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DUCCI’S FOUR NUMBER GAME WITH A MUTATION

ANISH SURESH AND DOMINIC KLYVE

ABSTRACT. Ducci’s Four-Number Game begins with a square labelled with four positive integers,
one on each corner. The game proceeds by labelling the midpoints of each side with the positive
difference of the side’s two corners. We formalize this notion using points in N4 (including 0⃗) to
represent each set of numbers, and a map D such that D([a,b,c,d]) = [|a− b|, |b− c|, |c− d|, |d − a|]
to represent each turn of the game. This game serves as a fun activity for young kids. Naturally,
these children make arithmetic mistakes, which begs the question: how do small mistakes impact the
game? Inspired by this question, we introduce a variation to this game by allowing errors or “mutations”
in the subtraction step. That is, every fixed number of turns, we use a different map Dn such that
Dn([a,b,c,d]) = [|a−b|, |b− c|, |c−d|, |d −a+n|] where the positive integer n is the size of the error
and the mutation randomly occurs in one of the four spots.

In this paper, we show that if a mutation occurs every two, three, or four iterations, we have two cases.
If n is even, any set of initial numbers will reach all 0s, like they would in the original game. If n is odd,
no set of initial points reach all 0s. However, if there is a mutation five or more turns, every set of initial
points reach all 0s, regardless of the parity of n. On the other hand, if there is a mutation every turn, no
set of initial points reach all 0s, irrespective of n.

1. Introduction to Ducci’s Four-Number Game

Ducci’s Four-Number Game, introduced in [1], has a simple premise. We first start with a square and
we label each corner with a natural number, as seen in Figure 1.
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FIGURE 1. Start of game
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FIGURE 2. Game after one it-
eration
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FIGURE 3. End of the game

We next mark each side’s midpoint and label it with the absolute difference of its adjacent corners.
This process is known as one iteration.

We then connect the midpoints, forming a new square, as seen in Figure 2.
If we continue iterating this process, we reach a set of values that are all 0, as seen in the nested

squares in Figure 3.
As we can see, the game above ends with all 0’s. Does this happen all the time? If not, for what

initial conditions does it happen? In the first part of this paper, we explore this game further.

2. Characteristics of the Four-Number Game

The two properties of this game in which we will focus are the end behaviour, or whether the game
converges, and the number of steps at which this happens.

2.1. Convergence. In order to investigate the Ducci game, we shall need some notation. The set of
four points on a square can be represented as a four-dimensional vector in N4, We shall also use the
convention that the first element of the vector represents one of the numbers and that the values proceed
clockwise around the square. This means that, for our above example, [15,9,1,2] and [9,1,2,15] are
both valid representations of the given square. Generally, cyclic permutations like these are considered
to be equivalent. For the purposes of this paper, all vectors shall be considered as length four. We shall
use both the names “vectors” and “points” (in N4) depending on context.

The process of performing one iteration as described in Section 1 is the Ducci map, D. In the exam-
ple above, then, D([15,9,1,2]) = [6,8,1,13], and the latter vector will be referred to as an iteration of v⃗.

Definition 1. For v⃗ in N4, v⃗1 will denote the iteration of v⃗, so v⃗1 = D(⃗v). Generally, v⃗i is the i-fold
iteration of v⃗, so v⃗i = Di(⃗v). Similarly, v⃗−i represents an element of the i-fold inverse image of v⃗ under
the Ducci map, so Di(⃗v−i) = v⃗. The set of all i-fold inverse images of v⃗ will be denoted V−i.

We can represent the function D as multiplication on the left by matrix P, as is done in [2], where
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DUCCI’S FOUR NUMBER GAME WITH A MUTATION 3

P =


±1 ∓1 0 0
0 ±1 ∓1 0
0 0 ±1 ∓1
∓1 0 0 ±1

 .

