of z, with $z \in \mathbb{C}$.

Definition 2.1. [14] For given $\tau, \rho \in \mathbb{R}$, a function $f \in \mathcal{C}_{b}(\mathbb{R}, X)$ is said to be Bloch τ-periodic if for all $s \in \mathbb{R}, f(s+\tau)=e^{i \rho \tau} f(s)$.
We denote by $B P_{\tau, \rho}(\mathbb{R}, X)$, the space of all Bloch τ-periodic functions from \mathbb{R} to X .
Remark 2.1. From definition 2.1, we can see that f is τ-periodic if $\rho \tau=0$, and f is τ-anti-periodic if $\rho \tau=\pi$.
Definition 2.2. [13] A function $f \in \mathcal{C}_{b}(\mathbb{R}, X)$ is said to be S-asymptotically τ-periodic if for a given $\tau \in \mathbb{R}$,

$$
\lim _{|s| \rightarrow \infty}\|f(s+\tau)-f(s)\|=0, s \in \mathbb{R}
$$

we denote the set of its functions by $S A P_{\tau}(\mathbb{R}, X)$.
Definition 2.3. [20] A function $f \in \mathcal{C}_{b}(\mathbb{R}, X)$ is said to be pseudo-S-asymptotically τ-periodic if for a given $\tau \in \mathbb{R}$,

$$
\lim _{r \rightarrow \infty} \frac{1}{2 r} \int_{-r}^{r}\|f(s+\tau)-f(s)\| d s=0
$$

The set of such functions will be denoted by $P S A P_{\tau}(\mathbb{R}, X)$.

3 (μ_{1}, μ_{2})-Pseudo-asymptotically Bloch τ-periodic functions

We denote by \mathcal{B} the Lebesgue σ-field of \mathbb{R} and by \mathcal{M} the set of all positive measures μ on \mathcal{B} satisfying $\mu(\mathbb{R})=+\infty$ and $\mu\left(\left[a_{1}, a_{2}\right]\right)<+\infty$, for all $a_{1}, a_{2} \in \mathbb{R},\left(a_{1} \leq a_{2}\right)$.

Definition 3.1. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$. The measures μ_{1} and μ_{2} are said to be equivalent ($\mu_{1} \sim \mu_{2}$) if there exist a constants $c_{1}, c_{2}>0$ and a bounded interval $\mathrm{J} \subset \mathbb{R}$ (eventually $\mathrm{J}=\emptyset$) such that

$$
c_{1} \mu_{2}(A) \leq \mu_{1}(A) \leq c_{2} \mu_{2}(A)
$$

for all $A \in \mathcal{B}$ satisfying $A \bigcap J=\emptyset$.
Let $\mu_{1}, \mu_{2} \in \mathcal{M}$ and $r>0$, suppose that

$$
\Theta_{r}=\frac{\mu_{1}\left(\Omega_{r}\right)}{\mu_{2}\left(\Omega_{r}\right)}
$$

In this paper, we need the following hypotheses:
(M1) Let $\mu_{1}, \mu_{2} \in \mathcal{M}$ such that

$$
\limsup _{r \rightarrow+\infty} \Theta_{r}<+\infty .
$$

(M2) For $\mu \in \mathcal{M}, \omega \in \mathbb{R}$, there exist $\gamma>0$ and a bounded interval J such that
$\mu(a+\omega ; a \in \mathcal{A}) \leq \gamma \mu(\mathcal{A})$, when $\mathcal{A} \in \mathcal{B}$ satisfy $\mathcal{A} \bigcap \mathrm{J}=\emptyset$.
Definition 3.2. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$. A function $f \in \mathcal{C}_{b}(\mathbb{R}, X)$ is said to be (μ_{1}, μ_{2})-Pseudo-asymptotically Bloch τ-periodic if for given $\tau, \rho \in \mathbb{R}$,

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)=0
$$

We denote the set of all such functions by $\operatorname{PSABP} P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

- If $\rho \tau=0$, we have

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\|f(s+\tau)-f(s)\| d \mu_{1}(s)=0
$$

then f is called $\left(\mu_{1}, \mu_{2}\right)$-Pseudo-asymptotically τ-periodic denoted by $\operatorname{PSAP} P_{\tau}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

- If $\rho \tau=\pi$, we have

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\|f(s+\tau)+f(s)\| d \mu_{1}(s)=0
$$

then f is called $\left(\mu_{1}, \mu_{2}\right)$-Pseudo-asymptotically τ-anti-periodic denoted by $\operatorname{PSAAP}_{\tau}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

- If $\mu_{1}=\mu_{2}=\mu$, we have

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu(s)=0,
$$

then f is called μ-Pseudo-asymptotically Bloch τ-periodic denoted by $\operatorname{PSABP}_{\tau, \rho}(\mathbb{R}, X, \mu)$.

Lemma 3.1. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$ satisfy (M1) and (M2), $f, g, h \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$. Then we have the following results:
(i) $g+h \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$, cf $\in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ for each $c \in \mathbb{R}$.
(ii) The function $f_{a} \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ for any $a \in \mathbb{R}$.
(iii)The space $\operatorname{PSAB} P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ is a Banach space with the super-norm.

