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Abstract. A permutation graph is a graph that can be derived from a per-

mutation, where the vertices correspond to letters of the permutation, and the
edges represent pairs of letters whose order has been reversed by the permuta-

tion. We provide a construction for every 3-regular permutation graph, and we

prove that there are infinitely many connected r-regular permutation graphs
for r ≥ 3 as well. Finally, we enumerate all 3-regular permutation graphs on

n vertices.

1. Introduction

The graphs considered here are finite and simple. A graph on n vertices is a
permutation graph if there is a labeling v1, v2, . . . , vn of the vertices, and a permu-
tation π = [π(1), π(2), . . . , π(n)], such that vi and vj are adjacent in G if and only
if i < j and π(i) > π(j). In this case, the ordered pair (π(i), π(j)) is said to be an
inversion of π. This definition of permutation graphs was given in 1971 by Pneuli
et al. [13]. For example, the permutation π = [3, 1, 4, 2, 5] has precisely three in-
versions {(3, 1), (3, 2), (4, 2)}, and in Figure 1, the permutation graph of π and the
corresponding labeling is given. We note that this is different from the “generalized
prisms” [17] notion of permutation graphs given by Chartrand and Harary [3].
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Figure 1. A permutation graph corresponding to π = [3, 1, 4, 2, 5].

Permutation graphs have received a considerable amount of attention in the
literature since their introduction (see, for example, [8, 14, 15]). Many algorithmic
problems have efficient solutions on permutation graphs. For example, it was shown
in [2] that the longest path problem (which is NP-complete on general graphs) can
be solved in linear time on permutation graphs.

There has been interest in enumerating various types of permutation graphs.
For instance, in [10], Koh and Ree gave a recurrence relation for the number of
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connected permutation graphs. In [1], the number of permutation trees on n vertices
was shown to be 2n− 2 for n ≥ 2.

A graph is called r-regular if the degree of the each vertex of the graph is equal
to r . It is easy to see that the only connected 2-regular permutation graphs are
C3 and C4 [9], as it is well known that permutation graphs cannot have induced
cycles of length five or greater. In this direction, we consider r-regular permutation
graphs with r > 2. We show that the family is infinite for each r > 2 in Section 3.

Theorem 1.1. For every r ≥ 3, there are infinitely many connected r-regular
permutation graphs.

We give a complete characterization of 3-regular permutation graphs in Section 4.
This will be given in terms of the construction described at the beginning of the
section.

An interesting corollary of our construction is that, with the exception of K3,3,
all 3-regular permutation graphs are planar. The family of permutation graphs is
closed under induced subgraphs (see, for example, [4]), but a description in terms of
minors, as planarity results are normally stated, is not possible since permutation
graphs are not closed under subgraphs.

Corollary 1.2. Every 3-regular permutation graph except K3,3 is planar.

Finally, we use the characterization of 3-regular permutation graphs to enumer-
ate them with a generating function.

Theorem 1.3. Let a(n) be the number of 3-regular permutation graphs on n ver-
tices, and let A(x) be the function

1

2

( 1

1− x2 − x3
+

1 + x2 + x3

1− x4 − x6
)
.

(i) If n ∈ {4, 6}, then a(n) = 1;
(ii) If m = n−10

2 is a positive integer, then a(n) is given by the coefficient of xm

in the expansion of A(x);
(iii) Otherwise a(n) = 0.

Proofs of Corollary 1.2 and Theorem 1.3 can be found in Sections 4 and 5,
respectively.

2. preliminaries

If G is a permutation graph with corresponding permutation π, we say that π is
a realizer of G. When discussing a realizer and its graph, we will sometimes refer
to a vertex in the graph and an entry in the permutation with the same label. It is
well known (for example, in [13]) that G is a permutation graph if and only if its
complement G is also a permutation graph.