For example, if we start with the vector v⃗ = [15,9,2,1] as in the introduction, we get
1 −1 0 0
0 1 −1 0
0 0 −1 1
1 0 0 −1




15
9
1
2

=


6
8
1

13


after one iteration. Note that we chose the signs of the 1’s so that the resulting vector will not contain
negative values. As we can tell, these are the same values we obtained from playing the game earlier.

It shall also be useful to introduce another definition.

Definition 2. A fixed point is a vector v⃗ for which D(⃗v) = v⃗.

With all of this notation established, let us start answering some of our earlier questions.

Theorem 1. The only fixed point of the four numbers game is 0⃗.

Proof. We shall proceed by contradiction. Let’s assume there exists a non-zero fixed point v⃗, so that
v⃗1 = v⃗. This can be rewritten as:

±1 ∓1 0 0
0 ±1 ∓1 0
0 0 ±1 ∓1
∓1 0 0 ±1




a
b
c
d

=


a
b
c
d


or

P⃗vT = v⃗T ,

so that v⃗T is an eigenvector of P with eigenvalue 1. By a property of eigenvalues, det(P− I) = 0, where
I is the identity matrix, so ∣∣∣∣∣∣∣∣

±1−λ ∓1 0 0
0 ±1−λ ∓1 0
0 0 ±1−λ ∓1
∓1 0 0 ±1−λ

∣∣∣∣∣∣∣∣= 0.

This determinant simplifies to (±1−λ )(±1−λ )(±1−λ )(±1−λ )±1. The key thing to note here is
that at least one of the elements of v⃗ has to be the largest. For example, let this element be a. Then, the
first diagonal of P is 1, since |a−b|= a−b. Regardless of what the largest element is, we see that one
of the diagonal entries of P is 1 using this logic. This makes the entire first term of our determinant
equal to 0, as (1−1) is a factor of that term, and we are left with either 1 or −1 for the determinant.
Since 1 is an eigenvalue, det(P− I) has to be 0, giving us a contradiction.
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DUCCI’S FOUR NUMBER GAME WITH A MUTATION 4

Therefore, v⃗ cannot be an eigenvector with eigenvalue 1, and v⃗ is not a fixed point.

The discussion above does not cover the three extra cases in which the output is a cyclic permutation
of v⃗, but each of these can be shown in a similar way and shall be left as an exercise for the reader. □

In fact, it has been proven that any initial vector converges to 0⃗ under the Ducci map[3, 4, 5, 6, 7].

2.2. Speed of Convergence. Having established the game always converges to 0⃗, we next consider the
number of steps this process takes. We broke down the initial vectors v⃗ into different cases based on
the number and location of repeated values. Before we delve into these cases, we introduce notation to
specify elements in a vector.

Definition 3. Let v⃗ = [a,b,c,d]. Then, v⃗[0] = a, v⃗[1] = b, v⃗[2] = c, v⃗[3] = d. Generally, v⃗[k] = v⃗[k0],
where k0 ≡ k mod 4. In addition, let |⃗v−1[k]− v⃗−1[k+1]|= v⃗[k].

In order to visualize the above definition, refer to Figure 4.

v⃗−1[0] v⃗−1[1]

v⃗−1[2]v⃗−1[3]

v⃗[0]

v⃗[1]

v⃗[2]

v⃗[3]

v⃗1[3] v⃗1[0]

v⃗1[1]v⃗1[2]

FIGURE 4. Notation used for each value of the game

In addition, let’s formally define the topic of this section, which has also been explored in [8, 9, 10,
11].

Definition 4. The speed of convergence of a vector v⃗ is the smallest natural number n such that
Dn(⃗v) = 0⃗.

We are now ready to analyse each of the cases mentioned above. First, let us consider all of the cases
in which all four values are not distinct. The speed of convergence of each of these can be checked by
hand with a straightforward calculation; the results can be seen in Table 1. It is important to note that
each of the vectors in this table are considered equivalent to their cyclical permutations.

