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Abstract

In this paper we get characterizations countable tightness, countable fan-tightness and
countable strong fan-tightness of spaces of quasicontinuous functions from an open Why-
burn regular spaceX into the discrete two-point space {0, 1} with the topology of pointwise
convergence through properties of X determined by selection principles. These properties
(e.g. S1(K,K), KΩ-Lindelöfness, S1(KΩ,KΩ)) were defined by M. Scheepers and studied in
theory of selection principles in the class of metric spaces.

For any uncountable cardinal number κ, we get a functional characterization of κ-Lusin
spaces in class of separable metrizable spaces through tightness of compact subsets of a
space of quasicontinuous real-valued functions with the topology of pointwise convergence.
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1. Introduction

A study of some convergence properties in function spaces is an important task of
general topology. The general question in the theory of function spaces is to characterize
topological properties of a space of functions on a topological space X.

In Cp-theory it have been obtained interested results on cardinal properties of first-
countability, Fréchet-Urysohn properties, tightness [1, 7, 8, 22, 23, 30] of a space Cp(X,R)
of continuous real-valued functions on a Tychonoff space X with the topology of pointwise
convergence.

Archangel’skii-Pytkeev theorem [1] is a nice result about tightness of function spaces:
t(Cp(X,R)) = sup{l(Xn) : n ∈ N}. Thus, Cp(X,R) has countable tightness if and only if
Xn is Lindelöf for each n ∈ N.

The following result on countable fan tightness of function spaces Cp(X,R) is shown by
A.V. Archangel’skii [3]: Cp(X,R) has countable fan tightness if and only if Xn is a Menger
space for each n ∈ N (i.e. X has the property Sfin(Ω,Ω)).
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In [30], M. Sakai is shown that Cp(X,R) has countable strong fan-tightness if and only
if X has the property S1(Ω,Ω).

In papers [17, 19, 20], tightness, fan tightness and strong fan-tightness of a space of
continuous functions with a set-open (e.g. compact-open) topology were investigated. In
[18], we study tightness type properties of spaces of Baire-one functions with the topology
of pointwise convergence.

In this paper, we continue to study countable tightness, countable fan-tightness and
countable strong fan-tightness of spaces of quasicontinuous functions with the topology of
pointwise convergence.

A function f : X → Y is quasicontinuous at x if for any open set V containing f(x) and
any U open containing x, there exists a nonempty open set W ⊆ U such that f(W ) ⊆ V .
It is quasicontinuous if it is quasicontinuous at every point. Call a set semi-open (or quasi-
open) if it is contained in the closure of its interior. Then f : X → Y is quasicontinuous if
and only if the inverse of every open set is quasi-open.

Quasicontinuous functions were studied in many papers, see for examples [5, 24, 25, 26,
27, 28].

Levine [12] studied quasicontinuous maps under the name of semi-continuity using the
terminology of semi-open sets. A function f : X → Y is called semi-continuous if f−1(V )
is semi-open in X for every open set V of Y . A map f : X → R is quasicontinuous if and
only if f is semi-continuous [12].

Let X and Y be Hausdorff topological spaces, Qp(X, Y ) = (Q(X, Y ), τp) be the space
of all quasicontinuous functions on X with values in Y and τp be the pointwise convergence
topology.

2. Preliminaries

All spaces under consideration are assumed to be regular. A subset U of a topological
space X is called a regular open set or an open domain if U = IntU holds. A subset F of
a topological space X is called a regular closed set or a closed domain if F = IntF holds.

A set A is called minimally bounded with respect to the topology τ in a topological
space (X, τ) if IntA ⊇ A and IntA ⊆ A ([4], p.101). Clearly this means A is semi-open
and X \ A is semi-open. In the case of open sets, minimal boundedness coincides with
regular openness.

Note that if U is a minimally bounded (e.g. regular open) set of X such that U is not
dense subset in X and B ⊂ U \ U then there is a quasicontinuous function f : X → R
such that f(U ∪B) = 0 and f(X \ (U ∪B)) = 1 (see Lemma 4.2 in [29]).

