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1 Prologue

One of the first differentiation formulas beginning calculus students learn is

d

dx
xn = nxn−1.

A natural question is to ask whether there are any other sequences of polynomial functions An(x)
having derivative nAn−1(x). A little trial and error shows that the sequence of polynomials pn(x) =
xn + nxn−1 has this property. In fact, there are many families of polynomials that satisfy this
property. Just look at the famous Euler polynomials, the first few of which are

E0(x) = 1, E1(x) = x− 1/2, E2(x) = x2 − x, E3(x) = x3 − 3

2
x2 +

1

4
.

All Euler polynomials can be obtained by the (exponential) generating function

2exz/(ez + 1) =
∑
n>0

En(x)zn/n!

as described below.
One of the more significant sequences was introduced by Paul Appell [1] in 1880, who defined

polynomials Pn(x) of degree n that satisfy the relation:

dPn(x)

dx
= φ(n)Pn−1(x),

where φ(n) is a function of a non-negative integer n. Actually, such a sequence {Pn(x)}n>0 is
equivalent to the sequence {An(x)}n>0 of polynomials satisfying

dAn(x)

dx
= nAn−1(x) or

dnAn(x)

dxn
= n!A0(x). (1.1)

This follows by taking

An(x) =
1 · 2 · 3 · · ·n

φ(1) · φ(2) · · ·φ(n)
Pn(x) =

n!

Πn
i=1φ(i)

Pn(x).

Thus, we can assume that φ(n) = n.

1
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2 TERMINOLOGY 2

A sequence {An(x)}n>0, where each term An(x) is a polynomial of degree n, satisfying the differ-
ential equation (1.1), is called a sequence of Appell polynomials or simply an Appell sequence. Paul
Émile Appell (1855–1930), a French mathematician, astronomer and life-long friend of Henri Poincaré
(1854–1912), was a Rector of the University of Paris. He is known for his work in projective geome-
try, algebraic functions, differential equations, complex analysis, and mechanics. Appell polynomials
include many types [5, 13], the most famous of which are Euler and Bernoulli polynomials.

Sequences of Appell polynomials have been well studied because of their remarkable applications
in number theory and mathematical analysis. In 1935 Appell polynomials were extended by Sheffer
[11, 12] to a class of polynomials now bearing his name. A more general treatment is also given by
Luzon and Moron in [9]. Recently, Appell polynomials have been popularized in social media such
as Wikipedia and Encyclopedia Of Math (see [15] and [16]), but descriptions tend to be sketchy. In
addition to an historical context, our paper presents an introduction to this topic as Appell developed
it (including some of his notations), providing a showcase for this remarkable class of polynomials.

2 Terminology

We often refer to a sequence {An(x)}n>0 of polynomials simply as A. Integration of the differential
equation in (1.1) allows one to restore coefficients of the polynomial An(x) from the coefficients of the
polynomial of degree n−1 up to arbitrary constants. However, this process is cumbersome. Appell’s
brilliant idea was to seek the sequence of polynomials satisfying the relation (1.1) in the form of the
binomial convolution

An(x) = an +
n

1
an−1 x+

n(n− 1)

1 · 2
an−2 x

2 + · · ·+ n

1
a1 x

n−1 + a0 x
n

=
∑
k>0

nk

k!
ak x

n−k =
∑
k>0

(
n

k

)
ak x

n−k (n = 0, 1, 2, . . .), (2.1)

where a0, a1 , . . . , an are arbitrary numbers. Here nk = n(n−1) · · · (n−k+ 1) is kth falling factorial

and
(
n
k

)
= nk

k!
is the binomial coefficient, which is assumed to be zero for k > n. In general, binomial

convolution of two sequences α = {α0, α1, . . . , αn, . . .} = {αn}n>0 and β = {βk}k>0 is a sequence
denoted by

α ? β = β ?α with general term (α ? β)n =
n∑
k=0

(
n

k

)
αkβn−k =

n∑
j=0

(
n

n− j

)
αn−jβj.

