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REMARKS ON THE STANLEY DEPTH AND HILBERT DEPTH OF MONOMIAL IDEALS WITH LINEAR QUOTIENTS

ANDREEA I. BORDIANU AND MIRCEA CIMPOEAŞ

ABSTRACT. We prove that if I is a monomial ideal with linear quotients in a ring of polynomials
S in n indeterminates and depth(S/I) = n− 2, then sdepth(S/I) = n− 2 and, if I is squarefree,
hdepth(S/I) = n− 2. Also, we prove that sdepth(S/I) ≥ depth(S/I) for a monomial ideal I with
linear quotients which satisfies certain technical conditions.

1. Introduction

Let K be a field and let S = K[x1,x2, . . . ,xn] be the ring of polynomials in n variables. Let M be a
Zn-graded S-module. A Stanley decomposition of M is a direct sum

D : M =
r⊕

i=1

miK[Zi],

as K-vector spaces, where mi ∈M are homogeneous, Zi ⊂ {x1, . . . ,xn} such that miK[Zi] is a free
K[Zi]-module; miK[Zi] is called a Stanley subspace of M. We define sdepth(D) = minr

i=1 |Zi| and

sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M}.

The number sdepth(M) is called the Stanley depth of M. Herzog Vlădoiu and Zheng [8] proved
that this invariant can be computed in a finite number of steps, when M = I/J, where J ⊂ I ⊂ S are
monomial ideals.

We say that the multigraded module M satisfies the Stanley inequality if

sdepth(M)≥ depth(M).

Stanley conjectured in [13] that sdepth(M)≥ depth(M), for any Zn-graded S-module M. In fact, in
this form, the conjecture was stated by Apel in [1]. The Stanley conjecture was disproved by Duval
et. al [6], in the case M = I/J, where (0) 6= J ⊂ I ⊂ S are monomial ideals, but it remains open in
the case M = I, a monomial ideal.

A monomial ideal I ⊂ S has linear quotients, if there exists u1 6 u2 6 · · ·6 um, an ordering on
the minimal set of generators G(I), such that, for any 2 ≤ j ≤ m, the ideal (u1, . . . ,u j−1) : u j is
generated by variables.

Given a monomial ideal with linear quotients I ⊂ S, Soleyman Jahan [11] noted that I satisfies
the Stanley inequality, i.e.

sdepth(I)≥ depth(I).

However, a similar result for S/I, if true, is more difficult to prove, only some particular cases being
known. For instance, Seyed Fakhari [7] proved the inequality

sdepth(S/I)≥ depth(S/I)

for weakly polymatroidal ideals I ⊂ S, which are monomial ideals with linear quotients.
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In Theorem 2.4, we prove that if I⊂ S is a monomial ideal with linear quotients with depth(S/I) =
n− 2, then sdepth(S/I) = n− 2. In Theorem 2.6, we prove that if I ⊂ S is a monomial ideal
with linear quotients which has a Stanley decomposition which satisfies certain conditions, then
sdepth(S/I) ≥ depth(S/I). Also, we conjecture that for any monomial ideal I ⊂ S with linear
quotients, there is a variable xi such that depth(S/(I,xi)) ≥ depth(S/I) and sdepth(S/(I,xi)) ≤
sdepth(S/I). In Theorem 2.12 we prove that if this conjecture is true, then sdepth(S/I)≥ depth(S/I),
for any monomial ideal I ⊂ S with linear quotients.

Given a finitely graded S-module M, its Hilbert depth is

hdepth(M) = max
{

r : There exists a f.g. graded S-module N
with HM(t)=HN(t) and depth(N)=r

}
.

It is well known that hdepth(M)≥ sdepth(M). See [3] for further details.
Let 0⊂ I ( J ⊂ S be two squarefree monomial ideals. For any 0≤ j ≤ n, we let α j(J/I) to be

the number of squarefree monomials u ∈ S of degree j such that u ∈ J \ I. (In particular, α j(I) is
the number of squarefree monomials of degree j which belong to I and α j(S/I) =

(n
j

)
−α j(I) is

the number of squarefree monomials of degree j which do not belong to I.)
Also, for 0≤ k ≤ d ≤ n, we let

(1.1) β
d
k (J/I) =

k

∑
j=0

(−1)k− j
(

d− j
k− j

)
α j(J/I).