Proof. (i) Hence,

$$
\begin{aligned}
& \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|(g+h)(s+\tau)-e^{i \rho \tau}(g+h)(s)\right\| d \mu_{1}(s) \\
\leq & \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|g(s+\tau)-e^{i \rho \tau} g(s)\right\| d \mu_{1}(s) \\
+ & \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|h(s+\tau)-e^{i \rho \tau} h(s)\right\| d \mu_{1}(s)
\end{aligned}
$$

and

$$
\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|(c f)(s+\tau)-e^{i \rho \tau}(c f)(s)\right\| d \mu_{1}(s) \leq|c| \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)
$$

Then

$$
g+h, c f \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)
$$

(ii) For each $a \in \mathbb{R}$, hence,

$$
\begin{aligned}
& \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+a+\tau)-e^{i \rho \tau} f(s+a)\right\| d \mu_{1}(s) \\
& \leq \frac{\gamma}{\mu_{2}\left(\Omega_{r}\right)} \int_{-r+a}^{r+a}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s) \\
& \leq \frac{\gamma}{\mu_{2}\left(\Omega_{r}\right)} \int_{-r-|a|}^{r+|a|}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s) \\
& =\gamma \frac{\mu_{2}([-r-|a|, r+|a|])}{\mu_{2}([-r, r])}\left(\frac{1}{\mu_{2}([-r-|a|, r+|a|])} \int_{-r-|a|}^{r+|a|}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)\right)
\end{aligned}
$$

For r sufficiently large we obtain $f_{a} \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.
(iii) Let $\left\{f_{n}\right\}_{n} \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ converge to f as $r \rightarrow \infty$.

Then for any $\epsilon>0$, we can choose suitable constants $N>0$ and r_{ϵ} such that

$$
\begin{aligned}
& \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f_{n}(s+\tau)-e^{i \rho \tau} f_{n}(s)\right\| d \mu_{1}(s) \leq \frac{\epsilon}{3} ;\left\|f_{n}-f\right\|_{\infty} \leq \frac{\epsilon}{3 \Theta_{r}}, \text { for } n>N \text { and } r>r_{\epsilon} . \\
& \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s) \\
& =\frac{1}{\mu_{2}\left(\Omega_{r}\right)}\left(\int_{\Omega_{r}}\left\|f(s+\tau)-f_{n}(s+\tau)+f_{n}(s+\tau)-e^{i p \tau} f_{n}(s)+e^{i \rho \tau} f_{n}(s)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)\right) \\
& \leq \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-f_{n}(s+\tau)\right\| d \mu_{1}(s)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|e^{i \rho \tau} f_{n}(s)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s) \\
& +\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f_{n}(s+\tau)-e^{i \rho \tau} f_{n}(s)\right\| d \mu_{1}(s) \\
& \leq 2 \Theta_{r}\left\|f_{n}-f\right\|_{\infty}+\left(\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f_{n}(s+\tau)-e^{i \rho \tau} f_{n}(s)\right\| d \mu_{1}(s)\right) \\
& \leq 2 \frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

Which gives that the space $P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ is a closed sub-space of $\mathcal{C}_{b}(\mathbb{R}, X)$, it is therefore a Banach space equipped with super-norm.

Theorem 3.2. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$ satisfies (M1) and J be a bounded interval (eventually $\mathrm{J}=\emptyset$) and $f \in \mathcal{C}_{b}(\mathbb{R}, X)$, then the following assertions are equivalent:
(i) $f \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.
(ii)

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)} \int_{\Omega_{r} \backslash \mathrm{~J}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)=0
$$

(iii) For any $\epsilon>0$,

$$
\lim _{r \rightarrow \infty} \frac{\mu_{1}\left(s \in \Omega_{r} \backslash \mathrm{~J},\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\|>\epsilon\right)}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)}=0
$$

Proof. $(i) \Leftrightarrow(i i)$ Denote by $A_{1}=\mu_{2}(\mathrm{~J}), A_{2}=\int_{\mathrm{J}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s), A_{3}=\mu_{1}(\mathrm{~J})$.
Since the interval J is bounded and $f \in \mathcal{C}_{b}(\mathbb{R}, X)$, then A_{1}, A_{2} and A_{3} are finite.
for $r>0$ such tat $\mathrm{J} \subset \Omega_{r}$ and $\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)>0$, we have

$$
\begin{aligned}
& \frac{1}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)} \int_{\Omega_{r} \backslash \mathrm{~J}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)=\frac{1}{\mu_{2}\left(\Omega_{r}\right)-A_{1}}\left(\int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)-A_{2}\right) \\
& =\frac{\mu_{2}\left(\Omega_{r}\right)}{\mu_{2}\left(\Omega_{r}\right)-A_{1}}\left(\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)-\frac{A_{2}}{\mu_{2}\left(\Omega_{r}\right)}\right)
\end{aligned}
$$

Since $\mu_{2}(\mathbb{R})=\infty$, we deduce that $(i i) \Leftrightarrow(i)$.
$(i i i) \Rightarrow(i i)$ Denote by Φ_{r}^{ϵ} and Ψ_{r}^{ϵ} the following sets

$$
\Phi_{r}^{\epsilon}=\left\{s \in \Omega_{r} \backslash \mathrm{~J},\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\|>\epsilon\right\}
$$

and

$$
\Psi_{r}^{\epsilon}=\left\{s \in \Omega_{r} \backslash \mathrm{~J},\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| \leq \epsilon\right\}
$$

Assume that (iii) holds, that is

$$
\lim _{r \rightarrow \infty} \frac{\mu_{1}\left(\Phi_{r}^{\epsilon}\right)}{\mu_{2}\left(\Omega_{r} \backslash J\right)}=0
$$