Formula (2.1) can then be written concisely as

An(x) =
(
{ai} ? {xj}

)
n
, (2.2)

which is the n-th term in the binomial convolution of two sequences, namely the arbitrary sequence
of numbers {ai} and the sequence of monomials {xj}. It defines Appell polynomials because

A′n(x) =
∑
k

(
n

k

)
ak (n− k)xn−k−1 = n

∑
k

(
n− 1

k

)
ak x

n−1−k = nAn−1(x). (2.3)
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2 TERMINOLOGY 3

Thus, for any sequence of numbers {ak}k>0, there corresponds a unique sequence of Appell poly-
nomials (2.1), and vice versa. In particular, Ak(0) = ak, and by changing the index of summation
setting j = n− k, we have An(x) =

∑n
j=0

(
n
n−j

)
An−j(0)xj.

Paul Appell recognized that generating functions would be particularly fruitful in describing his
sequences. Recall that an arbitrary sequence of numbers {ak}k>0 is usually associated with two
generating functions:

a(z) =
∑
k>0

akz
k,

called the ordinary generating function, and

â(z) =
∑
k>0

ak
zk

k!
,

called the exponential generating function. Binomial convolution is useful in this context: computa-
tion shows that if b̂(z) =

∑
k>0 bk

zk

k!
, then

â(z) b̂(z) generates the sequence {ak} ? {bn}, (2.4)

that is, the series product â(z) b̂(z) generates the binomial convolution of their sequences of coeffi-
cients (see [6, 14]). Although convergence plays no role in the generating-function method, which
deals with formal sums, when convergence occurs and infinite sums are known, this additional in-
formation may be beneficial in actual calculations. It is often useful to have a closed form formula
for an infinite sum. An ordinary generating function converges only when the coefficients of the se-
quence grow no faster than polynomial growth. On the other hand, exponential generating functions
can converge for sequences with exponential growth. Therefore, calculus of exponential generating
functions is wider in scope than that of ordinary generating functions. That is why we use mainly
exponential generating functions below.

Generating functions are defined similarly for more general sequences. The next set of equations
presents an exponential generating function for the sequence {An(x)}n>0 of Appell polynomials and
reduces it to a convenient closed form:

FA(x, z) =
∑
n>0

An(x)
zn

n!
=
∑
n>0

n∑
k=0

(
n

k

)
ak x

n−k z
n

n!
=
∑
k>0

ak x
−k
∑
n>k

(
n

k

)
(xz)n

n!

=
∑
k>0

ak
x−k

k!

∑
n>k

(xz)n

(n− k)!
=
∑
k>0

ak
x−k

k!
(xz)k exz = exz â(z), (2.5)

where â(z) is the exponential generating function for the sequence {An}n>0 used to define An(x) in
Eq. (2.2). Thus the exponential generating function for any sequence of Appell polynomials contains a
factor exz and is in fact characterized by this property. Formula (2.5) shows that Appell polynomials
can be defined directly without any reference to Eq. (1.1); just multiply an arbitrary exponential

generating function of numbers,
∑

k>0 ak
zk

k!
, by exz and extract coefficients. In what follows, we refer

to FA(x, z) or more briefly FA as the generating function of Appell polynomials {An(x)}n>0 despite
that it is an exponential generating function.
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2 TERMINOLOGY 4

The importance of generating functions is based on the correspondence between operations on
sequences and their generating functions. In this paper, we are interested in relations between number
sequences and corresponding Appell polynomial sequences especially as they reflect operations on
generating functions. These sequences of numbers and polynomials have generating functions â(z)
and FA(x, z) = â(z)exz, respectively. Following Paul Appell, we will often refer to either of these as
generating the polynomial sequence and trust that the context will alleviate any confusion.

A knowledge of the generating function FA(x, z) for a sequence of Appell polynomials allows
one to determine the original sequence of numbers {an}n>0 from which Appell polynomials were
constructed, that is,

an = n! [zn]FA(x, z) e−xz,

where the notation [zn]b(z) stands for the nth coefficient from the Maclaurin series expansion of a
function b(z): [zn]

∑
k>0 bkz

k = bn. To illustrate (2.5), suppose we are given the Appell sequence

1, x, x2, . . . , xn, . . . .