(In particular, β d
k (S/I) = ∑

k
j=0(−1)k− j

(d− j
k− j

)
α j(S/I) and β d

k (I) = ∑
k
j=0(−1)k− j

(d− j
k− j

)
α j(I).)

From (1.1), using an inversion formula, it follows that

(1.2) αk(J/I) =
k

∑
j=0

(
d− j
k− j

)
β

d
j (J/I) for all 0≤ k ≤ d ≤ n.

With the above notations, we proved in [2, Theorem 2.4] that

hdepth(J/I) = max{d : β
d
k (J/I)≥ 0 for all 0≤ k ≤ d}.

If I ⊂ S is a proper squarefree monomial ideal, we claim that

(1.3) hdepth(S/I)≤max{k : αk(S/I) > 0}.
Note that αn(S/I) = 0, since x1 · · ·xn ∈ I, and thus m := max{k : αk(S/I) > 0}< n. From (1.3) it
follows that

αm+1(S/I) =
m+1

∑
j=0

β
m+1
j (S/I).

Since I 6= S it follows that 1 /∈ I and thus β
m+1
0 (S/I) = α0(S/I) = 1. The above identity implies that

there exists some 1≤ k ≤ m+1 with β
m+1
k (S/I) < 0 and therefore hdepth(S/I)≤ m, as required.

Also, we will make use of the well known fact that

(1.4) hdepth(J/I)≥ sdepth(J/I).

In Section 3 of our paper we study the Hilbert depth of S/I, where I is a squarefree monomial
ideal with linear quotients. In Proposition 3.2 we compute the numbers β d

k (I)’s and β d
k (S/I)’s. In

Corollary 3.3, we express these numbers in combinatorial terms, thus showing the difficulty in
finding explicit formulas for hdepth(I) and hdepth(S/I).

The main result of this section is Theorem 3.4, in which we show that if I is a squarefree
monomial ideal with linear quotients with depth(S/I) = n−2 then

hdepth(S/I) = sdepth(S/I) = depth(S/I) = n−2.
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2. Main results

Let I ⊂ S be a monomial ideal and let G(I) be the set of minimal monomial generators of I. We
recall that I has linear quotients, if there exists a linear order u1 6 u2 6 · · ·6 um on G(I), such that
for every 2≤ j ≤ m, the ideal (u1, . . . ,u j−1) : u j is generated by a subset of n j variables.

We let I j := (u1, . . . ,u j), for 1≤ j ≤ m.
Let Z1 = {x1, . . . ,xn} and Z j = {xi : xi /∈ (I j−1 : u j)} for 2≤ j ≤ m.
Note that, for any 2≤ j ≤ m, we have

I j/I j−1 = u j(S/(I j−1 : u j)) = u jK[Z j].

Hence the ideal I has the Stanley decomposition

(2.1) I = u1K[Z1]⊕u2K[Z2]⊕·· ·⊕umK[Zm].

According to [10, Corollary 2.7], the projective dimension of S/I is

pd(S/I) = max{n j : 2≤ j ≤ m}+1.

Hence, Ausländer-Buchsbaum formula implies that
(2.2)
depth(S/I)= n−max{n j : 2≤ j≤m}−1 = min{n−n j : 2≤ j≤m}−1 = min{|Z j| : 2≤ j≤m}−1.

Note that, (2.1) and (2.2) implies sdepth I ≥ depth I, a fact which was proved in [11]. We recall the
following results:

Proposition 2.1. Let I ⊂ S be a monomial ideal and u ∈ S\ I a monomial. Then:
(1) depth(S/(I : u))≥ depth(S/I). ([9, Corollary 1.3])
(2) sdepth(S/(I : u))≥ sdepth(S/I). ([5, Proposition 2.7(2)])

Proposition 2.2. Let 0→U →M→ N → 0 be a short exact sequence of finitely generated Zn-
graded S-modules. Then sdepth(M)≥min{sdepth(U),sdepth(N)}. ([9, Lemma 2.2])

Note that, a proper monomial ideal I ⊂ S is principal if and only if depth(S/I) = n− 1 if and
only if sdepth(S/I) = n−1.

