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Abstract

We introduce and study expansions of real numbers with respect to two integer

bases.
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1 Introduction

We construct an expansion of real numbers in [0, 1] by blowing up the first basic inter-

val [0, 1/b] in the classical b-adic expansion to [0, 1/a] with a < b. The details of the

construction are given in the next section. Due to the overlaps of basic intervals the

properties of these new expansions of real numbers turn out to be similar to the prop-

erties of the meanwhile classical β-expansions,
∑
diβ
−i for β ∈ (1, 2). The literature on

β-expansion is modestly growing since the pioneering work of Alfred Renyi (1921-1970)

in 1950th. We refer to [10] for an introduction to this topic. In section 3 we will prove

Sidorov’s theorem [9] in the context of a, b-expansions using an ergodic theoretical ap-

proach: Almost all x ∈ [0, 1] have a continuum of such expansions. Now it is natural

to ask, if there are exceptional x ∈ (0, 1) having an unique a, b-expansions. We will

show in section 4 that there are at least countable many such exceptions, if b < a2 and

that there is an uncountable set with positive Hausdorff dimension of such exceptions if

b < a2−2−(adb/ae−b). The elementary number theoretical condition here is an analogue

of the condition β > κ(2), where κ(2) is the transcendental Komornik-Loreti constant,

which leads to a set of numbers with positive Hausdorff dimension, which have a unique

β-expansion, see [8]. To characterize numbers which have a unique a, b-expansion, we

again use ideas from dynamical systems. In the last section we consider sets of numbers

with digits from a proper subset of {0, . . . , b− 1} in their a, b-expansions. Hundred years

ago Felix Hausdorff (1868-1942) [2] introduced his dimension to distinguish the size of

such sets for b-adic expansions. We will determine the Hausdorff dimension of these sets

with respect to a, b-expansions using a resent result of Mike Hochmann, see [3].
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2 a, b-expansions

Fix integers a, b with b > a > 1. Consider the space of digits Σ = {0, . . . , b − 1}N. For

d = (di) ∈ Σ and n ∈ N let 0n(d) be the number of zeros in the sequence (d1, . . . , dn). We

consider the map π : Σ→ [0, 1] given by

π(d) =
∞∑
i=1

di

(
1

a

)0i(d)(1

b

)i−0i(d)

.

If π(d) = x we call d an a, b-expansion of x. Several times we will use another description

of the map π, which we now describe. For j = 0, . . . , b − 1 let Tj : [0, 1] → [0, 1] be

contractions given by

T0(x) =
x

a
and Tj(x) =

x

b
+
j

b
for j = 1, . . . , b− 1.

By induction we have

Td1 ◦ · · · ◦ Tdn(x) =

(
1

a

)0n(d)(1

b

)n−0n(d)

x+
n∑

i=1

di

(
1

a

)0n(d)(1

b

)n−0n(d)

.

Hence for all d ∈ Σ and all x ∈ I

π(d) = lim
n→∞

Td1 ◦ · · · ◦ Tdn(x).

Obviously we have

[0, 1] =
b−1⋃
j=0

Ti([0, 1]),

hence all x ∈ [0, 1] have at least one a, b-expansion. Such an expansion may be calculated

using a greedy algorithm. Let G : [0, 1]→ [0, 1] be given by

G(x) =


ax, x ∈ [0, 1/b)

bx− j, x ∈ [j/b, (j + 1)/b) for j = 1, . . . , b− 1

1, x = 1

.

For x ∈ [0, 1] we define the greedy expansion g = g(x) = (gi) ∈ Σ with respect to a and b

by

gi = bbGi−1(x)c,

where bxc is the greatest integer not greater than x. We have

Proposition 2.1 For all x ∈ [0, 1] the greedy expansion g(x) ∈ Σ with respect to a and b

is an a, b-expansion of x, that is π(g(x)) = x.

Proof. If gi = j we have Gi−1(x) ∈ [j/b, (j + 1)/b), which implies Gi−1(x) ∈ Tgi([0, 1]).

Since G is defined by the inverse maps of Ti we obtain

x ∈ Tg1 ◦ · · · ◦ Tgi([0, 1])

for all i ∈ N, but this implies π(g(x)) = x. �

2

2 Nov 2021 15:37:19 PDT
211102-Neunhauserer Version 1 - Submitted to Rocky Mountain J. Math.



Figure 1: The map G in the case a = 2, b = 3

3 A continuum of expansions

Due to the intersection of the open interval (0, 1/a) and (1/b, 2/b) in (1/b, 1/a) for b > a

the a, b-expansion of x ∈ (0, 1) will not be unique generically. We will first prove:

Theorem 3.1 Almost all x ∈ (0, 1) (in the sense of Lebesgue measure) have a continuum

of a, b-expansions.