Its (exponential) generating function is

FA(x, z) =
∑
n>0

xn

n!
zn = exz.

Therefore, â(z) is just a constant series, that is, â(z) = 1. This function generates the sequence
{an}n>0 = {1, 0, 0, . . .} of zeroes except for the first term. Likewise, the Appell sequence {xn +
nxn−1}n>1 corresponds to the sequence {1, 1, 0, 0, 0, . . .}, generated by the function â(z) = 1 + z;
the function â(z) = 1 + z + 2z2/2! corresponds to the sequence {1, 1, 2, 0, 0, . . .} and generates the
Appell sequence {xn + nxn−1 + n(n − 1)xn−2}n>2, and so on. Extending this idea, consider the

generating function â(z) =
∑

k>0 z
k = 1/(1 − z) and compare with â(z) =

∑
k>0 ak

zk

k!
. This yields

the number sequence {ak = k!}k>0 and the corresponding Appell polynomial sequence {An(x) =∑
k>0 n

k xn−k}n>0.
As another example, the Appell sequence {(x + r)n}n>0 corresponds to the sequence {rn}n>0,

generated by the function â(z) = erz (because â(z)exz = e(x+r)z). In this connection, we have the
sequence {Fn}n>0 of Fibonacci numbers that satisfy the recurrence Fn+2 = Fn+1 + Fn subject to the
initial conditions F0 = 0, F1 = 1. Its (exponential) generating function is known to be [6]

â(z) =
∑
n>1

zn

n!
Fn =

1√
5

[
eφz − e−z/φ

]
,

where φ = (1 +
√

5)/2 is the golden ratio. Multiplying the preceding by exz, we see that the Appell
polynomials for the sequence of Fibonacci numbers are

An(x) =
1√
5

[
(x+ φ)n −

(
x− φ−1

)n]
, n = 0, 1, 2, . . . .
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3 ALGEBRAIC OPERATIONS 5

3 Algebraic Operations

How are Appell polynomial sequences multiplied? For given generating functions â(z) =
∑

n>0 an
zn

n!

and b̂(z) =
∑

k>0 bk
zk

k!
of sequences A and B, respectively, the answer is found with the product

â(z) b̂(z), or more specifically, the function FAB(x, z) = â(z) b̂(z) exz. To this end, Paul Appell
replaced the term xn−k in An(x) =

∑
k>0

(
n
k

)
ak x

n−k by the polynomial Bn−k(x) for each k. The
resulting polynomials are written (AB)n(x) or An(B(x)). This new product sequence of polynomials,

(AB)0 , (AB)1 , . . . , (AB)n , . . . ,

which is denoted by AB, has the derivative property expressed by (1.1):

d

dx
An(B(x)) =

d

dx

∑
k>0

(
n

k

)
ak Bn−k(x) =

∑
k>0

(
n

k

)
ak

d

dx
Bn−k(x)

=
∑
k>0

(
n

k

)
ak (n− k)Bn−k−1(x) =

∑
k>0

n!

k! (n− k − 1)!
ak Bn−k−1(x)

= n
∑
k>0

(n− 1)!

k! (n− k − 1)!
ak Bn−k−1(x) = n

∑
k>0

(
n− 1

k

)
ak Bn−k−1(x)

= nAn−1(B(x)).

Since the Appell product is given by

(AB)n(x) =
∑
k>0

(
n

k

)
ak Bn−k(x),

the generating function FAB for the product sequence is obtained by multiplying the series

FB(x, z) = B0 +
z

1
B1(x) +

z2

1 · 2
B2(x) + · · ·+ zn

1 · 2 · · ·n
Bn(x) + · · · ,

by â(z) ; thus
FAB = â(z)FB(x, z).

Replacing FB(x, z) by b̂(z)exz, we have

FAB = â(z)b̂(z) exz. (3.1)

Thus the product of two Appell polynomial sequences is obtained from the product of their number-
sequence generating functions.

