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THE DENSITY OF INTEGRAL QUADRATIC FORMS HAVING A
k-DIMENSIONAL TOTALLY ISOTROPIC SUBSPACE

LYCKA DRAKENGREN AND TOM FISHER

ABSTRACT. We investigate the probability that a random quadratic form in Z[x1, ...,xn] has a totally
isotropic subspace of a given dimension. We show that this global probability is a product of local
probabilities. Our main result computes these local probabilities for quadratic forms over the p-adics.
The formulae we obtain are rational functions in p invariant upon substituting p 7→ 1/p.

1. Introduction

An integral quadratic form in n variables is a homogeneous polynomial of degree 2

(1) Q(x1,x2, . . . ,xn) = ∑
16i6 j6n

ai jxix j

where the coefficients ai j belong to Z. A non-zero vector (x1,x2, . . . ,xn) ∈V =Qn is called isotropic
(with respect to Q) if Q(x1,x2, . . . ,xn) = 0. A subspace of V is totally isotropic if all its non-zero
vectors are isotropic. We say that Q is k-isotropic if V has a k-dimensional totally isotropic subspace.
A quadratic form that is 1-isotropic is simply called isotropic. In Section 2 we make corresponding
definitions with Q replaced by any field F.

Generalising the results of [2], where only the case k = 1 was considered, we investigate the
probability ρglob(k,n) that a random integral quadratic form in n variables is k-isotropic. More formally
we define

(2) ρglob(k,n) = lim
H→∞

#
{

quadratic forms Q = ∑ai jxix j ∈ Z[x1, . . . ,xn]
with |ai j|6 H that are k-isotropic over Q

}
(2H)n(n+1)/2

if this limit exists.
Combining the Strong Hasse Principle [3, p. 75] and Witt’s Cancellation Theorem (see Theorem 2.8),

we know that an integral quadratic form is k-isotropic over Q if and only if it is k-isotropic over Qp for
all primes p and over R. Applying a theorem of Poonen and Stoll [7] we deduce the following result.

Theorem 1.1. The probability ρglob(k,n) that a random integral quadratic form in n variables is
k-isotropic exists and is given by

ρglob(k,n) = ρ∞(k,n)∏
p

ρp(k,n)
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QUADRATIC FORMS HAVING A k-DIMENSIONAL TOTALLY ISOTROPIC SUBSPACE 2

where the product is over all primes p, and the local contributions are the probabilities of k-isotropy
over R and over Qp. These local probabilities are defined as in (2), but with the numerator counting
integral quadratic forms that are k-isotropic over R or Qp as appropriate.

We fix a prime number p. The probability ρp(k,n) may also be interpreted as the probability that a
random p-adic integral quadratic form in n variables is k-isotropic over Qp. Here, by a random p-adic
integral quadratic form, we mean a quadratic form with coefficients in Zp where the coefficients are
chosen independently at random according to Haar measure. Choosing the coefficient ai j ∈ Zp with
respect to Haar measure means that each congruence class modulo p is equally likely, and inductively
for n > 1, the classes

a, a+ pn−1, a+2pn−1, . . . , a+(p−1)pn−1 mod pn

are equally likely where 06 a6 pn−1−1 is the reduction of ai j modulo pn−1.
We now state our main theorem. It extends [2, Theorem 1.2] which treated the case k = 1.

Theorem 1.2. The probability ρp(k,n) that a random p-adic integral quadratic form in n variables is
k-isotropic over Qp is given by

ρp(k,n) =



0 if n6 2k−1;

1
4 · (pk +1) ·

(
pk+2−1

(p+1)(p2k+1−1) +∏
k
i=1

(
p2i−1−1

p2i−1

))
if n = 2k;

1
2 +

1
2 · (pk+1 +1) ·∏k+1

i=1

(
p2i−1−1

p2i−1

)
if n = 2k+1;

1− 1
4 · (pk+1 +1) ·

(
pk+3−1

(p+1)(p2k+3−1) −∏
k+1
i=1

(
p2i−1−1

p2i−1

))
if n = 2k+2;

1 if n> 2k+3.

Combining Theorems 1.1 and 1.2 we deduce the following.

Corollary 1.3. We have ρglob(k,n) = 0 for all n6 2k+1,

ρglob(k,2k+2) = ρ∞(k,2k+2) ·∏
p

(
1− pk+1 +1

4
·

(
pk+3−1

(p+1)(p2k+3−1)
−

k+1

∏
r=1

p2r−1−1
p2r−1

))
and ρglob(k,n) = ρ∞(k,n) for all n> 2k+3.

We note two striking features of the formulae in Theorem 1.2. The first is that they are rational
functions in p, where the same rational function works for all primes p including p = 2. The second is
that the rational functions are invariant upon substituting p 7→ 1/p. Exactly the same two observations
were made in [1] in connection with roots of polynomials in one variable. Moreover in that paper the
substitution p 7→ 1/p also related two auxiliary probabilities appearing in the recursion, denoted there
by α and β . We find that an analogous statement holds in our case; see Corollary 5.8.

We employ two strategies for proving Theorem 1.2. The first is a direct generalisation of the method
in [2] (which only treated the case k = 1), with the additional idea of splitting off hyperbolic planes
(see Definition 2.5). This leads to recursive formulae that may be used to compute ρp(k,n) for any
given k and n, and also show that the answer is always a rational function in p. However further work
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is needed to prove Theorem 1.2 (as discussed in the next paragraph) as for this we must find formulae
that hold for all k.

The second strategy is to deduce Theorem 1.2 from a theorem of Kovaleva [6], who computed
the probability that a random p-adic integral quadratic form in n variables belongs to a given Qp-
equivalence class of quadratic forms. The answers she obtained are not rational functions in p, do not
exhibit the p↔ 1/p symmetries, and do not explicitly cover the case p = 2, where in any case it makes
a difference whether we consider random quadratic forms or random symmetric matrices. However
her work leads to a proof of Theorem 1.2 when p is odd. Since we already know from the first strategy
that the answer is a rational function in p it follows that the theorem is also true when p = 2.

Both strategies work by dividing into cases according to the Fp-equivalence class of the quadratic
form reduced mod p, and from this obtaining recursive formulae for the probabilities. One difference,
not already noted above, is that in the second strategy the quadratic form is diagonalised, whereas in
the first we split off hyperbolic planes, and so allow 2×2 blocks on the diagonal.

In Section 2 we review some background on quadratic forms. In Section 3 we discuss the global
applications of our work, and in particular explain how Theorem 1.1 and Corollary 1.3 follow from
Theorem 1.2. In Section 4 we prove some results on counting quadratic forms over finite fields,
in preparation for our first strategy for proving Theorem 1.2. The two strategies are explained in
Sections 5 and 6 respectively. Finally in Appendix A we adapt the methods of Kovaleva to solve the
recurrence relations in our first method directly.