Let us recall some properties of a topological space X.
(1) A space X is Fréchet-Urysohn provided that for every A ⊂ X and x ∈ A there

exists a sequence in A converging to x.
(2) A space X has countable tightness at a point x (denoted t(x,X) = ω) if x ∈ A, then

x ∈ B for some countable B ⊆ A. A space X has countable tightness (denoted t(X) = ω)
if t(x,X) = ω for every x ∈ X.
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(3) A space X has countable fan-tightness at a point x (denoted vet(x,X) = ω) if for
any countable family {An : n ∈ ω} of subsets of X satisfying x ∈

⋂
n∈ω An it is possible

to select finite sets Kn ⊂ An in such a way that x ∈
⋃

n∈ω Kn. A space X has countable
fan-tightness (denoted vet(X) = ω) if vet(x,X) = ω for every x ∈ X.

(4) A space X is said to have countable strong fan-tightness at a point x (denoted
vet1(x,X) = ω) if for each countable family {An : n ∈ ω} of subsets of X such that
x ∈

⋂
n∈ω An, there exist ai ∈ Ai such that x ∈ {ai : i ∈ ω}. A space X has countable

strong fan-tightness (denoted vet1(X) = ω) if vet1(x,X) = ω for every x ∈ X.
(5) A space X is said to be open Whyburn if for every open set A ⊂ X and every

x ∈ A \ A there is an open set B ⊆ A such that B \ A = {x} [16].

Note that the class of open Whyburn spaces is quite wide; for example, it includes all
first countable regular spaces [16] and, therefore, all metrizable spaces.

LetX be a Tychonoff topological space, C(X,R) be the space of all continuous functions
on X with values in R and τp be the pointwise convergence topology. Denote by Cp(X,R)
the topological space (C(X,R), τp).

A real-valued function f on a space X is a Baire-one function (or a function of the first
Baire class) if f is a pointwise limit of a sequence of continuous functions on X.

The symbol 0 stands for the constant function to 0. A basic open neighborhood of 0
in RX is of the form [F, (−ϵ, ϵ)] = {f ∈ RX : f(F ) ⊂ (−ϵ, ϵ)}, where F ∈ [X]<ω and ϵ > 0.

Let us recall that a cover U of a set X is called
• an ω-cover if each finite set F ⊆ X is contained in some U ∈ U ;
• a γ-cover if for any x ∈ X the set {U ∈ U : x ̸∈ U} is finite.

In this paper A and B will be collections of the following covers of a space X:
Os : the collection of all semi-open covers of X.
Ω : the collection of open ω-covers of X.
K: the collection U of open subsets of X such that X =

⋃
{U : U ∈ U}.

Ωs : the collection of minimally bounded ω-covers of X.
Γs : the collection of minimally bounded γ-covers of X.
KΩ is the set of U in K such that no element of U is dense in X, and for each finite set

F ⊆ X, there is a U ∈ U such that F ⊆ U .
KΓ is the set of U in K such that no element of U is dense in X, and {U : U ∈ U} is a

γ-cover of X.

Definition 2.1. Let P be a collection of covers of X. A space is P-Lindelöf if each element
of P has a countable subset in P .

Definition 2.2. ([11]) A Hausdorff space X is called a Lusin space (in the sense of Kunen)
if

(a) Every nowhere dense set in X is countable;
(b) X has at most countably many isolated points;
(c) X is uncountable.

3

26 Jan 2024 06:11:58 PST
231116-Osipov Version 2 - Submitted to Rocky Mountain J. Math.



If X is an uncountable Hausdorff space then X is Os-Lindelöf (semi-Lindelöf) if and
only if X is a Lusin space (Corollary 2.5 in [21]).

If X is a Lusin space, X is hereditarily Lindelöf (Lemma 1.2 in [11]). Hence, if X is a
regular Lusin space then X is perfect normal (3.8.A.(b) in [6]).

If X is a Lusin space, so is every uncountable subspace (Lemma 1.1 in [11]).

Many topological properties are defined or characterized in terms of the following clas-
sical selection principles (see [31]). Let A and B be sets consisting of families of subsets of
an infinite set X. Then:

S1(A,B) is the selection hypothesis: for each sequence {An : n ∈ N} of elements of A
there is a sequence {bn}n∈N such that for each n, bn ∈ An, and {bn : n ∈ N} ∈ B.

Sfin(A,B) is the selection hypothesis: for each sequence {An : n ∈ N} of elements of A
there is a sequence {Bn}n∈N of finite sets such that for each n, Bn ⊆ An, and

⋃
n∈N Bn ∈ B.