In order to discover the speed of convergence for vectors with all distinct values, we introduce the
following theorem.
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DUCCI’S FOUR NUMBER GAME WITH A MUTATION 5

Number of Distinct Elements Vector Speed of Convergence Requirements
1 [a,a,a,a] 1 a ̸= 0

2
[a,a,a,b] 4 a ̸= b
[a,a,b,b] 3 a ̸= b
[a,b,a,b] 2 a ̸= b

3
[a,b,a,c] 2,4 a ̸= b ̸= c
[a,a,b,c] 4,6 a ̸= b ̸= c

TABLE 1. Table of the speed of convergence for points with at least two values in
common.

Theorem 2. The vector v⃗ = [a,b,c,d] has the same speed of convergence as the nonzero vector
w⃗ = c1⃗v+ c2I1×4 = c1[a,b,c,d]+ c2[1,1,1,1], for c1,c2 ∈ R and both c1 and c2 ̸= 0.

Proof. Let us rewrite our above equation by introducing the variable c3, where c3 =
c2
c1
. With sim-

plification, w⃗ = c1(⃗v+ c3I1×4). After one iteration, we transform w⃗ by P, which results in Pw⃗. We
can substitute in our above simplification and expand to get P(c1(⃗v+ c3I1×4)) = c1P(⃗v+ c3I1×4) =

c1P⃗v+ c3PI1×4
1. Notice that the last term equals 0⃗, as we are iterating the identity vector.

We now have that Pw⃗ = c1P⃗v. Now, let us assume that w⃗ converges in n iterations and v⃗ converges in
m iterations. Without loss of generality, let us assume that m ≥ n. We can then transform both sides by
Pn−1 to get Pnw⃗ = c1Pn⃗v. Since we assumed that w⃗ converges in n iterations, the left hand side equals
0⃗. Thus, the right hand side must also equal 0⃗, since c1 ̸= 0. This affirms that m = n, meaning v⃗ and w⃗
converge in the same number of iterations. □

With this proof, we are now ready to handle our final case: a vector with four distinct values.
Theorem 2 allows us to simplify our vector into one with only three unique non-zero values, by
subtracting out the lowest element. Table 2 contains the speeds we are looking for, which can also be
obtained through straightforward calculation.

Number of Distinct Elements Vector Speed of Convergence Requirements

4
≤ 6 b > c > a or b > a > c

[a,b,c,0] ≤ 4 a > c > b or c > a > b
≥ 4 a > b > c or c > b > a

TABLE 2. Table of the speed of convergence for points with values that are all distinct.

These results reveal to us the structure of this game and how straightforward it is to break it down.
Now, let us move to something not so trivial.

1The P matrix is not always linear, as its values differ based on the vector applied to it. However, notice that adding
c2I1×4 to c1⃗v preserves the order of c1⃗v’s elements, so we can think of P being linear here.
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DUCCI’S FOUR NUMBER GAME WITH A MUTATION 6
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FIGURE 5. Start of a new
game.
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FIGURE 6. Game after one it-
eration.

3. The Game’s Behaviour with a Mutation

Imagine we give this game to elementary school students. Like always, we begin with four random
natural numbers as seen in Figure 5. We then iterate the game to reach a set of new values.

Taking a look at Figure 6, we discover that a child has made a mistake: The midpoint value on the
right is off by 1. How does this seemingly innocent mistake, which we shall call a mutation, affect the
overall game?

3.1. Understanding the New Game. As we did with the Four-Number game, we first try to decipher
the behavior of the game. That is, does every vector converge if a single mutation occurs at every step?
If not, under what circumstances do vectors converge and at what speed? Before we can tackle such
questions, we introduce a definition involving the mutation.

Definition 5. Let Dn represent a variation of the Ducci map in which a single mutation of size n occurs.
That is, for a vector v⃗, one element of Dn(⃗v) will satisfy Dn(⃗v)[k] = |⃗v[k]− v⃗[k+1]+n|.