We have $\int_{\Omega_{r} \backslash \mathrm{~J}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)=\int_{\Phi_{r}^{\epsilon}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)+\int_{\Psi_{r}^{\epsilon}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)$ $\frac{1}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)} \int_{\Omega_{r} \backslash \mathrm{~J}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)$
$\leq 2\|f\|_{\infty} \frac{\mu_{1}\left(\Phi_{r}^{\epsilon}\right)}{\mu_{2}\left(\Omega_{r} \backslash J\right)}+\frac{\mu_{1}\left(\Psi_{r}^{\epsilon}\right)}{\mu_{2}\left(\Omega_{r} \backslash J\right)} \epsilon$
$\leq 2\|f\|_{\infty} \frac{\mu_{1}\left(\Phi_{r}^{\epsilon}\right)}{\mu_{2}\left(\Omega_{r} \backslash J\right)}+\frac{\mu_{1}\left(\Omega_{r} \backslash \mathrm{~J}\right)}{\mu_{2}\left(\Omega_{r} \backslash J\right)} \epsilon$
$=2\|f\|_{\infty} \frac{\mu_{1}\left(\Phi_{r}^{\epsilon}\right)}{\mu_{2}\left(\Omega_{r} \backslash J\right)}+\frac{\mu_{1}\left(\Omega_{r}\right)-A_{3}}{\mu_{2}\left(\Omega_{r}\right)-A_{1}} \epsilon$
$=2\|f\|_{\infty} \frac{\mu_{1}\left(\Phi_{r}^{\epsilon}\right)}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)}+\frac{\mu_{1}\left(\Omega_{r}\right)\left(1-\frac{A_{3}}{\mu_{1}\left(\Omega_{1}\right)}\right)}{\mu_{2}\left(\Omega_{r}\right)\left(1-\frac{A_{1}}{\mu_{2}\left(\Omega_{r}\right)}\right)} \epsilon$
$\leq 2\|f\|_{\infty} \frac{\mu_{1}\left(\Phi_{r}^{\epsilon}\right)}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)}+\Theta_{r} \frac{1-\frac{A_{3}}{\mu_{1}\left(\Omega_{1}\right)}}{1-\frac{A_{1}}{\mu_{2}\left(\Omega_{r}\right)}} \epsilon$
For r sufficiently large, since $\mu_{1}(\mathbb{R})=\mu_{2}(\mathbb{R})=\infty$, then for all $\epsilon>0$ we have
$\frac{1}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)} \int_{\Omega_{r} \backslash \mathrm{~J}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s) \leq \operatorname{cst} \epsilon$
Then

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)} \int_{\Omega_{r} \backslash \mathrm{~J}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)=0
$$

Consequently (ii) holds.
(ii) \Rightarrow (iii) Assume that (ii) holds
$\frac{1}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)} \int_{\Omega_{r} \backslash \mathrm{~J}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)$
$\geq \frac{1}{\mu_{2}\left(\Omega_{r} \backslash J\right)} \int_{\Phi_{r}^{\epsilon}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)$
$\geq \epsilon \frac{\mu_{1}\left(\Phi_{r}^{\epsilon}\right)}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)}$
For r sufficiently large, we obtain (iii).
Corollary 3.3. A continuous function $f: \mathbb{R} \rightarrow X$ satisfying

$$
\lim _{|s| \rightarrow \infty} f(s)=0
$$

Then $f \in \operatorname{PSABP} P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ for all $\mu_{1}, \mu_{2} \in \mathcal{M}$ satisfies $(\mathbf{M 1})$.
Proof. By hypothesis, we have

$$
\lim _{|s| \rightarrow \infty}\left(f(s+\tau)-e^{i \rho \tau} f(s)\right)=0
$$

for all $\epsilon>0$, there exists $v>0$ such that

$$
|s| \geq v \Rightarrow\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| \leq \epsilon
$$

Then for all $r>v$

$$
\left\{s \in \Omega_{r} \backslash(-v, v) ;\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\|>\epsilon\right\}=\emptyset
$$

We conclude by using theorem 3.2.

Proposition 3.4. Assume that (M1) hold. If $\mu_{1}, \mu_{2}, \nu_{1}, \nu_{2} \in \mathcal{M}$ and $\mu_{1} \sim \nu_{1}, \mu_{2} \sim \nu_{2}$, then $P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)=P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \nu_{1}, \nu_{2}\right)$.

Proof. Since $\mu_{1} \sim \nu_{1}, \mu_{2} \sim \nu_{2}$, then for all $\mathcal{A} \in \mathcal{B}$ satisfying $\mathcal{A} \bigcap \Omega_{r}=\emptyset$, by definition 3.1, there exists $\alpha_{1}, \alpha_{2}>0, \beta_{1}, \beta_{2}>0$ such that $\alpha_{1} \nu_{1}(\mathcal{A}) \leq \mu_{1}(\mathcal{A}) \leq \beta_{1} \nu_{1}(\mathcal{A})$, and $\alpha_{2} \nu_{2}(\mathcal{A}) \leq \mu_{2}(\mathcal{A}) \leq \beta_{2} \nu_{2}(\mathcal{A})$.

For r sufficiently, we have

$$
\begin{aligned}
& \frac{\alpha_{1}}{\beta_{2}} \times \frac{\nu_{1}\left(\left\{s \in \Omega_{r} \backslash \mathrm{~J} ;\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\|>\epsilon\right\}\right)}{\nu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)} \\
& \leq \frac{\mu_{1}\left(\left\{s \in \Omega_{r} \backslash \mathrm{~J} ;\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\|>\epsilon\right\}\right)}{\mu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)} \\
& \leq \frac{\beta_{1}}{\alpha_{2}} \times \frac{\nu_{1}\left(\left\{s \in \Omega_{r} \backslash \mathrm{~J} ;\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\|>\epsilon\right\}\right)}{\nu_{2}\left(\Omega_{r} \backslash \mathrm{~J}\right)} .
\end{aligned}
$$

Hence $\operatorname{PSABP}_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)=\operatorname{PSABP}_{\tau, \rho}\left(\mathbb{R}, X, \nu_{1}, \nu_{2}\right)$, by theorem 3.2.
Theorem 3.5. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$ and $\{S(s)\}_{s \geq 0} \subseteq \mathcal{B}(X)$ be a uniformly integrable and strongly continuous family.