In [32], M. Scheepers investigated combinatoric properties (e.g. S1(K,K), KΩ-Lindelöfness,
S1(KΩ,KΩ), Sfin(K,K)) in the class of separable metric spaces. Unexpectedly, it turned
out that these properties are characterized by countable tightness type properties of spaces
of quasicontinuous functions. Observe that every T2 countable space X satisfies all these
properties and therefore Theorems 3.1, 4.1 and 4.3 are true for arbitrary countable spaces.

For other notation and terminology almost without exceptions we follow the Engelking’s
book [6].

3. Countable tightness

Lemma 3.1. Every uncountable open Whyburn K-Lindelöf space is a Lusin space.

Proof. (1) Claim that every nowhere dense set in X is countable.
Since the closure of a nowhere dense subset in X is a nowhere dense set, we can consider

only closed nowhere dense sets in X.
Assume that A is an uncountable closed nowhere dense set in X. Since X is open

Whyburn, for every point a ∈ A there is a regular open set Oa ⊆ X \ A such that
Oa \ (X \ A) = {a}.

Consider the family γ = {O(x) : x ∈ X} of open sets of X where O(x) = Ox for x ∈ A
and O(x) is an open neighborhood of x such that O(x) ∩ A = ∅ for x ̸∈ A. Then γ ∈ K,
but γ′ ̸∈ K for any countable subfamily γ′ ⊂ γ.

(2) Claim that X has at most countably many isolated points.
Assume that X has uncountable many isolated points D.
Consider the set W = IntD. Since X is open Whyburn, for every point d ∈ W \ D

there is an open subset Od ⊆ D such that Od \D = {d}.
(a) Suppose that for every point d ∈ W \D there is a neighborhood Vd of d such that

|Od ∩ Vd| ≤ ω. Let Wd = Od ∩ Vd. Then Wd \D = {d}, Wd ⊂ D and |Wd| ≤ ω.
Consider the open family µ = {{d} : d ∈ D} ∪ {Wd : d ∈ W \D} ∪ (X \D). Note that

µ ∈ K, but µ′ ̸∈ K for any countable subfamily γ′ ⊂ γ.
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(b) Suppose that there is a point d ∈ W \D such that |Od ∩ Vd| > ω for every neigh-
borhood Vd of d. Let Od = O1 ∪O2 such that O1 ∩O2 = ∅ and |Oi| > ω for i = 1, 2.

Let d ∈ O2. Then, we consider the open family σ = {{x} : x ∈ O1} ∪ {O2, X \ Od}.
Note that σ ∈ K, but σ′ ̸∈ K for any countable subfamily σ′ ⊂ σ.

Remark 3.2. In [32], M. Scheepers proved that a separable metrizable space X is Lusin if
and only if it is K-Lindelöf. Note that every Lusin space is hereditarily Lindelöf (Lemma
1.2 in [11]), hence, every Lusin space is K-Lindelöf.

Corollary 3.3. An uncountable open Whyburn space X is K-Lindelöf if and only if it is
a Lusin space.

It is well known that f is of the first Baire class if and only if f−1(U) is a countable
unions of zero sets for every open U ⊆ R (see Exercise 3.A.1 in [34]).

Proposition 3.4. Let X be a Lusin space. Then every real-valued quasicontinuous function
is of the first Baire class.

Proof. Let X be a Lusin space. Then X is a perfect normal space and, hence, any open
set is a countable unions of zero sets. It remains to note that any semi-open set in X is a
unions of open set and (countable set of points) countable nowhere dense subset of X.

Corollary 3.5. Let X be a Lusin space and f be a real-valued quasicontinuous function.
Then the set Df = {x ∈ X : f is discontinuous in x} is countable.

Proof. Fix an open countable basis {Vn} for R. We then have
x ∈ Df ⇔ ∃ n [x ∈ f−1(Vn) \ Int(f−1(Vn))], i.e.,
Df =

⋃
{f−1(Vn) \ Int(f−1(Vn)) : n ∈ N}. It remains to note that any set f−1(Vn) \

Int(f−1(Vn)) is countable.

The space of all quasicontinuous functions from X into the discrete space D = {0, 1}
is denote by Qp(X,D).

Theorem 3.6. For an uncountable open Whyburn space (X, τ) the following statements
are equivalent:

1. X is Ωs-Lindelöf;

2. X is KΩ-Lindelöf;

3. t(0, Qp(X,R)) = ω;

4. t(f,Qp(X,R)) = ω for every f ∈ C(X,R);
5. t(Qp(X,D)) = ω.