Lemma 2.3. Let I ⊂ S be a monomial ideal with linear quotients with depth(S/I) = n−2. Then
there exists some i ∈ [n] and a monomial u ∈ G(I) such that (I,xi) = (u,xi) and (I : xi) has linear
quotients.

Proof. If n = 2 and I = S then u = 1 ∈ G(I) and the assertion is obvious. Hence, we may assume
that I is proper.

First, note that I is not principal. Since I has linear quotients, we can assume that G(I) =
{u1, . . . ,um} such that ((u1, . . . ,u j−1) : u j) is generated by variables, for every 2 ≤ j ≤ m. We
consider the decomposition (2.1), that is

I = u1K[Z1]⊕u2K[Z2]⊕·· ·⊕umK[Zm],

where Z1 = {x1, . . . ,xn} and Z j is the set of variables which do not belong to ((u1, . . . ,u j−1) : u j),
for 2≤ j ≤ m. From (2.2), it follows that |Z j|= n−1 for 2≤ j ≤ m. Since ((u1, . . . ,u j−1) : u j) =
(xi : xi /∈ Z j), it follows that for any 2≤ j ≤ m we have

(2.3) (u1, . . . ,u j−1)∩u jK[Z j] = {0}.
We assume, by contradiction, that for any i ∈ [n] there exists ki > `i ∈ [m] such that xi - u`i . We

claim that xi ∈ Zki . Indeed, otherwise Zki = {x1, . . . ,xn}\{xi} and therefore ukiu`i ∈ u`iS∩ukiK[Zki ],
a contradiction to (2.3) for j = ki.
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Without any loss of generality, we can assume kn = max{ki : i ∈ [n]}. Since xn ∈ Zkn , it follows
that Zkn = {x1, . . . ,xn}\{xt} for some t ≤ n−1. Since xt ∈ Zkt it follows that kt < kn and, moreover,
xt - ukt , that is ukt ∈ K[Zkn ]. Therefore ukt ukn ∈ ukt S∩uknK[Zkn ], a contradiction to (2.3) for j = kn.

Thus, that there exists i ∈ [n] such that for any ki > `i ∈ [m], xi | u`i . It implies that xi | u j for
j = 1, . . . ,m− 1. It follows that (I : xi) = (u′1, . . . ,u

′
m) where u′j = u j/xi for j = 1, . . . ,m− 1 and

u′m = um if xi - um and u′m = um/xi if xi | um. It is clear that {u′1, . . . ,u′m−1} ⊂ G(I : xi) and

(2.4) ((u′1, . . . ,u
′
j−1) : u′j) = ((u1, . . . ,u j−1) : u j) for all 2≤ j ≤ m−1.

We have u′m ∈ (um : xi)⊆ (I : xi). If u′m /∈ G(I : xi) then G(I : xi) = {u′1, . . . ,u′m−1} and, from (2.4),
it follows that (I : xi) has linear quotients. On the other hand, assume u′m ∈ G(I : xi) then we
claim that xi | um, hence ((u′1, . . . ,u

′
m−1) : u′m) = ((u1, . . . ,um−1) : um) and, again, from (2.4), it

follows that (I : xi) has linear quotients. Indeed, otherwise, u′m = um ∈ G(I : xi) and G(I : xi) =
{u′1, . . . ,u′m−1,um}, then for 1 ≤ j ≤ m−1 there exists ` j ∈ [m]\ [i] such that x` j | u′j and x` j - um,
and thus x` j ,xi ∈ supp(ui)\ supp(um), which contradicts that ((u1, . . . ,um−1) : um) is generated by
variables. �

Theorem 2.4. Let I ⊂ S be a monomial ideal with linear quotients. If depth(S/I) = n− 2, then
sdepth(S/I) = n−2.

