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REMARKS ON THE STANLEY DEPTH AND HILBERT DEPTH OF MONOMIAL IDEALS WITH LINEAR QUOTIENTS

ANDREEA 1. BORDIANU AND MIRCEA CIMPOEAS

ABSTRACT. We prove that if / is a monomial ideal with linear quotients in a ring of polynomials
S in n indeterminates and depth(S/I) = n — 2, then sdepth(S/I) = n—2 and, if I is squarefree,
hdepth(S/I) = n—2. Also, we prove that sdepth(S/I) > depth(S/I) for a monomial ideal / with
linear quotients which satisfies certain technical conditions.

_._._._._._.
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1. Introduction

~ Let K be a field and let S = K[x,xz,...,x,] be the ring of polynomials in n variables. Let M be a

e 7"*-graded S-module. A Stanley decomposition of M is a direct sum
17

.
8 2 :M=@PmiK|Z),
19 i=1

z% as K-vector spaces, where m; € M are homogeneous, Z; C {xi,...,x,} such that m;K[Z;] is a free
o K|[Z;]-module; m;K[Z;] is called a Stanley subspace of M. We define sdepth(%) = min}_, |Z;| and

23 sdepth(M) = max{sdepth(Z) : & is a Stanley decomposition of M}.

?*_The number sdepth(M) is called the Stanley depth of M. Herzog Vlidoiu and Zheng [8] proved
%5 that this invariant can be computed in a finite number of steps, when M = 1/J, where J C I C S are
% monomial ideals.

7 We say that the multigraded module M satisfies the Stanley inequality if
28
29 sdepth(M) > depth(M).

30 Stanley conjectured in [13] that sdepth(M) > depth(M), for any Z"-graded S-module M. In fact, in
31 this form, the conjecture was stated by Apel in [1]. The Stanley conjecture was disproved by Duval
82 et. al [6], in the case M = [ /J, where (0) #J C I C S are monomial ideals, but it remains open in
33 the case M = I, a monomial ideal.

3¢ A monomial ideal I C S has linear quotients, if there exists u; < up < --- < uy,, an ordering on
% the minimal set of generators G(I), such that, for any 2 < j < m, the ideal (u1,...,uj—1) : u; is
36 generated by variables.

87 Given a monomial ideal with linear quotients / C S, Soleyman Jahan [11] noted that I satisfies
38 the Stanley inequality, i.e.

89 sdepth(7) > depth(1).

40
e However, a similar result for /1, if true, is more difficult to prove, only some particular cases being

o known. For instance, Seyed Fakhari [7] proved the inequality

43 sdepth(S/I) > depth(S/I)

:% for weakly polymatroidal ideals I C S, which are monomial ideals with linear quotients.

4i 2020 Mathematics Subject Classification. 0SE40; 13A15; 13C15; 13P10.
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1 InTheorem 2.4, we prove that if I C § is a monomial ideal with linear quotients with depth(S/I) =
2 n—2, then sdepth(S/I) = n—2. In Theorem 2.6, we prove that if / C S is a monomial ideal
'3 with linear quotients which has a Stanley decomposition which satisfies certain conditions, then
4 sdepth(S/I) > depth(S/I). Also, we conjecture that for any monomial ideal 7 C S with linear
5 quotients, there is a variable x; such that depth(S/(7,x;)) > depth(S/I) and sdepth(S/(1,x;)) <
6 sdepth(S/I). In Theorem 2.12 we prove that if this conjecture is true, then sdepth(S/I) > depth(S/1),
7 for any monomial ideal I C § with linear quotients.

8 Given a finitely graded S-module M, its Hilbert depth is

8
9 _ There exists a f.g. graded S-module N
0 hdepth(#) = max {r " with Hy (t)=Hp(7) and depth(N)= }

> Itis well known that hdepth(M) > sdepth(M). See [3] for further details.

. Let 0 C I C J C S be two squarefree monomial ideals. For any 0 < j <n, we let (J/I) to be

J the number of squarefree monomials u € S of degree j such that u € J\ /. (In particular, ¢;(I) is
;5 the number of squarefree monomials of degree j which belong to / and o;(S/I) = ( ) —o(I) is

E the number of squarefree monomials of degree j which do not belong to 1.)

