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A SHORT PROOF OF THE RANK FORMULA FOR INCLUSION MATRICES

LIAM JOLLIFFE

ABSTRACT. We present a new proof of the well known formula for the rank of the inclusion matrix
by constructing a kSm-module spanned by the columns of this matrix and calculating its dimension.
This gives a representation theoretic interpretation of this formula as the sum of dimensions of Specht
modules.

1. Introduction

The inclusion matrix, An
i (m), where i ≤ n ≤ m, is the

(m
i

)
×
(m

n

)
matrix whose rows are indexed by

subsets of [m] := {1,2, . . . ,m} of size i and whose columns are indexed by subsets of [m] of size n. The
entry corresponding to position X ,Y is 1 if X ⊆ Y and 0 otherwise. This matrix arises in a number of
combinatorial investigations. Gottlieb proved that over a field of characteristic 0 this matrix has full
rank [4]. Linial and Rothschild then determined a formula for the rank of this matrix over the field
of two elements, as well the special case when n = i+1 over the field of three elements [7]. Wilson
solved the problem over any field by proving the following [8]:

Theorem 1. Let k be a field of characteristic p and suppose i ≤ min{n,m−n}. Then

rankk(An
i (m)) = ∑

p∤(n− j
i− j)

(
m
j

)
−
(

m
j−1

)
,

where
( m
−1

)
is interpreted as 0.

Wilson also gives a characterisation of those vectors which are in the Z-span of the columns of
An

i (m). There are other proofs of Theorem 1 in the litereature, Frankl [2], [3]. The paper of Frumking
and Yakir [3] also uses representation theoretic techniques, however their proof relies on constructing
idempotent elements and does not work over fields of characteristic two. Our representation theoretic
proof is simpler and works in all characteristics, including fields of characteristic 0, which gives a
representation theoretic interpretation of the orriginal work of Gottlieb. Observe that there is nothing
lost by the assumption that i ≤ min{n,m−n}, because An

i (m)T = Am−i
m−n(m), and so this assumption

shall be made throughout.
We shall give a new proof of Theorem 1 by constructing a kSm-module spanned by the columns of

An
i (m) which, of course, has dimension rankk(An

i (m)). This proof shall make use of the representation
theory of the symmetric group, which we review in the next section. The reader is referred to James’
book [5], from which our notation is taken, for more details.
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2. Representation Theory of Sm

Recall, a partition of an integer, m > 0, is a non-increasing sequence of positive integers λ =
(λ1,λ2, . . . ,λr) with ∑i≥1 λi = m. If λ is a partition of n we write λ ⊢ m and identify λ with its
corresponding Young diagram: a left justified array of boxes with λi boxes in the ith row. Partitions of
m index a number of important classes of kSm-modules; we shall now describe two such classes of
modules: the permutation modules Mλ and the Specht modules Sλ . To do so we will need some more
combinatorial definitions.

Given a partition λ , we define a λ -tableau to be a bijection between the set [m] and the boxes of (the
Young diagram of) λ . We can define an equivalence relation ∼r on the set of λ -tableaux by calling
t and s row-equivalent if the set of elements which appear in each row of t and s are the same. For
example; the following two (4,3,3,1)-tableaux are row equivalent.

1 2 3 4
5 6 7
8 9 10
11

∼r

2 4 3 1
6 5 7
9 10 8

11

We call an equivalence class of λ -tableaux a λ -tabloid, and denote the tabloid corresponding to the
tableaux t by {t}, or by drawing the Young diagram without the vertical lines,

1 2 3 4
5 6 7
8 9 10
11

.

There is an obvious action of Sm on both the sets of λ -tableaux and λ -tabloids, obtained by permuting
the positions in which elements appear. Thus, the vector space consisting of formal sums of λ -tabloids
is a kSm-module, which we denote Mλ . Throughout this paper we shall only be interested in such a
module when λ is a two-part partition, that is λ = (λ1,λ2), in which case we can identify the tabloid
{t} with the set of elements appearing in the second row of {t}. We then see that M(m−i,i) has a basis
consisting of all the i subsets X ⊆i [m], that is subsets of size i. We shall frequently alternate between
these two notations depending on notational convenience.

An important submodule of this permutation module Mλ is the Specht module Sλ , which is spanned
by the polytabloids in Mλ . We shall take a slightly unusual step here, and define the Specht module as
a special case in a larger family of submodules. We will specialise here to two part partitions, but the
general definitions can be found in James’ book [5].