Now we can begin to explore the characteristics of this game and answer our questions above. An
initial question is: if there is a mutation every iteration, can any vector converge to the zero vector? If
so, for what size of error2? That is, for what values of n and vector v⃗ does Dk

n(⃗v) = 0⃗ for some k? This
is answered by our first theorem.

Theorem 3. No vector can converge to the zero vector if a mutation occurs every iteration of the game.
That is, Dk

n(⃗v) ̸= 0⃗ for every vector v⃗ and for all positive natural numbers k and n.

Proof. First, let a positive integer n be the size of the mutation.
Let’s start with 0⃗ and work backwards. Now, we take a look at D−1(⃗0). For the case where there

is no mutation, we know that every vector in V−1 is of the form xI4×1, where x ∈ N, and I4×1 is the
identity vector. However, with a mutation occurring in this step, we cannot assume this.

Let [a,b,c,d] ∈ N4 be a vector in V−1 = D−1
n (⃗0). Without loss of generality, let’s assume that the

error occurs on the calculation between c and d. Thus, in order for Dn(⃗v) = 0⃗, a = b = c. In addition,

2Speed of convergence is ill-defined here, due to its dependency on mutations.
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DUCCI’S FOUR NUMBER GAME WITH A MUTATION 7

d must equal a for their absolute difference to equal 0. However, because of the mutation, the absolute
difference between c and d is |(d − c)+n|= |(a− c)+n|= |(c− c)+n|= n. In order for this side to
equal 0, n = 0, which is not a value that n can take.

Therefore, V−1 is the empty set. This means that no initial vector converges to 0⃗ when each iteration
has an error. □

Notice that this proof also helps us reach a similar, yet unique conclusion.

Corollary 1. For any vector v⃗,Dn(⃗v) ̸= 0⃗.

In Theorem 3, we answered the question of what happens if one makes a mistake every iteration of
the game. However, what if one consistently makes a subtracting error every few iterations? Will the
game converge in this case3?

3.2. Mutation Every r Iterations. We now reach the main portion of this paper: to answer the general
question of what happens if a mistake is made every r iterations. We have just shown in Theorem 3
that the game never converges when r = 1. Before we move on to the case where r = 2, let us prove a
few fundamental results that will significantly simplify our work.

Lemma 1. Let v⃗[k] = x for some natural number k. If v⃗−1[k] = a ≥ x, then v⃗[k+1] = a± x. If a < x,
then v⃗[k+1] = a+ x.

Proof. By definition of the game, x = |a−b|, where b is v⃗−1[k+1]. Thus, b = a± x. However, in the
case of x > a, b has to be equal to a+ x, as b = x−a < 0 is not a possible state of the game. □

We will primarily be working backwards when proving our results, so this lemma will help divide
our work into more simple cases. Another theorem that will simplify our work is stated below.

Theorem 4. Let v⃗ = [a,b,c,d] be a vector in N. For all e ∈ Q+, we define the vector w⃗ = 1
e v⃗ =

[α,β ,γ,λ ] such that a = eα,b = eβ ,c = eγ,and d = eλ . Then, for an arbitrary vector s⃗ ∈V−1, there
exists a vector t⃗ ∈W−1 such that s⃗ = e⃗t. Similarly, for an arbitrary vector t⃗ ∈W−1, there exists a vector
s⃗ ∈V−1 such that s⃗ = e⃗t.

Proof. Let us begin by iterating backwards on vector v⃗. Let v⃗−1[1] = x. Thus, v⃗−1[2] = x± b and
v⃗−1[0] is x± a by Lemma 1. The final value v⃗−1[3] can be written as x± b± c, where the b’s must
share the same sign for both v⃗−1[2] and v⃗−1[3]. Thus, D−1(⃗v) = v⃗−1 = [x±a,x,x±b,x±b± c].