Proof. If n = 2 then S/I = 0 and there is nothing to prove, so we may assume n≥ 3 and I is proper
with G(I) = {u1, . . . ,um} for some m≥ 2. We use induction on m and d = ∑

m
j=1 deg(ui). If m = 2,

then from [4, Proposition 1.6] it follows that sdepth(S/I) = n−2. If d = 2, then I is generated by
two variables and there is nothing to prove.

Assume m > 2 and d > 2. According to Lemma 2.3, there exist i ∈ [n] such that (I,xi) = (um,xi).
Since (I,xi) = (um,xi), from [4, Proposition 1.2] it follows that sdepth(S/(I,xi))≥ n−2. If (I : xi)
is principal, then sdepth(S/(I : xi)) = depth(S/(I : xi)) = n−1.

Assume that (I : xi) is not principal. We have that depth(S/(I : xi))≤ n−2. On the other hand, by
Proposition 2.1(1) we have depth(S/(I : xi))≥ depth(S/I) = n−2 and thus depth(S/(I : xi)) = n−2.
From the proof of Lemma 2.3, we have G(I : xi)⊂ {u1/xi, . . . ,um−1/xi,um}. It follows that

d′ := ∑
u∈G(I:xi)

deg(u) < d,

thus, by induction hypothesis, we have sdepth(S/(I : xi)) = n−2. In both cases,

sdepth(S/(I : xi))≥ n−2.

From Proposition 2.2 and the short exact sequence

0→ S/(I : xi)→ S/I→ S/(I,xi)→ 0,

it follows that sdepth(S/I) ≥ min{sdepth(S/(I : xi)),sdepth(S/(I,xi))} ≥ n− 2. Since I is not
principal, it follows that sdepth(S/I) = n−2, as required. �

Lemma 2.5. Let I ⊂ S be a monomial ideal and u ∈ S a monomial with (I : u) = (x1, . . . ,xm).
Assume that S/I has a Stanley decomposition

(2.5) D : S/I =
r⊕

i=1

viK[Zi],

such that there exists i0 with Zi0 = {xm+1, . . . ,xn} and vi0 | u. Then:

sdepth(S/(I,u))≥min{sdepth(D),n−m−1}.
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Proof. If sdepth(S/I)= 0 or m = n−1, then there is nothing to prove. We assume that sdepth(S/I)≥
1 and m≤ n−2. Since S/(I : u) = S/(x1, . . . ,xm)∼= K[xm+1, . . . ,xn], from the short exact sequence

0→ S/(I : u) ·u−→ S/I −→ S/(I,u)−→ 0,

it follows that we have the K-vector spaces isomorphism

(2.6) S/I ∼= S/(I,u)⊕uK[xm+1, . . . ,xn].

From our assumption, uK[xm+1, . . . ,xn] = uK[Zi0 ]⊂ vi0K[Zi0 ]. Hence, from (2.5) and (2.6) it follows
that

(2.7) S/(I,u)∼=

(⊕
i 6=i0

viK[Zi]

)
⊕

vi0K[Zi0 ]
uK[Zi0 ]

∼=

(⊕
i 6=i0

viK[Zi]

)
⊕ K[xm+1, . . . ,xn]

w0K[xm+1, . . . ,xn]
,

where w0 = u
vi0

. On the other hand, sdepth
(

K[xm+1,...,xn]
w0K[xm+1,...,xn]

)
= n−m−1. Hence (2.7) and Proposition

2.2 yields the required conclusion. �

Theorem 2.6. Let I ⊂ S be a monomial ideal with linear quotients, G(I) = {u1, . . . ,um}. Let
I j = (u1, . . . ,u j) for 1≤ j ≤ m, such that (I j−1 : u j) = ({x1, . . . ,xn}\Z j), where Z j ⊂ {x1, . . . ,xn},
for all 2≤ j ≤ m.

We assume that for any 2 ≤ j ≤ m, there exists a Stanley decomposition D j−1 of S/I j−1 such
that sdepth(D j−1) = sdepth(S/I j−1) and there exists a Stanley subspace w j−1K[Wj−1] of D j−1 with
w j−1 | u j and Wj−1 = Z j.