Proof. (1) ⇒ (2) and (4) ⇒ (3). It is trivial.
(2) ⇒ (1). It is enough to prove that for any U = {Uα}α∈A ∈ Ωs there exists V =

{Vβ}β∈B ∈ KΩ such that for any β ∈ B there is α ∈ A such that Vβ ⊆ Uα. We can
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denote this as V ≻ U . Let F be a finite subset of X. Then there is Uα such that F ⊆ Uα.
Since X is an open Whyburn space, there is an open set VF such that F ⊆ VF ⊆ Uα. Let
V = {VF : F ∈ [X]<ω}.

(2) ⇒ (3). Assume that 0 ∈ {fα : α ∈ A} where |A| > ω. Let n ∈ N and Vn = {Vα,n =
f−1
α ((− 1

n
, 1
n
)) : α ∈ A}. Then, Vn is a semi-open ω-cover of X. Since X is open Whyburn,

for every V ∈ Vn and a finite subset F of V there is an open subset WF,V in X such that
F ⊆ WF,V ⊆ V . Then W = {WF,V : V ∈ V , F ∈ [V ]<ω} ∈ KΩ and W ≻ Vn. Since X
is KΩ-Lindelöf, there is a countable subfamily W ′ = {WFi,Vαi,n

: i ∈ N} of W such that
W ′ ∈ KΩ. It follows that V ′

n = {Vαi,n : i ∈ N} is a countable subfamily of Vn. Denote by

Fn = {fαi
: i ∈ N}. Thus, for every n ∈ N, V ′

n ∈ Ωs which implies 0 ∈
⋃
{Fn : n ∈ N}.

(3) ⇒ (1). Let {Uα}α∈A ∈ Ωs. Consider the quasicontinuous function fα : X → {0, 1}
such that fα(Uα) = 0 and fα(X \ Uα) = 1 for each α ∈ A. Then 0 ∈ {fα : α ∈ A}. Since
t(0, Q(X,R)) = ω, there is B ⊂ A such that |B| = ω and 0 ∈ {fα : α ∈ B}. It follows that
{Uα : α ∈ B} ∈ Ωs.

(3) ⇒ (4). Note that for any space X and maps f, g : X → R such that f is continuous
and g is quasicontinuous, the map f + g : X → R defined by (f + g)(x) = f(x) + g(x) is
quasicontinuous (Proposition 5.4 in [10]). Thus, the mapping hf : Qp(X,R) → Qp(X,R)
such that hf (g) = f +g for every g ∈ Qp(X,R) is a homeomorphism for any f ∈ Cp(X,R).
It follows that (3) implies (4).

(2) ⇒ (5). Let f ∈ Qp(X,D). Note that f−1({d}) is a semi-open set in X for every
d ∈ D. The set Df = {x ∈ X : f is discontinuous in x} is a nowhere dense subset of X.
Since X is Lusin, the set Df is countable.

Consider the new topology τf , the base of which forms the family τ ∪ {{d} : d ∈ Df}.
Let id : (X, τf ) → (X, τ) be the identity mapping from (X, τf ) onto (X, τ).

It’s easy to check that if g ∈ Qp((X, τ),D) then g ◦ id ∈ Qp((X, τf ),D).

Claim that (X, τf ) is KΩ-Lindelöf. To do this, we will prove two facts for KΩ-Lindelöf
spaces.

(a) If X is KΩ-Lindelöf and G is an open subset of X then G is KΩ-Lindelöf.

By Lemma 3.1, X is a Lusin space and, hence, X is a perfect normal space. Thus the
set X \G is Gδ. Let X \G =

⋂
Wi where Wi+1 ⊂ Wi and Wi ∈ τ for each i ∈ N. Consider

V = {Vα : α ∈ A} ∈ KΩ where KΩ in the subspace G. Note that Vα is not dense in G for
each Vα ∈ V . Since X is regular, there is an open set Oα in X such that Oα ⊂ G \ Vα.

Let Oi = {Vα,i = Vα∪ (Wi \Oα) : α ∈ A}. Note that Vα,i is not dense in (X, τ) for each
α ∈ A. ThenOi ∈ KΩ in the space (X, τ). Then, there existsO′

i = {Vαj
∪(Wi\Oαj

) : j ∈ N}
such that O′

i ∈ KΩ in the space (X, τ).
Let V ′ = {Vαj(i) : i, j ∈ N}. Remain note that V ′ ∈ KΩ where KΩ in the subspace G.