Now, let us work backwards on w⃗. Let us choose w⃗−1[1] = x
e . We shall denote this as y, and note that y

is involved in the calculations of both α and β . After calculating the other values, we end up with the
vector D−1(w⃗) = w⃗−1 = [y±α,y,y±β ,y±β ± γ].

Now, let us rewrite both v⃗−1 and w⃗−1 as v⃗−1 = xI4×1 + e[±α,0,±β ,±β ± γ] and w⃗−1 = yI4×1 +
[±α,0,±β ,±β ± γ]. Note that when v⃗−1 is divided by e, we get w⃗−1. Similarly, if we multiply w⃗−1
by e, we get v⃗−1. Since these vectors represent arbitrary elements of V−1 and W−1, we prove our
claim. □

3In this paper, we will only consider the fixed point of 0⃗. The other fixed points (of which there are infinitely many), are
only a result of the mutation and so, are not effective for comparing it to the original game.
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DUCCI’S FOUR NUMBER GAME WITH A MUTATION 8

This theorem brings an immediate question to mind: if e is a positive rational number, wouldn’t our
w⃗−1 vector contain non-natural numbers? We utilize rational numbers in order to take advantage of the
fact that natural numbers are a subset of rational numbers. That is, if we can prove that w⃗−1 /∈Q+4,
then we know that w⃗−1 /∈ N+4 since N4 ∈Q+4.

The previous theorem does not account for an occurrence of an error, so we address this in the
following corollary.

Corollary 2. Let v⃗i+1 = Dn(⃗vi). Then, w⃗i+1 = D n
e
(w⃗i), where v⃗i = ew⃗i and i ∈ Z, assuming the error

occurs between elements k and k+1 of both vectors.

Proof. Let v⃗i = [a,b,c,d] and w⃗i = [α,β ,γ,λ ]. Without loss of generality, we shall assume the error
happens between the second and third values for both vectors. Since we assume that v⃗i = ew⃗i, we know
that |b− c+n|= e|β − γ + k|, where k is the mutation value for w⃗i. Since e > 0, we can distribute it
into the absolute value, and we get that n = ek. □

Finally, we prove one more supporting result.

Lemma 2. If there is a vector v⃗i such that v⃗i+1 = Dn(⃗vi) = [a,1,b,1], where a,b ∈Q+ and the error
value is +n, then ±a±b =±1±1−n.

Proof. Since the vector is not a multiple of the identity vector, we need to break this up into two cases,
based on where the mutation occurs. We shall first start with the case where the mutation results in
either a or b in v⃗i+1. Let w = v⃗i[0] be a value that does not occur in a calculation with a mutation. Then,
the values adjacent to it are w±1 and w±a. The final value is w±a±1. By the game’s definition, we
know that |(w±a±1)− (w±1)+n|= b. With some simplification, we get ±a±b =±1±1−n. For
the second case, we now assume the mutation produces a 1 in the game. In a very similar approach, let
w = v⃗i[0] be a value that does not occur in a calculation with a mutation. The rest of the values turn
out to be the same as before, where we now get the constraint |(w±a±1)− (w±b)+n|= 1, which
results in the exact same expression from earlier, proving the theorem. □

With these new results in mind, we continue to address our questions about the game more efficiently.
We shall start with the setting in which a mutation occurs every second iteration.

Theorem 5. If r = 2 and n is odd, then no vector will converge to 0⃗. That is, if a mutation of odd size
occurs every two iterations, then the game never reaches 0⃗.

Proof. Let us work backwards in order to prove this. Let v⃗ = mI4×1, where m ∈ N and m ̸= 0, be the
previous iteration of the zero vector. Note that v⃗ could not have contained a mutation by Corollary 1.
By Theorem 4, we can simplify our case to w⃗ = I4×1.

Thus, there is an error between two elements of w⃗−1, since i = 2. Now, let w⃗−1[k] = a such that the
calculations a is involved in do not contain the mutation. Without loss of generality, let k = 0. w⃗−1[±1]
must equal a±1 by Lemma 1. Now, let the final value equal x. Thus, w⃗−1 = [a,a±1,x,a±1]. All of
this can be seen in Figure 7.

