[ROCKY MOUNTAIN JOURNAL OF MATHEMATICS](http://msp.org/)

[Vol. , No. , YEAR](https://doi.org/rmj.YEAR.-) 2

1

17 18 19

 $\frac{1}{23}$

27 28 29

43

<https://doi.org/rmj.YEAR..PAGE>

REMARKS ON THE STANLEY DEPTH AND HILBERT DEPTH OF MONOMIAL IDEALS WITH LINEAR QUOTIENTS

ANDREEA I. BORDIANU AND MIRCEA CIMPOEAS¸

ABSTRACT. We prove that if *I* is a monomial ideal with linear quotients in a ring of polynomials *S* in *n* indeterminates and depth(S/I) = *n* − 2, then sdepth(S/I) = *n* − 2 and, if *I* is squarefree, hdepth(S/I) = *n* − 2. Also, we prove that sdepth(S/I) ≥ depth(S/I) for a monomial ideal *I* with linear quotients which satisfies certain technical conditions.

1. Introduction

Let *K* be a field and let $S = K[x_1, x_2, \ldots, x_n]$ be the ring of polynomials in *n* variables. Let *M* be a Z *n* -graded *S*-module. A *Stanley decomposition* of *M* is a direct sum 15 16

$$
\mathscr{D}:M=\bigoplus_{i=1}^r m_i K[Z_i],
$$

as *K*-vector spaces, where $m_i \in M$ are homogeneous, $Z_i \subset \{x_1, \ldots, x_n\}$ such that $m_i K[Z_i]$ is a free *K*[*Z*_{*i*}]-module; $m_i K[Z_i]$ is called a *Stanley subspace* of *M*. We define sdepth $(\mathscr{D}) = \min_{i=1}^r |Z_i|$ and 20 21 $\frac{1}{22}$

sdepth $(M) = \max\{\text{sdepth}(\mathcal{D}) : \mathcal{D}$ is a Stanley decomposition of M $\}$.

The number sdepth (M) is called the *Stanley depth* of M. Herzog Vlădoiu and Zheng [[8\]](#page-9-0) proved that this invariant can be computed in a finite number of steps, when $M = I/J$, where $J \subset I \subset S$ are monomial ideals. 24 25 26

We say that the multigraded module *M* satisfies the *Stanley inequality* if

$$
sdepth(M) \geq depth(M).
$$

 $\frac{30}{20}$ Stanley conjectured in [\[13\]](#page-9-1) that sdepth $(M) \ge$ depth (M) , for any \mathbb{Z}^n -graded *S*-module *M*. In fact, in $\frac{31}{2}$ this form, the conjecture was stated by Apel in [\[1\]](#page-8-0). The Stanley conjecture was disproved by Duval et. al [\[6\]](#page-9-2), in the case $M = I/J$, where $(0) \neq J \subset I \subset S$ are monomial ideals, but it remains open in $\frac{33}{2}$ the case $M = I$, a monomial ideal. 32

A monomial ideal *I* ⊂ *S* has *linear quotients*, if there exists $u_1 \le u_2 \le \cdots \le u_m$, an ordering on $\frac{35}{2}$ the minimal set of generators $G(I)$, such that, for any $2 \le j \le m$, the ideal $(u_1, \ldots, u_{j-1}) : u_j$ is generated by variables. 34 36

Given a monomial ideal with linear quotients $I \subset S$, Soleyman Jahan [\[11\]](#page-9-3) noted that *I* satisfies the Stanley inequality, i.e. 37 38 39

sdepth $(I) \ge$ depth (I) .

However, a similar result for *S*/*I*, if true, is more difficult to prove, only some particular cases being known. For instance, Seyed Fakhari [\[7\]](#page-9-4) proved the inequality 40 41 42

$$
sdepth(S/I) \geq depth(S/I)
$$

for weakly polymatroidal ideals $I \subset S$, which are monomial ideals with linear quotients. $\overline{44}$ $\frac{1}{45}$

²⁰²⁰ *Mathematics Subject Classification.* 05E40; 13A15; 13C15; 13P10. 46

Key words and phrases. Stanley depth; Hilbert depth; depth; monomial ideals; linear quotients. 47

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

REMARKS ON THE STANLEY DEPTH AND HILBERT DEPTH OF MONOMIAL IDEALS WITH LINEAR OUOTIENTS 2

In Theorem [2.4,](#page-3-0) we prove that if $I \subset S$ is a monomial ideal with linear quotients with depth (S/I) = *n* − 2, then sdepth(S/I) = *n* − 2. In Theorem [2.6,](#page-4-0) we prove that if $I \subset S$ is a monomial ideal with linear quotients which has a Stanley decomposition which satisfies certain conditions, then 3 4 sdepth(S/I) ≥ depth(S/I). Also, we conjecture that for any monomial ideal $I \subset S$ with linear 5 quotients, there is a variable x_i such that depth $(S/(I, x_i)) \ge \text{depth}(S/I)$ and sdepth $(S/(I, x_i)) \le$ sdepth(S/I). In Theorem [2.12](#page-6-0) we prove that if this conjecture is true, then sdepth(S/I) \geq depth(S/I), for any monomial ideal $I \subset S$ with linear quotients. 1 6 7

Given a finitely graded *S*-module *M*, its Hilbert depth is 8

hdepth(M) = max
$$
\left\{ r : \text{There exists a f.g. graded } S\text{-module } N \atop \text{with } H_M(t) = H_N(t) \text{ and depth}(N) = r \right\}.
$$

It is well known that hdepth $(M) \geq$ sdepth (M) . See [\[3\]](#page-8-1) for further details. 11

Let $0 \subset I \subsetneq J \subset S$ be two squarefree monomial ideals. For any $0 \leq j \leq n$, we let $\alpha_i(J/I)$ to be the number of squarefree monomials $u \in S$ of degree *j* such that $u \in J \setminus I$. (In particular, $\alpha_j(I)$ is the number of squarefree monomials of degree *j* which belong to *I* and $\alpha_j(S/I) = \binom{n}{j}$ α_j ⁿ) – α_j (*I*) is the number of squarefree monomials of degree *j* which do not belong to *I*.) 12 $\frac{1}{13}$ $\frac{1}{14}$ $\frac{1}{15}$ $\frac{1}{16}$

Also, for $0 \le k \le d \le n$, we let

9 10

 $\frac{1}{17}$

 $\frac{1}{27}$

33 34

47

$$
\frac{\frac{18}{19}}{20}(1.1) \qquad \beta_k^d(J/I) = \sum_{j=0}^k (-1)^{k-j} {d-j \choose k-j} \alpha_j(J/I).
$$