Then sdepth(S/I)≥ depth(S/I).

Proof. From the hypothesis and Lemma 2.5, we have that

sdepth(S/I j) = sdepth(S/(I j−1,u j))≥min{sdepth(D j−1),n−ni−1}

(2.8) = min{sdepth(S/I j−1),n−n j−1}}, for all 2≤ j ≤ m,

where n j = n−|Z j|, 1≤ j ≤ m. On the other hand, according to (2.2),

(2.9) depth(S/I) =
m

min
j=2
{n−n j−1}.

Since sdepth(S/I1) = depth(S/I1) = n−1, by applying repeatedly (2.8) we deduce that

sdepth(S/I) = sdepth(S/Im)≥
m

min
j=2
{n−n j−1}.

Hence, from (2.9) we get the required conclusion. �

Example 2.7. Let I = (x2
1,x1x2

2,x1x2x2
3) ⊂ S = K[x1,x2,x3,x4]. Let u1 = x2

1, u2 = x1x2
2 and u3 =

x1x2x2
3. Since ((u1) : u2) = (x1) and ((u1,u2) : u3) = (x1,x2), it follows that I has linear quotients

with repect to the order u1 6 u2 6 u3. Moreover,

I = u1K[Z1]⊕u2K[Z2]⊕u3K[Z3] = x2
1K[x1,x2,x3,x4]⊕ x1x2

2K[x2,x3,x4]⊕ x1x2x2
3K[x3,x4].

Let I1 = (u1) and I2 = (u1,u2). We consider the Stanley decomposition

D1 : S/I1 = K[x2,x3,x4]⊕ x1K[x2,x3,x4],

of S/I1 with sdepth(D1) = sdepth(S/I1) = 3. Let w1 = x1 and W1 = {x2,x3,x4}. Clearly, W1 = Z2
and w1 | u2. As in the proof of Lemma 2.5, we obtain the Stanley decomposition

D2 : S/I2 = K[x2,x3,x4]⊕
x1K[x2,x3,x4]

x1x2
2K[x2,x3,x4]

= K[x2,x3,x4]⊕ x1K[x3,x4]⊕ x1x2K[x3,x4]
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of S/I2 with sdepth(D2) = sdepth(S/I2) = 2.
Let w2 = x1x2 and W2 = {x3,x4}. Clearly, W2 = Z3 and w2 | u3. Hence, according to Theorem

2.6, sdepth(S/I)≥ depth(S/I) = 1. Note that

D : S/I = K[x2,x3,x4]⊕ x1K[x3,x4]⊕ x1x2K[x4]⊕ x1x2x3K[x4],

is a Stanley decomposition of S/I with sdepth(D) = 1 and thus sdepth(S/I)≥ 1.
On the other hand, since (x1,x2,x3) is an associated prime to S/I, it follows that sdepth(S/I)≤ 1

and thus sdepth(S/I) = 1. Finally, note that

depth(S/I2) = 2, (I2,x1) = (x1) and (I2 : x1) = (x1,x2
2).

In particular, we have sdepth(S/(I2 : x1)) = depth(S/(I2 : x1)) = 2, while sdepth(S/(I2,x1)) =
depth(S/(I2,x1)) = 3.

We propose the following conjecture:

Conjecture 2.8. If I ⊂ S is a proper monomial ideal with linear quotients, then there exists i ∈ [n]
such that depth(S/(I,xi))≥ depth(S/I).

The following result is well know in literature. However, in order of completeness, we give a
proof.

Lemma 2.9. Let I ⊂ S be a monomial ideal with linear quotients and xi a variable. Then (xi, I) has
linear quotients. Moreover, if S′ = K[x1, . . . ,xi−1,xi+1, . . . ,xn], then (xi, I) = (xi,J), where J ⊂ S′ is
a monomial ideal with linear quotients.