Proof. Let G : [0, 1] → [0, 1] be the map defined in the last section. G is a piecewise

linear expanding interval map and such maps are known to have an ergodic measure,

which is equivalent to the Lebesgue measure, see [1] and [4]. By Poincare recurrence

theorem for almost all x ∈ [0, 1] there is a k ≥ 0 such that Gk(x) ∈ (1/b, 1/a). Note

that each x ∈ (1/b, 1/a) has two different a, b-expansions, one starting with 0 and other

one starting with 1. Hence for almost all x ∈ [0, 1] there is a k ≥ 0 and a sequence

(d1, . . . , dk) ∈ {0, . . . , b− 1}k such that

x = Td1 ◦ · · · ◦ Tdk ◦ T0(x0) and x = Td1 ◦ · · · ◦ Tdk ◦ T1(x1),

where x0, x1 ∈ (0, 1) and x0 6= x1. For almost all x both numbers x1(x), x2(x) have two

different a, b-expansion hence almost all x have four different expansions. We use here

that the intersection of two sets of full measure has full measure. Repeating this procedure

ℵ0 times we obtain 2ℵ0 a, b−expansions for almost all x ∈ [0, 1], using the fact a countable

intersection of sets of full measure has full measure. �
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It is natural to ask if there are x ∈ (0, 1) that do not have a continuum of a, b-expansion.

In the next section we will see that this is true.

4 Unique expansions

We consider the shift map σ : {0, . . . , b−1}N → {0, . . . , b−1}N given by σ((dk)) = (dk+1).

Using this map we characterise numbers which have a unique a, b-expansion as follows:

Proposition 4.1 The a, b-expansion (di) of x ∈ [0, 1] is unique if and only if

π(σk(di)) ∈ ([0, 1/b) ∪ (1/a, 1])\{j/b | j = 2, . . . , b− 1}

for all k ≥ 0.

Proof. π(d) = π(e) with d 6= e holds if and only if there exists a k ≥ 0 such that dk 6= ek

and π(σk((di)) = π(σk((ei)). But this is equivalent to

π(σk(di)) ∈
⋃
l 6=m

Tl([0, 1]) ∩ Tm([0, 1]) = [1/b, 1/a] ∪ {j/b|j = 2, . . . , b− 1}.

The proposition follows by contraposition. �

Obviously 0 and 1 have a unique a, b-expansion. Using the last proposition we are able

to prove:

Theorem 4.1 If a < b < a2 at least countable many x ∈ (0, 1) have a unique a, b-

expansion. If a < b < a2 − 2 − r, where r ∈ {0, . . . , b − 1} is given by b = la − r,

uncountable many x ∈ (0, 1) have a unique a, b-expansion. Furthermore the Hausdorff

dimension of the set of these numbers is positive.

Proof. Let d be the periodic sequence in Σ given by d = (di) = (0, a, 0, a, . . . ). We have

π(d) =
1

1 + a−1b−1
· 1

b
<

1

b
.

On the other hand

π(σ(d)) =
1

1 + a−1b−1
· a
b
>

1

a

by the assumption a2 > b > a for integers a, b. Furthermore π(σ(d)) 6= j/b for j =

2, . . . , b − 1. By proposition 4.1 x = π(d) ∈ (0, 1) has an unique a, b-expansion. Consid-

ering sequences d = (0, . . . , 0, a, 0, a, . . . ) we see that there are at least countable many

such x ∈ (0, 1).
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Let b = al − r with r ∈ {0, 1 . . . , b− 1} and consider the set V = {0l, l0}N in Σ. The set

is not invariant under the shift map σ but

U =
∞⋃
k=0

σk(V ) = V ∪ ({0} × V ) ∪ ({l} × V )

is a σ-invariant set. The sequence d ∈ U with d1 = 0, that has the largest projection

under π, obviously is d = (0, l, 0, 0, l, 0, l, 0, . . . ). We have

π(d) =
l

b

(
1

a
+

1

1 + ab

)
=
b+ r

a2b
+

b+ r

b(1 + ab)

=
1

a2b
(b+ r +

a(b+ r)