This work originated as a summer project carried out by the first author and supervised by the second
author. We thank the Trinity Summer Studentship Scheme and the Research in the CMS Programme
for their support. We also thank the referee for a careful reading of our paper and some suggested
improvements.

2. Background on quadratic forms

We collect together some standard definitions and results on quadratic forms. See Cassels [3] for
further details. We write F for a general field, and V for a finite dimensional vector space over F.

Definition 2.1. A quadratic form of dimension n over F is a polynomial

(3) Q(x1,x2, . . . ,xn) = ∑
16i6 j6n

ai jxix j,

where the coefficients ai j for 16 i6 j 6 n belong to F. We may also consider Q as a function V → F
where V = Fn, and refer to the pair (V,Q) as a quadratic space. The corresponding symmetric bilinear
form φ : V ×V → F is given by

φ(x,y) = Q(x+ y)−Q(x)−Q(y),

where x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn).

We refer to properties of a quadratic space (V,Q) and properties of V or Q interchangeably.

Definition 2.2. Let (V,Q) be a quadratic space and let φ be its associated symmetric bilinear form.
The radical of (V,Q), when not over a field of characteristic 2, is the vector space consisting of vectors
x ∈ V such that φ(x,y) = 0 for all y ∈ V . In characteristic 2, we further require that Q(x) = 0. A
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quadratic space is regular if its radical is zero-dimensional and singular otherwise. The rank of the
quadratic form Q is n− r, where r is the dimension of the radical.

Definition 2.3. Quadratic spaces (V1,Q1) and (V2,Q2) over the same field F are isometric if there is a
linear isomorphism T : V1→V2 such that Q1(x) = Q2(T x) for all x ∈V1. In this situation, the forms
Q1 and Q2 are said to be equivalent over F. In other words, quadratic forms over F are equivalent if
they are related by a linear substitution given by a matrix P ∈ GLn(F). This defines an equivalence
relation on the set of quadratic forms with coefficients in F. More generally, if R ⊂ F is a subring,
then we say that quadratic forms are equivalent over R (or R-equivalent) if they are related by a matrix
P ∈ GLn(R).

The next two definitions are closely related. The first naturally extends the definitions we already
gave in the introduction in the case F=Q.

Definition 2.4. Let (V,Q) be a quadratic space. A non-zero vector x ∈V is called isotropic if Q(x) = 0.
A quadratic space (V,Q) is isotropic if V contains an isotropic vector, and totally isotropic if all its
non-zero vectors are isotropic. If V has a subspace V0 of dimension k such that the quadratic space
(V0,Q) is totally isotropic, then we say that the quadratic space (V,Q) is k-isotropic. In particular, a
quadratic space is 1-isotropic if and only if it is isotropic.

Definition 2.5. A hyperbolic plane is a quadratic space (V,Q) of dimension 2 where Q is equivalent
over F to the form q(x1,x2) = x1x2.

Lemma 2.6. A regular quadratic space (V,Q) is isotropic if and only if V has a subspace V0 such that
the quadratic space (V0,Q) is a hyperbolic plane.

Proof. See [3, p. 15]. �

We now introduce some results that will be useful for studying isotropic spaces.

Lemma 2.7. Let Q and Q′ be quadratic forms over a field F related by

Q(x1, . . . ,xn) = x1x2 +Q′(x3, . . . ,xn).

Let k > 1. Then Q is k-isotropic if and only if Q′ is (k−1)-isotropic.

Proof. Let U ⊂ Fn be a k-dimensional isotropic subspace for Q. Let e1, . . . ,en be the standard basis
for Fn. Since U ∩〈e1,e2〉 is an isotropic subspace for Q it can only be {0}, 〈e1〉 or 〈e2〉. Let π : Fn→
Fn−2 be projection onto the last n−2 coordinates. Then either π(U ∩{x1 = 0}) or π(U ∩{x2 = 0}) is
an isotropic subspace for Q′ of dimension at least k−1. Therefore Q′ is (k−1)-isotropic. The converse
is clear. �

Theorem 2.8 (Witt’s Cancellation Theorem). Let (V,Q) be a quadratic space. Let V1, V2 be subspaces
of V . Denote by V⊥1 and V⊥2 the orthogonal complements of V1 resp. V2 in V . If (V1,Q) and (V2,Q)

are regular and isometric, then (V⊥1 ,Q) and (V⊥2 ,Q) are also isometric.

Proof. See [5, pp. 89–92] for quadratic forms over a field of characteristic not 2, and [5, p. 118] for
the case of characteristic 2. �
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Let p be a prime. We write Fp for the finite field with p elements, Qp for the field of p-adic numbers,
and Zp for the ring of p-adic integers. The following argument is one we will revisit in the proof of
Lemma 5.2.

Lemma 2.9. Let Q be a quadratic form with coefficients in Zp that reduces over Fp to a form that is
both k-isotropic and regular. Then Q is k-isotropic (and regular) over Qp.

Proof. The case k = 1 is a consequence of Hensel’s lemma. In fact if we go via Lemma 2.6 then we
only need Hensel’s lemma for a quadratic polynomial in one variable. For general k > 1 we proceed
by induction on k. Once we know that Q is isotropic, we may assume via a Zp-equivalence, first that
Q(1,0, . . . ,0) = 0, and then that

Q(x1, . . . ,xn) = x1x2 +Q′(x3, . . . ,xn)

for some quadratic form Q′ with coefficients in Zp. Note that for the latter deduction we use that
(1,0, . . . ,0) is not in the radical of Q reduced mod p. The reduction of Q′ mod p is then (k−1)-isotropic
(and regular) over Fp by Lemma 2.7, and the induction hypothesis applies. �

Theorem 2.10. (i) A quadratic form over Fp in 3 or more variables is always isotropic.
(ii) A quadratic form over Qp in 5 or more variables is always isotropic.

Proof. (i) This is a consequence of the Chevalley-Warning theorem. See for example [8, p. 5].
(ii) This is Meyer’s theorem. See for example [3, p. 41]. �

We make the following definition concerning quadratic forms over Fp.

Definition 2.11. A quadratic form over Fp belongs to the class [l,m,n] if it is equivalent to a form

(4) Q(x1,x2, . . . ,xn) =
l

∑
i=1

xr+2i−1xr+2i + f (xr+2l+1, . . . ,xn)

where f is a regular anisotropic form of dimension m. Note that l is the number of hyperbolic planes in
the orthogonal decomposition, m ∈ {0,1,2} by Theorem 2.10(i), n is the dimension of the form, and
r = n−2l−m is the dimension of the radical.

Repeated application of Lemma 2.6 shows that every quadratic form over Fp belongs to the class
[l,m,n] for some l,m,n, and Theorem 2.8 shows that l,m,n are uniquely determined by the quadratic
form.