If $f \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$, then

$$
U(s):=\int_{-\infty}^{s} S(s-\xi) f(\xi) d \xi \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right) .
$$

Proof. Since $\{S(s)\}_{s \geq 0} \subseteq \mathcal{B}(X)$ is uniformly integrable, we have

$$
\int_{0}^{\infty}\|S(s)\| d s<\infty
$$

It follows from $f \in \operatorname{PSABP}_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ that

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)=0 .
$$

On the other hand, by the Fubini theorem, we have

$$
\begin{aligned}
& \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|U(s+\tau)-e^{i \rho \tau} U(s)\right\| d \mu_{1}(s) \\
& =\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|\int_{-\infty}^{s+\tau} S(s+\tau-\xi) f(\xi) d \xi-e^{i \rho \tau} \int_{-\infty}^{s} S(s-\xi) f(\xi) d \xi\right\| d \mu_{1}(s) \\
& =\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|\int_{-\infty}^{s} S(s-\xi)\left(f(\xi+\tau)-e^{i \rho \tau} f(\xi)\right) d \xi\right\| d \mu_{1}(s)
\end{aligned}
$$

$\leq \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left[\int_{-\infty}^{s}\left\|S(s-\xi)\left(f(\xi+\tau)-e^{i \rho \tau} f(\xi)\right)\right\| d \xi\right] d \mu_{1}(s)$
$\leq \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}} \int_{0}^{\infty}\left\|S(\xi)\left(f(s-\xi+\tau)-e^{i \rho \tau} f(s-\xi)\right)\right\| d \xi d \mu_{1}(s)$
$\leq \int_{0}^{\infty}\|S(\xi)\|\left(\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s-\xi+\tau)-e^{i \rho \tau} f(s-\xi)\right\| d \mu_{1}(s)\right) d \xi$.
Since $f \in \operatorname{PSABP} P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$, we use Lemma 3.1 (ii) and the Lebesgue dominated convergence theorem, we obtain

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\|U(s+\tau)-U(s)\| d \mu_{1}(s)=0
$$

ie: $U \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

Definition 3.3. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$.
A continuous function $f: \mathbb{R} \times Y \rightarrow X$ is said to be (μ_{1}, μ_{2})-Pseudo-asymptotically Bloch τ-periodic in s uniformly with respect to $y \in Y$ if the following conditions are true:
(i) For all $y \in Y, f(., y) \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.
(ii) f is uniformly continuous on each compact K in Y with respect to the second variable y .
ie: for each compact K in X , for all $\epsilon>0$, there exists $\delta>0$ such that for all $y_{1}, y_{2} \in K$, we have

$$
\left\|y_{1}-y_{2}\right\| \leq \delta \Rightarrow \sup _{s \in \mathbb{R}}\left\|f\left(s, y_{1}\right)-f\left(s, y_{2}\right)\right\| \leq \epsilon
$$

The collection of such function is denoted by $P S A B P_{\tau, \rho} U\left(\mathbb{R} \times Y, X, \mu_{1}, \mu_{2}\right)$.
We use the following assumptions which will be applied in the rest of this work.
(A1) Let $g \in \mathcal{C}_{b}(\mathbb{R} \times X, X)$, for all $(s, x) \in \mathbb{R} \times X, g(s+\tau, x)=e^{i \rho \tau} g\left(s, e^{-i \rho \tau} x\right)$.
(A2) Let $L_{g}>0$ and $g \in \mathcal{C}_{b}(\mathbb{R} \times X, X)$, such that, for all $x_{1}, x_{2} \in X, s \in \mathbb{R}$, we have:

$$
\left\|g\left(s, x_{1}\right)-g\left(s, x_{2}\right)\right\| \leq L_{g}\left\|x_{1}-x_{2}\right\| .
$$

(A3) Let $\mu \in \mathcal{M}$ and $g \in \mathcal{C}_{b}(\mathbb{R} \times X, X)$, such that for all $x_{1}, x_{2} \in X, s \in \mathbb{R}$, we have:

$$
\left\|g\left(s, x_{1}\right)-g\left(s, x_{2}\right)\right\| \leq L_{g}(s)\left\|x_{1}-x_{2}\right\|
$$

where $p \geq 1, L_{g}: \mathbb{R} \rightarrow \mathbb{R} \in \mathcal{L}^{p}(\mathbb{R}, d \mu) \bigcap \mathcal{L}^{p}(\mathbb{R}, d x)$.