(In particular, $\beta_k^d(S/I) = \sum_{j=0}^k (-1)^{k-j} {d-j \choose k-j}$ $\alpha_j(S/I)$ and $\beta_k^d(I) = \sum_{j=0}^k (-1)^{k-j} {d-j \choose k-j}$ $_{k-j}^{d-j})\alpha_j(I)$.) From [\(1.1\)](#page-1-0), using an inversion formula, it follows that 21 $\overline{22}$

$$
\frac{23}{24}(1.2) \qquad \alpha_k(J/I) = \sum_{j=0}^k {d-j \choose k-j} \beta_j^d(J/I) \text{ for all } 0 \le k \le d \le n.
$$

With the above notations, we proved in [\[2,](#page-8-2) Theorem 2.4] that 26

$$
\text{hdepth}(J/I) = \max\{d : \beta_k^d(J/I) \geq 0 \text{ for all } 0 \leq k \leq d\}.
$$

If *I* ⊂ *S* is a proper squarefree monomial ideal, we claim that 28 29

$$
\frac{1}{30} (1.3) \qquad \qquad \text{hdepth}(S/I) \leq \max\{k : \alpha_k(S/I) > 0\}.
$$

Note that $\alpha_n(S/I) = 0$, since $x_1 \cdots x_n \in I$, and thus $m := \max\{k : \alpha_k(S/I) > 0\} < n$. From [\(1.3\)](#page-1-1) it follows that 31 32

$$
\alpha_{m+1}(S/I) = \sum_{j=0}^{m+1} \beta_j^{m+1}(S/I).
$$

Since *I* \neq *S* it follows that 1 \notin *I* and thus β_0^{m+1} $\alpha_0^{m+1}(S/I) = \alpha_0(S/I) = 1$. The above identity implies that there exists some $1 \le k \le m+1$ with β_k^{m+1} $k_k^{m+1}(S/I) < 0$ and therefore hdepth $(S/I) \leq m$, as required. Also, we will make use of the well known fact that 35 36 $\frac{1}{37}$ $\frac{1}{38}$

$$
\frac{39}{2} (1.4) \qquad \qquad \text{hdepth}(J/I) \geq \text{sdepth}(J/I).
$$

In Section [3](#page-6-1) of our paper we study the Hilbert depth of S/I , where *I* is a squarefree monomial ideal with linear quotients. In Proposition [3.2](#page-7-0) we compute the numbers $\beta_k^d(I)$'s and $\beta_k^d(S/I)$'s. In Corollary [3.3,](#page-7-1) we express these numbers in combinatorial terms, thus showing the difficulty in finding explicit formulas for hdepth (I) and hdepth (S/I) . 40 41 $\frac{42}{1}$ 43

The main result of this section is Theorem [3.4,](#page-7-2) in which we show that if *I* is a squarefree monomial ideal with linear quotients with depth $(S/I) = n - 2$ then 44 45 46

$$
hdepth(S/I) = sdepth(S/I) = depth(S/I) = n - 2.
$$

14 May 2024 05:19:32 PDT

²⁴⁰¹²³⁻Cimpoeas Version 7 - Submitted to Rocky Mountain J. Math.

1

 $\frac{1}{23}$ $\overline{24}$

 $\overline{39}$

REMARKS ON THE STANLEY DEPTH AND HILBERT DEPTH OF MONOMIAL IDEALS WITH LINEAR QUOTIENTS 3

2. Main results

Let *I* ⊂ *S* be a monomial ideal and let $G(I)$ be the set of minimal monomial generators of *I*. We recall that *I* has *linear quotients*, if there exists a linear order $u_1 \leq u_2 \leq \cdots \leq u_m$ on $G(I)$, such that for every $2 \le j \le m$, the ideal $(u_1, \ldots, u_{j-1}) : u_j$ for every $2 \le j \le m$, the ideal $(u_1, \ldots, u_{j-1}) : u_j$ is generated by a subset of n_j variables. We let $I_j := (u_1, ..., u_j)$, for $1 \le j \le m$. Let $Z_1 = \{x_1, \ldots, x_n\}$ and $Z_j = \{x_i\}$ Let $Z_1 = \{x_1, \ldots, x_n\}$ and $Z_i = \{x_i : x_i \notin (I_{i-1} : u_i)\}$ for $2 \leq j \leq m$. Note that, for any $2 \le j \le m$, we have $I_j/I_{j-1} = u_j(S/(I_{j-1} : u_j)) = u_jK[Z_j].$ Hence the ideal *I* has the Stanley decomposition $I = u_1 K[Z_1] \oplus u_2 K[Z_2] \oplus \cdots \oplus u_m K[Z_m].$ 13 According to [\[10,](#page-9-5) Corollary 2.7], the projective dimension of S/I is $pd(S/I) = max\{n_j : 2 \le j \le m\} + 1.$ Hence, Ausländer-Buchsbaum formula implies that (2.2) $\text{depth}(S/I) = n - \max\{n_j : 2 \le j \le m\} - 1 = \min\{n - n_j : 2 \le j \le m\} - 1 = \min\{|Z_j| : 2 \le j \le m\} - 1.$ 2 3 4 5 6 7 8 9 10 11 $\frac{11}{12}$ (2.1) 14 $\frac{1}{15}$ $\frac{1}{16}$ $\frac{1}{17}$ $\frac{1}{18}$

Note that, [\(2.1\)](#page-2-0) and [\(2.2\)](#page-2-1) implies sdepth $I \geq$ depth *I*, a fact which was proved in [\[11\]](#page-9-3). We recall the following results: 19 20

Proposition 2.1. *Let* $I \subset S$ *be a monomial ideal and* $u \in S \setminus I$ *a monomial. Then:* 21 $\overline{22}$

(1) depth $(S/(I:u)) \ge$ depth (S/I) *.* ([\[9,](#page-9-6) Corollary 1.3]*)*

(2) sdepth $(S/(I:u)) \geq \text{sdepth}(S/I)$. ([\[5,](#page-9-7) Proposition 2.7(2)])

Proposition 2.2. Let $0 \to U \to M \to N \to 0$ be a short exact sequence of finitely generated \mathbb{Z}^n *graded S-modules. Then* sdepth $(M) \ge \min\{\text{sdepth}(U), \text{sdepth}(N)\}\$. ([\[9,](#page-9-6) Lemma 2.2]) 25 26 27

Note that, a proper monomial ideal $I \subset S$ is principal if and only if depth $(S/I) = n - 1$ if and only if sdepth $(S/I) = n - 1$. $\frac{1}{28}$ $\frac{1}{29}$