3. Global densities

In this section we explain how Theorem 1.1 and Corollary 1.3 follow from Theorem 1.2. First we read
off from Theorem 1.2 the asymptotic behaviour of ρp(k,n) as p→ ∞.

Corollary 3.1. Let k > 1. As p→ ∞, we have the following approximations.

ρp(k,n) =


1
2 +O( 1

p) if n = 2k;

1− 1
2p +O( 1

p2 ) if n = 2k+1;

1− 1
4p3 +O( 1

p4 ) if n = 2k+2.
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Proof. In the case n = 2k+2 we consider the Taylor series expansions

pk+3−1
(p+1)(p2k+3−1)

=
1

pk+1

(
1− 1

p
+

1
p2 −

1
p3 +O

(
1
p4

))
,

and
k+1

∏
i=1

p2i−1−1
p2i−1

=
1

pk+1

(
1− 1

p
+

1
p2 −

2
p3 +O

(
1
p4

))
,

using the big O notation. Substituting these expansions into the formula for ρp(k,n) in Theorem 1.2
gives the approximation for ρp(k,n) as claimed. The other cases are similar but easier. �

Fix values of k and n, and let d =
(n+1

2

)
. We write U∞ for the set of quadratic forms in R[x1, . . . ,xn]

that are not k-isotropic over R. Likewise we write Up for the set of quadratic forms in Zp[x1, . . . ,xn]

that are not k-isotropic over Qp. Let µ∞ denote the standard Lebesgue measure on Rd , and let µp

denote the Haar measure on Zd
p normalised to have total volume 1.

Lemma 3.2. Let 16 k6 n and d =
(n+1

2

)
. Suppose that the following condition holds for all sufficiently

large primes p:
Every quadratic form in Zp[x1, . . . ,xn] whose reduction mod p has rank at least n−1
is k-isotropic over Qp.

Then ρglob(k,n) exists and is given by

(5) ρglob(k,n) =
µ∞([−1,1]d \U∞)

2d ·∏
p
(1−µp(Up)).

Proof. As noted in the introduction, a quadratic form is k-isotropic over Q if and only if it is k-isotropic
over Qp for all primes p and over R. We then apply [7, Lemmas 20 and 21] with U∞ and Up as defined
above, S = /0 and f ,g ∈ Z[a11,a12, . . . ,ann] two distinct (n−1)× (n−1) minors of the generic n×n
symmetric matrix of coefficients. �

It is not hard to show that, with notation as defined in the statement of Theorem 1.1, the factors on
the right hand side of (5) may be written

(6) ρ∞(k,n) =
µ∞([−1,1]d \U∞)

2d and ρp(k,n) = 1−µp(Up).

Proof of Theorem 1.1. Let ρglob(k,n) be as defined in (2), and let ρglob(k,n) be the same quantity with
the limit replaced by lim sup. We write ρp(k,n) for the probabilities computed in Theorem 1.2. A
standard argument (see for example [4, Proposition 3.2]) uses the local conditions at finitely many
primes to show that

(7) ρglob(k,n)6 ∏
p<M

ρp(k,n).

If n 6 2k+ 1 then by Corollary 3.1 the right hand side of (7) tends to 0 as M → ∞. Therefore
ρglob(k,n) = 0 and the equality claimed in Theorem 1.1 holds since both sides are zero.

If n > 2k + 2 then we claim that the condition in Lemma 3.2 is satisfied. To see this we let
Q∈Zp[x1, . . . ,xn] be a quadratic form whose reduction mod p has rank at least n−1. In the terminology
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of Definition 2.11, the reduction of Q mod p belongs to the class [l,m,n] for some l,m,n with
m ∈ {0,1,2}. Our assumptions then give 2l+m> n−1> 2k+1. Since k and l are integers it follows
that l > k. Then Q is k-isotropic over Qp by Lemma 2.9. This proves the claim. Then combining (5)
and (6) gives

ρglob(k,n) = ρ∞(k,n)∏
p

ρp(k,n)

as required. �

Corollary 1.3 follows immediately from Theorem 1.1, Theorem 1.2 and the observation in the last
proof that the local product is zero for n6 2k+1.

Remark 3.3. We do not know an accurate method for computing the probabilities ρ∞(k,n), but we
can estimate them using a Monte Carlo simulation. On this basis we record the following numerical
values that are likely to be accurate to the number of decimal places recorded.

k ∏p ρp(k,2k+2) ρ∞(k,2k+2) ρglob(k,2k+2)
1 0.98743625 0.9823 0.9699
2 0.98229463 0.9705 0.9533
3 0.98007620 0.9623 0.9431
4 0.97906880 0.9561 0.9361
5 0.97859528 0.9512 0.9309

Remark 3.4. In [2] (which only treats the case k = 1) some alternatives to the definition (2) were
considered. The global densities so defined may still be computed as a product over all places, and
the local contributions at the finite places are the same as before. However the local contributions
at infinity can change, and for one natural choice of distribution these were computed exactly. It is
possible that something similar could be done for k > 1, but we did not pursue this.

4. Counting quadratic forms over Fp

In this section we prove some formulae counting quadratic forms over Fp. We consider quadratic
forms over Fp according to their class [l,m,n] as defined in Definition 2.11.

Definition 4.1. Consider a quadratic form

Q(x1,x2, . . . ,xn) = ∑
16i6 j6n

ai jxix j

over Fp where the coefficients ai j are chosen independently at random according to counting measure.
Let π0(l,m,n) be the probability that Q belongs to the class [l,m,n].
Let π1(l,m,n) be the probability that Q belongs to the class [l,m,n] given that a11 6= 0.
Let π2(l,m,n) be the probability that Q belongs to the class [l,m,n] given that a11x2

1+a12x1x2+a22x2
2

is a regular anisotropic form.

Note that Theorem 2.10(i) implies that πi(l,m,n) = 0 if m> 3.
The group GLn(Fp) acts on the set of n-dimensional quadratic forms over Fp by linear substitutions.

The class [l,m,n] is the union of either one or two orbits (see below for references), and so its size may
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be computed as a sum of orbit sizes. To begin with we only consider forms that are regular. In these
cases the orbit sizes can be computed using the orbit-stabiliser theorem and the following theorem.

Lemma 4.2. Let Q0 be a quadratic form over Fp belonging to the class [l,m,n]. Suppose that Q0 is
regular, equivalently n = 2l+m. Then the stabiliser in GLn(Fp) of Q0 is an orthogonal group of order
S(m,n) where

S(0,2k) = 2pk(k−1)(pk−1)
k−1

∏
i=1

(p2i−1);

S(1,2k+1) =

{
2pk2

∏
k
i=1(p2i−1) if p 6= 2;

pk2
∏

k
i=1(p2i−1) if p = 2;

S(2,2k) = 2pk(k−1)(pk +1)
k−1

∏
i=1

(p2i−1).