By Theorem 4, there must exist a vector v⃗−1 ∈V−1 such that v⃗−1 = mw⃗−1. We then know that one
calculation yields the equation |mx− (ma±m)|= m and the other, |mx− (ma±m)+n|= m. Simple
algebra results in ±m+n =±m, meaning either 0 or m can only possibly equal ±n

2 . However, n is
odd, which means that equality is never true. We are done. □
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DUCCI’S FOUR NUMBER GAME WITH A MUTATION 9

Notice that this theorem does not restrict a game converging when the size of the mutation is even.
Figure 8 illustrates such a game.

a±1 x

a±1a

1

1

1

1

FIGURE 7. Vectors w⃗ and
w⃗−1
from Theorem 5 put in
Ducci’s Four-Number game.

2 5

43

1

1

1

1

0 0

00

FIGURE 8. A game converg-
ing with n = 2. Here, |2−5+
2| produces the mutated value
1 at the top.

Now, let’s move on to the case where r = 3.

Theorem 6. If r = 3 and n is odd, then no initial vector will converge to 0⃗. That is, if a mutation of
odd value occurs every three iterations, then the game never reaches 0⃗.

Proof. As we did in the proof for the r = 2 case, let us move backwards. Theorem 6 and Lemma 1 tell
us that the mutation cannot occur on the previous two steps. Thus, Dn(v⃗−3) = v⃗−2.

Working backwards from 0⃗, we reach the vector v⃗−1 = [x,x,x,x], where x ∈ N−{0}. By Theorem
4, we can work with the vector w⃗−1 = I4×1, with v⃗−1 = xw⃗−1. This means that for every vector in W−2,
there exists a vector in V−2 such that they are multiples of each other. Let w⃗−2[0] = a. By Lemma 1,
we know that w⃗−2[±1] = a±1. Now, let the final value be labelled as b, where |b− (a±1)|= 1.

Now, we break up our game into three cases and simplify. We get:

• Case 1: w⃗−2 = [a,a+1,b,a+1] = [a,a+1,a+ k,a+1], where k = 0,2.
• Case 2: w⃗−2 = [a,a−1,b,a+1] = [a,a−1,a,a+1].
• Case 3: w⃗−2 = [a,a−1,b,a−1] = [a,a−1,a− k,a−1], where k = 0,2.

Let us focus on Case 1. By Theorem 4, let us define u⃗−2 = [ a
a+1 ,1,

a+k
a+1 ,1], where w⃗−2 = (a+1)⃗u−2.

By Lemma 2, we know that | a
a+1 ±

a+k
a+1 |=±1±1−m. Note that by Corollary 1, mx(a+1) = n, which

is the error we are working with for our original vector. By plugging in and making sure our values are
non-negative, we get that the only possible solution is n = 2xa or 2x(a+1). Clearly, these are all even
numbers, so games with a odd mutation value n will not converge to 0⃗.

For readers who want to visualize the proof and vectors created for Case 1, please refer to Figure 9.
The other cases are very similar and shall be left as an exercise for the readers. □
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a a+1

a+ ka+1

1

1

1

1

0 0

00

FIGURE 9. Vectors w⃗, w⃗−1, and 0⃗
from Theorem 6 put in Ducci’s
Four-Number Game.
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4

2 2

22

0
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0

0

FIGURE 10. A game converging
with n = 4. Here, |9−15+4| pro-
duces the mutated value 2 at the
top.

Interestingly enough, we reach the same conclusion for r = 2 and r = 3: even mutations pose no
harm to the game’s convergence, but odd mutations do. An example of an even mutation is given in
Figure 10.

Moving on, we reach the next value of r.

Theorem 7. If r = 4 and n = 1, then no initial vector will converge to 0⃗. That is, if a mutation of value
1 occurs every four iterations, then the game never reaches 0⃗.

