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Abstract

Let Pn denote the induced path on n vertices. A gem is the graph that consists of a P4

plus a vertex which is adjacent to all the vertices of that path and a banner is the graph that

consists of an induced cycle on four vertices and a single vertex with precisely one neighbour

on the cycle. For two graphs H1 and H2, we use H1∪H2 to denote the graph with vertex set

V (H1)∪V (H2) and edge set E(H1)∪E(H2). Let ∆(G), χ(G) and ω(G) denote the maximum

degree, chromatic number and clique number of G, respectively. The Borodin-Kostochka

Conjecture states that for a graph G, if ∆(G) ≥ 9, then χ(G) ≤ max{∆(G)− 1, ω(G)}. We

prove the Borodin-Kostochka Conjecture for {P2 ∪ P3, gem,banner}-free graphs.
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1 Introduction

All our graphs are finite and have no loops or multiple edges. For classical graph theory we

use the standard notation, we mainly follow standard terminology of the books [1, 13]. A clique

in a graph is a set of pairwise adjacent vertices. Let G = (V,E) be a graph. For any integer k, a

k-colouring of G is a mapping ϕ : V → {1, 2, . . . , k} such that ϕ(u) 6= ϕ(v) whenever u and v are

adjacent in G. A graph is k-colourable if it admits a k-colouring. The chromatic number of G is

the minimum number k for which G is k-colourable. A vertex subset K ⊆ V is a clique cutset

if G−K has more components than G and K induces a clique. We use χ(G), ω(G), ∆(G) and

∗Email: kylan95@126.com.
†Email: liufeng0609@126.com(corresponding author).
‡Email: zoed98@126.com.

1

3 May 2023 18:16:07 PDT
220906-FengLiu Version 2 - Submitted to Rocky Mountain J. Math.



δ(G) to denote the chromatic number, clique number, maximum degree and minimum degree

of G, respectively. By greedily colouring the vertices of G in any order, it is easily verified that

χ(G) ≤ ∆(G) + 1. In 1941, Brooks [3] strengthened this bound.

Theorem 1.1 (Brooks’ Theorem [3]). Let G be a graph with ∆(G) ≥ 3. Then χ(G) ≤
max{∆(G), ω(G)}.

In 1977, Borodin and Kostochka [2] conjectured that a similar result holds for ∆(G) − 1

colourings.

Conjecture 1.2 (Borodin-Kostochka Conjecture [2]). Let G be a graph with ∆(G) ≥ 9. Then

χ(G) ≤ max{∆(G)− 1, ω(G)}.

Note that if ω(G) ≥ ∆(G), then by Theorem 1.1, G satisfies the Borodin-Kostochka Con-

jecture. Therefore, to prove Conjecture 1.2, it suffices to prove that for a graph G, if ∆(G) ≥ 9

and ω(G) ≤ ∆(G)− 1, then χ(G) ≤ ∆(G)− 1. Cranston, Lafayette and Rabern [6] proved that

Conjecture 1.2 cannot be strengthened by making ∆(G) ≥ 8 or ω(G) ≤ ∆(G)− 2. By Theorem

1.1, each graph G with χ(G) > ∆(G) ≥ 9 contains K∆(G)+1. So, Conjecture 1.2 is equivalent

to the statement that each graph G with χ(G) = ∆(G) ≥ 9 contains K∆(G). In 1999, Reed [12]

presented the strongest partial result towards Conjecture 1.2 by showing that Conjecture 1.2 is

true for all graphs having maximum degree at least 1014.

We say that a graph G contains a graph F if F is isomorphic to an induced subgraph of G.

A graph G is F -free if it does not contain F . For a family F of graphs, G is F-free if G is F -free

for every F ∈ F . A hole of G is an induced subgraph of G which is a cycle of length at least

four, and a hole is said to be an odd hole if it has odd length. An anti-hole of G is an induced

subgraph of G whose complement is a hole in G.

Let Pn and Cn denote the induced path and cycle on n vertices, respectively. For two

graphs H1 and H2, we use H1 ∪ H2 to denote the graph with vertex set V (H1) ∪ V (H2) and

edge set E(H1)∪E(H2). Conjecture 1.2 has been proved for many interesting classes of graphs,

particularly those defined by forbidden induced subgraphs. For example, Cranston and Rabern

[7] proved it for claw-free graphs. Gupta and Pradhan [9] proved it for {P5, C4}-free graphs. It

was also recently proved for {P5, gem}-free graphs by Cranston, Lafayette and Rabern [6]. Lan,

Liu and Zhou [11] proved Conjecture 1.2 for {P2 ∪ P3, C4}-free graphs.