Proof. See [5, pp. 81–82] for p an odd prime, and [5, pp. 147–150] for the case p = 2. �

To find the orbit size when the radical has dimension r = n−2l−m, we multiply the orbit size of
the regular part under the action of GLn−r(Fp) by the number(

n
r

)
p
=

r−1

∏
i=0

pn− pi

pr− pi

of r-dimensional subspaces of Fn
p. The orbit size O(l,m,n) of a form in [l,m,n] under the action of

GLn(Fp) is therefore given by

O(l,m,n) =
(

n
n−2l−m

)
p
·
|GL2l+m(Fp)|
S(m,2l +m)

.

If m = 1 and p is odd, there are two orbits belonging to [l,m,n]; other values of m give a unique
orbit (see [5, p. 79]). Hence, using that |GLn(Fp)|= ∏

n−1
i=0 (pn− pi), and dividing by the total number

of quadratic forms of dimension n, we obtain the values of π0(l,m,n) recorded in the next lemma.
Note that the only form in the class [0,0,n] is the form where all the coefficients are zero.

Lemma 4.3. For l +m > 0 and n = 2l +m+ r we have

π0(l,m,n) =



1
pn(n+1)/2 ·∏r−1

i=0
pn−pi

pr−pi ·
∏

2l−1
i=0 (p2l−pi)

2pl(l−1)(pl−1)∏
l−1
i=1(p2i−1)

if m = 0;

1
pn(n+1)/2 ·∏r−1

i=0
pn−pi

pr−pi ·
∏

2l
i=0(p2l+1−pi)

pl2 ∏
l
i=1(p2i−1)

if m = 1;

1
pn(n+1)/2 ·∏r−1

i=0
pn−pi

pr−pi ·
∏

2l+1
i=0 (p2l+2−pi)

2pl(l+1)(pl+1+1)∏
l
i=1(p2i−1)

if m = 2.

Moreover, π0(0,0,n) = 1/pn(n+1)/2.

Next we compute the probabilities π1(l,m,n) in terms of the probabilities π0(l,m,n).
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Lemma 4.4. We have

π1(l,m,n) =


π0(l−1,1,n−1)/2 if m = 0 and l > 1;
π0(l,0,n−1)+π0(l−1,2,n−1) if m = 1 and l > 1;
π0(l,1,n−1)/2 if m = 2.

Moreover, π1(0,0,n) = 0 and π1(0,1,n) = 1/pn(n−1)/2.

Proof. We first suppose that p is an odd prime. Let Q be a quadratic form in n variables over Fp
with first coefficient a11 6= 0. We must compute the probability π1(l,m,n) that Q belongs to the class
[l,m,n]. By a linear substitution to eliminate the cross-terms containing x1, we may assume that
Q(x1,x2, . . . ,xn) = a11x2

1 +F(x2,x3, . . . ,xn) for some F ∈ Fp[x2, . . . ,xn]. The class of Q is determined
by the class of F and the value of a11. Since the coefficients of F , like those of Q, are randomised
according to counting measure (suitably normalised), we can compute π1(l,m,n) in terms of the
π0(l′,m′,n−1) for suitable l′ and m′. More precisely, using Lemma 2.6 and Theorem 2.10(i), we note
that if F belongs to the class [l,0,n−1] or [l−1,2,n−1] then Q belongs to the class [l,1,n], whereas
if F belongs to the class [l−1,1,n−1] then it is equally likely that Q belongs to the class [l,0,n] or
[l−1,2,n]. The stated formulae follow.

To prove the lemma when p = 2 we outline an alternative method for computing π1(l,m,n) that
gives the answer as a rational function in p. In this alternative method we compute π1(l,m,n) by
finding the probability that a form in [l,m,n] satisfies a11 6= 0, and then multiply by π0(l,m,n) · p

p−1

according to Bayes’ formula. The second factor comes from the fact that a11 6= 0 with probability p−1
p .

Since a11 = Q(1,0, . . . ,0) and GLn(Fp) acts transitively on Fn
p \{0} it suffices to show that

N(Q) = #{x ∈ Fn
p | Q(x) = 0}

is a polynomial in p, where the polynomial depends only on l,m,n. We prove this claim by induction
on l, noting that if Q(x1, . . . ,xn) = x1x2+Q′(x3, . . . ,xn) then N(Q) = (2p−1)N(Q′)+(p−1)(pn−2−
N(Q′)), whereas if l = 0 then N(Q) = pn−m. �

To determine the values of π2(l,m,n), we use a method similar to the one we used for calculating
π1(l,m,n) for p an odd prime. However, this proof also includes the case p = 2.

Lemma 4.5. We have

π2(l,m,n) =


π0(l−2,2,n−2) if m = 0 and l > 2;
π0(l−1,1,n−2) if m = 1 and l > 1;
π0(l,0,n−2) if m = 2.

Moreover, π2(0,0,n) = π2(0,1,n) = π2(1,0,n) = 0.

Proof. It suffices to consider Q(x1,x2, . . . ,xn) = f (x1,x2)+F(x3, . . . ,xn) for f ∈ Fp[x1,x2] regular
anisotropic and F ∈ Fp[x3, . . . ,xn]. The class of F then determines the class of Q, and again using
Lemma 2.6 and Theorem 2.10(i), this gives the formulae as stated. �
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5. First method: Reduction modulo p and recursion

In this section we give our first method for computing the probability ρp(k,n) that a random p-adic
integral quadratic form in n variables is k-isotropic.

Definition 5.1. Let Q be a random p-adic integral quadratic form in n variables.
Let δ0(k; l,m,n) be the probability that Q is k-isotropic given that its reduction mod p belongs to the

class [l,m,n].
Let δ1(k; l,m,n) be the probability that Q is k-isotropic given that its reduction mod p belongs to the

class [l,m,n], the coefficients a11,a12, . . . ,a1n are all divisible by p, but p2 does not divide a11.
Let δ2(k; l,m,n) be the probability that Q is k-isotropic given that its reduction mod p belongs to

the class [l,m,n], the coefficients a11,a12, . . . ,a1n and a22,a23, . . . ,a2n are all divisible by p, but the
reduction of 1

p(a11x2
1 +a12x1x2 +a22x2

2) mod p is a regular anisotropic form.

By definition δ0(k;0,0,n) is the probability of k-isotropy given that Q vanishes mod p. This is the
same as ρp(k,n). Our next two results establish recursive relations for computing the δi(k; l,m,n).

Lemma 5.2. For i ∈ {0,1,2} we have

δi(k; l,m,n) =
{

δi(k− l;0,m,n−2l) if k > l;
1 if k 6 l.