If F ∈ [G]<ω then there is i′ ∈ N such that F ∩ Wi′ = ∅. Hence, there is j′ such that
F ⊆ Vαj′ (i

′).

(b) If X is an open KΩ-Lindelöf subspace of X ∪ S where S is countable then X ∪ S is
KΩ-Lindelöf.
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We can assume that X ∩ S = ∅ otherwise we can consider S ′ = S \X. Let S = {sn :
n ∈ N}. Consider V = {Vα : α ∈ A} ∈ KΩ where KΩ in the space X ∪ S.

Let Vn = {Vα ∈ V : {s1, ..., sn} ⊆ Vα and Vα ∩X ̸= ∅}.
(1) Assume that for any n ∈ N there is k(n) > n and Vα(k(n)) ∈ Vk(n) such that

X ⊂ Vα(k(n)). Then {Vα(k(n)) : n ∈ N} ∈ KΩ.

(2) Otherwise there is n′ ∈ N such that for any k > n′ and Vα ∈ Vk the set X \ Vα is
not empty.

Thus Un = {X ∩ Vα : Vα ∈ Vn} ∈ KΩ in the space X for every n > k. Then,
there is U ′

n = {X ∩ Vαi
: i ∈ N} ∈ KΩ in the space X for every n > k. Note that

Pn = {Vαi
∈ U ′

n : i ∈ N} ∈ KΩ in the space X ∪ {s1, ..., sn}. Let P =
⋃
Pn. Then P is

countable, P ⊂ V and P ∈ KΩ in the space X ∪ S.

By the fact (a), the subspace X \Df is KΩ-Lindelöf.
By the fact (b), the space (X, τf ) is KΩ-Lindelöf.

Assume that f ∈ {fα : α ∈ A} where F = {fα : α ∈ A} ⊂ Qp((X, τ),D) and |A| > ω.

Then f ◦ id ∈ {fα ◦ id : α ∈ A} where {fα ◦ id : α ∈ A} ⊂ Qp((X, τf ),D). Note that
(2) implies (4), (X, τf ) is KΩ-Lindelöf and f ◦ id ∈ C((X, τf ),R). Then, by (4), there

is a countable set B ⊂ A such that f ◦ id ∈ {fαi
◦ id : αi ∈ B}. It follows that f ∈

{fαi
: αi ∈ B}.

(5) ⇒ (1). Similar to the implication (3) ⇒ (1).

In particular, we get the following corollary in class of metrizable spaces.

Corollary 3.7. A metrizable space X is KΩ-Lindelöf if, and only if, t(Qp(X,D)) = ω.

4. Countable strong fan-tightness and countable fan-tightness

Theorem 4.1. For an uncountable open Whyburn space X the following statements are
equivalent:

1. X satisfy S1(Ω
s,Ωs);

2. X satisfy S1(KΩ,KΩ);

3. vet1(0, Qp(X,R)) = ω;

4. vet1(f,Qp(X,R)) = ω for every f ∈ C(X,R);
5. vet1(Qp(X,D)) = ω.

Proof. (1) ⇒ (2) and (4) ⇒ (3). It is trivial.
(2) ⇒ (1). Let Ui = {U i

α}α∈Ai
∈ Ωs for each i ∈ N. In Theorem 3.6 ((2) ⇒ (1)), we

proved for any U = {Uα}α∈A ∈ Ωs there exists V = {Vβ}β∈B ∈ KΩ such that for any β ∈ B
there is α ∈ A such that Vβ ⊆ Uα, i.e. V ≻ U . Thus, for every i ∈ N there is Vi ∈ KΩ such
that Vi ≻ Ui. By (2), there is V i

βi
∈ Vi for each i ∈ N such that {V i

βi
: i ∈ N} ∈ KΩ. For

every βi there is αi such that V i
βi
⊂ U i

αi
. It follows that {U i

αi
: i ∈ N} ∈ Ωs.

7
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(3) ⇒ (1). Let Un = {Un
α}α∈An ∈ Ωs for each n ∈ N. Consider the quasicontinuous

function fα,n : X → {0, 1} such that fα,n(U
n
α ) = 0 and fα,n(X \ Un

α ) = 1 for each α ∈ An

and n ∈ N. Then 0 ∈ {fα,n : α ∈ An} for each n ∈ N. Since vet1(0, Qp(X,R)) = ω, there

is fαn,n ∈ {fα,n : α ∈ An} for each n ∈ N such that 0 ∈ {fαn,n : n ∈ N}. It follows that
{Un

αn
: n ∈ N} ∈ Ωs.