There are many known characterizations of permutation graphs. Recent charac-
terizations include one by Gervacio et al. [7] in terms of cohesive vertex-set orders,
and one by Limouzy [11] in terms of Seidel minors. Here we rely on the 1967 charac-
terization by Gallai [6] in terms of forbidden induced subgraphs [12]; namely, since
the class of permutation graphs is the intersection of the classes of comparability
and cocomparability graphs, it can be completely characterized by a long list of
forbidden induced subgraphs given in [5]. All cycle graphs on five or more vertices
are forbidden induced subgraphs. We will refer to these as large holes. Table 1
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3-REGULAR PERMUTATION GRAPHS 3

illustrates all other forbidden induced subgraphs with maximum degree 3 or less.
Although there are forbidden induced subgraphs with larger maximum degree, we
will not need them here, as a graph can only be an induced subgraph of a 3-regular
graph if its maximum degree does not exceed 3.

Table 1. The forbidden induced subgraphs for permutation
graphs that have ∆ ≤ 3 and that are not large holes.

F1 F2 F3

F4
F5 F6

Throughout this paper, we use Ki and Ii to denote the complete graph on i
vertices and the empty graph on i vertices, respectively. We also use ⊕ to denote
graph disjoint union, and 2 to denote a Cartesian product of graphs. A cycle of
length 3 is referred to as a triangle, and a cycle of length 4 is referred to as a square,
regardless of whether or not the cycle is induced.

Let G be a graph of order n with vertices v1, v2, . . . , vn. When we have n
graphs H1, H2, . . . ,Hn, we define the composition of H1, H2, . . . ,Hn into G, de-
noted G[H1, H2, . . . ,Hn], as the graph which is obtained from G by replacing
the vertex vi with the graph Hi. More precisely, the vertex set of the graph
G[H1, H2, . . . ,Hn] is the disjoint union of the vertex sets of every Hi, and uv is
an edge of G[H1, H2, . . . ,Hn] if and only if either uv ∈ E(Hi) for some i, or there
are distinct indices i and j such that u ∈ V (Hi), v ∈ V (Hj) and vivj ∈ E(G). If
each graph Hi is a complete graph or empty graph then G[H1, H2, . . . ,Hn] is called
a blow-up of G, and we say that vertex vi is blown up into Hi, or replaced with Hi.
Notice that G = G[H1, H2, . . . ,Hn], where every Hi is isomorphic to I1. We call
this the trivial blow-up of G. We will use blow-up to mean non-trivial blow-up for
the rest of this paper, and we will use the notation G∗ to represent a blow-up of a
graph G.

3. Infinitely many r-regular permutation graphs for r ≥ 3

We will make use of the following lemma to prove that there are infinitely many
connected r-regular permutation graphs for every r ≥ 3.

Lemma 3.1. [7, Theorem 3.3] Let G be a graph of order n, and let H1, H2, . . . , Hn

be arbitrary graphs. Then G∗ = G[H1, H2, . . . ,Hn] is a permutation graph if and
only if G and each of H1, H2, . . . , Hn are permutation graphs.

Proof of Theorem 1.1. Let r ≥ 3. For every n ≥ 0, we construct a connected r-
regular permutation graph Gn of order 2nr + r + 1 by taking a blow-up of a path.
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Let m = 4n+ 2, and take a path graph Pm with vertices v1, v2, . . . , vm in standard
order. Note that Pm is a permutation graph because it is not a cycle, its maximum
degree is 2, and it does not have an induced subgraph from Table 1. Replace the
first vertex v1 with K2 and the last vertex vm with Kr−1. For other vertices vi
with i ≡ 2 (mod 4), replace them with Ir−1; with i ≡ 3 (mod 4), replace vi with
Ir−2; with i ≡ 0 (mod 4), replace vi with I1; and for i ≡ 1 (mod 4), replace vi
with I2. The resulting graph Gn is r-regular and connected since it is the blow-up
of a path. It is also a permutation graph by Lemma 3.1, since complete graphs
and empty graphs are permutation graphs. Hence, we obtain an infinite list of
connected r-regular permutation graphs

G0 = P2[K2,Kr−1]

G1 = P6[K2, Ir−1, Ir−2, I1, I2,Kr−1]

G2 = P10[K2, Ir−1, Ir−2, I1, I2, Ir−1, Ir−2, I1, I2,Kr−1]

G3 = P14[K2, Ir−1, Ir−2, I1, I2, Ir−1, Ir−2, I1, I2, Ir−1, Ir−2, I1, I2,Kr−1]

...

and the result follows. �

The following corollary of Lemma 3.1 is immediate:

Corollary 3.2. If G∗ and G are permutation graphs, and G∗ is a blow-up of the
form G[H1, H2, . . . ,Hn], then any realizer of G can be used to give a realizer of G∗.