Proof. We consider the order u1 6 u2 6 · · ·6 um on G(I), such that, for every 2≤ j ≤ m, the ideal
(I j−1 : u j) is generated by a nonempty subset Z̄ j of variables. We assume that u j1 6 u j2 6 · · ·6 u jp

are the minimal monomial generators of I which are not multiple of xi. We have that ((xi) : u j1) =
(xi). Also, for 2≤ k ≤ p, we claim that

(2.10) ((xi,u j1 , . . . ,u jk−1) : u jk) = (xi, Z̄ jk).

Indeed, since ((u1, . . . ,u jk−1) : u jk) = (Z̄ jk) and xiu jk ∈ (xi,u j1 , . . . ,u jk−1) it follows that (xi, Z̄ jk)⊂
((xi,u j1 , . . . ,u jk−1) : u jk). Conversely, assume that v∈ S is a monomial with vu jk ∈ (xi,u j1 , . . . ,u jk−1)=
(xi,u1, . . . ,u jk−1). If xi - v, then vu jk ∈ (u1, . . . ,u jk−1), hence v ∈ (Z̄ jk). If xi | v, then v ∈ (xi, Z̄ jk).
Hence the claim (2.10) is true and therefore (xi, I) has linear quotients. Now, let J = (u j1 , . . . ,u jp).
For any 2≤ k ≤ p, we have that

(2.11) ((u j1 , . . . ,u jk−1) : u jk)⊂ ((u1, . . . ,u jk−1) : u jk) = (Z̄ jk).

From (2.10) and (2.11), one can easily deduce that ((u j1 , . . . ,u jk−1) : u jk) = (Z̄ jk \{xi}). Hence, J
has linear quotients. �

Remark 2.10. Let I ⊂ S be a monomial ideal with linear quotients, G(I) = {u1, . . . ,um}, I j =
(u1, . . . ,u j) for 1 ≤ j ≤ m, such that (I j−1 : u j) = ({x1, . . . ,xn}\Z j), where Z j ⊂ {x1, . . . ,xn}, for
all 2≤ j ≤ m. I has the Stanley decomposition:

I = u1K[Z1]⊕u2K[Z2]⊕·· ·⊕umK[Zm],

where Z1 = {x1, . . . ,xn}. We have that

depth(S/I) = n− s−1, where n− s = min{|Z j| : 1≤ j ≤ m}.

We claim that Conjecture 2.8 is equivalent to the fact that there exists i ∈ [n] such that there is no
1≤ j ≤ m with xi - u j, xi ∈ Z j and |Z j|= n− s. Indeed, with the notations of Lemma 2.9, if there is
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some u jk with xi - u jk and xi ∈ Z jk then u jkK[Z jk \{xi}] is a subspace in the decomposition of the
ideal with linear quotients J ⊂ S′ = K[x1, . . . ,xi−1,xi+1, . . . ,xn] and thus

depth(S/(I,xi)) = depth(S′/J)≤ (n−1)− s−1 = n− s−2 < depth(S/I).

The converse is similar.

We propose a stronger form of Conjecture 2.8.

Conjecture 2.11. If I ⊂ S is a proper monomial ideal with linear quotients, then there exists i ∈ [n]
such that:

i) depth(S/(I,xi))≥ depth(S/I) and
ii) sdepth(S/(I,xi))≤ sdepth(S/I).

Note that, if xi is a minimal generator of I, then conditions i) and ii) from Conjecture 2.11 are
trivial.

Theorem 2.12. If Conjecture 2.11 is true and I ⊂ S is a proper monomial ideal with linear quotients,
then sdepth(S/I)≥ depth(S/I).

Proof. We use induction on n≥ 1. If n = 1 then there is nothing to prove. Assume n≥ 2. Let I ⊂ S
be a monomial ideal with linear quotients and let i ∈ [n] such that depth(S/(I,xi))≥ depth(S/I) and
sdepth(S/(xi, I))≤ sdepth(S/I). We consider the short exact sequence

(2.12) 0→ S
(I : xi)

→ S
I
→ S

(I,xi)
→ 0.