Switching the roles of A and B, we see that FAB = FBA because the polynomial sequences AB
and BA have the same generating function â(z) b̂(z) exz. Let us display the Appell polynomials
generated by Eq. (3.1):

AB = {An(0)} ? {Bk(x)} =⇒ (AB)n (x) =
n∑
k=0

(
n

n− k

)
Ak(0)Bn−k(x), (3.2)
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4 APPELL POLYNOMIAL INVERSES 6

(where Aj(0) = aj). Of course,

(AB)n = (BA)n = ({Ai(0)} ? {Bk(x)})n = ({Ai(x)} ? {Bk(0)})n .

If you take A and B to be identical, you get (AA)n or (A2)n that has generating function FA2 , after
replacing xk by Ak in the polynomials A.

To illustrate, let us find the Appell polynomials that correspond to the product â2(z) = (1− z)2.
The function â(z) = 1− z generates the sequences

{an}n>0 = {1,−1, 0, 0, 0, . . . } and {An(x) = xn − nxn−1}. (3.3)

Applying (3.2) we have, for n > 1

(A2)n(x) = ({Ai(x)} ? {ak})n =
n∑
k=0

(
n

n− k

)
An−k(x) ak

=

(
n

n

)
An(x)−

(
n

n− 1

)
An−1(x) = xn − 2nxn−1 + n(n− 1)xn−2. (3.4)

These polynomials can also be obtained by expanding the generating function â2(z)exz = (1− z)2exz

into a Maclaurin series with respect to z and extracting coefficients of zn. The reader may wish to
work with â3(z) = (1− z)3.

The famous Euler and Bernoulli polynomial sequences are generated by 2 exz/(ez + 1) and
z exz/(ez − 1) respectively. Computation with higher powers of 2/(ez + 1) and z/(ez − 1) has led to
the study of generalized Euler and Bernoulli polynomials [6, 8].

Having defined multiplication of polynomials based on their generating functions, Paul Appell
considered operations analogous to division. Given polynomial sequences A and B, he wanted to
find a polynomial sequence C such that

(AC)n = Bn, n = 1, 2, . . . .

The generating function of these polynomials Cn(x) will be the quotient of generating functions B
by A and is designated FB

A
, so we have

(AC)n =

(
A
B

A

)
n

= Bn.

Finding polynomials generated by B
A

amounts to finding the inverse generating function 1
A

of A.

4 Appell Polynomial Inverses

Surprisingly, one of the most useful ways of finding Appell polynomials An(x) with generating func-
tion â(z) is through the polynomials Bn(x) generated by the inverse function b̂(z) = 1/â(z). In this
case we will refer to A and B as polynomial inverses and write B = 1

A
or A−1. In some practical ap-

plications, the original Appell approach that assigns the Appell polynomial (2.1) to a given sequence
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4 APPELL POLYNOMIAL INVERSES 7

of numbers {ak} is not productive. It may happen that we know a sequence of Appell polynomials
{An(x)}, but do not have an explicit formula for the corresponding sequence of numbers ak. This is
true of some of the most famous examples of Appell polynomials including the Bernoulli and Euler
polynomials, for which it is hard to determine the generating sequence of numbers according to (2.1).
Fortunately, in these cases the sequence {bn} for the inverse generating function b̂(z) is known, from
which polynomials An(x) and the corresponding number sequence can be determined, as illustrated
at the end of this section.

Generally, if a0 6= 0 then the inverse of the generating function â(z) =
∑

k>0 ak
zk

k!
is a function

b̂(z) such that â(z)b̂(z) = 1. Thus

b̂(z) =
1

â(z)
=
∑
k>0

bk
zk

k!
, where b0 =

1

a0
.

The equation

â(z) b̂(z) =
∞∑
n=0

n∑
k=0

(
n

k

)
akbn−k

zn

n!
= 1

yields

n∑
k=0

(
n

k

)
akbn−k =

{
1, for n = 0,

0, for n > 0.

The values bn can be solved for recursively:{
b0 = a−10 , n = 0,
bn = −a−10

∑n
k=1

(
n
k

)
akbn−k, n = 1, 2, . . . .