While we omit the proof, we give an illustrative example. Suppose that G = P2,
and let H1 = K3 and H2 = I3. Then G is realized by π = [2, 1]. In G∗, all of the
vertices corresponding to H1 must be adjacent to all of the vertices corresponding
to H2, and therefore the three entries of the realizer π∗ of G∗ corresponding to
H1 must be greater than the three entries corresponding to H2. Thus we have
π∗ = [6, 5, 4, 1, 2, 3], noting that the vertices corresponding to {6, 5, 4} induce K3

and that the vertices corresponding to {1, 2, 3} induce I3.

4. Characterization of 3-regular permutation graphs

We now show that all 3-regular permutation graphs are isomorphic to K4, K3,3,
or a what we will call a boxcar graph. We will first define boxcar graphs and then
show that any 3-regular graph that is a blow-up of a path is isomporphic to one of
these three types of graphs (Lemma 4.1). We will then show that every connected
3-regular graph is a blow-up of a path (Theorem 4.5). These two results together
characterize all 3-regular permutation graphs (see Corollary 4.6).

Table 2 shows the induced subgraphs used to construct boxcar graphs. A boxcar
graph is a graph that can be constructed by the following process.

(A) Let S1 = G1 from Table 2. Then go to (B).
(B) Choose S2 to be one of {G2, G3, G4} from Table 2. Then go to (C).
(C) Let G be the graph obtained by identifying the rightmost vertex of S1 with

the leftmost vertex of S2. If S2 = G4, go to (D); otherwise, set S1 = G and go
to (B).

(D) Stop. G is a boxcar graph.
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3-REGULAR PERMUTATION GRAPHS 5

Table 2. The induced subgraphs used in the construction of box-
car graphs.

G1 G2 G3 G4

Lemma 4.1. A 3-regular graph that is a blow-up of a path is isomorphic to K4,
K3,3, or a boxcar graph.

Proof. Let G be a path graph Pn with vertices (v1, v2, . . . , vn) in standard order,
and consider a blow-up G∗ = G[H1, H2, . . . ,Hn]. There are four possibilities for
the graph H1.

Suppose the first vertex v1 is blown up into Kk or Ik, with k ≥ 4. If v2 exists,
then the vertices resulting from blowing up v2 will have degree at least 4. Thus to
obtain a 3-regular graph, v1 must be the only vertex of G, and it must be blown
up into K4.

Now suppose H1
∼= K3. Then v2 must be blown up into a graph of order 1

because the vertices from K3 require one more neighbor to have degree 3. Since
all the vertices have degree 3, we see that G must be P2, and it blows up into
P2[K3,K1] ∼= K4.

Suppose H1
∼= Ik, where k ≤ 3. Since the vertices of H1 require three neighbors,

v2 must be blown up into a graph of order 3. If H2
∼= K3, then k = 1 and we have

K4 as in the case above. If H2
∼= I3, then the vertices of H2 have k neighbors on

left and they requre 3− k neighbors on the right. In order to not exceed degree 3,
we must have H3

∼= Ik−3. Thus we obtain P2[I3, I3], P3[I1, I3, I2], or P3[I2, I3, I1],
all of which are isomorphic to K3,3.

The only remaining cases are when H1 is isomorphic to K2. If H1
∼= K2, then

H2 must have order 2. If H2
∼= K2, then we have G∗ = P2[K2,K2] ∼= K4. If

H2
∼= I2, then H3 must have order 1, so H3

∼= K1 and we see that G∗ must begin
with G1 from Table 2. Then H4

∼= K1. We will use the following sublemma in the
remaining cases for the construction of G∗.