Proof. Based on Theorems 6 and 7 and Lemma 1, Dn(⃗v−4) = v⃗−3. Instead of iterating backwards to
find V−3, let us use the material we covered in Section 2 of this paper. According to Tables 1 and 2,
vectors in 0−3 are of the form:

• Case 1: [a,a,b,b] = a[1,1,x,x]
• Case 2: [a, |a−b|,b,0] = a[1,1− x,x,0]
• Case 3: [a,a+b,b,0] = a[1,1+ x,x,0]

where we have assumed that a > b without loss of generality and rewrote our vectors with respect to
x = b

a . It is important to note that we used Theorem 4 to simplify our cases.
Let’s start with Case 1. Now, let us introduce w⃗−3 =

1
a v⃗−3 = [1,1,x,x]. Now, we begin constructing

w⃗−4 with w⃗−4[1] = u. Let us further break down this case into sub-cases, where in one sub-case the
mutation produces an x and in the other, produces 1.

In the first sub-case, w⃗−4[1±1] = u±1. The final value is u± x±1. Thus, |± x±1±1+ n
a |= x.

With simplification, 1
a(±b± b+ n) = 2,−2, or 0. The only values of n that solve this equation are

2a,2(a±b), and 2b, which are all obviously even. In the second sub-case, the other values turn out to
be u±1,u±1± x, and u±1± x± x. This means that |± x± x±1+ n

a |= 1. This simplifies down to
the first sub-case. Thus, by Theorem 4, there exists no vector v⃗−4 such that Dn(⃗v−4) = [a,a,b,b] for
any odd positive integer n.

For our second case, let us similarly construct a vector w⃗−3 =
1
a v⃗−3 = such that w⃗−3 = [1,1−x,x,0].

The mutation can produce any value of w⃗−3. Let us work with one such value: 1− x (the others

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

25 Jan 2024 11:30:50 PST
231103-Suresh Version 2 - Submitted to Rocky Mountain J. Math.



DUCCI’S FOUR NUMBER GAME WITH A MUTATION 11

follow nearly identically). Now, let w⃗−4[0] = u. Lemma 1 tells us that w⃗−4[1] = u± 1, w⃗−4[−1] =
u, and w⃗−4[2] = u± x. Thus, |± x±1+ n

a |= 1− x. This simplifies down to ±x± x+n =±1±1, so
1
a(±b±b+1) = 2, −2,or 0. This is the exact same equation as Case 1. Thus, there exists no vector
v⃗−4 such that Dn(⃗v−4) = [a, |a−b|,b,0] for any odd positive integer n.

We approach our third and final case similar to Case 2. Let w⃗−3 =
1
a v⃗−3 = [1,1+x,x,0]. Let us sup-

pose that the mutation produces 1+x. If w⃗−4[0] = u, then w⃗−4[1] = u±1, w⃗−4[−1] = u, and w⃗−4[2] =
u± x, which we obtained when working with Case 2. This means that |± x±1+ n

a |= x+1, which
becomes ±x± x+ n

a =±1±1, which was the exact same expression from Case 1 and 2. Thus, there
exists no vector v⃗−4 such that Dn(⃗v−4) = [a,a+b,b,0] for any odd positive integer n.

Since we have considered all possible cases, we have therefore proved that no vector can converge
to the zero vector if a mutation of odd parity occurs every four iterations. □

Like its predecessors, the r = 4 case demands an even-sized error to converge. An example of such
a game can be seen in Figure 11.

20 12

433

8

8

13

13

0 5

05

5

5

5

5

0 0

00

FIGURE 11. A game converging with n= 16. Here, |4−33+16| produces the mutated
value 13 at the bottom.

We now reach the final theorem of this section that concludes this discussion. It will be helpful to
first state the following lemma.

Lemma 3. Given any vector v⃗, its fourth iteration (assuming no mutation), has all even entries. That
is, v⃗4[k]≡ 0 mod 2, for k = 0,1,2,3.

