A REVISIT OF POPOVICIU INEQUALITY
MOHAMMAD SABABHEH, SHIGERU FURUICHI, AND HAMID REZA MORADI

ABSTRACT. Convex functions and their properties have acquired a large area in the literature.
In this paper, we further explore the celebrated Popoviciu inequality, which relates the values of
a convex function at three points in its domain. In particular, we present refinements, reverses,
new Mercer-Popoviciu inequality, and some discussion of the monotony of quotients related to

convex functions.

1. INTRODUCTION

Let J be a real interval. A function f :J — R is said to be convex if it satisfies the simple

inequality

(1.1) S =tz +ty) < (A —1t)f(x) +1f(y),

for all z,y € J and 0 < t < 1. The above inequality can be extended to n parameters via

Jensen’s inequality which states

(1.2) / (Z tﬂ’i) < thf('rz)a

where f : J — R is convex, x; € J,0 < t; < 1and ) " ¢ = 1. The inequalities (1.1) and
(1.2) have received considerable attention in the literature due to their significance in different
fields, including mathematical inequalities, mathematical analysis, functional analysis, operator
theory, probability, and mathematical physics. We refer the reader to [1, 2, 8, 9, 10, 12, 13,
14, 18, 19, 23, 28, 29] as a sample of references that treated these inequalities with possible
applications.

Some inequalities about convex functions have been named after their founders, like the
Jensen inequality, Mercer inequality, and Popoviciu inequality. In this paper, we are interested
in Popoviciu inequality, which states [22]
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where f: J — R is convex and z,y, 2z € J. A recent new extension of Popoviciu’s inequality is
found in [16]. Popoviciu’s inequality can be regarded as a generalization of Hlawka’s inequality
using convexity as a simple geometry tool. If f (t) = |t|, then the Popoviciu inequality reduces

to the celebrated Hlawka inequality
o4yl +ly+ 2|+ +x] <o+ |y + |2] + |z +y + 2|

This seems to have appeared for the first time in a paper by Hornich [11]. Our goal in this
paper is to explore Popoviciu inequality further. For this, we need some tools, as follows. The

basic inequality (1.1) was refined and reversed in [5] by the forms

(14)  f((A—t)a+th) < (1—1)f(a)+1f(b) —2r (M_f(a;b))

and

(1.5) (1—t)f(a)+tf(b)gf((1_t)a+tb)+zR(M_f(a—;b))

where r = min{t,1 —t}, R = max{t,1 —¢}, and 0 < t < 1. Here, f : J — R is convex,
a,b € Jand 0 <t < 1. We refer the reader to [6, 7, 17, 24, 25, 26, 27| for further discussion of
convex inequalities, with applications in different contexts.

In what follows, we will present some results for differentiable convex functions. In this

context, the reader is reminded of the inequality

(1.6) f(a)(b—a)+ f(a) < (D)

is valid for the differentiable convex function f: J — R and a,b € J. This observation will be
used to obtain a reversed version of Popoviciu inequality.
Further, when discussing inequalities for convex functions, the following observation becomes

handy. If f is convex on [m, M], and t € [m, M], then ¢t = ]\Af:rflm + 1~ M. This, together

with (1.1), implies

M —t t—m
(17) F(t) < ot f fm) 4

F(M); m<t<M.

This observation has been used extensively in the literature, as seen in [3].

Popoviciu’s inequality can be extended to a weighted version [4, Theorem 2b] in the following.
We prove it by the use of (1.7) for convenience to the readers, although we can find a different
proof in [21, Theorem 6.2].
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Proposition 1.1. Let p,q,7 > 0 and f : J — R be a convex function. For any three points

x,y,z € J, we have

e+ of (P2 g (252 4 ey (222

p+q r+p
(19 < pf@) +af ) + /) + o+ g+ rf (AT,
p+q+r
Proof. We may assume x < y < z without loss of generality.
(i) For the case z <y < w, we have
p+q+r
pr+qy—+rz < pTr + 12 <. and pr+qyt+rz < qy +rz <.
p+q+r p+r p+q+r qgt+r
Letting m := w, M:=zandt:=2 rre in (1.7), we have
ptq+r p+r
f(px+ww)<<p—%q+r_ p(z —x) (ﬂr+qy+rz)
p+r p+r  plz—z)+q(z—y) ptq+r

q p(l’—y)—i—T(Z—y) (Z)

1.9 .
19 bt o) TG y)
Letting m := w, M:=zandt =2 T in (1.7), we have
prq+r q+r
f(qy+rz><:p+q+4j q(z —y) <px+qy+rz>
g+r )= q+r  plz-z)+q(z-y)" \ prgtr
(110) p Q(y — ‘T) + T(’Z — I) (Z)

g+r plz—1z)+q(z—y)

Taking (p +7)x (1.9) + (¢ + r)x (1.10), we have

(L11) (p+r)f (p]fi:z> +(a+7)] (%) <(p+q+r)f (%) +rf(2)

after calculations. We also have the following inequality by the convexity of f:

(112 o+ (BE) < pro) + as )

Adding both sides of (1.11) and (1.12), we get (1.8).

(ii) For the case z < prigy+rz

. <y, we have
prqrr

xgpx—l—rz pr+qy+r2 and xgpa:—l—qy pr%—qy%—rz.
p+r p+q+r p+q p+q+r
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Lettingm::x,M::wandt::px+r2 in (1.7), we have
prqg+r p+r
s pr + 12 <p—|—q—|—7‘. r(z —x) pr+qy+rz
p+r ) T pr r(z—x)+qly — x) p+qg+r
(113) ¢ ply—=x)+rly—2) ().
p+r qly—z)+r(z—2)
Lettingm::x,M::wandt::Min (1.7), we have
pt+q+r p+q
f(px+qy)<p+q+r_ q(y — ) (px+qy+m>
p+q )~ ptq r(z—2)+qly—2) pHq+r
r oplz—z)+q(z—y)
(1.14) f(z).