- Also, for 0 < k < d <n, we let

18 k
L BL(J/T) = Z (d j)a,(]/l)

- = =
-

20 o
21 (In particular, B{(S/1) = Lj_o(— 1)/ (ii})%'(S/I ) and B(I) = X5_o(=1)* 7 ({) ey (1))
oo From (1.1), using an inversion formula, it follows that

241(1-2) oa(J/I) = Z(Z j)ﬁ (J/I) forall 0 < k <d < n.
25 =0 NT

o6 With the above notations, we proved in [2, Theorem 2.4] that
27 hdepth(J/I) = max{d : BZ(J/I) >0 forall 0 <k < d}.

o If I C S is a proper squarefree monomial ideal, we claim that
30 (1.3) hdepth(S/I) < max{k : ax(S/I) > 0}.

31 Note that a,(S/I) =0, since x; - - - x, € I, and thus m := max{k : 04 (S/I) > 0} < n. From (1.3) it
%2 follows that

33 m+1
34 O y1(S/1) = 265}"“(5/1)-
[ j:

35
- Since I # S it follows that 1 ¢ I and thus 3" (S/I) = ot(S/I) = 1. The above identity implies that

- there exists some 1 <k < m+ 1 with B/""(S/I) < 0 and therefore hdepth(S/I) < m, as required.
ss  Also, we will make use of the well known fact that

39 (1.4) hdepth(J/I) > sdepth(J/1).

% In Section 3 of our paper we study the Hilbert depth of S/I, where I is a squarefree monomial
e ideal with linear quotients. In Proposition 3.2 we compute the numbers 3¢ (I)’s and B¢(S/I)’s. In
. Corollary 3.3, we express these numbers in combinatorial terms, thus showing the difficulty in
“ finding explicit formulas for hdepth(7) and hdepth(S/I).

o The main result of this section is Theorem 3.4, in which we show that if / is a squarefree
o monomial ideal with linear quotients with depth(S/I) = n— 2 then

47 hdepth(S/I) = sdepth(S/I) = depth(S/I) =n—2.
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1 2. Main results

— Let I C S be a monomial ideal and let G(I) be the set of minimal monomial generators of 1. We
— recall that [ has linear quotients, if there exists a linear order u; < up < --- < up, on G(I), such that
— forevery 2 < j <m, the ideal (uy,...,u;j_1) : u;j is generated by a subset of n; variables.

We let [ := (uy,...,uj), for 1 < j<m.

LetZ; = {x1,....xp} and Z; = {x; : xi ¢ (Ij—1 :uj)} for2 < j <m.

Note that, for any 2 < j < m, we have

Li/liov=ui(S/(lj-1 2 uj)) = u;K([Z)].

9 Hence the ideal I has the Stanley decomposition
11
L 2D 1= wK[Z)] ®uK(Z) - ® unK[Za).

E According to [10, Corollary 2.7], the projective dimension of S/I is
s pd(S/I) =max{n; : 2<j<m}+1.
15

;s Hence, Ausldnder-Buchsbaum formula implies that

— 2
17
g depth(S/I)=n—max{n; : 2< j<m}—1=min{n—n; : 2<j<m}—1=min{|Z;| : 2< j<m}—1.

E Note that, (2.1) and (2.2) implies sdepth/ > depth/, a fact which was proved in [11]. We recall the
20 following results:

21
> Proposition 2.1. Let I C S be a monomial ideal and u € S\ I a monomial. Then:

o3 (1) depth(S/(I :u)) > depth(S/I). ([9, Corollary 1.3])

o (2) sdepth(S/(I:u)) > sdepth(S/I). ([5, Proposition 2.7(2)])

2E Proposition 2.2. Let 0 - U — M — N — 0 be a short exact sequence of finitely generated 7"-

26 graded S-modules. Then sdepth(M) > min{sdepth(U ), sdepth(N)}. ([9, Lemma 2.2])
27

s Note that, a proper monomial ideal / C § is principal if and only if depth(S/I) = n—1 if and
o only if sdepth(S/I) =n—1.

3E Lemma 2.3. Let I C S be a monomial ideal with linear quotients with depth(S/I) = n—2. Then
381 there exists some i € [n| and a monomial u € G(I) such that (I,x;) = (u,x;) and (I : x;) has linear
32 guotients.