Lemma 2.3. *Let I* ⊂ *S be a monomial ideal with linear quotients with* depth(*S*/*I*) = *n*−2*. Then* 30 $\frac{31}{2}$ there exists some $i \in [n]$ and a monomial $u \in G(I)$ such that $(I, x_i) = (u, x_i)$ and $(I : x_i)$ has linear *quotients.* 32

Proof. If $n = 2$ and $I = S$ then $u = 1 \in G(I)$ and the assertion is obvious. Hence, we may assume that *I* is proper. 33 $\frac{1}{34}$ $\frac{1}{35}$

First, note that *I* is not principal. Since *I* has linear quotients, we can assume that $G(I)$ = $\{u_1, \ldots, u_m\}$ such that $((u_1, \ldots, u_{i-1}): u_i)$ is generated by variables, for every $2 \leq j \leq m$. We consider the decomposition [\(2.1\)](#page-2-0), that is 36 $\frac{1}{37}$ $\frac{1}{38}$

$$
I = u_1 K[Z_1] \oplus u_2 K[Z_2] \oplus \cdots \oplus u_m K[Z_m],
$$

⁴⁰ where $Z_1 = \{x_1, \ldots, x_n\}$ and Z_j is the set of variables which do not belong to $((u_1, \ldots, u_{j-1}) : u_j)$, for 2 ≤ *j* ≤ *m*. From [\(2.2\)](#page-2-1), it follows that $|Z_j| = n - 1$ for $2 \le j \le m$. Since $((u_1, ..., u_{j-1}) : u_j) =$ $(x_i : x_i \notin \mathbb{Z}_j)$, it follows that for any $2 \leq j \leq m$ we have 41 42 43

$$
\overline{u_4} (2.3) \qquad (u_1, \ldots, u_{j-1}) \cap u_j K[Z_j] = \{0\}.
$$

We assume, by contradiction, that for any $i \in [n]$ there exists $k_i > \ell_i \in [m]$ such that $x_i \nmid u_{\ell_i}$. We 46 claim that $x_i \in Z_{k_i}$. Indeed, otherwise $Z_{k_i} = \{x_1, \ldots, x_n\} \setminus \{x_i\}$ and therefore $u_{k_i}u_{\ell_i} \in u_{\ell_i}S \cap u_{k_i}K[Z_{k_i}],$ $\frac{47}{4}$ a contradiction to [\(2.3\)](#page-2-2) for $j = k_i$. 45

Without any loss of generality, we can assume $k_n = \max\{k_i : i \in [n]\}\$. Since $x_n \in Z_{k_n}$, it follows \underline{P} that $Z_{k_n} = \{x_1, \ldots, x_n\} \setminus \{x_t\}$ for some $t \leq n-1$. Since $x_t \in Z_{k_t}$ it follows that $k_t < k_n$ and, moreover, $\frac{1}{3}$ $x_t \nmid u_{k_t}$, that is $u_{k_t} \in K[Z_{k_t}]$. Therefore $u_{k_t}u_{k_t} \in u_{k_t}S \cap u_{k_t}K[Z_{k_t}]$, a contradiction to [\(2.3\)](#page-2-2) for $j = k_n$. Thus, that there exists $i \in [n]$ such that for any $k_i > \ell_i \in [m]$, $x_i \mid u_{\ell_i}$. It implies that $x_i \mid u_j$ for *j* = 1,...,*m*−1. It follows that $(I : x_i) = (u'_1, ..., u'_m)$ where $u'_j = u_j / x_i$ for $j = 1, ..., m-1$ and $\frac{6}{m}$ $u'_m = u_m$ if $x_i \nmid u_m$ and $u'_m = u_m/x_i$ if $x_i \mid u_m$. It is clear that $\{u'_1, \ldots, u'_{m-1}\} \subset G(I : x_i)$ and 1 4

$$
\frac{7}{8} (2.4) \qquad ((u'_1, \ldots, u'_{j-1}) : u'_j) = ((u_1, \ldots, u_{j-1}) : u_j) \text{ for all } 2 \le j \le m-1.
$$

9 We have $u'_m \in (u_m : x_i) \subseteq (I : x_i)$. If $u'_m \notin G(I : x_i)$ then $G(I : x_i) = \{u'_1, \ldots, u'_{m-1}\}$ and, from [\(2.4\)](#page-3-1), $\frac{10}{10}$ it follows that $(I : x_i)$ has linear quotients. On the other hand, assume $u'_m \in G(I : x_i)$ then we $\frac{1}{11}$ claim that $x_i | u_m$, hence $((u'_1, \ldots, u'_{m-1}) : u'_m) = ((u_1, \ldots, u_{m-1}) : u_m)$ and, again, from [\(2.4\)](#page-3-1), it $\frac{1}{2}$ follows that $(I : x_i)$ has linear quotients. Indeed, otherwise, $u'_m = u_m \in G(I : x_i)$ and $G(I : x_i) =$ $\frac{1}{13}$ $\{u'_1,\ldots,u'_{m-1},u_m\}$, then for $1 \le j \le m-1$ there exists $\ell_j \in [m] \setminus [i]$ such that $x_{\ell_j} \mid u'_j$ and $x_{\ell_j} \nmid u_m$, $\frac{14}{2}$ and thus x_{ℓ_j}, x_i ∈ supp(u_i) \ supp(u_m), which contradicts that ((u_1, \ldots, u_{m-1}) : u_m) is generated by variables. \Box 15 variables.

Theorem 2.4. *Let* $I \subset S$ *be a monomial ideal with linear quotients. If* depth $(S/I) = n - 2$ *, then* $sdepth(S/I) = n-2$. 16 17 18

Proof. If $n = 2$ then $S/I = 0$ and there is nothing to prove, so we may assume $n \ge 3$ and *I* is proper ²⁰ with $G(I) = \{u_1, \ldots, u_m\}$ for some $m \ge 2$. We use induction on *m* and $d = \sum_{j=1}^m \deg(u_i)$. If $m = 2$, ²¹ then from [\[4,](#page-8-3) Proposition 1.6] it follows that sdepth(S/I) = *n*−2. If *d* = 2, then *I* is generated by two variables and there is nothing to prove. 19 22

Assume $m > 2$ and $d > 2$. According to Lemma [2.3,](#page-2-3) there exist $i \in [n]$ such that $(I, x_i) = (u_m, x_i)$. <u>²⁴</u> Since (*I*, *x*_{*i*}) = (*u*_{*m*}, *x*_{*i*}), from [\[4,](#page-8-3) Proposition 1.2] it follows that sdepth(*S*/(*I*, *x*_{*i*})) ≥ *n*−2. If (*I* : *x*_{*i*}) is principal, then sdepth $(S/(I : x_i)) =$ depth $(S/(I : x_i)) = n - 1$. 23 25