(4.1)

Similarly, the sequence {an} can be expressed in terms of the values bk.
Recalling the fact that the constant function f̂(z) = 1 generates the trivial sequence of Appell

polynomials {xn}, the convolution equation â(z) b̂(z) = 1, when translated to polynomials, becomes

(AB)n = xn or
n∑
k=0

(
n

k

)
An−k(0)Bk(x) = xn, n = 0, 1, 2, . . . . (4.2)

In simple cases finding inverses is straight-forward. For example, consider the constant sequence of
numbers an = 1 that corresponds to the sequence of Appell polynomials

An(x) =
∑
k>0

(
n

k

)
xn−k = xn

(
1 + x−1

)n
= (1 + x)n .

The generating function is FA(x, z) = e(1+x)z. Since â(z) = ez, its inverse is b̂(z) = e−z and the
generating function for the inverse polynomials Bk(x) is FB = e−zexz = ez(x−1). Thus, Bk(x) =
(x− 1)k, k = 0, 1, 2, . . . . The corresponding number sequence becomes {bk = (−1)k}k>0.
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4 APPELL POLYNOMIAL INVERSES 8

A more complicated situation presents itself with the example of polynomials {An(x)} having
generating function â(z) = (1− z) mentioned earlier (see (3.3):

An(x) = xn − nxn−1.

To find polynomial inverses for A, we replace xi by Bi(x) in An(x) and seek polynomials B such that

(AB)n = Bn − nBn−1 = xn, B0 = 1, n = 1, 2, . . . . (4.3)

Solving this recurrence relation of the first order, we obtain

Bn(x) = 1 · 2 · · ·n
(

1 +
x

1
+

x2

1 · 2
+ · · ·+ xn

1 · 2 · · ·n

)
= n! en(x), (4.4)

where en(x) =
∑n

k=0
xk

k!
is the incomplete exponential function. Formula (4.4) can be easily verified

by substituting Bn back into (4.3). The corresponding generating function for the sequence of Appell
polynomials {Bn(x) = n! en(x)}n>0 is (1− z)−1exz.

Some examples may require solving the full-history recurrence (4.1). Alternatively, one can ex-
press the Appell polynomials Ak(x) in terms of the sequence {bn} that define the inverse polynomials
Bn(x) as follows. The polynomials Bn(x) are generated by

FB = b̂(z)exz =
1

â(z)
exz =

∑
n>0

Bn(x)
zn

n!
,

where Bn(x) = ({bk} ? {xi})n. Thus,

exz = â(z)b̂(z) exz =⇒
∑
n>0

xnzn

n!
=
∑
n>0

An(x)
zn

n!

∑
k>0

zk

k!
bk.

On equating coefficients of zn, we are led to the following convolution equation

{bk} ? {An(x)} = {xi}, bk = Bk(0), (4.5)

which yields the infinite system of equations:

A0(x) b0 = 1, n = 0,
A0(x) b1 + A1(x) b0 = x, n = 1,
A0(x) b2 +

(
2
1

)
A1(x) b1 + A2(x) b0 = x2, n = 2,

· · ·
A0(x) bn +

(
n
1

)
A1(x) bn−1 +

(
n
2

)
A2(x) bn−2 + · · ·+ An(x) b0 = xn,

...
... .

(4.6)

This is a linear system which can be truncated at any finite step resulting in a system with a triangular
matrix of order n + 1. So it can be solved recursively, which allows one to determine the Appell
polynomials {An(x)} through the sequence {bk} and vise versa.
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5 APPELL-DERIVATIVES 9

To illustrate, consider the sequence of Euler numbers generated by â(z) = 2 (1 + ez)−1, for which
finding the sequence {an} is a challenging problem. But the inverse of â(z) is b̂(z) = (1 + ez)/2 =
1 + 1/2

∑
k>1 z

k/k! which gives us the values bk to put into (4.6). Substituting b0 = 1, bk = 1/2 for
k = 1, 2 · · ·n, we obtain

An(x) = En(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

1 1/2
1/2 · · · · · · 1/2

1/2
0 1

(
2
1

)
1/2 · · · · · ·

(
n−1
1

)
1/2

(
n
1

)
1/2

0 0 1 · · · · · ·
(
n−1
2

)
1/2

(
n
2

)
1/2

...
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1
(
n
n−1

)
1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the determinant with respect to the first row will produce the representation of En(x)
where every coefficient is a determinant of a square n × n matrix. The values n = 1, 2, 3 yield the
Euler polynomials mentioned in the Prologue.