:% Proof. If n =2 and I = S then u = 1 € G(I) and the assertion is obvious. Hence, we may assume
55 that/ is proper.

s First, note that I is not principal. Since / has linear quotients, we can assume that G(I) =
57 U1} such that ((u1,...,uj—1) : u;) is generated by variables, for every 2 < j <m. We

-~ consider the decomposition (2.1), that is

38
39 I = K[Z))| D wK[2] D - © upnK[Zy],

%9 where Z; = {xi,...,x,} and Zj is the set of variables which do not belong to ((u1,...,uj—1) : u;),
' for 2 < j < m. From (2.2), it follows that |Z;| = n — 1 for 2 < j < m. Since ((u1,...,u;_1): uj) =
42 (x;i = x; ¢ Z;), it follows that for any 2 < j < m we have

43

5(23) (ul,...,uj,l)ﬂqu[Zj]:{0}.

g We assume, by contradiction, that for any i € [n] there exists k; > ¢; € [m] such that x; { us,. We
46 claim that x; € Z,. Indeed, otherwise Zy, = {x1,...,x,} \ {x;} and therefore uy,us, € us,SNuy, K[Zy,),
47 a contradiction to (2.3) for j = k;.
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Without any loss of generality, we can assume k, = max{k; : i € [n]}. Since x, € Z,, it follows

1
2 that Zy, = {x1,...,x,} \ {x;} for some r <n— 1. Since x; € Z, it follows that k, < k, and, moreover,
3 x; {uy,, thatis u, € K[Zy,|. Therefore uy, ux, € ug, S Nuy,K[Zy,], a contradiction to (2.3) for j = k.
4 Thus, that there exists i € [n] such that for any k; > ¢; € [m], x; | uy,. It implies that x; | u; for
5 j=1,...,m— 1. It follows that (7 : x;) = (u),...,u,) where u; = u;/x; for j=1,...,m—1 and
6w, =ty if x; { ty, and )y, = wp /x; if X; | wyy,. It is clear that {u),...,u/, ,} C G(I:x;) and

7 / / A . .

. 24 ((yyeouiy) ruy) = ((ur, . yujy) suy) forall2 < j <m—1.

9 We have uj, € (up, :x;) C (I:x;). fuy, & G(I : x;) then G(I : x;) = {u},...,u),_,} and, from (2.4),
10 it follows that (I : x;) has linear quotients. On the other hand, assume u/, € G(I : x;) then we

11 claim that x; | u,,, hence ((u},...,u!, ) :ul) = ((u1,...,um_1) : uy) and, again, from (2.4), it
12 follows that (I : x;) has linear quotients. Indeed, otherwise, u, = u,, € G(I : x;) and G(I : x;) =
13 {u},...,ul,_|,un}, then for I < j < m— 1 there exists £; € [m]\ [i] such that x¢; | u and xp; §
14 and thus x;;,x; € supp(u;) \ supp(u), which contradicts that ((u1,...,un—1) : un) is generated by
15 variables. U

16
., Theorem 2.4. Let I C S be a monomial ideal with linear quotients. If depth(S/I) = n—2, then
-5 sdepth(S/1) =n—2.

19 Proof. If n =2 then §/I = 0 and there is nothing to prove, so we may assume n > 3 and [ is proper
20 with G(I) = {ui,...,uy} for some m > 2. We use induction on m and d = Y7 | deg(u;). If m =2,
21 then from [4, Proposition 1.6] it follows that sdepth(S/I) = n—2. If d = 2, then [ is generated by
22 two variables and there is nothing to prove.

25 Assume m > 2 and d > 2. According to Lemma 2.3, there exist i € [n] such that (I,x;) = (up, x;).
24 Since (1,x;) = (um,x;), from [4, Proposition 1.2] it follows that sdepth(S/(1,x;)) > n—2. If (I : x;)
25 s principal, then sdepth(S/(1 : x;)) = depth(S/(I : x;)) =n— 1.

26 Assume that (I : x;) is not principal. We have that depth(S/(1 : x;)) < n—2. On the other hand, by
27_Proposition 2.1(1) we have depth(S/(1 : x;)) > depth(S/I) =n—2 and thus depth(S/( : x;)) =n—2.
28 From the proof of Lemma 2.3, we have G(I : x;) C {u1/xi,...,um—1/Xi,un}. It follows that

29

o d:= Y deg(u)<d,

i eG(I:x;
31 ueG(I:x;)

32 thus, by induction hypothesis, we have sdepth(S/(1 : x;)) = n— 2. In both cases,

% sdepth(S/(I : x;)) > n—2.