Assume that $(I : x_i)$ is not principal. We have that depth $(S/(I : x_i)) \leq n-2$. On the other hand, by Proposition [2.1\(](#page-2-4)1) we have depth $(S/(I : x_i)) \ge$ depth $(S/I) = n - 2$ and thus depth $(S/(I : x_i)) = n - 2$. From the proof of Lemma [2.3,](#page-2-3) we have $G(I:x_i) \subset \{u_1/x_i, \ldots, u_{m-1}/x_i, u_m\}$. It follows that 26 27 28 29

$$
d' := \sum_{u \in G(I:x_i)} \deg(u) < d,
$$

 $\frac{1}{32}$ thus, by induction hypothesis, we have sdepth $(S/(I : x_i)) = n - 2$. In both cases,

$$
sdepth(S/(I:x_i)) \geq n-2.
$$

From Proposition [2.2](#page-2-5) and the short exact sequence $\frac{1}{35}$

 $\overline{30}$ 31

33 $\frac{1}{34}$

36

47

$$
0 \to S/(I:x_i) \to S/I \to S/(I,x_i) \to 0,
$$

it follows that sdepth $(S/I) \ge \min\{\text{sdepth}(S/(I : x_i)), \text{sdepth}(S/(I, x_i))\} \ge n - 2$. Since *I* is not principal, it follows that sdepth $(S/I) = n-2$, as required. 37 $\frac{1}{38}$ 39

Lemma 2.5. Let $I \subset S$ be a monomial ideal and $u \in S$ a monomial with $(I : u) = (x_1, \ldots, x_m)$. *Assume that S*/*I has a Stanley decomposition* 40 41

$$
\frac{42}{43}(2.5)
$$
\n
$$
\mathcal{D}:S/I=\bigoplus_{i=1}^{r}v_{i}K[Z_{i}],
$$
\n
$$
\frac{45}{46}
$$
\nsuch that there exists i_{0} with $Z_{i_{0}}=\{x_{m+1},\ldots,x_{n}\}$ and $v_{i_{0}} \mid u$. Then:

 $sdepth(S/(I, u)) \ge min\{sdepth(\mathcal{D}), n-m-1\}.$

Proof. If sdepth $(S/I) = 0$ or $m = n - 1$, then there is nothing to prove. We assume that sdepth $(S/I) \ge$ 1 and $m \le n-2$. Since $S/(I:u) = S/(x_1,...,x_m) \cong K[x_{m+1},...,x_n]$, from the short exact sequence $0 \rightarrow S/(I:u) \xrightarrow{u} S/I \longrightarrow S/(I,u) \longrightarrow 0,$ 2 3

it follows that we have the *K*-vector spaces isomorphism 5

$$
\frac{6}{7}(2.6) \hspace{3.1em} S/I \cong S/(I,u) \oplus uK[x_{m+1},\ldots,x_n].
$$

From our assumption, $uK[x_{m+1},...,x_n] = uK[Z_{i_0}] \subset v_{i_0}K[Z_{i_0}]$. Hence, from [\(2.5\)](#page-3-2) and [\(2.6\)](#page-4-1) it follows that 8 9

$$
\frac{\frac{1}{10}}{\frac{11}{12}} (2.7) \qquad S/(I,u) \cong \left(\bigoplus_{i \neq i_0} v_i K[Z_i]\right) \oplus \frac{v_{i_0} K[Z_{i_0}]}{u K[Z_{i_0}]} \cong \left(\bigoplus_{i \neq i_0} v_i K[Z_i]\right) \oplus \frac{K[x_{m+1},\ldots,x_n]}{w_0 K[x_{m+1},\ldots,x_n]},
$$

where $w_0 = \frac{u}{v_i}$ $\frac{u}{v_{i_0}}$. On the other hand, sdepth $\left(\frac{K[x_{m+1},...,x_n]}{w_0K[x_{m+1},...,x_n]}\right)$ $w_0K[x_{m+1},...,x_n]$ $\frac{1}{13}$ where $w_0 = \frac{u}{v_0}$. On the other hand, sdepth $\left(\frac{K[x_{m+1},...,x_n]}{w_0K[x_{n+1},...,x_n]} \right) = n-m-1$. Hence [\(2.7\)](#page-4-2) and Proposition $\frac{14}{2.2}$ $\frac{14}{2.2}$ $\frac{14}{2.2}$ yields the required conclusion. 15

Theorem 2.6. *Let I* ⊂ *S be a monomial ideal with linear quotients,* $G(I) = \{u_1, \ldots, u_m\}$ *. Let* $I_j = (u_1, ..., u_j)$ for $1 \le j \le m$, such that $(I_{j-1} : u_j) = (\{x_1, ..., x_n\} \setminus Z_j)$, where $Z_j \subset \{x_1, ..., x_n\}$, *for all* $2 \le j \le m$ *.* $\frac{1}{16}$ $\frac{1}{17}$ $\frac{1}{18}$

We assume that for any $2 \leq j \leq m$, there exists a Stanley decomposition \mathscr{D}_{j-1} of S/I_{j-1} such *that* sdepth (\mathscr{D}_{j-1}) = sdepth (S/I_{j-1}) *and there exists a Stanley subspace* $w_{j-1}K[W_{j-1}]$ *of* \mathscr{D}_{j-1} *with w*_{*j*−1} | *u*_{*j*} *and* $W_{j-1} = Z_j$ *.* $\frac{1}{19}$ $\frac{1}{20}$ $\frac{1}{21}$

$$
\frac{1}{22}
$$
 Then $\text{sdepth}(S/I) \ge \text{depth}(S/I).$

4

24 25 26

29 30

32 33

40

42

Proof. From the hypothesis and Lemma [2.5,](#page-3-3) we have that 23

$$
sdepth(S/I_j) = sdepth(S/(I_{j-1}, u_j)) \ge min\{sdepth(\mathscr{D}_{j-1}), n-n_i-1\}
$$

(2.8) = min{sdepth(
$$
S/I_{j-1}
$$
), $n - n_j - 1$ }, for all $2 \le j \le m$,

where $n_j = n - |Z_j|$, $1 \le j \le m$. On the other hand, according to [\(2.2\)](#page-2-1), 27 28