Lemma 3.6. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$ verifying hypothesis (M1), then for all $p \geq 1$ we have

$$
\mathcal{L}^{p}\left(\mathbb{R}, d \mu_{1}\right) \cap \mathcal{C}_{b}(\mathbb{R}, X) \subset P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)
$$

Proof. • If $p>1$, posing $q=\frac{p}{p-1}$, then $\frac{1}{p}+\frac{1}{q}=1$, and if $f \in \mathcal{L}^{p}\left(\mathbb{R}, d \mu_{1}\right) \cap \mathcal{C}_{b}(\mathbb{R}, X)$, we have :
$\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s)$
$\leq \frac{1}{\mu_{2}\left(\Omega_{r}\right)}\left(\int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\|^{p} d \mu_{1}(s)\right)^{\frac{1}{p}} \mu_{1}\left(\Omega_{r}\right)^{\frac{1}{q}}$
$\leq 2 \frac{\mu_{1}\left(\Omega_{r}{ }^{\frac{1}{q}}\right.}{\mu_{2}\left(\Omega_{r}\right)}\|f\|_{\mathcal{L}^{p}\left(\mathbb{R}, d \mu_{1}\right)}$
$\leq 2 \Theta_{r} \frac{\|f\|_{\mathcal{L} p\left(R, d \mu_{1}\right)}}{\mu_{1}\left(\Omega_{r}\right)^{\frac{1}{p}}}$.
Since

$$
\lim _{r \rightarrow+\infty}\left(\frac{\|f\|_{\mathcal{L}^{p}\left(\mathbb{R}, d \mu_{1}\right)}}{\mu_{1}\left(\Omega_{r}\right)^{\frac{1}{p}}}\right)=0,
$$

there $f \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

- If $p=1$, taking $f \in \mathcal{L}^{1}\left(\mathbb{R}, d \mu_{1}\right) \cap \mathcal{C}_{b}(\mathbb{R}, X)$, then

$$
\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|f(s+\tau)-e^{i \rho \tau} f(s)\right\| d \mu_{1}(s) \leq \frac{2\|f\|_{\mathcal{L}^{1}\left(\mathbb{R}, d \mu_{1}\right)}}{\mu_{2}\left(\Omega_{r}\right)}
$$

Since

$$
\lim _{r \rightarrow+\infty}\left(\frac{\|f\|_{\mathcal{L}^{1}\left(\mathbb{R}, d \mu_{1}\right)}}{\mu_{2}\left(\Omega_{r}\right)}\right)=0,
$$

then $f \in \operatorname{PSABP}_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

In the rest of this article, we will distinguish two cases: L_{g} constant and for this we will consider hypothesis (A2), or L_{g} variable and we will consider hypothesis (A3).

*Case1 : \mathbf{L}_{g} constant

Theorem 3.7. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$ and $g \in \mathcal{C}_{b}(\mathbb{R} \times X, X)$ satisfy (A1) and (A2).
Then for each $\varphi \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right), g(., \varphi().) \in \operatorname{PSABP}_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.
Proof. Let $\varphi \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right), s \in \mathbb{R}$, we have

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|\varphi(s+\tau)-e^{i \rho \tau} \varphi(s)\right\| d \mu_{1}(s)=0
$$

On the other hand,

$$
\begin{aligned}
& \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|g(s+\tau, \varphi(s+\tau))-e^{i \rho \tau} g(s, \varphi(s))\right\| d \mu_{1}(s) \\
& =\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|e^{i \rho \tau} g\left(s, e^{-i \rho \tau} \varphi(s+\tau)\right)-e^{i \rho \tau} g(s, \varphi(s))\right\| d \mu_{1}(s) \\
& \leq \frac{L_{g}}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|e^{-i \rho \tau} \varphi(s+\tau)-\varphi(s)\right\| d \mu_{1}(s) \\
& =L_{g}\left(\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|\varphi(s+\tau)-e^{i \rho \tau} \varphi(s)\right\| d \mu_{1}(s)\right) .
\end{aligned}
$$

Thus

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|g(s+\tau, \varphi(s+\tau))-e^{i \rho \tau} g(s, \varphi(s))\right\| d \mu_{1}(s)=0
$$

ie: $g(., \varphi().) \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

*Case2 : \mathbf{L}_{g} Variable

Theorem 3.8. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$ satisfies (M1) and $g \in \mathcal{C}_{b}(\mathbb{R} \times X, X)$ satisfy (A1) and (A3). For each $\varphi \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$, then $g(., \varphi().) \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

Proof. Let $\varphi \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right), s \in \mathbb{R}$, we have

$$
\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|\varphi(s+\tau)-e^{i \rho \tau} \varphi(s)\right\| d \mu_{1}(s)=0
$$

On the other hand,

$$
\begin{aligned}
& \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|g(s+\tau, \varphi(s+\tau))-e^{i \rho \tau} g(s, \varphi(s))\right\| d \mu_{1}(s) \\
& =\frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|e^{i \rho \tau} g\left(s, e^{-i \rho \tau} \varphi(s+\tau)\right)-e^{i \rho \tau} g(s, \varphi(s))\right\| d \mu_{1}(s) \\
& \leq \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}} L_{g}(s)\left\|e^{-i \rho \tau} \varphi(s+\tau)-\varphi(s)\right\| d \mu_{1}(s) \\
& \leq \frac{1}{\mu_{2}\left(\Omega_{r}\right)}\left(\int_{\Omega_{r}}\left\|L_{g}\right\|^{p} d \mu_{1}(s)\right)^{\frac{1}{p}}\left(\int_{\Omega_{r}}\left\|\varphi(s+\tau)-e^{i \rho \tau} \varphi(s)\right\|^{q} d \mu_{1}(s)\right)^{\frac{1}{q}} \\
& \left.\leq \frac{\left\|L_{g}\right\|_{\left.\mathcal{L}_{(\mathbb{R}}, d \mu_{1}\right)}}{\mu_{2}\left(\Omega_{r}\right)} 2\|\varphi\|_{\infty}\left(\mu_{1}\left(\Omega_{r}\right)\right)^{\frac{1}{q}}\right) . \\
& =2 \Theta_{r}\|\varphi\|_{\infty}\left(\frac{\left\|L_{g}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}, d \mu_{1}\right)}}{\left.\mu_{1}\left(\Omega_{r}\right)\right)^{\frac{1}{p}}}\right) .
\end{aligned}
$$