4.1.1. Let G∗k be the graph G∗ restricted to the vertices obtained from blowing up
(v1, v2, . . . , vk) for k ≤ n. If G∗k is 3-regular except for a leaf, then the vertices
(vk−1, vk, vk+1, vk+2) or (vk−1, vk, vk+1, vk+2, vk+3) of G must blow up to induce
one of {G2, G3, G4} in G∗.

Assume vk blows up to be a leaf in G∗. Then Hk−1 ∼= Hk
∼= K1, and Hk+1 must

have order 2. If Hk+1
∼= K2, then Hk+2 must have order 1, and we have G2 as

an induced subgraph on ∪k+2
i=k−1V (Hi). If instead Hk+1

∼= I2, then we must have
either Hk+2

∼= I2 and Hk+3
∼= K1, giving us G3, or Hk+2

∼= K2, giving us G4. Thus
4.1.1 holds.

By repeated application of 4.1.1, we see that G∗ consists of a series composition
of G1 followed by a sequence of graphs isomorphic to G2 or G3 and terminating in
G4. �
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The following lemmas will be useful in our characterization of 3-regular permuta-
tion graphs. We say that vertices v1 and v2 are twins if N(v1)−{v2} = N(v2)−{v1},
where N(vi) is the set of vertices that neighbor vi.

A subsequence πi1 , . . . , πik of a permutation π is called consecutive if

πij+1
= πij + 1 or πij+1

= πij − 1

and it is called contiguous if
ij+1 = ij + 1

for all j = 1, . . . , k − 1.
The following lemma appears to be well known in the field of modular decom-

positions. We include its proof for completeness.

Lemma 4.2. Every permutation graph G has a realizer π where, for every pair
of twins u and v in G, there is a contiguous, consecutive increasing or decreasing
subsequence s of π that contains u and v. Moreover, u and v are adjacent in G if
and only if s is decreasing.

Proof. Let π be a realizer of a permutation graph G, and define Gπ to be a graph
isomorphic to G with vertex labels corresponding to π. Let u and v be twins in
Gπ with u < v. We will first assume u and v are nonadjacent. If u and v are not
part of a contiguous, consecutive increasing subsequence of π, then we can obtain
another realizer π′ of G by removing v from π, shifting all of the entries greater
than u and less than v up by 1, and inserting u + 1 to the immediate right of u.
Clearly π and π′ realize isomorphic graphs, and if a and b are entries of π that
belong to a contiguous, consecutive increasing or decreasing subsequence of π, then
this transformation does not separate them.

If we assume instead that u and v are adjacent in Gπ, then we apply a similar
transformation, ultimately placing u+ 1 to the left of u instead of the right. This
results in u and u+1 being part of a contiguous, consecutive decreasing subsequence,
instead of increasing. �

Lemma 4.3. If G∗ is a permutation graph with maximum degree d, and if G is a
permutation graph of minimum order such that G∗ is a blow-up of G, then G has
no degree d twins.

Proof. Let G∗ be a permutation graph with maximum degree d, and let G be a
permutation graph of minimum order such that G∗ is a blow-up of G. Recall that
from Corollary 3.2, any realizer of G∗ can be used to obtain a realizer of G.

By contradiction, assume u and v are degree d twins of G. By Lemma 4.2, G
has a realizer π where u and v are adjacent and consecutive. Let {u1, u2, . . . , uj}
and {v1, v2, . . . , vk} be the entries of a realizer π∗ for G∗ obtained by blowing up u
and v, respectively. Then u must be blown up into Ij and v must be blown up into
Ik, because if they were blown up into Kj or Kk for k ≥ 2, then we would have
vertices with degree exceeding d. Moreover, unless j = k = 1, the vertices u and v
must be nonadjacent. In the case that j = k = 1, u1 and v1 are twins in G∗, and
they are contiguous and consecutive in π∗, which means that there is a graph such
that {u, v} is blown up from a single vertex, which contradicts the assumption that
G has minimum order. If j and k are not both 1, then u1, u2, . . . , uj , v1, v2, . . . , vk
are all twins in G∗. Therefore, they are part of a contiguous, consecutive increasing
sequence of π∗, so they can also be blown up from a single vertex which, leads to
a contradiction in this case as well. �
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3-REGULAR PERMUTATION GRAPHS 7