(2.9)
$$
\text{depth}(S/I) = \min_{j=2}^{m} \{n - n_j - 1\}.
$$

Since sdepth (S/I_1) = depth (S/I_1) = *n* − 1, by applying repeatedly [\(2.8\)](#page-4-3) we deduce that 31

$$
sdepth(S/I) = sdepth(S/I_m) \geq \min_{j=2}^{m} \{n - n_j - 1\}.
$$

Hence, from (2.9) we get the required conclusion. 34 35

Example 2.7. Let $I = (x_1^2, x_1x_2^2, x_1x_2x_3^2) \subset S = K[x_1, x_2, x_3, x_4]$. Let $u_1 = x_1^2$, $u_2 = x_1x_2^2$ and $u_3 =$ $\frac{37}{2}x_1x_2x_3^2$. Since $((u_1): u_2) = (x_1)$ and $((u_1, u_2): u_3) = (x_1, x_2)$, it follows that *I* has linear quotients ³⁸ with repect to the order $u_1 \leq u_2 \leq u_3$. Moreover, 39

$$
I = u_1 K[Z_1] \oplus u_2 K[Z_2] \oplus u_3 K[Z_3] = x_1^2 K[x_1, x_2, x_3, x_4] \oplus x_1 x_2^2 K[x_2, x_3, x_4] \oplus x_1 x_2 x_3^2 K[x_3, x_4].
$$

41 Let $I_1 = (u_1)$ and $I_2 = (u_1, u_2)$. We consider the Stanley decomposition

$$
\mathscr{D}_1: S/I_1 = K[x_2, x_3, x_4] \oplus x_1 K[x_2, x_3, x_4],
$$

of S/I_1 with sdepth (\mathscr{D}_1) = sdepth (S/I_1) = 3. Let $w_1 = x_1$ and $W_1 = \{x_2, x_3, x_4\}$. Clearly, $W_1 = Z_2$ and $w_1 \mid u_2$. As in the proof of Lemma [2.5,](#page-3-3) we obtain the Stanley decomposition 43 44 $\frac{1}{45}$

$$
\frac{46}{47} \qquad \mathscr{D}_2: S/I_2 = K[x_2, x_3, x_4] \oplus \frac{x_1 K[x_2, x_3, x_4]}{x_1 x_2^2 K[x_2, x_3, x_4]} = K[x_2, x_3, x_4] \oplus x_1 K[x_3, x_4] \oplus x_1 x_2 K[x_3, x_4]
$$

14 May 2024 05:19:32 PDT

240123-Cimpoeas Version 7 - Submitted to Rocky Mountain J. Math.

 $\frac{1}{\pi}$ of *S*/*I*₂ with sdepth(\mathcal{D}_2) = sdepth(S/I_2) = 2. Let $w_2 = x_1x_2$ and $W_2 = \{x_3, x_4\}$. Clearly, $W_2 = Z_3$ and $w_2 | u_3$. Hence, according to Theorem [2.6,](#page-4-0) sdepth $(S/I) \ge$ depth $(S/I) = 1$. Note that $\mathscr{D}: S/I = K[x_2, x_3, x_4] \oplus x_1K[x_3, x_4] \oplus x_1x_2X[x_4] \oplus x_1x_2x_3K[x_4],$ 2 3 4 5

is a Stanley decomposition of S/I with sdepth $(\mathscr{D}) = 1$ and thus sdepth $(S/I) \geq 1$. 6

On the other hand, since (x_1, x_2, x_3) is an associated prime to S/I , it follows that sdepth $(S/I) \leq 1$ and thus sdepth $(S/I) = 1$. Finally, note that 7 8

depth
$$
(S/I_2) = 2
$$
, $(I_2,x_1) = (x_1)$ and $(I_2:x_1) = (x_1,x_2^2)$.

In particular, we have sdepth $(S/(I_2 : x_1)) = \text{depth}(S/(I_2 : x_1)) = 2$, while sdepth $(S/(I_2, x_1)) =$ depth $(S/(I_2, x_1)) = 3$. 10 11 12

We propose the following conjecture:

9

 $\frac{1}{13}$ $\frac{1}{14}$

42

45

Conjecture 2.8. *If* $I \subset S$ *is a proper monomial ideal with linear quotients, then there exists i* $\in [n]$ *such that* depth $(S/(I, x_i)) \geq$ depth (S/I) . $\frac{1}{15}$ $\frac{1}{16}$

The following result is well know in literature. However, in order of completeness, we give a proof. $\overline{17}$ 18 19

Lemma 2.9. Let $I \subset S$ be a monomial ideal with linear quotients and x_i a variable. Then (x_i, I) has linear quotients. Moreover, if $S' = K[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$, then $(x_i, I) = (x_i, J)$, where $J \subset S'$ is *a monomial ideal with linear quotients.* $\frac{1}{20}$ $\overline{21}$ $\frac{1}{22}$

Proof. We consider the order $u_1 \leq u_2 \leq \cdots \leq u_m$ on $G(I)$, such that, for every $2 \leq j \leq m$, the ideal $\frac{24}{\sqrt{7}}$ (*I*_{*j*−1}: *u_j*) is generated by a nonempty subset \overline{Z}_j of variables. We assume that $u_{j_1} \le u_{j_2} \le \cdots \le u_{j_p}$ are the minimal monomial generators of *I* which are not multiple of x_i . We have that $((x_i): u_{j_1}) =$ (x_i) . Also, for $2 \le k \le p$, we claim that 23 25 26 $\overline{27}$

$$
\frac{1}{28}(2.10) \qquad ((x_i, u_{j_1}, \ldots, u_{j_{k-1}}) : u_{j_k}) = (x_i, \bar{Z}_{j_k}).
$$

 $\underline{\mathcal{P}}$ Indeed, since $((u_1,\ldots,u_{j_k-1}):u_{j_k})=(\bar{Z}_{j_k})$ and $x_iu_{j_k}\in (x_i,u_{j_1},\ldots,u_{j_{k-1}})$ it follows that $(x_i,\bar{Z}_{j_k})\subset$ $\underline{\mathcal{F}}((x_i,u_{j_1},\ldots,u_{j_{k-1}}):u_{j_k})$. Conversely, assume that $v\in S$ is a monomial with $vu_{j_k}\in (x_i,u_{j_1},\ldots,u_{j_{k-1}})=$ $\underline{\mathcal{F}}_{31}(x_i, u_1, \ldots, u_{j_k-1})$. If $x_i \nmid v$, then $vu_{j_k} \in (u_1, \ldots, u_{j_k-1})$, hence $v \in (\bar{Z}_{j_k})$. If $x_i \mid v$, then $v \in (x_i, \bar{Z}_{j_k})$. Hence the claim [\(2.10\)](#page-5-0) is true and therefore (x_i, I) has linear quotients. Now, let $J = (u_{j_1}, \ldots, u_{j_p})$. $\frac{33}{5}$ For any $2 \le k \le p$, we have that

$$
\frac{\overline{34}}{35}(2.11) \qquad ((u_{j_1}, \ldots, u_{j_{k-1}}) : u_{j_k}) \subset ((u_1, \ldots, u_{j_k-1}) : u_{j_k}) = (\overline{Z}_{j_k}).
$$