Proof. A quadratic form whose reduction modulo p belongs to the class [l,m,n] is equivalent over Zp
to a form which satisfies

(8) Q(x1, . . . ,xn)≡
l

∑
i=1

xr+2i−1xr+2i + f (xr+2l+1, . . . ,xn) mod p,

for f a regular anisotropic form over Fp of dimension m ∈ {0,1,2}. We claim that Q is equivalent over
Zp to a form

(9) Q′(x1, . . . ,xn) =
l

∑
i=1

xr+2i−1xr+2i +Q′′(x1, . . . ,xr,xr+2l+1, . . . ,xn),

where Q′′(x1, . . . ,xr,xr+2l+1, . . . ,xn)≡ f (xr+2l+1, . . . ,xn) mod p. If k 6 l it follows immediately that
Q is k-isotropic. If k > l then by Lemma 2.7, the form Q is k-isotropic if and only if the form Q′′

is (k− l)-isotropic. So it only remains to prove the claim, and at the same time convince ourselves
that, subject to the conditions in Definition 5.1, the coefficients of Q′′ are independently distributed
according to Haar measure.

For simplicity we consider the case r = 0 and l = 1. Then the Zp-equivalence taking (8) to (9) is
built out of two sorts of transformations. First we let GL2(Zp) act on the variables x1 and x2 by linear
substitution. By the case k = 1 of Lemma 2.9, such a transformation exists taking Q(x1,x2,0, . . . ,0) to
x1x2. This shows that Q is Zp-equivalent to a quadratic form Q0 satisfying

Q0(x1,x2, . . . ,xn) = x1x2 + px1 ·g1(x3, . . . ,xn)+ px2 ·g2(x3, . . . ,xn)+Q(0,0,x3, . . . ,xn)

for some linear forms g1, g2 in Zp[x3, . . . ,xn]. Then we make the substitutions x1← x1− p ·g2(x3, . . . ,xn)
and x2← x2− p ·g1(x3, . . . ,xn) to obtain a quadratic form Q′ of the shape (9) with Q′′(x3, . . . ,xn) ≡
Q(0,0,x3, . . . ,xn) mod p2.
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For general r > 0 (but still l = 1) we follow the same strategy. First we let GL2(Zp) act on the
variables xr+1 and xr+2. Then we make substitutions for xr+1 and xr+2 where we add to each p times a
linear combination of the other variables x1, . . . ,xr,xr+3, . . . ,xn. Again we have

Q′′(x1, . . . ,xr,xr+3, . . . ,xn)≡ Q(x1, . . . ,xr,0,0,xr+3, . . . ,xn) mod p2.

Since the extra conditions on Q in the definition of the δi for i = 1,2 are conditions on the coefficients
mod p2, these are not affected by this change. The result for general l follows by induction. �

Lemma 5.3. For i, j ∈ {0,1,2} and n> i+ j we have

δi(k;0, j,n) = ∑
l>0

2

∑
m=0

πi(l,m,n− j)δ j(k; l,m,n).

Moreover, if n = i+ j then

δi(k;0, j,n) =
{

1 if k = 0;
0 if k > 1.

The condition n> i+ j ensures that πi(l,m,n− j) is defined. It can only be non-zero if 2l+m6 n− j,
in which case δ j(k; l,m,n) is defined. In particular the sum over l is finite.

Proof. Let Q be a p-adic integral quadratic form of dimension n whose reduction mod p belongs to
the class [0, j,n]. By an equivalence over Zp we may suppose that the reduction of Q mod p is an
anisotropic form in the last j ∈ {0,1,2} variables. We replace Q(x1, . . . ,xn) by

1
p

Q(x1, . . . ,xn− j, pxn− j+1, . . . , pxn).

This is again a p-adic integral quadratic form, but now the reduction mod p involves only the first n− j
variables. If i = 1 or 2 then the additional conditions in Definition 5.1 give the additional conditions in
Definition 4.1. The reduction mod p now has class [l,m,n] with probability πi(l,m,n− j), and in this
case the form is k-isotropic with probability δ j(k; l,m,n). In checking this last statement, notice that
the extra conditions in Definition 5.1 when j = 1 or 2 are satisfied relative to the last j variables rather
than the first j variables. This change clearly does not matter. Summing over all possibilities for l and
m gives the result.

For the final part we show that if n = i+ j then the forms considered in the definition of δi(k;0, j,n)
are anisotropic over Qp. For example, if i = j = 2 and n = 4 then the reduction of Q(x1, . . . ,x4) mod p
is an anisotropic form in x3 and x4, and the reduction of 1

pQ(x1,x2, px3, px4) mod p is an anisotropic
form in x1 and x2. Supposing that Q(a1, . . . ,a4) = 0 for some a1, . . . ,a4 ∈ Zp not all divisible by p
these conditions quickly lead to a contradiction. The other cases are similar. �

Proposition 5.4. The relations in Lemmas 5.2 and 5.3 are sufficient to determine all the δi(k; l,m,n)
and to show that they are rational functions in p. The same is therefore true of ρp(k,n) = δ0(k;0,0,n).

Proof. Combining the two lemmas shows that

δi(k;0, j,n) =
1

p(
n+1−i− j

2 )
δ j(k;0, i,n)+ . . .
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where the terms omitted involve either a smaller value of n or a larger value of i+ j. Assuming all such
previous values have been computed, we can uniquely solve for δi(k;0, j,n) and δ j(k;0, i,n) provided
that n > i+ j. It is clear from Definition 5.1 that we must have n > i+ j and the remaining case
where n = i+ j is covered by the last part of Lemma 5.3. Finally we use Lemma 5.2 to compute the
δi(k; l,m,n) with l > 0.

Since we saw in Section 4 that the πi(l,m,n) are rational functions in p, it follows that the δi(k; l,m,n)
are also rational functions in p. �

Proposition 5.4 together with the results of the next section are all we shall need for the proof of
Theorem 1.2. It is nonetheless still interesting to find explicit closed formulae for the δi(k; l,m,n). We
do this now, leaving some of the details to Appendix A.

Definition 5.5. For i, j ∈ {0,1,2} and n> i+ j we define

φ(i, j,n) =
(
( j−1)pd +(i−1)

)
·

d

∏
r=1

p2r−1−1
p2r−1

,

ψ(i, j,n) =

(
( j−1)pd +(i−1)

)(
( j−1)pd+2− (i−1)

)
−δi1 p+δ j1 p2d+1

(p+1)(p2d+1−1)
,

where d = bn+1−i− j
2 c and δi j is the Kronecker delta.

Proposition 5.6. Let i, j ∈ {0,1,2} and n> i+ j. Then

φ(i, j,n) = ∑
l>0

2

∑
m=0

πi(l,m,n− j)φ( j,m,n−2l),

and if n is even then

ψ(i, j,n) = ∑
l>0

2

∑
m=0

πi(l,m,n− j)ψ( j,m,n−2l).