Recall that a ladder is a graph P22Pn, with 2n vertices u1, . . . , un, v1, . . . , vn
such that each of {u1, . . . , un} and {v1, . . . , vn} induces a Pn, and ui is adjacent to
vi for each i = 1, . . . , n. Each edge uivi is called a rung of the ladder.

Lemma 4.4. A 3-regular permutation graph G cannot have a ladder with four or
more rungs as a subgraph.

Proof. Suppose G has a ladder as a subgraph, and let ui and vi be adjacent vertices
on the ith rung of a maximal ladder for i in {1, 2, . . . , k}. We will prove the lemma
by considering three propositions.

(1) In a ladder with three or more rungs, v1 and vk cannot be adjacent in G;
by symmetry, nor can u1 or uk.

(2) In a ladder with four or more rungs, v1 and uk cannot be adjacent in G;
by symmetry, nor can u1 and vk.

(3) There cannot be a ladder with three or more rungs without an edge between
the first and last rung of the ladder.

To prove proposition (1), suppose that k = 3. By contradiction, assume v1
and v3 are adjacent, and suppose first that u1 and u3 are not. Then we have C5

using vertices {v1, u1, u2, u3, v3}. However, if u1 and u3 are also adjacent, then
we have F6. Next suppose k = 4. If (v1, v4) is an edge and (u1, u4) is not, then
{v1, u1, u3, u4, v4} is C5. If (u1, u4) is also an edge, then the graph is isomorphic
to a cube (C42K2), which has C6 as an induced subgraph by deleting a pair of
opposite vertices. Finally, suppose k ≥ 5. Then {v1, v2, . . . , vk} is a large hole, i.e.
a cycle graph with five or more vertices. In each case, we have demonstrated a
forbidden induced subgraph.

Similarly, for proposition (2), if v1 and uk are adjacent, we have a large hole
using {v1, v2, u2, u3, . . . , uk}.

Finally, for proposition (3), suppose v1 and u1 have a common neighbor v. Then
v cannot have vk or uk as neighbors, or else we have a large hole. So v has another
neighbor v′, but this gives us F5 using {v′, v, v1, v2, u1, u2}. Suppose instead that
the third neighbors of v1 and u1 are v and u, respectively, with v 6= u. Then we
have F4 using {v, v1, v2, u, u1, u2, u3}. �

We now prove that the graphs from Lemma 4.1 are the only 3-regular permuta-
tion graphs.

Theorem 4.5. Every connected 3-regular permutation graph is the blow-up of a
path.

Proof. Suppose G∗ is a 3-regular permutation graph that is not a blow-up of a
path. Let G be a permutation graph of minimum order such that G∗ is a blow-up
of G. Then G is either a cycle or G has a degree 3 vertex.

If G is a cycle, then G must be C3 or C4, because larger cycles are forbidden
as induced subgraphs. In C3, since all the vertices have degree 2 and they are all
adjacent to each other, only one vertex can be blown up, or else we would have a
vertex with degree exceeding 3. Moreover, the vertex must be blown up into K2 in
order for every vertex to have degree 3. The resulting graph is K4. This contradicts
the assumption that C3 is a permutation graph G of minimum order such that G∗

is a blow-up of G, as it is shown in Lemma 4.1 that K4 is a blow-up of P2. In C4,
since every vertex has degree 2, at most one of the neighbors of every vertex can be
blown up. If a vertex v is blown up into K2, then everything in the resulting graph
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will have degree 3 expect for the vertex that was opposite of v, and it is impossible
to use further blow-ups to obtain a 3-regular graph. Thus, the only possibility that
gives a 3-regular graph is blowing up each of two adjacent vertices into I2. This
gives a graph isomorphic to K3,3; a contradiction, as Lemma 4.1 shows that K3,3