From [\(2.10\)](#page-5-0) and [\(2.11\)](#page-5-1), one can easily deduce that $((u_{j_1},...,u_{j_{k-1}}):u_{j_k}) = (\bar{Z}_{j_k} \setminus \{x_i\})$. Hence, *J* $\frac{37}{21}$ has linear quotients. 36

Remark 2.10. Let $I \subset S$ be a monomial ideal with linear quotients, $G(I) = \{u_1, \ldots, u_m\}$, $I_i =$ (u_1,\ldots,u_j) for $1\leq j\leq m$, such that $(I_{j-1}:u_j)=(\{x_1,\ldots,x_n\}\setminus Z_j)$, where $Z_j\subset \{x_1,\ldots,x_n\}$, for all $2 \le j \le m$. *I* has the Stanley decomposition: 38 39 $\frac{1}{40}$ $\overline{41}$

$$
I = u_1 K[Z_1] \oplus u_2 K[Z_2] \oplus \cdots \oplus u_m K[Z_m],
$$

where $Z_1 = \{x_1, \ldots, x_n\}$. We have that 43 44

$$
depth(S/I) = n - s - 1
$$
, where $n - s = min\{|Z_j| : 1 \le j \le m\}$.

46 We claim that Conjecture [2.8](#page-5-2) is equivalent to the fact that there exists $i \in [n]$ such that there is no $\frac{47}{1}$ $1 \le j \le m$ with $x_i \nmid u_j, x_i \in Z_j$ and $|Z_j| = n - s$. Indeed, with the notations of Lemma [2.9,](#page-5-3) if there is

some u_{j_k} with $x_i \nmid u_{j_k}$ and $x_i \in Z_{j_k}$ then $u_{j_k} K[Z_{j_k}]$ $\{x_i\}$ some u_{j_k} with $x_i \nmid u_{j_k}$ and $x_i \in Z_{j_k}$ then $u_{j_k} K[Z_{j_k} \setminus \{x_i\}]$ is a subspace in the decomposition of the ideal with linear quotients $J \subset S' = K[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$ and thus 1 2

$$
depth(S/(I, x_i)) = depth(S'/J) \le (n-1) - s - 1 = n - s - 2 < depth(S/I).
$$

The converse is similar. 5

3 4

6 7

10 11

26

28 29 $\frac{1}{30}$

 $\frac{1}{37}$ $\frac{1}{38}$ We propose a stronger form of Conjecture [2.8.](#page-5-2)

Conjecture 2.11. *If* $I \subset S$ *is a proper monomial ideal with linear quotients, then there exists* $i \in [n]$ *such that:* 8 9

i) depth $(S/(I, x_i)) \ge$ depth (S/I) *and*

ii) sdepth $(S/(I, x_i)) \leq$ sdepth (S/I) .

Note that, if x_i is a minimal generator of *I*, then conditions i) and ii) from Conjecture [2.11](#page-6-2) are trivial. $\frac{1}{12}$ $\frac{1}{13}$ $\frac{1}{14}$

Theorem 2.12. *If Conjecture [2.11](#page-6-2) is true and I* ⊂ *S is a proper monomial ideal with linear quotients,* 15 $\frac{16}{2}$ *then* sdepth(*S*/*I*) \geq depth(*S*/*I*)*.*

Proof. We use induction on $n \geq 1$. If $n = 1$ then there is nothing to prove. Assume $n \geq 2$. Let $I \subset S$ be a monomial ideal with linear quotients and let $i \in [n]$ such that depth $(S/(I, x_i)) \geq$ depth (S/I) and $sdepth(S/(x_i, I)) \leq sdepth(S/I)$. We consider the short exact sequence 17 $\frac{1}{18}$ $\frac{1}{19}$ $\frac{1}{20}$

 (2.12) $0 \rightarrow \frac{S}{\sqrt{I}}$ $\frac{S}{(I:x_i)} \rightarrow \frac{S}{I}$ $\frac{S}{I} \rightarrow \frac{S}{(I, x)}$ $\frac{b}{(I,x_i)} \to 0.$ 21 $\overline{22}$

Let $S' := K[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$. According to Lemma [2.9,](#page-5-3) $(x_i, I) = (x_i, J)$ where $J \subset S'$ is a monomial ideal with linear quotients. Note that: 23 24 25

$$
sdepth(S/(x_i,I)) = sdepth(S/(x_i,J)) = sdepth(S'/J) \text{ and } depth(S/(I,x_i)) = depth(S'/J).
$$

From the induction hypothesis, we have sdepth $(S'/J) \ge$ depth (S'/J) . It follows that:

$$
sdepth(S/I) \geq sdepth(S/(I, x_i)) = sdepth(S'/J)
$$

$$
\geq depth(S'/J) = depth(S/(I, x_i)) \geq depth(S/I),
$$

 $\frac{31}{2}$ as required.

Remark 2.13. Note that, if $I \subset S$ has linear quotients, then $(I : x_i)$ has not necessarily the same property. For example, the ideal $I = (x_1x_2, x_2x_3x_4, x_3x_4x_5) \subset K[x_1, \ldots, x_5]$ has linear quotients, but $(I:x_5) = (x_1x_2, x_3x_4)$ has not. Henceforth, in the proof of Theorem [2.6,](#page-4-0) we cannot argue, inductively, that sdepth $(S/(I : x_i)) \geq$ depth $(S/(I : x_i))$. 32 $\frac{1}{33}$ $\frac{1}{34}$ $\frac{1}{35}$ 36

3. Remarks on the Hilbert depth

³⁹ Let *I* = $(u_1, ..., u_m)$ ⊂ *S* be a proper squarefree monomial with linear quotients, where $(u_1, ..., u_{i-1})$: $\frac{40}{2}$ *u_i* is generated by variables for any $2 \le i \le m$. As we seen in the previous section, *I* has a $\frac{41}{2}$ decomposition $\overline{42}$

$$
I = u_1 K[Z_1] \oplus u_2 K[Z_2] \oplus \cdots \oplus u_m K[Z_m].
$$

Moreover, since *I* is squarefree, $Z_1 = \{x_1, \ldots, x_n\}$ and, for $2 \le i \le m$, Z_i consists in the variables 45 which are not in $(u_1, \ldots, u_{i-1}) : u_i$, it follows that supp $(u_i) \subset Z_i$ for all $1 \le i \le m$. Therefore, if we 46 denote $d_i = \deg(u_i)$ and $n_i = |Z_i|$, then $d_i \leq n_i$, for all $1 \leq i \leq m$. We use the convention $\binom{r}{s}$ $\binom{r}{s} = 0$ for $s < 0$. 47