Proof. We prove this in Appendix A by adapting methods of Kovaleva [6]. �

Theorem 1.2 is the special case i = j = 0 of the following result.

Theorem 5.7. For any i, j ∈ {0,1,2} and n> i+ j we have

δi(k;0, j,n) =



0 if n6 2k−1;
1
4

(
−φ(i, j,n)+ψ(i, j,n)

)
if n = 2k;

1
2

(
1−φ(i, j,n)

)
if n = 2k+1;

1− 1
4

(
φ(i, j,n)+ψ(i, j,n)

)
if n = 2k+2;

1 if n> 2k+3.

Proof. By Proposition 5.6 these are solutions to the recurrence relations in Proposition 5.4. These
particular linear combinations of 1, φ and ψ also satisfy the initial conditions, that is, we checked they
give the correct answers when n = i+ j. �

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

18 Dec 2023 10:10:59 PST
230217-Fisher Version 2 - Submitted to Rocky Mountain J. Math.



QUADRATIC FORMS HAVING A k-DIMENSIONAL TOTALLY ISOTROPIC SUBSPACE 13

As explained in the introduction, the following corollary is interesting since it generalises a phenom-
enon studied in [1].

Corollary 5.8. The probabilities δi(k; l, j,n) and δ j(k; l, i,n) are rational functions in p that are
exchanged when we replace p by 1/p. In particular ρp(k,n) = δ0(k;0,0,n) is unchanged when we
replace p by 1/p.

Proof. By Lemma 5.2 it suffices to prove the case l = 0. The symmetries claimed then follow from
Definition 5.5 and Theorem 5.7. �

6. Second method: Using a theorem of Kovaleva

In this section we deduce Theorem 1.2 from a result of Kovaleva [6]. First we recall the classification
of quadratic forms over Qp up to equivalence.

Definition 6.1. Let a, b ∈Q∗p. The Norm-Residue symbol, denoted
(a,b

p

)
or more simply as (a,b), is

set to be 1 when the form ax2 +by2− z2 vanishes for some x,y,z ∈Qp not all zero, and −1 otherwise.

Definition/Lemma 6.2. Let Q ∈Qp[x1, . . . ,xn] be a quadratic form of rank n which is equivalent to a
diagonal form Q′(x1, . . . ,xn) = ∑

n
i=1 aix2

i . The Hasse-Minkowski invariant of the form Q is defined as
c(Q) = ∏i< j(ai,a j). This is independent of the choice of diagonal form.

Proof. See [3, pp. 56–58]. �

Theorem 6.3. A quadratic form Q ∈ Qp[x1, . . . ,xn] of rank n is uniquely determined up to Qp-
equivalence by its determinant d(Q) ∈Q∗p/(Q∗p)2 and its Hasse-Minkowski invariant c(Q) ∈ {±1}.

Proof. See [3, p. 61]. �

The next lemma explains why we only need to consider forms of full rank over Qp.

Lemma 6.4. A p-adic integral quadratic form, with coefficients chosen independently from Zp accord-
ing to Haar measure, is singular with probability zero.

Proof. We write the form as Q(x1,x2, . . . ,xn) = a11x2
1+x1 · f (x2, . . . ,xn)+g(x2, . . . ,xn) for some linear

form f ∈ Zp[x2, . . . ,xn] and quadratic form g ∈ Zp[x2, . . . ,xn].
If n = 1, the form is singular when a11 is zero, which happens with probability zero. Inductively, for

n > 1, we can assume the form g to be non-singular. For each linear form f and non-singular form g,
there is only one value of a11 that makes Q singular, corresponding to the determinant of the coefficient
matrix being zero. This value is attained by a11 with probability zero, hence the form is singular with
probability zero by induction. �

We now take p an odd prime. The following theorem, due to Kovaleva, gives for each triple (n,d,c)
the probability that a random p-adic integral quadratic form Q in n variables has determinant d(Q) = d
and Hasse-Minkowski invariant c(Q) = c. Since p is an odd prime, the quotient Q∗p/(Q∗p)2 has order 4,
with coset representatives {1,u, p,up} where u is a quadratic non-residue modulo p.
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Theorem 6.5 (Kovaleva). Let p be an odd prime, and let Q ∈ Zp[x1,x2, . . . ,xn] be a random p-adic
integral quadratic form in n variables. Let ε and s denote the Legendre symbols (−1

p ) resp. ( d
p) and

let u be a quadratic non-residue modulo p. Then the probability Pn(d(Q) = d,c(Q) = c) that Q has
determinant d ∈Q∗p/(Q∗p)2 and Hasse-Minkowski invariant c ∈ {±1} is given by

P2k+1(d(Q) = d,c(Q) = c) =


1
4
· p

p+1
+

1
4
· c · pk+1 ·

k+1

∏
i=1

p2i−1−1
p2i−1

if d ∈ {1,u};

1
4
· 1

p+1
+

1
4
· c · εk ·

k+1

∏
i=1

p2i−1−1
p2i−1

if d ∈ {p,up};

P2k(d(Q) = d,c(Q) = c) =


1
4
· (pk + sε

k) ·

(
(pk+2− sεk)

(p+1)(p2k+1−1)
+ c ·

k

∏
i=1

p2i−1−1
p2i−1

)
if d ∈ {1,u};

1
4
· p

p+1
· p2k−1

p2k+1−1
if d ∈ {p,up}.

Proof. See [6, Theorem 1.3]. �

We deduce Theorem 1.2 for p odd using the following lemma. Recall that we wrote ρp(k,n) for the
probability that a random p-adic integral quadratic form in n variables is k-isotropic.

Lemma 6.6. We have ρp(k,n) = 0 for n6 2k−1 and ρp(k,n) = 1 for n> 2k+3. If p is odd then

ρp(k,2k) = P2k(d(Q) = (−1)k,c(Q) = 1);

ρp(k,2k+1) = ∑
a∈Q∗p/(Q∗p)2

P2k+1(d(Q) = (−1)ka,c(Q) = (−1,a)k);

ρp(k,2k+2) = 1−P2k+2(d(Q) = (−1)k−1,c(Q) =−1).

Proof. We first note that if n6 2k−1 then every k-isotropic form of dimension n is singular, and so
ρp(k,n) = 0 by Lemma 6.4. We now suppose that n> 2k. By Lemma 2.6 every regular quadratic form
of dimension n over Qp is equivalent to one of the form

(10) Q(x1, . . . ,xn) =
l

∑
i=1

x2i−1x2i + f (x2l+1, . . . ,x2l+m),

where l is the number of hyperbolic planes in the decomposition, f (x2l+1, . . . ,x2l+m) is an anisotropic
form over Qp of rank m, and n = 2l +m. By Theorem 2.10(ii) we have m 6 4. It follows that if
n> 2k+3 then k 6 l and so ρp(k,n) = 1.