Let S′ := K[x1, . . . ,xi−1,xi+1, . . . ,xn]. According to Lemma 2.9, (xi, I) = (xi,J) where J ⊂ S′ is a
monomial ideal with linear quotients. Note that:

sdepth(S/(xi, I)) = sdepth(S/(xi,J)) = sdepth(S′/J) and depth(S/(I,xi)) = depth(S′/J).

From the induction hypothesis, we have sdepth(S′/J)≥ depth(S′/J). It follows that:

sdepth(S/I)≥ sdepth(S/(I,xi)) = sdepth(S′/J)

≥ depth(S′/J) = depth(S/(I,xi))≥ depth(S/I),

as required. �

Remark 2.13. Note that, if I ⊂ S has linear quotients, then (I : xi) has not necessarily the same
property. For example, the ideal I = (x1x2,x2x3x4,x3x4x5)⊂ K[x1, . . . ,x5] has linear quotients, but
(I : x5) = (x1x2,x3x4) has not. Henceforth, in the proof of Theorem 2.6, we cannot argue, inductively,
that sdepth(S/(I : xi))≥ depth(S/(I : xi)).

3. Remarks on the Hilbert depth

Let I = (u1, . . . ,um)⊂ S be a proper squarefree monomial with linear quotients, where (u1, . . . ,ui−1) :
ui is generated by variables for any 2 ≤ i ≤ m. As we seen in the previous section, I has a
decomposition

(3.1) I = u1K[Z1]⊕u2K[Z2]⊕·· ·⊕umK[Zm].

Moreover, since I is squarefree, Z1 = {x1, . . . ,xn} and, for 2 ≤ i ≤ m, Zi consists in the variables
which are not in (u1, . . . ,ui−1) : ui, it follows that supp(ui)⊂ Zi for all 1≤ i≤ m. Therefore, if we
denote di = deg(ui) and ni = |Zi|, then di ≤ ni, for all 1≤ i≤ m.

We use the convention
(r

s

)
= 0 for s < 0.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

14 May 2024 05:19:32 PDT
240123-Cimpoeas Version 7 - Submitted to Rocky Mountain J. Math.



REMARKS ON THE STANLEY DEPTH AND HILBERT DEPTH OF MONOMIAL IDEALS WITH LINEAR QUOTIENTS 8

Lemma 3.1. With the above notations, we have that:

(1) α j(I) =
m
∑

i=1

(ni−di
j−di

)
for all 0≤ j ≤ n.

(2) α j(S/I) =
(n

j

)
−

m
∑

i=1

(ni−di
j−di

)
for all 0≤ j ≤ n.

Proof. (1) For convenience, we assume that u1 = x1x2 · · ·xp for some p≤ n. For j≥ p, a squarefree
monomial of degree j in u1K[Z1] = u1K[x1, . . . ,xn] is of the form v = u1w, where w∈K[xp+1, · · · ,xn]
is squarefree of degree j− p. Hence, there are

(n−p
j−p

)
=
(n1−d1

j−d1

)
such monomials. Similarly, there are(ni−di

j−di

)
squarefree monomials of degree j in uiK[Zi] for all 2≤ i≤ m. Hence, we get the required

conclusion from (3.1).
(2) It follows immediately from (1). �

We recall the following combinatorial identity, which can be easily derived from the Chu-
Vandermonde identity

(3.2)
k

∑
j=0

(−1)k− j
(

d− j
k− j

)(
n
j

)
=
(

n−d + k−1
k

)
.

Now, we state the following result, which follows immediately from Lemma 3.1 and (3.2):

Proposition 3.2. With the above notations, we have that:

(1) β d
k (I) =

m
∑

i=1

k
∑
j=0

(−1)k− j
(d− j

k− j

)(ni−di
j−di

)
for all 0≤ k ≤ d ≤ n.

(2) β d
k (S/I) =

(n−d+k−1
k

)
−

m
∑

i=1

k
∑
j=0

(−1)k− j
(d− j

k− j

)(ni−di
j−di

)
for all 0≤ k ≤ d ≤ n.