Lemma 3.1. *With the above notations, we have that:* 1

(1) $\alpha_j(I) = \sum_{i=1}^{m}$ ∑ *i*=1 $\binom{n_i-d_i}{i}$ j_{j-d_i} $\leq j \leq n$. (2) $\alpha_j(S/I) = \binom{n}{i}$ \sum_{j}^{n} – \sum_{j}^{m} ∑ *i*=1 $\binom{n_i-d_i}{i}$ j_{j-d_i} $\leq j \leq n$.

Proof. (1) For convenience, we assume that $u_1 = x_1x_2 \cdots x_p$ for some $p \le n$. For $j \ge p$, a squarefree monomial of degree j in $u_1K[Z_1] = u_1K[x_1,\ldots,x_n]$ is of the form $v = u_1w$, where $w \in K[x_{p+1},\cdots,x_n]$ is squarefree of degree $j - p$. Hence, there are $\binom{n-p}{i-p}$ $\binom{n-p}{j-p}$ = $\binom{n_1-d_1}{j-d_1}$ $j_{j−d₁}$ such monomials. Similarly, there are $\binom{n_i-d_i}{i}$ *j*^{−*d_{<i>i*}} squarefree monomials of degree *j* in *u*_{*i*}*K*[*Z*_{*i*}] for all 2 ≤ *i* ≤ *m*. Hence, we get the required</sup> conclusion from [\(3.1\)](#page-6-3). 6 7 8 9 10 $\frac{1}{11}$

(2) It follows immediately from (1). \square $\frac{1}{12}$

31

 42

44 45

We recall the following combinatorial identity, which can be easily derived from the Chu-14 Vandermonde identity $\frac{1}{13}$

$$
\frac{\frac{15}{16}}{17}(3.2) \qquad \sum_{j=0}^{k} (-1)^{k-j} {d-j \choose k-j} {n \choose j} = {n-d+k-1 \choose k}.
$$

 $\overline{18}$ Now, we state the following result, which follows immediately from Lemma [3.1](#page-6-4) and [\(3.2\)](#page-7-3):

Proposition 3.2. *With the above notations, we have that:* 19

$$
(1) \ \beta_k^d(I) = \sum_{i=1}^m \sum_{j=0}^k (-1)^{k-j} {d-j \choose k-j} {n_i - d_i \choose j - d_i} \text{ for all } 0 \le k \le d \le n.
$$
\n
$$
(2) \ \beta_k^d(S/I) = {n-d+k-1 \choose k} - \sum_{i=1}^m \sum_{j=0}^k (-1)^{k-j} {d-j \choose k-j} {n_i - d_i \choose j - d_i} \text{ for all } 0 \le k \le d \le n.
$$

If $k \ge D$ then, using [\(3.2\)](#page-7-3) and taking $\ell = j - D$ we get (3.3) 25 26

$$
\sum_{\substack{28 \ 29}}^{27} \sum_{j=0}^k (-1)^{k-j} {d-j \choose k-j} {N-D \choose j-D} = \sum_{\ell=0}^{k-D} (-1)^{k-D-\ell} {d-D-\ell \choose k-D-\ell} {N-D \choose \ell} = {N-d+k-D-1 \choose k-D}.
$$

Note that (3.3) is trivially satisfied for $k < D$ also. 30

From Proposition [3.2](#page-7-0) and [\(3.3\)](#page-7-4) we get the following:

Corollary 3.3. *With the above notations, we have that:* 32

(1) $\beta_k^d(I) = \sum_{k=1}^{m}$ ∑ *i*=1 $\binom{n_i-d+k-d_i-1}{k-d_i}$ $\binom{+k-d_i-1}{k-d_i}$ for all 0 ≤ $k \le d \le n$. (2) $\beta_k^d(S/I) = \binom{n-d+k-1}{k}$ ${k+1 \choose k} - \sum_{k=1}^{m}$ ∑ *i*=1 $\binom{n_i-d+k-d_i-1}{k-d_i}$ $\binom{+k-d_i-1}{k-d_i}$ for all 0 ≤ $k \le d \le n$.

The problem of computing hdepth(I) and hdepth(S/I) using directly the formulas given in Corollary [3.3](#page-7-1) seems hopeless. However, we can tackle the following particular case: $\frac{1}{37}$ $\frac{1}{38}$ $\frac{1}{39}$

Theorem 3.4. Let $I \subset S$ be a proper squarefree monomial ideal with linear quotients with depth (S/I) *n*−2*. Then* $\frac{1}{40}$ $\overline{41}$

$$
hdepth(S/I) = sdepth(S/I) = n-2.
$$

Proof. From Theorem [2.4](#page-3-0) and [\(1.4\)](#page-1-2) it follows that 43

$$
hdepth(S/I) \geq sdepth(S/I) = n-2.
$$

Hence, in order to complete the proof it is enough to show that hdepth $(S/I) \le n-2$. If $\alpha_{n-1}(S/I) =$ 47 0 then, according to (1.3) , there is nothing to prove.

14 May 2024 05:19:32 PDT

240123-Cimpoeas Version 7 - Submitted to Rocky Mountain J. Math.