Since

$$
\lim _{r \rightarrow+\infty} \frac{\left\|L_{g}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}, d \mu_{1}\right)}}{\mu_{1}\left(\Omega_{r}\right)^{\frac{1}{p}}}=0
$$

Thus

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu_{2}\left(\Omega_{r}\right)} \int_{\Omega_{r}}\left\|g(s+\tau, \varphi(s+\tau))-e^{i \rho \tau} g(s, \varphi(s))\right\| d \mu_{1}(s)=0
$$

ie: $g(., \varphi().) \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

4 Semi-Linear Evolution Equation

In this section we consider the following semi-linear integro-differential equation
$u^{\prime}(s)=T u(s)+a \int_{-\infty}^{s} \frac{(s-t)^{m-1}}{\Gamma(m)} e^{-b(s-t)} T u(t) d t+g(s, u(s)), s \in \mathbb{R}$.

Where $T: D(T) \subseteq X \rightarrow X$ is a closed linear operator on a Banach space $\mathrm{X}, a \neq 0, b>0, m \geq 1$, $g \in \mathcal{C}_{b}(\mathbb{R} \times X, X)$, and $\Gamma($.$) is the Gamma function.$

In the remainder of this work we assume that the following hypotheses are satisfied:
(H1) The operator T generates an immediately norm continuous C_{0}-semigroup on a Banach space X .
(H2) $\Re\left((-a)^{\frac{1}{m}}-b\right)<0$ and

$$
\sup \left\{\Re\left(\lambda_{T}\right), \lambda_{T} \in \mathbb{C}: \lambda_{T}\left(\lambda_{T}+b\right)^{m}\left(\left(\lambda_{T}+b\right)^{m}+a\right)^{-1} \in \sigma(T)\right\}<0
$$

Using [[8], Proposition 3.1], we obtain a uniformly exponentially stable and strongly continuous family of operators $\{S(s)\}_{s \geq 0} \subseteq \mathcal{B}(X)$ verifying conditions (H1) and (H2),
i.e : there exist constants $\delta>0, M>0$ such that for all $s \geq 0$,

$$
\begin{equation*}
\|S(s)\| \leq M e^{-\delta s} \tag{4.1}
\end{equation*}
$$

For [[8], Theorem 3.2], the following linear equation,

$$
\begin{equation*}
u^{\prime}(s)=T u(s)+a \int_{-\infty}^{s} \frac{(s-t)^{m-1}}{\Gamma(m)} e^{-b(s-t)} T u(t) d t+g(s), s \in \mathbb{R} \tag{4.2}
\end{equation*}
$$

admits the mild solutions given by

$$
\begin{equation*}
u(s)=\int_{-\infty}^{s} S(s-\xi) g(\xi) d \xi, s \in \mathbb{R} \tag{4.3}
\end{equation*}
$$

Lemma 4.1. If $g \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$, then the mild solution $u(s)$ given by (4.3) belongs to $P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$.

Proof. We use Theorem 3.5.
Definition 4.1. We say that the function $u: \mathbb{R} \rightarrow X$ is a mild solution to the equation (4.2) if the function $\xi \mapsto S(s-\xi) g(\xi, u(\xi))$ is integrable on $(-\infty, s]$ for all $s \in \mathbb{R}$ and

$$
u(s)=\int_{-\infty}^{s} S(s-\xi) g(\xi, u(\xi)) d \xi, s \in \mathbb{R}
$$

Theorem 4.2. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$ satisfies (M1) and (M1), assume that (H1) and (H2) hold, we have:
(i) If $g \in \mathcal{C}_{b}(\mathbb{R} \times X, X)$ satisfies (A1).

Then equation (1.1) admits a unique mild solution $u \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ whenever

$$
\frac{M L_{g}}{\delta}<1
$$

(ii) If $g \in \mathcal{C}_{b}(\mathbb{R} \times X, X)$ satisfies (A2).

Then system (1.1) admits a unique mild solution $u \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ whenever

$$
\left\|L_{g}\right\|_{\mathcal{L}^{p}(\mathbb{R}, d x)}<\frac{(\delta q)^{\frac{1}{q}}}{M} .
$$

Proof. We define the operator $\mathcal{F}: P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right) \rightarrow P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ by
$(\mathcal{F} u)(s):=\int_{-\infty}^{s} S(s-\xi) g(\xi, u(\xi)) d \xi, s \in \mathbb{R}$,
where $\{S(s)\}_{s \geq 0}$ verifies the relation (4.1).
For each $u \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$, using Theorem 3.7 and Theorem 3.8, the function $\xi \mapsto g(\xi, u(\xi))$ belongs to $P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$. From Lemma 4.1 we have $\mathcal{F} u \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$, which give \mathcal{F} is well defined.
(i) For $u_{1}, u_{2} \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ and $s \in \mathbb{R}$, we have
$\left\|\left(\mathcal{F} u_{1}\right)(s)-\left(\mathcal{F} u_{2}\right)(s)\right\| \leq \int_{-\infty}^{s}\left\|S(s-\xi)\left[g\left(\xi, u_{1}(\xi)\right)-g\left(\xi, u_{2}(\xi)\right)\right]\right\| d \xi$
$\leq \int_{-\infty}^{s} L_{g}\|S(s-\xi)\|\left\|u_{1}(\xi)-u_{2}(\xi)\right\| d \xi$
$\leq L_{g}\left\|u_{1}-u_{2}\right\|_{\infty} \int_{0}^{\infty}\|S(\xi)\| d \xi$
$\leq \frac{L_{g} M}{\delta}\left\|u_{1}-u_{2}\right\|_{\infty}$.
Therefore,