If k ≥ D then, using (3.2) and taking ` = j−D we get
(3.3)

k

∑
j=0

(−1)k− j
(

d− j
k− j

)(
N−D
j−D

)
=

k−D

∑
`=0

(−1)k−D−`

(
d−D− `

k−D− `

)(
N−D

`

)
=
(

N−d + k−D−1
k−D

)
.

Note that (3.3) is trivially satisfied for k < D also.
From Proposition 3.2 and (3.3) we get the following:

Corollary 3.3. With the above notations, we have that:

(1) β d
k (I) =

m
∑

i=1

(ni−d+k−di−1
k−di

)
for all 0≤ k ≤ d ≤ n.

(2) β d
k (S/I) =

(n−d+k−1
k

)
−

m
∑

i=1

(ni−d+k−di−1
k−di

)
for all 0≤ k ≤ d ≤ n.

The problem of computing hdepth(I) and hdepth(S/I) using directly the formulas given in
Corollary 3.3 seems hopeless. However, we can tackle the following particular case:

Theorem 3.4. Let I⊂ S be a proper squarefree monomial ideal with linear quotients with depth(S/I)=
n−2. Then

hdepth(S/I) = sdepth(S/I) = n−2.

Proof. From Theorem 2.4 and (1.4) it follows that

hdepth(S/I)≥ sdepth(S/I) = n−2.

Hence, in order to complete the proof it is enough to show that hdepth(S/I)≤ n−2. If αn−1(S/I) =
0 then, according to (1.3), there is nothing to prove.
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Suppose that αn−1(S/I) = s > 0. From [12, Lemma 2.1] we can assume that deg(u1)≤ deg(u2)≤
·· · ≤ deg(um), where u1 6 u2 6 · · · 6 um is the linear order on G(I). If m = 1 then I = (u1) is
principal, a contradiction with the hypothesis depth(S/I) = n−2.

Note that, if x1x2 · · ·xn ∈ G(I) then, since I has linear quotients, it follows that u1 = x1x2 · · ·xn
and I = (u1), a contradiction. Therefore

deg(u1)≤ deg(u2)≤ ·· · ≤ deg(um)≤ n−1.

We claim that deg(u1) ≥ s. Assume by contradiction that deg(u1) = ` < s and let’s say that
u1 = x1 · · ·x`. Then vk = x1 · · ·xn/xk ∈ I for all ` < k ≤ n and thus αn−1(S/I)≤ `, a contradiction.
In particular, we have α j(S/I) =

(n
j

)
for all j ≤ s−1 and thus, from (1.1) and (3.2), it follows that

(3.4) β
n−1
k (S/I) =

k

∑
j=0

(−1)k− j
(

n−1− j
k− j

)(
n
j

)
= 1 for all k ≤ s−1.

We assume by contradiction that hdepth(S/I) = n−1. From (1.2), it follows that

(3.5) s = αn−1(S/I) =
n−1

∑
j=0

β
n−1
j (S/I) with β

n−1
j (S/I)≥ 0.

Therefore, from (3.4) we get

(3.6) β
n−1
j (S/I) = 0 for all s≤ j ≤ n−1.

From (1.2), (3.4) and (3.6) it follows that

(3.7) αk(S/I) =
k

∑
j=0

β
n−1
j (S/I)

(
n−1− j

k− j

)
=
(

n
k

)
−
(

n− s
k− s

)
for all 0≤ k ≤ n.

From Lemma 3.1(2) and (3.7) it follows

(3.8)
m

∑
i=1

(
ni−di

s−di

)
= 1.

Since s ≤ d1 ≤ d2 ≤ ·· · ≤ dm and di ≤ ni for all 1 ≤ i ≤ m, from (3.8) it follows that d1 = s and
di > s for 2≤ i≤ m. Since n1 = n, from Lemma 3.1(2) it follows that

αd2(S/I) =
(

n
d2

)
−

m

∑
i=1

(
ni−di

d2−di

)
≤
(

n
d2

)
−
(

n−d1

d2−d1

)
−
(

n2−d2

0

)
=
(

n
d2

)
−
(

n− s
d2− s

)
−1,

which contradicts (3.7). �
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