Suppose that $\alpha_{n-1}(S/I) = s > 0$. From [\[12,](#page-9-8) Lemma 2.1] we can assume that deg(u_1) \leq deg(u_2) \leq $\frac{a_2}{a_1} \cdots \leq \deg(u_m)$, where $u_1 \leq u_2 \leq \cdots \leq u_m$ is the linear order on $G(I)$. If $m = 1$ then $I = (u_1)$ is principal, a contradiction with the hypothesis depth $(S/I) = n - 2$. 1 3

Note that, if $x_1x_2 \cdots x_n \in G(I)$ then, since *I* has linear quotients, it follows that $u_1 = x_1x_2 \cdots x_n$ and $I = (u_1)$, a contradiction. Therefore 4 5

$$
\deg(u_1) \leq \deg(u_2) \leq \cdots \leq \deg(u_m) \leq n-1.
$$

We claim that $deg(u_1) \geq s$. Assume by contradiction that $deg(u_1) = \ell < s$ and let's say that \overline{y} $u_1 = x_1 \cdots x_\ell$. Then $v_k = x_1 \cdots x_n / x_k \in I$ for all $\ell < k \le n$ and thus $\alpha_{n-1}(S/I) \le \ell$, a contradiction. In particular, we have $\alpha_j(S/I) = \binom{n}{j}$ *j*⁰ In particular, we have $\alpha_j(S/I) = \binom{n}{j}$ for all *j* ≤ *s*−1 and thus, from [\(1.1\)](#page-1-0) and [\(3.2\)](#page-7-3), it follows that 8 11

$$
\frac{\frac{11}{12}}{\frac{13}{13}}(3.4) \qquad \beta_k^{n-1}(S/I) = \sum_{j=0}^k (-1)^{k-j} \binom{n-1-j}{k-j} \binom{n}{j} = 1 \text{ for all } k \le s-1.
$$

¹⁴ We assume by contradiction that hdepth $(S/I) = n - 1$. From [\(1.2\)](#page-1-3), it follows that 15

$$
\frac{\frac{1}{16}}{17}(3.5) \qquad \qquad s = \alpha_{n-1}(S/I) = \sum_{j=0}^{n-1} \beta_j^{n-1}(S/I) \text{ with } \beta_j^{n-1}(S/I) \ge 0.
$$

Therefore, from [\(3.4\)](#page-8-4) we get 18

6 7

$$
\frac{19}{20} (3.6) \qquad \beta_j^{n-1}(S/I) = 0 \text{ for all } s \le j \le n-1.
$$

 $\frac{21}{2}$ From [\(1.2\)](#page-1-3), [\(3.4\)](#page-8-4) and [\(3.6\)](#page-8-5) it follows that

$$
\frac{\frac{22}{23}}{\frac{24}{24}}(3.7) \qquad \alpha_k(S/I) = \sum_{j=0}^k \beta_j^{n-1}(S/I) {n-1-j \choose k-j} = {n \choose k} - {n-s \choose k-s} \text{ for all } 0 \le k \le n.
$$

From Lemma [3.1\(](#page-6-4)2) and [\(3.7\)](#page-8-6) it follows 25

$$
\sum_{i=1}^{26} {n_i - d_i \choose s - d_i} = 1.
$$

Since $s \le d_1 \le d_2 \le \cdots \le d_m$ and $d_i \le n_i$ for all $1 \le i \le m$, from [\(3.8\)](#page-8-7) it follows that $d_1 = s$ and 30 $d_i > s$ for $2 \le i \le m$. Since $n_1 = n$, from Lemma [3.1\(](#page-6-4)2) it follows that

$$
\frac{\frac{31}{32}}{\frac{33}{34}} \alpha_{d_2}(S/I) = {n \choose d_2} - \sum_{i=1}^m {n_i - d_i \choose d_2 - d_i} \le {n \choose d_2} - {n - d_1 \choose d_2 - d_1} - {n_2 - d_2 \choose 0} = {n \choose d_2} - {n - s \choose d_2 - s} - 1,
$$
\n
$$
\square
$$

Acknowledgements. We would like to express our gratitude to the anonymous referee who help us to correct, improve and clarify our manuscript. 35 $\frac{1}{36}$ $\frac{1}{37}$

The second author was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-1633, within PNCDI III. 38 39

References

[1] J. Apel, *On a conjecture of R. P. Stanley; Part II - Quotients Modulo Monomial Ideals*, J. of Alg. Comb. 17 (2003), 42 $\frac{1}{43}$ 57–74.

- [2] S. Bălănescu, M. Cimpoeaș, C. Krattenthaler, *On the Hilbert depth of monomial ideals*, arXiv:2306.09450v4 (2024).
- [3] W. Bruns, C. Krattenthaler, J. Uliczka, *Stanley decompositions and Hilbert depth in the Koszul complex*, Journal of
- Commutative Algebra **vol.2, no.3** (2010), 327–357. 45
- [4] M. Cimpoeas¸, *Stanley depth of monomial ideals with small number of generators*, Cent. Eur. J. Math. 7, no. 4 (2009), 46 629–634. 47

40 41

240123-Cimpoeas Version 7 - Submitted to Rocky Mountain J. Math.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

REMARKS ON THE STANLEY DEPTH AND HILBERT DEPTH OF MONOMIAL IDEALS WITH LINEAR QUOTIENTS 10

- [5] M. Cimpoeas¸, *Several inequalities regarding Stanley depth*, Romanian Journal of Mathematics and Computer Science
- $2(1), (2012), 28-40.$

- [6] A. M. Duval, B. Goeckneker, C. J. Klivans, J. L. Martine, *A non-partitionable Cohen-Macaulay simplicial complex*,
- Advances in Mathematics, vol 299 (2016), pag. 381–395.
- [7] S. A. Seyed Fakhari, Stanley depth of weakly polymatroidal ideals, Archiv der Mathematik volume 103 (2014), 229–233. $\overline{5}$
- [8] J. Herzog, M. Vladoiu, X. Zheng, *How to compute the Stanley depth of a monomial ideal*, Journal of Algebra 322(9), (2009), 3151–3169.
- [9] A. Rauf, *Depth and sdepth of multigraded modules*, Communications in Algebra, vol. 38, Issue 2, (2010), 773–784.
- $\overline{9}$ [10] L. Sharifan, M. Varbaro, *Graded Betti numbers of ideals with linear quotients*, Le Matematiche, **63** (2008), 257–265.
- [11] A. Soleyman Jahan, *Prime filtrations and Stanley decompositions of squarefree modules and Alexander duality*,
- Manuscripta. Math. 130 (2009), 533–550.
- ¹¹ [12] A. Soleyman Jahan, X. Zheng, *Ideals with linear quotients*, Journal of Combinatorial Theory, Series A 117 (2010), $\frac{12}{104}$ 104–110.
- [13] R. P. Stanley, *Linear Diophantine equations and local cohomology*, Invent. Math. 68 (1982), pag. 175–193.
- NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY POLITEHNICA BUCHAREST, FACULTY OF APPLIED SCIENCES, BUCHAREST, ROMANIA
- *E-mail address*: andreea.bordianu@stud.fsa.upb.ro
- NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY POLITEHNICA BUCHAREST, FACULTY OF APPLIED SCIENCES, BUCHAREST, ROMANIA AND SIMION STOILOW INSTITUTE OF MATHEMATICS, BUCHAREST, ROMANIA $\frac{1}{19}$ $\overline{20}$
	- *E-mail address*: mircea.cimpoeas@upb.ro