A gem is the graph that consists of a P4 plus a vertex which is adjacent to all the vertices

of that path. A banner is the graph that consists of a hole on four vertices and a single vertex

with precisely one neighbour on the hole (see Figure 1 for a depiction.) Note that the banner-

free graphs generalize the well-studied class of claw-free graphs. In this article, we study {P2 ∪
P3, gem,banner}-free graphs. More precisely, we prove Conjecture 1.2 for {P2∪P3, gem, banner}-
free graphs. We do this by reducing the problem to imperfect {P2∪P3, gem, banner}-free graphs

via the Strong Perfect Graph Theorem [5]. Our result is stated in the following theorem.
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P2 ∪ P3 bull banner gem

Figure 1: Illustration of some forbidden configurations.

Theorem 1.3. Let G be a {P2 ∪ P3, gem, banner}-free graph with ∆(G) ≥ 9. Then χ(G) ≤
max{∆(G)− 1, ω(G)}.

This paper is organized as follows. In the remainder of this section, we describe notation

and terminology that we will be used in our proof. We present some preliminaries in Section

2 and recall some lammas. In Section 3, by considering a smallest counterexample (smallest in

terms of the number on vertices), we prove Theorem 1.3.

If X is the set of vertices in G, denote by G[X] the subgraph of G whose vertex set is X and

whose edge set consists of all edges of G which have both ends in X. For any x ∈ V (G), let N(x)

denote the set of all neighbors of x in G; and let dG(x) := |N(x)|, and we often write d(x) if the

context is clear. The neighborhood N(X) of a subset X ⊆ V (G) is the set {u ∈ V (G)\X : u is

adjacent to a vertex of X}. Let X and Y be any two subsets of V (G). We write [X,Y ] to denote

the set of edges that has one end in X and other end in Y . We say that X is complete to Y or

[X,Y ] is complete if every vertex in X is adjacent to every vertex in Y ; and X is anti-complete

to Y if [X,Y ] = ∅. If X is singleton, say {u}, we simply write u is complete (anti-complete)

to Y instead of writing {u} is complete (anti-complete) to Y . For a given positive integer k,

we use the standard notation [k] to denote the set {1, 2, . . . , k}. In the rest of this paper, every

subscript is understood to be modulo 5.

2 Preliminaries

In this section, we present some lemmas that will be use to prove Theorem 1.3. For a given

positive integer k, a graph G is said to be k-vertex-critical if χ(G) = k and χ(G− v) ≤ k− 1 for

each vertex v of G. The following lemma, given by Dirac, states a useful property of k-vertex-

critical graphs.

Lemma 2.1 ([8]). If a graph G is k-vertex-critical, then δ(G) ≥ k − 1.

A buoy is a graph G, whose vertex set can be partitioned into five nonempty sets, X1, X2,

X3, X4, and X5 such that [Xi, Xi+1] is complete and [Xi, Xi+2] = [Xi, Xi+3] = ∅ for all i ∈ [5],

A buoy is said to be a complete buoy if Xi is a clique for each i ∈ [5]. In [6], it is proved that if
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G is a complete bouy, then χ(G) ≤ max{∆(G)− 1, ω(G)}, that is, a complete buoy satisfies the

Borodin-Kostochka Conjecture. We restate this in the following lemma to use later.

Lemma 2.2 ([6]). Conjecture 1.2 holds for any complete buoy.

A class F of graphs is hereditary if for each G ∈ F we have H ∈ F for each induced sub-

graph H of G. Every class of graphs characterized by a list of forbidden induced subgraphs is

a hereditary class. In particular, the class of {P2 ∪ P3, gem,banner}-free graphs is hereditary.

Kostochka and Catlin independently presented a useful result, by which one can choose a coun-

terexample for the Borodin-Kostochka Conjecture in a hereditary graph class G, if exists, to

have maximum degree 9.

Lemma 2.3 ([4, 10]). If G is a hereditary graph class and if Conjecture 1.2 is true for all graphs

G ∈ G having ∆(G) = 9, then Conjecture 1.2 is true for all graphs in G.