34

35 From Proposition 2.2 and the short exact sequence

% 0—S/(I:x;)—S/I—S/(I,x;)— 0,

37

5 it follows that sdepth(S/I) > min{sdepth(S/(I : x;)),sdepth(S/(1,x;))} > n—2. Since I is not
5o principal, it follows that sdepth(S/I) = n — 2, as required. O
40 Lemma 2.5. Let I C S be a monomial ideal and u € S a monomial with (I : u) = (xq,...,Xp).
41 Assume that S/I has a Stanley decomposition

42

(2.5 2 :S/1=PviK[Z],

44 i=1

% such that there exists io with Ziy = {Xm+1,-..,%:} and vi, | u. Then:

46

47 sdepth(S/(I,u)) > min{sdepth(Z),n —m—1}.
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1 Proof. If sdepth(S/I) =0 or m =n— 1, then there is nothing to prove. We assume that sdepth(S/I) >
2 landm <n—2.Since S/(I:u) =S/(x1,...,%m) = K[Xnt1,...,%,), from the short exact sequence

° 0—S/(I:u) % S/ —S/(I,u) — 0,

4
5 it follows that we have the K-vector spaces isomorphism
5 (2.6) S/T=S/(I,u) ®uK[Xmi1,... %)
7
~ Fromour assumption, uK (X1, . ..,X%,] = uK[Z;)] C v; K[Z;,]. Hence, from (2.5) and (2.6) it follows
— that
9
10 vi,K K[Xpmt1y- -y Xn]
— (27 S/(I,u) = K[Z)] | & 2 === iK[Z; :
7 & /(Lu) (@v | ]) uK[ <@v > WoK Xt 15«5 %]
E il i#io
13 where wg = -*. On the other hand, sdepth (W) =n—m—1. Hence (2.7) and Proposition
0 m "
14 2.2 yields the required conclusion. O
15
s Theorem 2.6. Let I C S be a monomial ideal with linear quotients, G(I) = {uy,...,un}. Let

7 L= (u1,...,u;) for 1 < j <m, such that (I;—y :uj) = ({x1,...,x:} \ Z;), where Z; C {x1,..., %},

g Jorall2<j<m.

We assume that for any 2 < j < m, there exists a Stanley decomposition D;_ of S/1j_y such
oo that sdepth(Z;_1) = sdepth(S/I;_1) and there exists a Stanley subspace w;_1K[W;_1] of Z;_1 with
o wj 1 ujand Wiy =Z;.

> Then sdepth(S/I) > depth(S/I).

2E Proof. From the hypothesis and Lemma 2.5, we have that

24? sdepth(S/I;) = sdepth(S/(Ij—1,u;)) > min{sdepth(Z;_1),n —n; — 1}

% (2.8) = min{sdepth(S/I;—1),n—n; — 1}}, forall2 < j <m,

27

g Wherenj =n— |Zj|, 1 < j < m. On the other hand, according to (2.2),

0o m

“ 9 depth(S/I) = min{n—n; —1}.

o =2

81 Since sdepth(S/I}) = depth(S/I,) = n— 1, by applying repeatedly (2.8) we deduce that
32 m

33 sdepth(S/I) = sdepth(S/I,) > mig{n —nj—1}.

il =

5= Hence, from (2.9) we get the required conclusion. (|

SE Example 2.7. Let [ = (x%,xlx%,xlxzx%) C S = K[x1,x2,x3,x4]. Letu; = x%, Uy = xlx% and u3 =
37 x1xox3. Since ((u1) : up) = (x1) and up,uy) :uz) = (x1,x2), it follows that I has linear quotients
3 q

38 with repect to the order u; < up < uz. Moreover,

89 _ _ 2 2 2
0 1= u1K[Zl] @uzK[Zz] @M3K[Z3] = le[xl,XZ,X3,X4] @xlsz[xz,X3,x4] @X]XQX3K[X3,X4].