is also a blow-up of P2, and therefore G does not have minimum order as assumed.
Suppose instead that G has a vertex v of degree 3. Note that G has maximum

degree 3. We proceed by analyzing the possible induced subgraphs H containing v
and its neighborhood. In some cases, H has degree-3 twins, which by Lemma 4.3
contradicts the assumption that G is a minimal-order graph that blows up into
G∗. In some of the remaining cases, H can be blown up (perhaps trivially) into an
induced subgraph of a boxcar graph. If H cannot be blown up this way, then we
give one of two reasons why. Either H is not an induced subgraph of a 3-regular
permutation graph and cannot be blown up without creating a vertex of degree 4
or greater, or H has a large hole or forbidden induced subgraph from Table 1.

Let the neighbors of v, N(v), be {v1, v2, v3}. We will consider the following cases
based upon the possible subgraphs induced by N(v):

(1) P3,
(2) K3,
(3) I3, and
(4) K2 ⊕ I1.

In cases (1) and (2), there are twin vertices of degree 3, contradicting Lemma 4.3.
In case (3), N(v) induces I3, that is, none of the vertices in N(v) are adjacent.

Observe that if v is adjacent to a leaf in G, then v must be blown up into I3 in
order to obtain a 3-regular graph. This implies that all the neighbors of v in G
must be leaves or else we would have a vertex of degree exceeding 3 upon blowing
up v to I3. The resulting graph of this blow-up is K3,3. Thus we may assume that
all vertices adjacent to a degree 3 vertex have degree at least 2.

We will proceed by considering the number of squares that contain v as a vertex.
If v is not involved in any squares, then the subgraph induced by N(v) and its
neighbors has either F2 or a large hole as an induced subgraph. Suppose instead
that {v, v2, v3} are used in a square. Let v4 be the remaining vertex of the square.
In the case that v4 = v1, then we have an induced subgraph of G2 from Table 2; in
particular, it is the blow-up of a path. In the remaining case where v4 is a distinct
vertex, if each one of {v2, v3, v4} has degree 2, then v4 can be blown up into K2 to
realize G4 from Table 2. Similarly, if v2 and v3 have degree 2 and v4 has degree 3,
then v4 can be blown up into I2 to realize G3. If, however, only one of {v2, v3} has
degree 3, or they both have degree 3 and v4 has degree 2, then we cannot perform
any more blow-ups without creating a vertex with degree exceeding 3. If all of
{v2, v3, v4} have degree 3, then depending the configuration of the remaining edges,
we either have F4, F5, or a large hole as an induced subgraph.

Suppose v is used in two squares. One possibility is for two neighbors of v to
be involved in both squares; say {v, v2, v3} are involved in two distinct squares.
This implies that v2 and v3 are degree 3 twins. Another possibility is for the two
squares to share a single edge, creating a ladder subgraph with at least three rungs.
Observe that if the largest ladder subgraph using v has three rungs, and there is an
edge between two opposite vertices in a cycle around the ladder, then v is involved
in at least three squares. The remaining possibilities for a ladder on three or more
rungs using v contradict cases (1), (2), and (3) from Lemma 4.4.
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3-REGULAR PERMUTATION GRAPHS 9

The final possibilities when N(v) induces I3 are for v to be involved in three or
more squares. If v is in exactly 3 squares, either there is an induced 6-cycle around
v, or the vertices at distance 2 or less from v induce G3 as a subgraph. If v is used
in more than three squares, then G ∼= K3,3.

In case (4), N(v) induces K2 ⊕ I1. Suppose that {v, v2, v3} forms a triangle. If
one of {v2, v3} has degree 2, then the graph cannot be blown up to be 3-regular. If
they both have degree 3 and are not in a square with v1, then either they have a
common neighbor other than v, giving us G2 from Table 2, or they have different
neighbors, giving us F3. Suppose that {v, v2, v3} is a triangle and {v, v1, v2, v4} is
a square for some new vertex v4. If v3 has degree 2, then G cannot be blown up
into a 3-regular graph. If v3 is adjacent to v4, then this is isomorphic to G1. If v3
is adjacent to a new vertex v5, then we have F5 as an induced subgraph.