$$
\left\|\mathcal{F} u_{1}-\mathcal{F} u_{2}\right\|_{\infty} \leq \frac{M L_{g}}{\delta}\left\|u_{1}-u_{2}\right\|_{\infty}
$$

which gives that \mathcal{F} is contractive for the assumption $\frac{M L_{g}}{\delta}<1$.
So there is a unique $u \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$, such that $\mathcal{F}(u)=u$ via the Banach fixed point theorem.
(ii) For $u_{1}, u_{2} \in \operatorname{PSAB} P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ and $s \in \mathbb{R}$, we have

$$
\begin{aligned}
& \left\|\left(\mathcal{F} u_{1}\right)(s)-\left(\mathcal{F} u_{2}\right)(s)\right\| \leq \int_{-\infty}^{s}\left\|S(s-\xi)\left[g\left(\xi, u_{1}(\xi)\right)-g\left(\xi, u_{2}(\xi)\right)\right]\right\| d \xi \\
& \leq M \int_{-\infty}^{s} e^{-\delta(s-\xi)} L_{g}(\xi)\left\|u_{1}(\xi)-u_{2}(\xi)\right\| d \xi \\
& \leq M\left\|u_{1}-u_{2}\right\|_{\infty}\left(\int_{-\infty}^{s}\left\|L_{g}(\xi)\right\|^{p} d \xi\right)^{\frac{1}{p}}\left(\int_{-\infty}^{s}\left(e^{-\delta(s-\xi)}\right)^{q} d \xi\right)^{\frac{1}{q}} \\
& \leq \frac{M\left\|L_{g}\right\| \mid \sum_{(\mathcal{R}, d x)}}{(\delta q)^{\frac{1}{q}}}\left\|u_{1}-u_{2}\right\|_{\infty} .
\end{aligned}
$$

Therefore,

$$
\left\|\mathcal{F} u_{1}-\mathcal{F} u_{2}\right\|_{\infty} \leq \frac{M\left\|L_{g}\right\|_{\mathcal{L}^{p}(\mathbb{R}, d x)}}{(\delta q)^{\frac{1}{q}}}\left\|u_{1}-u_{2}\right\|_{\infty}
$$

As well as the first result (i), the system (1.1) admits a unique mild solution $u \in P S A B P_{\tau, \rho}\left(\mathbb{R}, X, \mu_{1}, \mu_{2}\right)$ for $\left\|L_{g}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}, d \mu_{1}\right)}<\frac{(\delta q)^{\frac{1}{q}}}{M}$.

5 Application:

We consider the problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial s}(s, x)=\frac{\partial^{2} u}{\partial x^{2}}(s, x)-\int_{-\infty}^{s} \frac{(s-t)}{2 \Gamma(2)} e^{-(s-t)} \frac{\partial^{2} u}{\partial x^{2}}(t, x) d t+g(s, u(s)) \tag{5.1}\\
u(0, s)=u(\pi, s)=0,
\end{array}\right.
$$

with $x \in[0, \pi], t \in \mathbb{R}$.
Let $X:=L^{2}([0, \pi]), T:=\frac{d^{2}}{d x^{2}}$, with domain $D(T)=\left\{h \in H^{2}([0, \pi]), h(0)=h(\pi)=0\right\}$.
Then we can write the problem (5.1) in the abstract form (1.1), with $a=-\frac{1}{2} ; b=1$ and $m=2$. Since T generate an immediately norm continuous, with $\sigma(T)=\left\{-n^{2}, n \in \mathbb{N}\right\}$, then the solutions to equation

$$
\frac{\lambda_{T}\left(\lambda_{T}+1\right)^{2}}{\left(\lambda_{T}+1\right)^{2}-\frac{1}{2}}=-n^{2},
$$

are given by

$$
\begin{gathered}
\lambda_{T}^{n, 1}=\frac{-\left(n^{2}+2\right)}{3}-\frac{6 a_{n}}{c_{n}}+\frac{1}{6} c_{n}, \\
\lambda_{T}^{n, 2}=\frac{-\left(n^{2}+2\right)}{3}+3 \frac{a_{n}}{c_{n}}-\frac{c_{n}}{12}+\frac{\sqrt{3}}{2}\left(\frac{1}{6} c_{n}+6 \frac{a_{n}}{c_{n}}\right) i \\
\lambda_{T}^{n, 3}=\frac{-\left(n^{2}+2\right)}{3}+3 \frac{a_{n}}{c_{n}}-\frac{c_{n}}{12}-\frac{\sqrt{3}}{2}\left(\frac{1}{6} c_{n}+6 \frac{a_{n}}{c_{n}}\right) i
\end{gathered}
$$

for all $n \geq 1$, where
$a_{n}:=-\frac{1}{9}+\frac{2}{9} n^{2}-\frac{1}{9} n^{4}, c_{n}:=\left(8+30 n^{2}+24 n^{4}-8 n^{6}+6 n \sqrt{24+9 n^{2}+72 n^{4}-24 n^{6}}\right)^{\frac{1}{3}}$.
An easy computation shows that

$$
\sup \left\{\Re\left(\lambda_{T}\right) ; \lambda_{T}\left(\lambda_{T}+1\right)^{2}\left(\left(\lambda_{T}+1\right)^{2}-\frac{1}{2}\right)^{-1} \in \sigma(T)\right\}<0 .
$$

Therefore, from ([2], proposition3.1) we conclude that there exists a strongly continuous family of operators $\{S(s)\}_{s \geq 0} \subset \mathcal{B}(X)$ such that $\|S(s)\| \leq M e^{-\delta s}$ for some $M, \delta>0$.