Let t be a (m− i, i)-tableau and let 0 ≤ j ≤ i. The j-column stabiliser of t, denoted C j(t) is the set
of permutations that fix all but the first j columns of t and only permute elements that appear in the
same column of t. In particular C j(t) is generated by the j transpositions which swap an element of the
first j entries in the first row of t with the element appearing below it.

The j-column symmetriser is the element of the group algebra

κ j(t) := ∑
σ∈C j(t)

(−1)σ
σ ,

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

23 Feb 2022 02:26:17 PST
220223-Jolliffe Version 1 - Submitted to Rocky Mountain J. Math.



A SHORT PROOF OF THE RANK FORMULA FOR INCLUSION MATRICES 3

and the j-polytabloid is

e j
t = κ j(t){t} ∈ M(m−i,i),

where (−1)σ is the sign of the permutation σ . Note in particular that

e0
t = {t}.

We define the kSm-module S(m−i, j)(m−i,i)⊆M(m−i,i) to be the submodule spanned by the j-polytabloids.
The Specht-module S(m−i,i) is just the module obtained when j = i. This gives us a chain of submodules

M(m−i,i) ⊇ S(m−i,1)(m−i,i) ⊇ ·· ·S(m−i,i−1)(m−i,i) ⊇ S(m−i,i) ⊇ 0.

It can be shown that the successive quotients S(m−i, j)(m−i,i)/S(m−i, j+1)(m−i,i) are isomorphic as kSm-
modules to the Specht module S(m− j, j), and so we write

M(m−i,i) ∼

S(m)

S(m−1,1)

...
S(m−i,i)

to indicate that M(m−i,i) has a chain of submodules whose successive quotients are S(m),S(m−1,1), . . . ,S(m−i+1,i−1)

and S(m−i,i). To see that these quotients are indeed the Specht modules we follow [6] and define a
kSm-homomorphism

ψ j : M(m−i,i) → M(m− j, j)

by

ψ j(X) = ∑
Z⊆ jX

Z,

for X ⊆i [m]. In the notation of tabloids

ψ j({t}) = ∑
{s}

{s},

where the sum is over all the (m− j, j)-tabloids {s} whose second row is a subset of the second row of
{t}.

Proposition 2. Let t be an (m− i, i)-tableau and e j
t its j-polytabloid. Let k < j ≤ i then

ψk(e
j
t ) = 0,

while

ψ j(e
j
t ) = e j

t ′ ,

where t ′ is the (m− j, j)-tableau obtained from t by moving the last i− j entries in the bottom row to
the end of the top row.
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Proof.

ψk(e
j
t ) = ψk(κ j(t){t})

= ψk( ∑
σ∈C j(t)

(−1)σ
σ{t})

= ∑
σ∈C j(t)

(−1)σ
σψk({t})

= ∑
σ∈C j(t)

(−1)σ
σ ∑

{s}
{s},

where the second sum is over all (m− k,k)-tabloids, {s}, whose second row is a subset of the second
row of {t}. As k < j then some element in the first j entries of the second row of t must lie in the
top row of {s}, and there must be a transposition σ ∈ C j(t) fixing {s}. The terms involving this
transposition and the terms not involving this transposition have opposite signs, and cancel, thus

ψk(e
j
t ) = 0.

Similarly
ψ j(e

j
t ) = ∑

σ∈C j(t)
(−1)σ

σ ∑
{s}

{s},

with cancellation for any {s} for which one of the first j elements of the second row of t appears in the
first row. Therefore

ψ j(e
j
t ) = ∑

σ∈C j(t)
(−1)σ

σ{t ′}

= ∑
σ∈C j(t ′)

(−1)σ
σ{t ′}

= e j
t ′ .

□

So, when restricted to S(m−i, j)(m−i,i) ⊆ M(m−i,i) the image of ψ j is isomorphic to S(m− j, j) and its
kernel is S(m−i, j)(m−i,i). This gives an alternative characterisation of S(m−i, j)(m−i,i) as:

S(m−i, j)(m−i,i) = ∩ j−1
k=0(ker(ψk : M(m−i,i) → M(m−k,k))).

To prove Theorem 1 in the next section we will identify a submodule of M(m−i,i) and study its
images under this map. We shall conclude this section by stating a special case of the famous hook
length formula [1], which gives the dimension of a Specht module.

Theorem 3. Let k be a field.

dimS(m− j, j) =

(
m
j

)
−
(

m
j−1

)
,

where
( m
−1

)
= 0.