(1) ⇒ (3). Let X has the property S1(Ω
s,Ωs). Then X is Ωs-Lindelöf and, by Theorem

3.6, X is KΩ-Lindelöf. Consider a countable family {An : n ∈ N} of subsets of Qp(X,R)
such that 0 ∈

⋂
n∈N An. For every n ∈ N we consider Vn = {Vn,i,f = f−1((−1

i
, 1
i
)) : i ∈ N

and i ≥ n, f ∈ An}. Since 0 ∈ An , the family Vn is a semi-open ω-cover of X.
Since X is an open Whyburn regular space, there is Un ∈ KΩ such that Un ≻ Vn for

each n ∈ N. By implication ((1) ⇒ (2)), for each n ∈ N there is Un,βn ∈ Un such that
{Un,βn : n ∈ N} ∈ KΩ. For each n ∈ N there are in and fn such that Un,βn ⊆ Vn,in,fn .
Hence, {Vn,in,fn : n ∈ N} is an ω-cover of X. Then, we consider the set {fn : n ∈ N}.

(1) fn ∈ An for each n ∈ N.
(2) 0 ∈ {fn : n ∈ N}.
Let K ∈ [X]<ω and ϵ > 0 and [K, ϵ] = {f ∈ Qp(X,R) : f(K) ⊂ (−ϵ, ϵ)}.
Then, there is n′ such that 1

in′
< ϵ and K ⊆ Vn′,in′ ,fn′ . It implies that fn′ ∈ [K, ϵ].

(3) ⇒ (4). Similarly ((3) ⇒ (4)) in Theorem 3.6.
(2) ⇒ (5). Let f ∈ Qp(X,D). Note that f−1({d}) is a semi-open set in X for every

d ∈ D. Thus, Df is countable nowhere dense subset of X. Since X is Lusin, the set Df is
countable.

Similarly the proof of ((2) ⇒ (5)) in Theorem 3.6, we consider the new topology τf ,
the base of which forms the family τ ∪ {{d} : d ∈ Df}.

It’s easy to check (almost the same as in Theorem 3.6) that the space (X, τf ) has the
property S1(KΩ,KΩ) and f ∈ C((X, τf ),R). Then, by (4), vet1(f,Qp(X, {0, 1}) = ω.

(5) ⇒ (1). Similar to the implication (3) ⇒ (1).

Corollary 4.2. A metrizable space X is S1(KΩ,KΩ) if, and only if, vet1(Qp(X,D)) = ω.

Similar to the proof of Theorem 4.1, we can prove the following theorem.

Theorem 4.3. For an uncountable open Whyburn space X the following statements are
equivalent:

1. X satisfy Sfin(Ω
s,Ωs);

2. X satisfy Sfin(KΩ,KΩ);

3. vet(0, Qp(X,R)) = ω;

4. vet(f,Qp(X,R)) = ω for every f ∈ C(X,R);
5. vet(Qp(X,D)) = ω.

Corollary 4.4. A metrizable space X is Sfin(KΩ,KΩ) if, and only if, vet(Qp(X,D)) = ω.
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5. Tightness of compact subsets

Let κ be an unfinite cardinal number. Let {Xλ : λ ∈ A} be a family of topological
spaces. Let X =

∏
λ∈AXλ be the Cartesian product with the Tychonoff topology. Take

a point p = (pλ)λ∈A ∈ X. For each x = (xλ)λ∈A ∈ X, let Supp(x) = {λ ∈ A : xλ ̸= pλ}.
Then the subspace Σκ(p) = {x ∈ X : |Supp(x)| ≤ κ} of X is called a Σκ -product of
{Xλ : λ ∈ A} about p (p is called the base point).

In ([9], Proposition 1), A.P. Kombarov and V.I. Malykhin proved that

(•) if t(
n∏

i=1

Xαi
) ≤ κ for every n ∈ N and a finite family α1, ..., αn ∈ A then t(Σκ(p)) ≤ κ.