We now take p an odd prime. If n = 2k then for the form in (10) to be k-isotropic we need l = k
and m = 0. There is only one such form up to Qp-equivalence. It has determinant d(Q) = (−1)k and
Hasse-Minkowski invariant c(Q) = 1. This gives the formula for ρp(k,2k) as stated. If n = 2k+ 1
then for k-isotropy we need l = k and m = 1. The anisotropic form in (10) is f (xn) = ax2

n for some
a ∈ {1,u, p,up}. This gives four Qp-equivalence classes of forms, with invariants d(Q) = (−1)ka and
c(Q) = (−1,a)k. Finally we take n = 2k+2. For Q not to be k-isotropic we need l = k−1 and m = 4.
The rank 4 anisotropic form f has determinant d( f ) = 1 and Hasse-Minkowski invariant c( f ) =−1
(see [3, p. 59]). It follows that d(Q) = (−1)k−1 and c(Q) =−1, giving the result as stated. �

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

18 Dec 2023 10:10:59 PST
230217-Fisher Version 2 - Submitted to Rocky Mountain J. Math.



QUADRATIC FORMS HAVING A k-DIMENSIONAL TOTALLY ISOTROPIC SUBSPACE 15

Theorem 1.2 for p odd now follows from Theorem 6.5 and Lemma 6.6. The interesting thing to note
is that the Legendre symbols ε and s cancel, giving answers that are rational functions in p. Indeed
when n = 2k we have sεk = 1. When n = 2k+1 the contributions for a ∈ {1,u} have c = 1 and the
contributions for a ∈ {p,up} have c = εk. When n = 2k+2 we employ the corresponding formula in
Theorem 6.5 with k replaced by k+1 and s replaced by εk−1.

We saw in Proposition 5.4 that ρp(k,n) is given by a rational function in p, where the same rational
function works for all primes p including the prime p = 2. Since we proved Theorem 1.2 in the last
paragraph for infinitely many primes (in fact for all odd primes), the theorem is therefore true for all
primes.

Appendix A. Solving the recurrence relations for the first method

In this appendix we prove Proposition 5.6. This is not needed for the proof of our main theorems as
stated in the introduction, but is needed to compute all the δi(k; l,m,n) (see Theorem 5.7) and hence
to see that they satisfy some interesting symmetries (see Corollary 5.8). The proof is based on that
of Theorem 6.5, but we could not see a way to directly cite Kovaleva’s work without reworking the
details.

The identities we seek to prove are ones between rational functions in p. So it suffices to prove them
for any infinite set of primes. There is therefore no loss of generality in assuming (as we now do) that
p is odd. This allows us to identify quadratic forms and symmetric matrices in the usual way.

Definition A.1. Let λ (s,n) be the probability that a randomly chosen n×n symmetric matrix over Fp
has rank s. In the notation of Section 4 we have

λ (s,n) =
{

π0(l,0,n)+π0(l−1,2,n) if s = 2l;
π0(l,1,n) if s = 2l +1,

where the right hand sides are given explicitly in Lemma 4.3. Alternatively, following [6, Section 4.1],
we have

(11) λ (s,n) = p−(n−s)(n−s+1)/2 πn

πn−sβs
,

where πn = ∏
n
i=1(1− p−i) and βs = ∏

bs/2c
i=1 (1− p−2i).

Lemma A.2. For any x ∈ R we have

n

∑
s=0

n−s even

λ (s,n)
x− ps

pn+1− ps +
n

∑
s=0

n−s odd

λ (s,n) =


x−1

pn+1−1
if n is even;

x
pn+1 if n is odd.

Proof. Since each side is linear in x, it suffices to prove the identity for just two values of x. If x = pn+1

then this is just the fact that ∑
n
s=0 λ (s,n) = 1. If n = 2k and x = 1 then the left hand side is

k

∑
t=1

(
λ (2t,n)

1− p2t

pn+1− p2t +λ (2t−1,n)
)
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whereas if n = 2k+1 and x = 0 then the left hand side is
k

∑
t=0

(
λ (2t,n)−λ (2t +1,n)

p2t

pn+1− p2t

)
.

It may be checked using (11) that in each of these last two sums all the summands are zero. �

Lemma A.3. Let πn = ∏
n
i=1(1− p−i). Then for any m,n> 0 we have

min(m,n)

∑
s=0

πmπn

p(m−s)(n−s)πsπm−sπn−s
= 1.

Proof. This is [6, Corollary 2.3]. The sth summand is the probability that an m×n matrix over Fp has
sank s. This may be computed by considering the action of GLm(Fp)×GLn(Fp) via (A,B) : X 7→AXBT

and applying the orbit-stabiliser theorem. �

We define

(12) A(l) =
b l+1

2 c

∏
i=1

p2i− p
p2i−1

, B(l) =
b l+1

2 c

∏
i=1

p2i−1−1
p2i−1

.

In Kovaleva’s notation, as already used in (11), these may be written

(13) A(l) =
πl

βlβl+1
, B(l) =

πl

pb
l+1

2 cβlβl+1

.

Lemma A.4. For any x,y,z ∈ R we have
n

∑
s=0

n−s even

λ (s,n)B(n− s)(x+ ypn−s) +
n

∑
s=0

n−s odd

λ (s,n)B(n− s)(x+ zpn+1−s)

=


(

x+ y+
(

1− 1
pn

)
z
)

A(n) if n is even;(
x+
(

1− 1
pn+1

)
y+ z

)
A(n) if n is odd.

Proof. It suffices to prove this identity for three linearly independent choices of (x,y,z). If (x,y,z) =
(1,−1,0) and n is even or (x,y,z) = (1,0,−1) and n is odd then by (11) and (13) the terms with s = 2t
and s = 2t +1 cancel, giving the result in these cases. The proof is completed by the next lemma which
proves the cases (x,y,z) = (0,1,0) and (x,y,z) = (0,0,1). �

Lemma A.5. We have
n

∑
l=0

l even

λ (n− l,n)B(l)pl =

{
A(n) if n is even;(

1− 1
pn+1

)
A(n) if n is odd,

and
n

∑
l=0

l odd

λ (n− l,n)B(l)pl+1 =

{ (
1− 1

pn

)
A(n) if n is even;

A(n) if n is odd.
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Proof. As before we let πn = ∏
n
i=1(1− p−i) and β2n = ∏

n
i=1(1− p−2i). If n = 2k or 2k+1 then

n

∑
l=0

l even

λ (n− l,n)B(l)pl =
2k

∑
l=0

l even

πn

p(
l+1

2 )πlβ2k−l

· πl

pl/2β 2
l
· pl

=
πn

β 2
2k

2k

∑
l=0

l even

β 2
2k

pl2/2β2k−lβ
2
l

=
πn

β 2
2k

k

∑
t=0

β 2
2k

p2(k−t)2
β2tβ

2
2(k−t)

.