Finally, let {v, v2, v3} be a triangle, and suppose there are squares {v, v1, v2, v4}
and {v, v1, v3, v5}. If v4 = v5, then v4 and v are twins; a contradiction. Suppose
v4 6= v5. If v4 and v5 are nonadjacent, then {v1, v2, v3, v4, v5} is a large hole, and if
they are adjacent, then our induced subgraph is isomorphic to F6. �

This theorem and Lemma 4.1 immediately imply the following corollary.

Corollary 4.6. Every 3-regular permutation graph is isomorphic to K4, K3,3, or
a boxcar graph.

Note that this also implies Corollary 1.2, since every boxcar graph has a planar
embedding.

Corollary 4.7. Every 3-regular permutation graph has a Hamiltonian path.

Proof. Clearly K4 and K3,3 are Hamiltonian. Observe that every graph in the set
{G1, G2, G3, G4} from Table 2 also has a Hamiltonian path. When we identify
vertices in order to obtain a boxcar graph, we find that Hamiltonian paths of each
of the graphs {G1, G2, G3, G4} connected in sequence give a Hamiltonian path for
the boxcar graph. �

5. Enumeration of connected 3-regular permutation graphs

Using the characterization given in Corollary 4.6 and a generating function to
enumerate 3-regular permutation graphs, we prove Theorem 1.3. In what fol-
lows, we will use sequences for m (where m is a positive integer) to mean equiv-
alence classes of compositions of m into parts of size 2 and 3, where a compo-
sition and its reverse are considered to be the same. For example, the inte-
ger 11 has five equivalence classes and their representatives are γ1 = (2, 3, 3, 3),
γ2 = (3, 2, 3, 3), γ3 = (3, 2, 2, 2, 2), γ4 = (2, 3, 2, 2, 2), γ5 = (2, 2, 3, 2, 2). The se-
quence γ′1 = (3, 3, 3, 2) belongs to the equivalence class of γ1, as γ1 and γ′1 are
reverses of each other.

Before we present the generating function, we first show that sequences for m
are in 1− 1 correspondence with boxcar graphs.

Proposition 5.1. Let m = n−10
2 . For even n, the number of boxcar graphs on n

vertices is equal to the number of sequences for m.

Proof. We can think of a boxcar graph as starting with G1, followed by a sequence
of G2 and G3 subgraphs, and ending with G4 (see Table 2). Notice that G1 and
G4 contribute five vertices each to the boxcar graph, while each copy of G2 and G3
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contribute four and six, respectively, after identification of vertices. Thus the iso-
morphism class of the graph is determined by the sequence of G2 and G3 subgraphs
in the middle. To count boxcar graphs, we wish to find the integer compositions of
n− 10 into parts of size 4 and 6, which is equivalent to the integer compositions of
n−10

2 into parts of size 2 and 3. Moreover, since the start and end of the sequence
of subgraphs in a boxcar graph are not distinguished, we count a composition and
its reverse as being the same. �

Techniques used for some omitted computations below may be found in [16].

Proposition 5.2. The generating function for sequences for m is

A(x) =
1

2

( 1

1− x2 − x3
+

1 + x2 + x3

1− x4 − x6
)
.

Proof. Since we want to count a composition and its reverse as the same, we may
count all compositions that are symmetric, and half of all the non-symmetric ones.
This is equivalent to counting half of all compositions, and adding again half of all
the symmetric ones.

Let tn denote the number of compositions of n into parts of size 2 and 3. Note
that these compositions of n are in bijection with the compositions of n−2 and n−3
into parts of size 2 and 3, because we can obtain such a composition of n−2 or n−3
by taking such a composition of n and removing the first part, and this operation
has a well-defined inverse. Thus tn = tn−2 + tn−3. Deriving a generating function
T (x) from this recursion relation with t0 = t2 = 1 and t1 = 0 gives T (x) = 1

1−x2−x3 .
Observe that a symmetric composition may have an even number of parts, or

it may have an odd number of parts with a 2 or 3 in the middle. Moreover, each
part not in the middle must have an identical part on the opposite end of the
composition. Therefore the symmetric compositions of n into parts of size 2 and 3
are in bijection with the compositions of n − k into parts of size 4 and 6 for all k
in {0, 2, 3}.