A graph G is said to be vertex-critical if χ(G − v) ≤ χ(G) for each vertex v of G. The

following lemma guarantees the existence of a vertex-critical counterexample of Conjecture 1.2

if a counterexample exists for the conjecture.

Lemma 2.4 ([4, 10]). If G is a smallest counterexample (smallest in terms of the number on

vertices) for Conjecture 1.2 with ∆(G) = 9, then G must be vertex-critical.

A graph G is perfect if χ(H) = ω(H) for each induced subgraph H of G, and imperfect

otherwise. The Strong Perfect Graph Theorem [5] says that a graph is perfect if and only if it

does not contain an odd hole or an odd anti-hole as an induced subgraph. Since a {P2∪P3}-free

graph contains no hole of length at least 7, and a gem-free graph contain no anti-hole of length

at least 7, we have the following.

Lemma 2.5. Every imperfect {P2 ∪ P3, gem}-free graph contains an induced C5.

3 Proof of Theorem 1.3

In this section, by means of the Lemmas 2.1, 2.2, 2.3, 2.4 and 2.5, we prove our main

theorem. A general technique to prove results of the type we consider in this work is to consider

a smallest counterexample (smallest in terms of the number on vertices), prove some properties

that such a graph must satisfy, and finally derive a contradiction. So, we will assume that

Theorem 1.3 is false and choose G to be a smallest counterexample. Ultimately, we reach a

contradiction.

Proof of Theorem 1.3. Let G be the class of all {P2 ∪ P3, gem,banner}-free graphs. It is

sufficient to prove the theorem for connected graphs only. If possible, then let G = (V,E) be a

smallest counterexample in G (smallest in terms of the number on vertices) for Conjecture 1.2
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with ∆(G) = 9, (note that such G exists by Lemma 2.3). By Lemma 2.4, G is vertex-critical. In

what follows, we let ω denote the clique number of a graph under consideration. If ω ≥ 9, then

the result holds due to Theorem 1.1. So we may assume that χ(G) = 9 and ω ≤ 8. By Lemma

2.1, each vertex in G has degree either 8 or 9. If G is perfect, then χ(G) = ω ≤ max{∆(G)−1, ω}.
This is a contradiction to the fact that G is a counterexample of Conjecture 1.2. Hence, G is

imperfect. By Lemma 2.5, G must contain an induced C5. Let C := u1u2u3u4u5 be the vertex

set of an induced C5 in G with edge set {u1u2, u2u3, u3u4, u4u5, u5u1}. We define the following

sets.

N : = {u ∈ V \C : N(u) ∩ C 6= ∅},

R : = V \(N ∪ C).

Clearly, V = C ∪N ∪R.

Since G is {gem,banner}-free, we may easily observe that each vertex inN is either adjacent

to exactly one vertex in C, or exactly two consecutive vertices in C, or exactly three consecutive

vertices in C. It follows that N can be partitioned into subsets as follows.

Ai : = {u ∈ N2 : N(u) ∩ C = {ui}},

Bi : = {u ∈ N2 : N(u) ∩ C = {ui, ui+1}},

Di : = {u ∈ N2 : N(u) ∩ C = {ui, ui+1, ui+2}}.

See Figure 2 for an illustration of these sets.

ui

ui+1

ui+2ui−2

ui−1 Ai

ui

ui+1

ui+2ui−2

ui−1 Bi

ui

ui+1

ui+2ui−2

ui−1

Di

Figure 2: Illustration of the sets Ai, Bi and Di.

Then, V = (∪5
i=1Ai)

⋃
(∪5

i=1Bi)
⋃

(∪5
i=1Di)

⋃
C
⋃
R. Below we deduce some structural

properties of G. Each of the next properties is followed by a short proof.

(3.1) |Ai| ≤ 1 for all i ∈ [5].

To the contrary, assume that Ai contains two vertices x and y. Then either {x, y} ∪
{ui+1, ui+2, ui+3} induces a P2∪P3 or {ui+2, ui+3}∪{x, ui, y} induces a P2∪P3, depending

on whether x and y are adjacent. This is a contradiction.

5

3 May 2023 18:16:07 PDT
220906-FengLiu Version 2 - Submitted to Rocky Mountain J. Math.



(3.2) [Ai, Ai+1] = ∅ for all i ∈ [5].

To the contrary, assume that there are two vertices x ∈ Ai and y ∈ Ai+1 such that xy ∈ E.