Proof. This can easily be checked by cases by considering all combinations of even and odd entries.
For a more detailed discussion, see [12]. □

Theorem 8. If r ≥ 5, then every vector will converge to 0⃗. That is, if a mutation of value 1 occurs
every five or more iterations, then the game always reaches 0⃗.

Proof. Since this game deals with absolute differences, the maximum element of v⃗i is greater than or
equal to the maximum element of v⃗i+4. To make our argument more clear, let max(⃗v) be the value of
the maximum element of v⃗.
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DUCCI’S FOUR NUMBER GAME WITH A MUTATION 12

B11 s11

s12s13

B21

s21

s22

B22

s31 B31

s32B32

B41

B42

B43

B44

s51 s52

s53s54

FIGURE 12. Effect of a mutation on the game. The vector x⃗n+i is [B11,s11,s12,s13],
where B11 represents a big value, while the others are small values. After B11 is
produced through a mutation, we can easily see that the game returns to small values
after four iterations.

We now start the game with a vector v⃗. Let’s introduce the vector v⃗k such that Dn(⃗vk−1) = v⃗k. Let m
be the smallest value such that max(⃗vk)≤ 2m. Also, recall by Lemma 3 that the elements of v⃗k+4 are
even since r ≥ 5.

With the help of Theorem 2, we can divide v⃗k+4 by 2 to get another vector x⃗k+4 with the same
speed of convergence as v⃗k+4. Note that max(⃗xk+4)≤ 2m−1. Now, we move onto the next occurrence
of the mutation which produces the vector x⃗k+i. It is easy to see that max(⃗xk+i) ≤ 2m−1. Firstly, if
the mutation makes an element smaller than what it would have been before, then clearly this is true.
However, the argument for the other case is more subtle: if n is relatively larger than the elements of
x⃗k+i+4, then we can illustrate the mutation’s effect for the next four iterations, as seen in Figure 12.

In this figure, we see that as we iterate, the mutation ‘spreads’ to the other elements, but after four
iterations, the mutation is ejected from the vector. Due to the subtracting nature of the game, we can
easily assume that Bi j ≥ Bk j and si j ≥ sl j for i ∈ [0, · · · ,5], l,k ∈ [i, · · · ,5], and j ∈ [0, · · · ,4]. That
is, after an iteration, the values that are either designated as ‘small’ or ‘big’ either decrease or stay
the same. This indicates that x⃗k+i+4 = [s51,s52,s53,s54] is also bounded by 2m−1. We know that this
vector only consists of even numbers (by Lemma 3), so we divide by 2 again to get y⃗k+i+4. And so,
max(⃗yk+i+4)≤ 2m−2. Since every value in this game is a natural number including 0, this means that
max(⃗yk+i+4)≤ 2m−2. As this process continues, this generalises to max(w⃗g(i+4)+n)≤ 2m−g−1. As g
gets larger, the right hand side of the inequality approaches 0. If the maximum element of a vector is
zero, then the vector is the zero vector.

Thus, all vectors converge to 0⃗ even if there is a mutation every 5 or more iterations. □

4. Conclusion

The behaviour of the Ducci game, though well studied in the literature for decades, turns out to have
interesting and novel properties when we modify the rules slightly, by introducing errors (mutations).
We find that no point converges to 0⃗ if there is a mutation every iteration. This is also the case for when
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DUCCI’S FOUR NUMBER GAME WITH A MUTATION 13

a mutation occurs every two, three, or four iterations and the mutation value is odd. However, there is
no restriction for even sized errors. In addition, all points converge to 0⃗ if a mutation occurs every five
or more iterations.

It may be interesting to consider other mathematical functions that make use of iteration and to
consider the ways in which their behaviour, too, would change if occasional mutations occur. We also
note that we have explored the case in which mutations in the Ducci game occur not at fixed intervals,
but at random ones. This work is under review.
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