Suppose that κ is a cardinal number. A separable metrizable space X is a κ-Lusin set
if |X| ≥ κ and, for every meager set M , we have |X ∩M | < κ. Usually, ℵ1-Lusin sets and
2ω-Lusin sets are called Lusin sets and c-Lusin sets, respectively. Every Lusin set is also
c-Lusin. Moreover, if Continuum Hypothesis (CH) holds, then every c-Lusin set is also
a Lusin set. However, it is consistent that these notions are not equivalent. Indeed, e.g.,
under Martin’s Axiom (MA) and the failure of CH there are c-Lusin sets on R which are
not Lusin [14].

If the axiom of choice holds, then every cardinal κ has a successor, denoted κ+, where
κ+ > κ and there are no cardinals between κ and its successor.

Theorem 5.1. Let κ be an uncountable cardinal number. A separable metrizable space X
of cardinality ≥ κ is a κ-Lusin set if and only if t(K) < κ for every compact subset K of
Qp(X,R).

Proof. (⇒). Let A be a countable dense subset of a κ-Lusin space X. Note that if
g, f ∈ Qp(X,R) and g(x) = f(x) for every x ∈ A then {x ∈ X : g(x) ̸= f(x)} ⊆ Dg ∪Df

where Dh is a set of discontinuous points of a function h. Since X is κ-Lusin, |Dg∪Df | < κ
and we get that |{x ∈ X : g(x) ̸= f(x)}| < κ.

Let K be a compact subset of Qp(X,R). Consider the projection function p = πA :
Qp(X,R) → RA, i.e., p(f) = f | A for every f ∈ Qp(X,R). Since RA is metrizable, the set
p(K) is a metrizable compact space. Let z ∈ p(K). Then Sz = p−1(z) := {f ∈ Qp(X,R) :
f |A = z} is closed in Qp(X,R). Let z̃ ∈ Sz. Then Sz ⊂ Σκ(z̃) where Σκ(z̃) := {h ∈ RX :
|{x ∈ X : h(x) ̸= z̃(x)}| < κ}. By (•), t(Σκ(z̃)) < κ. It follows that t(Sz ∩ K) < κ for
every z ∈ p(K) and K =

⋃
{Sz ∩ K : z ∈ p(K)}. By Theorem 6 in [2] (If f : X → Y

is a continuous closed mapping then t(X) ≤ sup{t(Y ), t(f−1(y)) : y ∈ Y }), we get that
t(K) < κ.

(⇐). Assume that t(K) < κ for every compact subset K of Qp(X,R) and X is not
κ-Lusin. Then there exists a closed nowhere dense subset A of X such that |A| ≥ κ.

Let B ⊂ A. Then, there is fB : X → D be a quasicontinuous function such that
fB(B) = 1 and fB(A \B) = 0.

Indeed, let O be an open set in X such that O \O ⊇ A and X \O ̸= ∅.
Then fB(x) = 1 for x ∈ B ∪ (O \ A) and fB(x) = 0 for other x ∈ X.
Note that fB′ |(X \ A) = fB′′ |(X \ A) for any B′, B′′ ⊂ A.
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It is clear that K = {fB : B ⊂ A} is homeomorphic to the compact space 2A. But,
t(2A) = t(K) ≥ κ, it is a contradiction.

Corollary 5.2. A uncountable separable metrizable space X is Lusin if, and only if,
t(K) = ω for every compact subset K of Qp(X,R).

Corollary 5.3. If Qp(X,R) is homeomorphic to Qp(Y,R) where X is κ-Lusin, then Y is
κ-Lusin, too.

6. Examples

In [16], it is proved that if X is a metric space then Qp(X,R) is Fréchet-Urysohn at the
point 0 if, and only if, X is countable. The following example shows that for a countable
tightness and even for a countable strong fan-tightness of the space Qp(X,R), a space X
can be uncountable.

Given some special axioms, one can show that there are uncountable separable metriz-
able space X such that t(Qp(X,D)) = ω. In particular: The axiom (⋄) asserts that there
is a sequence (Sα : α < ω1) such that

(1) For each α, Sα ⊂ α, and
(2) For every subset A of ω1, the set {α < ω1 : A ∩ α = Sα} is stationary.

It is well known that the axiom (⋄) is consistent relative to the consistency of classical
mathematics and implies but is not equivalent to the Continuum Hypothesis.

Example 6.1. (⋄) There exists a Lusin space X such that vet1(0, Qp(X,R)) = ω.

In ([32], Theorem 5), M. Scheepers constructed an example of a uncountable separable
metrizable space X which has the property S1(KΩ,KΩ). By Theorem 4.1, we get an
example with the required properties.