Then {x, y} ∪ {ui+2, ui+3, ui+4} induces a P2 ∪ P3. This is a contradiction.

(3.3) [Ai, Ai+2] is complete for all i ∈ [5].

To the contrary, assume that there are two vertices x ∈ Ai and y ∈ Ai+2 such that xy /∈ E.

Then {x, ui} ∪ {y, ui+2, ui+3} induces a P2 ∪ P3. This is a contradiction.

(3.4) |Bi| ≤ 1 for all i ∈ [5].

To the contrary, assume that Bi contains two vertices x and y. Then either {x, y} ∪
{ui+2, ui+3, ui+4} induces a P2∪P3 or {ui+2, ui+3}∪{x, ui, y} induces a P2∪P3, depending

on whether x and y are adjacent. This is a contradiction.

(3.5) Either Ai = ∅ or Bi = Bi−1 = ∅ for all i ∈ [5].

To the contrary, assume that x ∈ Ai and y ∈ Bi. Then either {x, y} ∪ {ui+2, ui+3, ui+4}
or {ui+2, ui+3} ∪ {x, ui, y} induces a P2 ∪ P3, depending on whether x and y are adjacent.

This is a contradiction. The case that y ∈ Bi−1 is symmetric.

(3.6) Either Ai = ∅ or Bi+1 = Bi−2 = ∅ for all i ∈ [5].

To the contrary, assume that x ∈ Ai and y ∈ Bi+1. Then either {ui−1, ui, x, y, ui+1}
induces a banner or {x, ui} ∪ {y, ui+2, ui+3} induces a P2 ∪ P3, depending on whether x

and y are adjacent. This is a contradiction. The case that y ∈ Bi−2 is symmetric.

(3.7) Each Di is a clique for all i ∈ [5].

To the contrary, assume that there exist two vertices x and y in Di such that xy /∈ E.

Then {ui, x, y, ui+2, ui+3} induces a banner. This is a contradiction.

(3.8) [Di, Di+2 ∪Di−2] = ∅ for all i ∈ [5].

To the contrary, assume that there exist two vertices x ∈ Di and y ∈ Di+2 such that

xy ∈ E. Then {x, ui, ui+1, ui+2, y} induces a gem. This is a contradiction. The case that

y ∈ Di−2 is symmetric.

(3.9) If Di 6= ∅, then [Di+2, Di−2] is complete for all i ∈ [5].

To the contrary, assume that x ∈ Di, y ∈ Di+2 and z ∈ Di−2 such that yz /∈ E. Then,

by (3.8), we have xy /∈ E and xz /∈ E. This implies that {x, ui+1} ∪ {y, ui+3, z} induces a

P2 ∪ P3. This is a contradiction.

(3.10) Either Ai = ∅ or Di+1 = Di+2 = ∅ for all i ∈ [5].
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To the contrary, assume that there exist two vertices x ∈ Ai and y ∈ Di+1. Then either

{x, ui, ui+1, y, ui+3} induces a banner or {y, ui+2}∪{x, ui, ui−1} induces a P2∪P3, depend-

ing on whether x and y are adjacent. This is a contradiction. The case that y ∈ Di+2 is

symmetric.

(3.11) [Bi, Di ∪Di−1] is complete for all i ∈ [5].

To the contrary, assume that there exist two vertices x ∈ Bi and y ∈ Di such that xy /∈ E.

Then {ui+3, ui+4} ∪ {x, ui+1, y} induces a P2 ∪ P3. This is a contradiction. The case that

y ∈ Di−1 is similar.

(3.12) Either Bi = ∅ or Di+1 = Di−2 = ∅ for all i ∈ [5].

To the contrary, assume that both Bi and Di+1 are not empty and let x ∈ Bi and y ∈ Di+1.

Then either {y, x, ui+1, ui+2, ui+3} induces a gem or {y, ui+2} ∪ {x, ui, ui−1} induces a

P2 ∪ P3, depending on whether x and y are adjacent. This is a contradiction. The case

that Di−2 6= ∅ is symmetric.

(3.13) [Bi, Di+2] = ∅ for all i ∈ [5].

To the contrary, assume that there exist two vertices x ∈ Bi and y ∈ Di+2 such that

xy ∈ E. Then {x, ui+1, ui+2, y, ui+4} induces a banner. This is a contradiction.

(3.14) R = ∅.