41 Letl; = (u1) and I, = (u1,u;). We consider the Stanley decomposition
42 D S/11 :K[)CQ,X3,X4] @le[XQ,X3,X4],

3
. of S/I with sdepth(2;) = sdepth(S/I;) = 3. Let w; = x; and W} = {x2,x3,x4}. Clearly, W) =

44
45 and wy | up. As in the proof of Lemma 2.5, we obtain the Stanley decomposition

46
— Dr: S/hL=K|xy,x3,x4] ® ———"—
47 2: S/ b2 3, xa] xlx%K[xz,X3,X4]

K
adl [XZ’X37X4] = K[XZ,Xg,X4] @le[X3,X4] @X1X2K[X3,X4]

14 May 2024 05:19:32 PDT
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of S/, with sdepth(%,) = sdepth(S/L) = 2.
Let wy = x1xp and Wy = {x3,x4}. Clearly, W, = Z3 and w, | u3. Hence, according to Theorem
2.6, sdepth(S/I) > depth(S/I) = 1. Note that

9 S/I = K[Xz,)C3,X4] @le[X3,X4] @XleK[)u] @X1XQX3K[X4],

is a Stanley decomposition of S/I with sdepth(Z) = 1 and thus sdepth(S/I) > 1.
On the other hand, since (x,x2,x3) is an associated prime to S/, it follows that sdepth(S/I) < 1
and thus sdepth(S/I) = 1. Finally, note that

; depth(S/Iz) =2, (lz,xl) = (xl) and (12 :xl) = (xl,x%).

- In particular, we have sdepth(S/(L : x1)) = depth(S/(L : x1)) = 2, while sdepth(S/(l,x1)) =
5 depth(S/(l2,x1)) = 3.

13 We propose the following conjecture:

14

;5 Conjecture 2.8. IfI C S is a proper monomial ideal with linear quotients, then there exists i € [n]
16 Such that depth(S/(1,x;)) > depth(S/I).

17

[ofe[~]ofo]a]eo]r]-

- =
-

The following result is well know in literature. However, in order of completeness, we give a

8 proof.
19
oo Lemma 2.9. Let I C S be a monomial ideal with linear quotients and x; a variable. Then (x;,I) has

o1 linear quotients. Moreover, if ' = K[X1,...,Xi—1,Xit1,- -, Xu), then (x;,1) = (x;,J), where J C §' is
>» a monomial ideal with linear quotients.

23 Proof. We consider the order u; < uy < -+ < uy,, on G(I), such that, for every 2 < j < m, the ideal

2 (1 i1 :uj) is generated by a nonempty subset Z; of variables. We assume that u;, <uj, < - <u Jp

% are the minimal monomial generators of / which are not multiple of x;. We have that ((x;) : uj,) =

% (x;). Also, for 2 < k < p, we claim that
27

2 (2.10) ((xi?u./.ﬁ""ujkfl) : u./k) = (x,-,ij).

29 Indeed, since ((u1,...,uj,—1) :uj,) = (Z;,) and x;u;j, € (x;,uj,,...,uj_,) it follows that (x;,Z;,) C
30 ((xi,ujy,...,uj,_,):uj,). Conversely, assume that v € S is a monomial with vu, € (x;,uj,,...,uj,_ )=
31 (xjur,...,uj—1). I x;fv, then vuj, € (u1,...,uj,—1), hence v € (Z;,). If x; | v, then v € (x;,Z;, ).
32 Hence the claim (2.10) is true and therefore (x;,) has linear quotients. Now, let J = (uj,,...,u;,).
33 For any 2 < k < p, we have that

34 .

— (2.11) ((u.i17“'7ujk—1) : ujk) C ((ul,...,ujk,l) : ujk) = (Z,k)

36 From (2.10) and (2.11), one can easily deduce that ((u;,,...,u;,_,):uj) = (Z; \ {xi}). Hence, J
37 has linear quotients. O

*® Remark 2.10. Let / C S be a monomial ideal with linear quotients, G(I) =A{ur,...,um}, I; =
“ (uy,...,u;) for 1 < j < m, such that (I, _; : u;) = ({x1,...,%,} \ Z;), where Z; C {xi,...,x,}, for
% all 2 < j < m. I has the Stanley decomposition:

4 I =uK[Z||®wK[Z]|® - ®unK[Zy],

4 where Z; = {x1,...,x,}. We have that

44

. depth(S/I) =n—s—1, where n —s =min{|Z;| : 1 < j<m}.