Example 6.2. (⋄) There exists a Lusin space X such that t(Qp(X,R)) > ω.

In ([33], see ref.[2] in [32]), W. Just proved that if there is any Lusin set at all, then
there is a Lusin set which is not KΩ-Lindelöf. By Theorem 3.6, we get an example with
the required properties.

Example 6.3. (MA+¬CH) For each cardinal κ ≤ 2ω with cf(κ) > ω there is a separable
metric space X such that t(K) ≤ κ for each compact subset K of Qp(X,R) and t(C) > ω
for some compact subset C of Qp(X,R).

Under Martin’s Axiom (MA) and the failure of CH for each cardinal κ ≤ 2ω with
cf(κ) > ω there are κ-Lusin sets in R which are not Lusin [14]. By Theorem 5.1, we get
an example with the required properties.
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7. Remark

The idea of defining a new topology τf for a quasicontinuous function f , which we use
in Theorems 3.6 and 4.1, can be easily used for the Fréchet-Urysohn property of space
Qp(X,D). Thus, combining the results of the article [16], we obtain the following theorem.

Theorem 7.1. For an uncountable open Whyburn space X the following statements are
equivalent:

1. X satisfy S1(Ω
s,Γs);

2. X satisfy S1(KΩ,KΓ);

3. Qp(X,R) is Fréchet-Urysohn at the point 0;

4. Qp(X,R) is Fréchet-Urysohn at the point f for every f ∈ C(X,R);
5. Qp(X,D) is Fréchet-Urysohn.

By Theorem 3.11 in [16], Theorem 7.1, Theorem 4.1 in [29] and Theorem 4.6 in [10] we
get the following result.

Corollary 7.2. Let X and Y be nontrivial metrizable spaces. Then the following are
equivalent:

1. X is countable;

2. Qp(X,D) is Fréchet-Urysohn;
3. Qp(X, Y ) is Fréchet-Urysohn;

4. Qp(X, Y ) is first countable;

5. Qp(X, Y ) is metrizable.

In [32], it is proved that a metrizable space X is Lusin if, and only if, it is K-Lindelöf.
Obviously, KΩ-Lindelöfness implies K-Lindelöfness of space. Let us note however that
Kunen (Theorem 0.0. in [11]) has shown that under (MA + ¬CH) there are no Lusin
spaces at all.

Thus, in the class of metrizable spaces we get the following result.

Corollary 7.3. (MA + ¬CH) Let X and Y be nontrivial metrizable spaces. Then the
following are equivalent:

1. X is countable;

2. Qp(X,D) is metrizable;

3. Qp(X, Y ) is Fréchet-Urysohn;

4. Qp(X, Y ) is first countable;

5. Qp(X, Y ) is metrizable;

6. Qp(X, Y ) has countable tightness;

7. Qp(X, Y ) has countable fan-tightness;

8. Qp(X, Y ) has countable strong fan-tightness.

11

26 Jan 2024 06:11:58 PST
231116-Osipov Version 2 - Submitted to Rocky Mountain J. Math.



8. Open questions

Question 1. Could it be that some Qp(X,D) has countable tightness (countable fan-
tightness, countable strong fan-tightness, is Fréchet-Urysohn) but none Qp(X,R) has this
property?

In ([32], Problem 3), M. Scheepers asks: Could it be that some Lusin set is KΩ-Lindelöf,
but none has property S1(KΩ,KΩ)?

This question can be divided into two sub-questions in a functional context.

Question 2. Is there a T2-space X such that Qp(X,D) has countable tightness but
none Qp(X,D) has countable fan-tightness?

Question 3. Is there a T2-space X such that Qp(X,D) has countable fan-tightness but
none Qp(X,D) has countable strong fan-tightness?
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[29] Ľ. Holá, D. Holý, Quasicontinuous functions and the topology of pointwise conver-
gence, Topology Appl. 282 (2020) 107301.

[30] M. Sakai, Property C ′′ and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917–
919.

[31] M. Scheepers, Combinatorics of open covers (I) : Ramsey theory, Topology Appl.,69
(1996), 31–62.

[32] M. Scheepers, Lusin sets, Proceedings of the American Math. Soc. 127:1 (1999), 251–
257.

[33] W. Just, More on Lusin sets, a TeX-file identified by Just as ’version of 11/08/96
Lusin3.tex’.
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