To the contrary, assume that w ∈ R. Then there is some path connecting w to C since G

is connected. That path must pass through N . Let xy be an edge of that path such that

x ∈ R and y ∈ N . If y ∈ Ai, then {x, y} ∪ {ui+1, ui+2, ui+3} induces a P2 ∪ P3; if y ∈ Bi,

then {x, y}∪{ui+2, ui+3, ui+4} induces a P2∪P3; if y ∈ Di, then {ui+3, ui+4}∪{x, y, ui+1}
induces a P2 ∪ P3. This is a contradiction.

Now we continue our proof by showing a contradiction to the fact that G is a smallest

counterexample to Conjecture 1.2. By (3.14), V = (∪5
i=1Ai)

⋃
(∪5

i=1Bi)
⋃

(∪5
i=1Di)

⋃
C.

We first claim that ∪5
i=1Ai = ∅. Suppose not. Without loss of generality, we may assume

that A1 6= ∅. Then, by (3.5) and (3.6), we have B1 = B2 = B4 = B5 = ∅ and by (3.10),

D2 = D3 = ∅. On the other hand, since 8 ≤ d(u3) ≤ 9 and 8 ≤ d(u4) ≤ 9, we have |D1| ≥ 4 and

|D4| ≥ 4 by (3.1)-(3.4). It follows that d(u1) ≥ 4 + 4 + 2 + 1 = 11, which is a contradiction to

the fact that ∆(G) = 9. Therefore, V = (∪5
i=1Bi)

⋃
(∪5

i=1Di)
⋃
C.

We now claim that ∪5
i=1Bi = ∅. Suppose not. Without loss of generality, we may assume

that B1 = {b1} by (3.4). Then, by (3.12), D2 = D4 = ∅. If B2 6= ∅, then D3 = D5 = ∅ by (3.12).

It follows that d(u5) ≤ 4 by (3.4), which is a contradiction to the fact that δ(G) = 8. So, B2 = ∅.
Similarly, B5 = ∅. Furthermore, if B3 6= ∅, then D1 = ∅ by (3.12). Since 8 ≤ d(u2) ≤ 9 and

8 ≤ d(u3) ≤ 9, we have |D3| ≥ 5 and |D5| ≥ 5 by (3.4). It follows that d(u5) ≥ 5 + 5 + 2 = 12,

which is a contradiction to the fact that ∆(G) = 9. So, B3 = ∅. Similarly, B4 = ∅. That is,
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V = B1∪C∪D1∪D3∪D5. On the other hand, by (3.7), (3.8) and (3.13), we have 6 ≤ |D3| ≤ 7.

Since 8 ≤ d(u3) ≤ 9 and 8 ≤ d(u5) ≤ 9, we have 6 ≤ |D3| + |D1| ≤ 7 and 6 ≤ |D3| + |D5| ≤ 7.

It follows that 0 ≤ |D1| ≤ 1 and 0 ≤ |D5| ≤ 1. But then d(b1) ≤ 4 by (3.11) and (3.13), which

is a contradiction to the fact that δ(G) = 8. Therefore, V = (∪5
i=1Di)

⋃
C.

Suppose first that Di 6= ∅ for all i ∈ [5]. Let Xi = Di ∪ {ui+1}. Then, V = ∪5
i=1Xi and by

(3.7) and (3.8), each Xi is a clique and [Xi, Xi+2] = [Xi, Xi+3] = ∅. Moreover, for all i ∈ [5],

[Xi, Xi+1] is complete by (3.9). Therefore, G is a complete buoy. By Lemma 2.2, G satisfies

Conjecture 1.2, which is a contradiction to the fact that G is a counterexample.

Suppose now that Di = ∅ for some i ∈ [5]. Without loss of generality, we may assume

that D1 = ∅. Since 8 ≤ d(u1) ≤ 9 and 8 ≤ d(u5) ≤ 9, we have 6 ≤ |D4| + |D5| ≤ 7 and

6 ≤ |D3|+ |D4|+ |D5| ≤ 7. This implies that |D3| ≤ 1. On the other hand, since 8 ≤ d(u3) ≤ 9,

|D2| ≥ 5. Furthermore, since 8 ≤ d(u2) ≤ 9, |D5| ≤ 2. Hence, |D4| ≥ 4. It follows that

d(u4) ≥ 4 + 5 + 2 = 11, which is a contradiction to the fact that ∆(G) = 9.

This completes the proof of Theorem 1.3.
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