The astute reader will have noticed that is the term which appears in the formula in Theorem 1.
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3. Proof of Theorem 1

The rows of the inclusion matrix An
i (m) are indexed by the i subsets of [m], which is naturally the

basis for the kSm-module M(m−i,i). The columns of span a submodule of M(m−i,i) of dimension
rankk(M(m−i,i)). We shall denote this submodule by Pn

i (m). Our analysis of M(m−i,i) in the previous
section gives rise to a chain of submodules

Pn
i (m)⊇ Pn

i (m)1 ⊇ Pn
i (m)2 ⊇ ·· · ⊃ Pn

i (m)i ⊇ 0,

where Pn
i (m) j := Pn

i (m)∩S(m−i, j)(m−i,i). This shows that

Pn
i (m)∼

L(m)

L(m−1,1)

...
L(m−i,i)

,

where each L(m− j, j) is some submodule of S(m− j, j). In particular, L(m− j, j) is the image of Pn
i (m) j under

the map ψ j : M(m−i,i) → M(m− j, j).
Observe that the columns of the matrix An

i (m) correspond to the images of the n-subsets of [m]

under the homomorphism ψi : M(m−n,n) → M(m−i,i). The module Pn
i (m) is thus the image of ψi :

M(m−n,n) → M(m−i,i). Observe that although (m− n,n) may not be a partition, we can still define
the permutation module M(m−n,n), and we can also define j-polytabloids for any j < min{m−n,n}.
Denote by x ∈ Pn

i (m) the image of the j-polytabloid corresponding to a (m− n,n)-tableau t, for
j ≤ i. Our assumption from the introduction that i < min{m−n,n} ensures that this j-polytabloid is
well-defined.

x : = ψi(e
j
t )

= ∑
σ∈C j(t)

(−1)σ
σ ∑

{s}
{s}

where the second sum is over all (m− i, i)-tabloids, {s}, whose second row is a subset of the second
row of {t}. Of course we have cancellation of any terms for which the first j entries from the second
row of t do not appear in the second row of {s}, so the sum is over all (m− i, i)-tabloids whose second
row is a subset of the second row of {t} of size i containing these first j entries. Observe then that

x = ∑
s

e j
s ,

where the sum is over all (m− i, i)-tableaux obtained by moving n− i of the last n− j entries of the
second row of t to the top row. As x is a sum of j-polytabloids, x ∈ S(n−i, j)(m−i,i) and thus x ∈ Pn

i (m) j,
and so its image under ψ j is in L(m− j, j).

Proposition 4. If p ∤
(n− j

i− j

)
then L(m− j, j) = S(m− j, j).
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Proof. Let x = ∑s e j
s as above. Then, by Proposition 2,

ψ j(x) = ψ j(∑
s

e j
s)

= ∑
s

e j
s′

where s′ is the (m− j, j)-tableau obtained from s by moving the last i− j entries of the bottom row
to the top row. Each term is equal, and and the sum is over all (m− i, i)-tableaux obtained by moving
n− i of the last n− j entries of the second row of t to the top row, of which there are

(n− j
i− j

)
. Thus

ψ j(x) =
(

n− j
i− j

)
e j

s′ ,

and hence e j
s′ ∈ L(m− j, j). In fact, this shows that any j-polytabloid is in L(m− j, j) and thus L(m− j, j) =

S(m− j, j). □

Proof of Theorem 1. Consider the image of Pn
i (m) j under the map ψ j, which is a submodule L(m− j, j) ⊆

S(m− j, j). By Proposition 4, if p ∤
(n− j

i− j

)
then L(m− j, j) = S(m− j, j). On the other hand, if p |

(n− j
i− j

)
then

for any column y = ψi(Y ) of An
i (m),

ψ j(y) = ∑
X⊂iY

ψ j(X)

= ∑
X⊆iY

∑
Z⊆ jX

Z

= ∑
Z⊆ jY

(
n− j
i− j

)
Z

= 0.

This means that ψ j is the zero map on Pn
i (m), thus L(m− j, j) = 0. We conclude that

Pn
i (m)∼

L(m)

L(m−1,1)

...
L(m−i,i)

,

with

L(m− j, j) =

{
0 if p |

(n− j
i− j

)
S(m− j, j) if p ∤

(n− j
i− j

) .
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The dimension of this module is then:

dimk(Pn
i (m)) =

m

∑
j=0

dimk(L(m− j, j)))

= ∑
p∤(n− j

i− j)

dimk(S(m− j, j)))

= ∑
p∤(n− j

i− j)

(
m
j

)
−
(

m
j−1

)
,

where the last equality is due to Theorem 3. The rank of the inclusion matrix An
i (m) over k is the

dimension of the kSm-module Pn
i (m), thus proving the result. □
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