The constant coefficients give the elusive sequence of numbers an that define the Euler polynomials
as an Appell sequence. They are

an = En(0) = −(−1)n−1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 1 1 1 · · · · · · 1 1
2 2 3 4 5 · · · · · · n− 1 n
0 2

(
3
2

) (
4
2

) (
5
2

)
· · · · · ·

(
n−1
2

) (
n
2

)
0 0 2

(
4
3

) (
5
3

)
· · · · · ·

(
n−1
3

) (
n
3

)
...

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 0

(
n−1
n−2

) (
n
n−2

)
0 0 0 0 0 · · · 0 2

(
n
n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For larger systems, a computer algebra system can be useful. It is also possible to use Cramer’s Rule
to solve (4.6) and produce a formula for the numbers an as a full history recurrence.(see [3, 6], for
example).

The reader may want to experiment finding the first few Bernoulli polynomials. The numbers
an, generated by z/(ez − 1), defining the Bernoulli polynomials according to Eq. (2.2) do not have
a closed form formula. Express the inverse of this generating function as a Maclaurin series to find
values bk.

5 Appell-Derivatives

Since Appell polynomials are motivated by a natural property of derivatives, it is appropriate that
we end our presentation with a look at Appell’s exploits with differentiation. Not surprisingly, he
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wanted to find the polynomials generated by the derivative, dâ(z)
dz

of a given function â(z). The
resulting sequence is denoted by {(dA)n}. Starting with

â(z) exz = A0 +
z

1
A1(x) +

z2

1 · 2
A2(x) + · · ·+ zn

1 · 2 · · ·n
An(x) + · · · , (5.1)

differentiate both sides with respect to z while suppressing x, to obtain

dâ(z)

dz
exz + x â(z) exz = A1 +

z

1
A2 + · · ·+ zn−1

1 · 2 · · · (n− 1)
An + · · · .

Now replace dâ(z)
dz

exz in the preceding by its expansion

dâ(z)

dz
exz = (dA)0 +

z

1
(dA)1 +

z2

1 · 2
(dA)2 + · · ·+ zn

1 · 2 · · ·n
(dA)n + · · · , (5.2)

and equate the coefficients of zn in both members of the resulting equation. This produces the
relation

(dA)n = An+1(x)− xAn(x), (dA)0 = a1, (5.3)

which gives a polynomial of degree n in x generated by dâ(z)
dz

. It is not hard to verify that {(dA)n}
is an Appell sequence.

As an illustration, let us return to an example in the preceding section. Relabeling Bn, let
An(x) = n!en(x) be the polynomials in (4.4) generated by â(z) = (1 − z)−1. The derivative of this
function with respect to z is (1− z)−2; (5.3) leads us to the Appell polynomials

(dA)n = (n+ 1)! en+1(x)− xn! en(x).

Note that these are the inverse polynomials for those in (3.4), generated by (1− z)2.

Concluding Remarks

Our presentation has drawn from the first five of twenty sections comprising the paper [1] which
enables a flavor for Appell polynomials. As mentioned in the prologue, every Appell sequence is a
Sheffer sequence and is referred to as a generalized Appell sequence (see the web site [17]). A more
general discussion of Sheffer polynomials can be found in [10].

Variations of Appell’s approach have also been considered. For example, in 2007, Biazar and
Shafiof [2] introduced a new algorithm in the calculation of Adomian polynomials; it is based on the

formula dPn(x)
dx

= (n+ 1)Pn+1(x). Di Bucchianico and Loeb [5] summarize and document more than
five hundred references related to Appell polynomial sequences.
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