46 We claim that Conjecture 2.8 is equivalent to the fact that there exists i € [n] such that there is no

‘E 1 <j<mwithx;{uj,x; € Zj and |Z;| = n—s. Indeed, with the notations of Lemma 2.9, if there is
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1 some uj, with x;{u;, and x; € Z;_then u; K[Z;, \ {x;}] is a subspace in the decomposition of the
2 ideal with linear quotients J C 8’ = K[x{,...,Xi—1,Xi+1,---,X,] and thus
depth(S/(I,x;)) = depth(S'/J) < (n—1) —s—1=n—s—2 < depth(S/I).
The converse is similar.
We propose a stronger form of Conjecture 2.8.

Conjecture 2.11. [fI C S is a proper monomial ideal with linear quotients, then there exists i € [n]
such that:

10 i) depth(S/(1,x;)) > depth(S/I) and

" ii) sdepth(S/(I,x;)) < sdepth(S/I).

jefo|~|ofa|s]e|

—_
o

5 Note that, if x; is a minimal generator of /, then conditions i) and ii) from Conjecture 2.11 are

1, trivial.
E Theorem 2.12. If Conjecture 2.11 is true and I C S is a proper monomial ideal with linear quotients,
16 then sdepth(S/I) > depth(S/I).

17
8 Proof. We use induction on n > 1. If n = 1 then there is nothing to prove. Assume n > 2. Let/ C §

;5 be amonomial ideal with linear quotients and let i € [n] such that depth(S/(/,x;)) > depth(S/I) and
oo Sdepth(S/(x;,1)) < sdepth(S/I). We consider the short exact sequence

2L (2.12) 0> 5., 5

2i (1 . x,-) 1 (I,)Cl'>

2 LetS :=K[x1,...,Xi—1,Xi+1,---,%]. According to Lemma 2.9, (x;,1) = (x;,J) where J C §' is a
24 monomial ideal with linear quotients. Note that:

v sdepth(S/(x;,1)) = sdepth(S/(x;,J)) = sdepth(S’/J) and depth(S/(I,x;)) = depth(S’/J).

ZZ From the induction hypothesis, we have sdepth(S’/J) > depth(S’/J). It follows that:

Z% sdepth(S/I) > sdepth(S/(I,x;)) = sdepth(S' /J)

0 > depth(S'/J) = depth(S/(1,x;)) > depth(S/I),

81 as required. O
32

+; Remark 2.13. Note that, if / C S has linear quotients, then (1 : x;) has not necessarily the same
a4 property. For example, the ideal I = (x1x2,x2x3x4,X3x4X5) C K[x1,...,x5] has linear quotients, but

35 (I1x5) = (x1x2,X3x4) has not. Henceforth, in the proof of Theorem 2.6, we cannot argue, inductively,
5 that sdepth(S/(I : x;)) > depth(S/(I : x;)).

37
8 3. Remarks on the Hilbert depth

% Letl=(uy,...,u,) C S bea proper squarefree monomial with linear quotients, where (uy,...,u;—1):
40

u; is generated by variables for any 2 < i < m. As we seen in the previous section, / has a
41 decomposition

42
5(31) I:ulK[Zl]@uzK[Zz]@-”@umK[Zm].

g Moreover, since [ is squarefree, Z; = {xi,...,x,} and, for 2 <i < m, Z; consists in the variables
45 which are not in (uy,...,u;—1) : u;, it follows that supp(»;) C Z; for all 1 <i < m. Therefore, if we

46 denote d; = deg(u;) and n; = |Z;], then d; < n;, forall 1 <i <m.
47 We use the convention (:) =0fors <0.

14 May 2024 05:19:32 PDT
240123-Cimpoeas Version 7 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION
REMARKS ON THE STANLEY DEPTH AND HILBERT DEPTH OF MONOMIAL IDEALS WITH LINEAR QUOTIENTS 8

Lemma 3.1. With the above notations, we have that:

1
7 m ni—d; .
= Mah=Y (j;df) forall0 < j<n.
3 i=1 !

o m
% 2) o(S/1) = (%) — 21 () forall 0< j <n.