The last sum here is 1, as is seen by taking (m,n) = (k,k) in Lemma A.3 and replacing p by p2. (Since
Lemma A.3 is an identity that holds for all primes, and there are infinitely many primes, we may regard
it as an identity of rational functions.) This leaves us with πn/β 2

2k which, upon splitting into the cases n
even and n odd, agrees with the answer in the statement of the lemma.

If n = 2k+1 or 2k+2 then
n

∑
l=0

l odd

λ (n− l,n)B(l)pl+1 =
2k+1

∑
l=1

l odd

πn

p(
l+1

2 )πlβ2k+1−l

· πl

p(l+1)/2βl−1βl+1
· pl+1

=
πn

β2kβ2k+2

2k+1

∑
l=1

l odd

β2kβ2k+2

p(l2−1)/2β2k+1−lβl−1βl+1

=
πn

β2kβ2k+2

k

∑
t=0

β2kβ2k+2

p2(k+1−t)(k−t)β2tβ2(k−t)β2(k+1−t)
.

The last sum here is 1, as is seen by taking (m,n) = (k,k+1) in Lemma A.3 and replacing p by p2.
This leaves us with πn/(β2kβ2k+2) which, upon splitting into the cases n even and n odd, agrees with
the answer in the statement of the lemma. �

Lemma A.6. Let πi(l,m,n) be as defined in Section 4.
(i) For i,m ∈ {0,1,2} and n> i we have

πi(l,m,n) =
1
2

(
1+δm1 +

(i−1)(m−1)
ps/2

)
λ (s,n− i)

where s = 2l +m− i and δm1 is the Kronecker delta.
(ii) Suppose that f (i, j,n) = ∑

2
u=0( j−1)u fu(i,n− i− j). Then for i, j ∈ {0,1,2} and n′ = n− i−

j > 0 we have

∑
l>0

2

∑
m=0

πi(l,m,n− j) f ( j,m,n−2l) =
n′

∑
s=0

λ (s,n′) f0( j,n′− s)

+(i−1)
n′

∑
s=0

s even

λ (s,n′)p−s/2 f1( j,n′− s)+
n′

∑
s=0

s+i even

λ (s,n′) f2( j,n′− s).
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Proof. (i) This follows from the formulae for the πi(l,m,n) in Section 4. Notice that the term involving
ps/2 only contributes when i and m are both even, in which case s/2 is an integer.
(ii) Replacing l by (s+ i−m)/2 and using (i) the left hand side becomes

n′

∑
s=0

s+i even

(
1
2

(
1− i−1

ps/2

)
λ (s,n′) f ( j,0,n− i− s)

+
1
2

(
1+

i−1
ps/2

)
λ (s,n′) f ( j,2,n+2− i− s)

)
+

n′

∑
s=0

s+i odd

λ (s,n′) f ( j,1,n+1− i− s).

Writing f in terms of f0, f1, f2 this becomes

n′

∑
s=0

s+i even

(
1
2

(
1− i−1

ps/2

)
λ (s,n′)

[
f0( j,n′− s)− f1( j,n′− s)+ f2( j,n′− s)

]
+

1
2

(
1+

i−1
ps/2

)
λ (s,n′)

[
f0( j,n′− s)+ f1( j,n′− s)+ f2( j,n′− s)

])
+

n′

∑
s=0

s+i odd

λ (s,n′) f0( j,n′− s).

This simplifies to the expression in the statement of the lemma. Notice that the sum involving f1 only
contributes for i ∈ {0,2} and so the condition “s+ i even” simplifies to “s even”. �

The functions φ(i, j,n) and ψ(i, j,n) were defined in Definition 5.5. The aim of this appendix is to
prove Proposition 5.6 which for convenience we now restate.

Proposition A.7. Let i, j ∈ {0,1,2} and n> i+ j. Then

(14) φ(i, j,n) = ∑
l>0

2

∑
m=0

πi(l,m,n− j)φ( j,m,n−2l),

and if n is even then

(15) ψ(i, j,n) = ∑
l>0

2

∑
m=0

πi(l,m,n− j)ψ( j,m,n−2l).

The condition n> i+ j ensures that πi(l,m,n− j) is defined. It can only be non-zero if 2l+m6 n− j,
equivalently n−2l > j+m, in which case φ( j,m,n−2l) and ψ( j,m,n−2l) are defined.

Proof. We have φ(i, j,n) = ( j−1)A(n− i− j)+(i−1)B(n− i− j) where A and B were defined in (12).
It follows that φ(i, j,n) = ∑

2
u=0( j−1)uφu(i,n− i− j) where

φ0(i,n) = (i−1)B(n), φ1(i,n) = A(n), φ2(i,n) = 0.
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By Lemma A.6(ii) the right hand side of (14) is

( j−1)
n′

∑
s=0

λ (s,n′)B(n′− s)+(i−1)
n′

∑
s=0

s even

λ (s,n′)p−s/2A(n′− s)

where n′ = n− i− j. By Lemma A.4 the first sum is A(n′) and the second sum is B(n′). This gives
( j−1)A(n′)+(i−1)B(n′) = φ(i, j,n), which is the left hand side of (14) as required.

We have ψ(i, j,n) = ∑
2
u=0( j−1)uψu(i,n− i− j) where

ψ0(i,n) =
p2d+1− pδi1

(p+1)(p2d+1−1)
, ψ1(i,n) =

(i−1)pd(p2−1)
(p+1)(p2d+1−1)

, ψ2(i,n) =
p2d+1(p−1)

(p+1)(p2d+1−1)
,

and d = bn+1
2 c.

Now suppose that n is even. If j ∈ {0,2} then by Lemma A.6(ii) the right hand side of (15) is

1
p+1

 n′

∑
s=0

n′−s even

λ (s,n′)
x− ps

pn′+1− ps +
n′

∑
s=0

n′−s odd

λ (s,n′)


where n′ = n− i− j and x = pn′+2 +(i− 1)( j− 1)pn′/2(p2− 1). By Lemma A.2 this is equal to
(x−1)/((p+1)(pn′+1−1)) if i ∈ {0,2} and p/(p+1) if i = 1. This is equal to ψ(i, j,n) as required.

If j = 1 then by Lemma A.6(ii) the right hand side of (15) is

p
p+1

 n′

∑
s=0

n′−s even

λ (s,n′)
pn′− ps

pn′+1− ps +
n′

∑
s=0

n′−s odd

λ (s,n′)

 .

By Lemma A.2 this is equal to (pn′+1− p)/((p+1)(pn′+1−1)) if i = 1 and 1/(p+1) if i ∈ {0,2}.
This is equal to ψ(i, j,n) as required. �
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