If we let un be the number of compositions of n into parts of size 4 and 6,
we obtain the recurrence relation un = un−4 + un−6. Taking u0 = u4 = 1 and
u1 = u2 = u3 = u5 = 0, we can derive the generating function U(x) = 1

1−x4−x6 .

Then the generating function for the number of symmetric compositions is V (x) =

U(x) + x2U(x) + x3U(x) = 1+x2+x3

1−x4−x6 . Thus we have A(x) = 1
2 (T (x) + V (x)). �

The above two propositions are used to complete the proof of Theorem 1.3.

Theorem 1.3. Let a(n) be the number of 3-regular permutation graphs on n
vertices, and let A(x) be the function

1

2

( 1

1− x2 − x3
+

1 + x2 + x3

1− x4 − x6
)
.

(i) If n ∈ {4, 6}, then a(n) = 1;
(ii) If m = n−10

2 is a positive integer, then a(n) is given by the coefficient of xm

in the expansion of A(x);
(iii) Otherwise a(n) = 0.

Proof of Theorem 1.3. Corollary 4.6 tells us that the only 3-regular permutation
graphs that are not boxcar graphs are K4 and K3,3, which have 4 and 6 vertices,
respectively. By Proposition 5.1, the problem of counting boxcar graphs can be

2 May 2023 13:25:11 PDT
210518-Erey Version 2 - Submitted to Rocky Mountain J. Math.



3-REGULAR PERMUTATION GRAPHS 11

reduced to the problem of counting sequences for m, which is done in Proposi-
tion 5.2. �

6. Conclusion

We have proven that there are infinitely many r-regular permutation graphs
for r ≥ 3 and given a complete characterization of 3-regular permutation graphs
in terms of blow-ups of paths. While it is perhaps surprising that all 3-regular
permutation graphs are blow-ups of paths, this is not the case for all r-regular
graphs in general. In particular, Figure 2 is a counterexample with r = 4.

Figure 2. A 4-regular permutation graph that is not a blow-up
of a path (π = [5, 4, 7, 2, 1, 10, 3, 12, 11, 6, 9, 8]).

The graph from Figure 2 can be constructed by blowing up a 4-runged ladder.
More specifically, if G is the 4-runged ladder whose vertices are labeled as they ap-
pear in a Hamiltonian path starting and ending on a degree 2 vertex, then the graph
from Figure 2 is G[K2,K1,K1,K2,K2,K1,K1,K2]. Note that G is a permutation
graph with realizer [3, 5, 1, 7, 2, 8, 4, 6]. This observation, along with the lemma be-
low, indicates that the permutation graph from Figure 2 is not the blow-up of a
path.

Lemma 6.1. For each graph G, there is unique graph G′ of minimal order such
that G is a blow-up of G′.

Proof. Let P = (p1, p2, . . . , pm) be the partition of V (G) such that two vertices are
in the same part if and only if they are twins. We construct an m-vertex graph
G′, where distinct vertices vi, vj of V (G′) are adjacent if and only if the members
of pi and pj are adjacent in G. Then G is a blow-up of G′, obtained by replacing
each vertex vi with the vertices of pi. We know that G′ is minimal because if H is
a graph such that G is a blow-up of H, and u1 and u2 are vertices of G that arise
from the same vertex of H, then u1 and u2 must be twins. Moreover, G′ is unique
because P is unique. �

By taking complements of the graphs listed in Corollary 4.6 and then applying
Lemma 6.1, we find other counterexamples for r-regularity for certain even values
of r. Counterexamples to show that not every r-regular permutation graph is a
blow-up of a path for odd values of r > 4 are not known.
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