1=
8 Proof. (1) For convenience, we assume that u; = xyxz - - - x,, for some p <n. For j > p, a squarefree
7 monomial of degree jin u;K[Zi] =u1K|[x1,...,x,] is of the form v = uyw, where w € K[xp 41, , ]
8 is squarefree of degree j — p. Hence, there are (;‘:I’; ) = (’;.1__;11) such monomials. Similarly, there are
% (’;f:jif) squarefree monomials of degree j in u;K[Z;] for all 2 < i < m. Hence, we get the required
. conclusion from (3.1).
—  (2) It follows immediately from (1). ]

12
13 We recall the following combinatorial identity, which can be easily derived from the Chu-
14 Vandermonde identity

15 k ;
2 _ifd—Jj\ (n n—d+k—1
5 (32 rv () (0= )
- j=0 k—j J k
18 Now, we state the following result, which follows immediately from Lemma 3.1 and (3.2):

9 Proposition 3.2. With the above notations, we have that:
20

o () BIN=Y f (=D () (o) forall0 <k <d <n.
- i=1j=0 - !
5@ RS/ = () - B Y (ORI () fora0 <k <d <n.

24 i=1,j=0

2E If k > D then, using (3.2) and taking ¢ = j — D we get

2 (3.3)

27 & (d—j\ (N-D\ & d—D—{\ (N-D N—d+k—D-1
o 5o () Goo) = e (o) () - (5
sy =0 —J/ NI~ (=0 YT -

20 Note that (3.3) is trivially satisfied for k < D also.

?Z From Proposition 3.2 and (3.3) we get the following:

32 Corollary 3.3. With the above notations, we have that:

33 m
o B =X (AT forall0<k<d <n.
L ,

- 1=

35 d n—d+k—1 & (ni—d+k—di—1
o QB = (T S E (A forall0 <k <d <

%" The problem of computing hdepth(7) and hdepth(S/I) using directly the formulas given in

% Corollary 3.3 seems hopeless. However, we can tackle the following particular case:
39

40 Theorem 3.4. Let I C S be a proper squarefree monomial ideal with linear quotients with depth(S/I) =
41 n—2. Then

4 hdepth(S/I) = sdepth(S/I) = n—2.

43 Proof. From Theorem 2.4 and (1.4) it follows that

44

e hdepth(S/I) > sdepth(S/I) =n—2.

46 Hence, in order to complete the proof it is enough to show that hdepth(S/I) <n—2. If ot,—1(S/I) =

‘E 0 then, according to (1.3), there is nothing to prove.
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Suppose that @, (S/I) =s > 0. From [12, Lemma 2.1] we can assume that deg(u;) < deg(uz) <
-+ < deg(uy,), where u; < up < -++ < uy, is the linear order on G(I). If m =1 then I = (u;) is
principal, a contradiction with the hypothesis depth(S/I) =n —2.
Note that, if xjx; - --x, € G(I) then, since I has linear quotients, it follows that u; = xjxp -« - x,
and I = (u;), a contradiction. Therefore

deg(ur) < deg(up) < --- < deg(um) <n—1.

\*\m\w\k\w\wb

s We claim that deg(u;) > s. Assume by contradiction that deg(u;) = ¢ < s and let’s say that

9 uy =x1---xp. Then vy =xp---x,/x; € I for all £ < k < n and thus a,,_(S/I) < ¢, a contradiction.
10 In particular, we have o/;(S/I) = (;’) for all j <s—1 and thus, from (1.1) and (3.2), it follows that
11

12 n—1 . k—j n—1 —j n
12 (3.4) S S/ =Y (1) P ) =1forallk<s—1.
13 j=0 —J J

4 We assume by contradiction that hdepth(S/I) = n— 1. From (1.2), it follows that
15

° (3.5) s=0a,_1(S/I) = Zﬁ" L(S/1) with B (/1) >

17

'® Therefore, from (3.4) we get
19

20 (3.6) Bi~'(S/I)=0foralls < j<n-—1,

21 From (1.2), (3.4) and (3.6) it follows that
22

237 S/ = iﬁ}’”(S/I) (";:j> = <Z> - <Z:z> forall0 < k=<n.

24 =0

25 From Lemma 3.1(2) and (3.7) it follows
2%

- - (i —di
27 (3.8) < > =1.
o8 1:21 S—d,'
29 Since s <dy; <dp <--- < d; and d; < n; for all 1 <i < m, from (3.8) it follows that d; = s and
30 d; > s for2 < i< m. Since n; = n, from Lemma 3.1(2) it follows that

31 m
oL n n; —d; n n—d; ny, —do n g

= - < _ B _ - »
% 0, (S/1) <d2> lzzi (dz —di> B (dz) <d2 — d1> < 0 > (d2> <d2 _ S) .
34 Wwhich contradicts (3.7). O
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