1 + ab
) <

1

b

by our assumption b + r + 2 < a2 and by the inequality a(b + r)/(1 + ab) < 2. The

sequence d ∈ U with d1 = l, that has the smallest projection under π, obviously is

d = (l, 0, 0, l, 0, l, 0, . . . ). We have

π(d) =
l

b
+

l

ab+ a2b2
≥ 1

a
+

1

a2 + a3b
>

1

a

since l ≥ b/a. We have thus shown that π(σk(U)) = π(U) ⊆ [0, 1/b) ∪ (1/a, 1] for all

k ≥ 0. We now prove that π(U) is uncountable with positive Hausdorff dimension. The

subset π(V ) ⊆ π(U) is the attractor of the iterated function system (T0 ◦Tl, Tl ◦T0). This

means T0 ◦ Tl(π(V )) ∪ Tl ◦ T0((π(V )) = π(V ). The iterated functions system fulfills the

open set condition, since T0 ◦ Tl((0, 1)) ∩ Tl ◦ T0((0, 1))) = ∅. By [5] the set π(V ) (and

hence π(U) as well) has positive Hausdorff dimension and is thus uncountable. Note that

π(σk(d)) = j/b for some j and k hold for sequences d in a at most countable set S ⊆ U .

Each x ∈ π(U\S) has unique a, b-expansion by proposition 4.1 and this set has positive

Hausdorff dimension and is uncountable. �

The upper bounds on b in our theorem are due to the ideas used in the proof. We

do not know if these bound is sharp.

5 Restricted digits

Let D ⊆ {0, . . . , b− 1} be subset of digits. We are interested in the set of numbers which

have an a, b-expansion with digits in D, that is the set π(DN). We denote the cardinality

of D by |D|. If |D| = 1 the set π(DN) obviously contains only one point and we already

know that π(DN) = [0, 1] if |D| = b. Moreover we obtain:

Theorem 5.1 Let D ⊆ {0, . . . , b− 1} with 1 < |D| < b. If 0 6∈ D we have

dimH π(DN) =
log |D|
log b

.
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If 0 ∈ D and log(b)/ log(a) 6∈ Q we have dimH π(DN) = min{s, 1} where s is given by(
1

a

)s

+ (|D| − 1)

(
1

b

)s

= 1.

The same is true if min(D\{0}) ≥ b/a no matter where log(b)/ log(a) ∈ Q.

Proof. If 0 6∈ D the set π(DN) contains the numbers in [0, 1], which have a b-adic

expansion with digits in D. The dimension formula goes back to Hausdorff [2] in this

case. Now assume 0 ∈ D and log(b)/ log(a) 6∈ Q. The assumption means that bn 6= am

for all n,m ≥ 1. The identity of the maps

Td1 ◦ · · · ◦ Tdn = Tg1 ◦ · · · ◦ Tgm

for some sequences d = (d1, . . . , dn) and g = (g1, . . . , gm) is equivalent to(
1

a

)0n(d)(1

b

)n−0n(d)

x+
n∑

i=1

di

(
1

a

)0n(d)(1

b

)n−0n(d)

=

(
1

a

)0m(g)(
1

b

)m−0m(g)

x+
m∑
i=1

gi

(
1

a

)0m(g)(
1

b

)m−0m(g)

for all x ∈ [0, 1]. By our assumption this implies n = m and 0n(d) = 0m(g). Furthermore

we obtain di = gi for i = 1, . . . , n. This means that there are no exact overlaps of intervals

of the form Td1 ◦ · · · ◦ Tdn([0, 1]). By Hochmann’s result [3] this implies dimH π(DN) =

min{s, 1}, where s is the similarity dimension of the iterated function system {Ti|i ∈ D}.
That means ∑

i∈D

|T ′

i |s =

(
1

a

)s

+ (|D| − 1)

(
1

b

)s

= 1.

If min(D\{0}) ≥ b/a, we have Ti((0, 1)) ∩ Tj((0, 1)) = ∅ for i 6= j. In this case the

result follows from the classical theory of iterated function systems fulfilling the open set

condition, see [5], or again from [3]. �

If we have log(b)/ log(a) ∈ Q and min(D\{0}) < b/a, there may occur exact overlaps

of intervals Td1 ◦ · · · ◦ Tdn([0, 1]). In this situation a combinatorial approach is necessary

to calculate the Hausdorff dimension of π(DN). We refer here to [6].
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