We take $g(s+\tau, \varphi)(t):=\eta(s) \varphi(t)$.
Assume that $\eta(s)$ is a bounded continuous τ-periodic function, i.e. $\eta(s+\tau)=\eta(s)$, then we have

$$
g(s+\tau, \varphi)(t)=\eta(s+\tau) e^{i \rho \tau} e^{-i \rho \tau} \varphi(t)=e^{i \rho \tau} \eta(s) e^{-i \rho \tau} \varphi(t)=e^{i \rho \tau} g\left(s, e^{-i \rho \tau} \varphi\right)(t) .
$$

We also have

$$
\left\|g\left(s, \varphi_{1}\right)-g\left(s, \varphi_{2}\right)\right\|_{L^{2}([0, \pi])}^{2} \leq|\eta(s)|^{2}\left\|\varphi_{1}(t)-\varphi_{2}(t)\right\|_{L^{2}([0, \pi])}^{2} .
$$

Then the equation (5.1) has a unique (μ_{1}, μ_{2})-Pseudo-asymptotically Bloch τ-periodic mild solution on \mathbb{R} provided that $\delta>\|\eta\|_{\infty} M$ by Theorem 4.2 (i).

6 Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

[1] E. H. Ait Dads, K. Ezzinbi, and M. Miraoui. (μ, ν)-pseudo almost automorphic solutions for some non-autonomous differential equations. International Journal of Mathematics, 26(11):1550090, 2015.
[2] B. Andrade, C. Cuevas, C. Silva and H. Soto, asymptotic periodicity for flexible structual systems and applications, Acta appl. Math. 143 (2016), 105-164.
[3] C. Aouiti, H. Jallouli and M. Miraoui, Global exponential stability of pseudo almost automorphic solutions for delayed COHEN-GROSBERG neural networks with measure, APPLICATIONS OF MATHEMATICS, vol.67, n 03, 393-418 (2022).
[4] N. Belmabrouk, M. Damak and M. Miraoui, Measure pseudo almost periodic solution for a class of nonlinear delayed stochastic evolution equations driven by Brownian motion. Filomat, 35(2), (2021).
[5] J. Blot, P. Cieutat and K. Ezzinbi, New approch for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis, (2011), 1-34.
[6] J. Blot, M. Mophou, G. M. N'Guérékata, and D. Pennequin, Weighted pseudo-almost automorphic functions and applications to abstract differential equations. Nonlinear Anal. 71 (2009), nos. 3-4, pp. 903-909.
[7] J. Cao, Q. Yang, and Z. Huang, Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations. Comm. Nonlinear Sci.Numer. Simulat. 17 (2012), 277-283.
[8] Y. K. Chang and R. Ponce, Uniform exponential stability and its applications to bounded solutions of integro-differential equations in Banach spaces. J. Integral Equ. Appl. 30 (2018), 347-369.
[9] Y. K. Chang and Y. Wei, Pseudo S-asymptotically Bloch type periodicity with applications to some evolution equations, Z. Anal. Anwend., 40 (2021), 33-50.
[10] E. Cuesta, Asymptotic behaviour of the solutions of fractional integrodifferential equations and some time discretizations. Discrete Contin. Dyn.Syst. (Suppl.) (2007), 277-285.
[11] C. Cuevas, and J. C. Souza, Existence of S-asymptotically ω-periodic solutions for fractional order functional integro-differential equations with infinite delay.Nonlinear Anal. 72 (2010), 1683-1689.
[12] W. Dimbour, Pseudo S-asymptotically periodic solution for a differential equation with piecewise constant argument in a Banach space. J. Differ. Equ.Appl. 26 (2020), 140-148.
[13] H. Gao, K. Wang, F.Wei, and X. Ding, Massera-type theorem and asymptotically periodic logisitc equations. nonlinear Anal. Real World Appl. 7(2006), 1268-1283.
[14] M. F . Hasler, and G. M. N'Guérékata, Bloch-periodic functions and some applications. Nonlinear Stud. 21 (2014), 21-30.
[15] H. R. Henriquez, C. Cuevas, and A. Caicedo, Asymptotically periodic solutionsof neutral partial differential equations with infinite delay. Comm. PureAppl. Anal. 12 (2013), 2031-2068.
[16] M. Miraoui, Measure pseudo almost periodic solutions for differential equations with reflection. Applicable Analysis, vol.101, n 03, 938-951 (2022).
[17] M Miraoui, T. Diagana, and K. Ezzinbi, Pseudo-Almost Periodic and Pseudo-Almost Automorphic Solutions to some Evolution Equations Involving Theoretical Measure Theory. Cubo a mathemtical journal, vol.16, n 02, 01-31 (2014).
[18] E. R. Oueama-Guengai, and G. M. N'Guérékata, On S-asymptotically ω-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces. Math. Meth. Appl. Sci. 41 (2018), 9116-9122.
[19] M. Pierri, On S-asymptotically ω-periodic functions and applications. Non-liner Anal. 75 (2012), 651-661.
[20] M. Pierri, V. Rolnik, On pseudo S-asymptotically periodic functions. Bull. Aust. Math. Soc. 87 (2013), 238-254.