_|_ .
pta aly—=z)+r(z—2)
Taking (p +7)x (1.13) + (p+ ¢)x (1.14), we have

119) e 0f (B2 ) v ar (B2 < g s (PEEE) 4y

p+r p+gq ptq+r
after calculations. We also have the following inequality by the convexity of f:
qy +rz
(116 005 (252) < arlo) + 156

Adding both sides of (1.15) and (1.16), we get (1.8). This completes the proof.

The inequality (1.8) recovers the inequality (1.3) by putting p = ¢ = r.

Remark 1.1. If we replace t by M +m —t, in (1.7), we can write

FOr4m—t) < =" f(m) + 21—

f(M); m<t<M.

Assuming x < y < z, the fact
r+y—+=z <x—|—z

<,

3 - 2 =

implies

2y+5z—x T+ z—2y Tt+y+z 3(z—x)
1.1 < .
() s 2 () ey O
Further, if we letm:”gﬂandM:z. If we set t = T2, then (1.7) implies

T+ 2z 3(z—x) T+y+z T+ z—2y
1.1 < .
(1.18) f( 2 >_2(22—x—y)f( 3 +2(22—x—y)f(z)
Adding (1.17) and (1.18), we get

T+ z 2y+5z—ux rT+y+z

(1.19) f( 5 )+f<yT)§f(+>+f(2)-
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Since
rrytE _ytE_
3 -2~

we get

20 + 5z —y y+z—2x T+y+z 3(z—vy)
1.2 < .
(120 f( 6 )_2(2z—x—y)f( 3 )+2(22—$—y)f(z)
On the other hand, if we put t = y—;—z’ then (1.7) implies

y+z 3(z—1y) T+y+z y+z—2x
1.21 < .
(1.21) f( 2 >_2(2z—:1:—y)f 3 +2(22—x—y)f(z)
Adding (1.20) and (1.21), we infer that

+z 2z + 5z — r+y+z

(1.22) f(y2 )+f<Ty)§f<+>+f(z).
Since

we have, by (1.19) and (1.22) that

1 x4+ 2z 204+ 5z —x 20+ 5z —vy y+z Tty
() (=) (=) o () [+ (5)

Sf(%)Jrf(fo(ny(Z)-

So, a convexr function satisfies this latter inequality. We post the question of whether this

inequality is equivalent to the convexity of f.

We will also present variants of the celebrated Mercer inequality that states [15]

(1.23) JIM +m —x) < f(M) + f(m) = f(x),

for the convex function f : [m.M] — R and = € [m, M]. More precisely, we will present a
refinement of this inequality using Popoviciu inequality.

Another useful observation about convex functions is that a convex function is not necessarily
monotone. However, it is well known that if f : J — R is convex, then for each y € J, the
function = — W is non-decreasing in x € J; see [19, Theorem 1.3.1]. This means that if
x,y,z € J are such that < y < z, then

fW-f@) fE-f@) -1

Yy—x o Z—x zZ—

(1.24)

Interestingly, we will present a refinement and a reverse of this inequality using Popoviciu

inequality.
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2. MAIN RESULTS

This section will present refinements, reverses, Popoviciu-Mercer inequality, and further re-
sults, with one connection among them all, namely the inequality (1.3).

As we mentioned earlier in the introduction, we aim to explore (1.3) and present variants
that complement our understanding of this inequality. Below, we present a reversed version of

Popoviciu inequality, where (1.6) is used.

Theorem 2.1. Let f: J — R be a differentiable convez function. Then for any x,y,z € J,

() (y+2—22)+ f (y) (v + 2 = 2y) + [ (2) (x + y — 22)]

et (e A (o) () o (552)]

Y22 respectively, in (1.6), we get

| =

Proof. If we replace a and b by x and

(21) P () @ s (7))

r+z
2

(2:2) rw () v rw<r(55).

If we replace a and b by z and z—;“y, respectively, in (1.6), we have

23) e (P e < s ().

Adding (2.1), (2.2), (2.3), and then multiplying by %, we obtain

{f/ (2) (y+22— 2:c> W) (x+z2— 2y> ) <x+y2— zzﬂ

WCEHURSIO S%[f (wTw)H(yy)H(w;Z)].

If we replace a and b by y and , respectively, in (1.6), we infer that

W=

(2.4)

On the other hand, by Jensen’s inequality, we have

r+y+z 1 z+ 1 +z 1 x+z
f(L):f(_ y_|__.y _|_§. 5 )

3 3 2 3 2
1 T+y 1 Y+ 2z 1 T+ z
29 <31 () e () ra ()
1 T+y y+z T+ z
() () )]
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Adding the inequalities (2.4) and (2.5), we infer that

%[f/(x)(y+22_2x)+f’( (x+z ) (x+y2—22)}
+f(as)+f:(;;)+f<z>+f<w> g

7)) o) ()]

g

At this point, it is evident that the reversing term in Theorem 2.1 is negative, considering
the validity of (1.3). This can be stated as follows

as desired.

Corollary 2.1. Let f: J — R be a differentiable convex function. Then for any x,y,z € J
[f' (@) (y+2—22)+ f(y) (x+2=2) + [ (2) (z+y —22)] 0.
Remark 2.1. While the proof of Corollary 2.1 is immediate from Theorem 2.1, we pay at-

tention to the following observations about convex functions

. Notice that the derivative of a
differentiable convexr function is increasing. Hence, if f : J — R is a differentiable convex

function, then (1.6) implies the following for any a,b € J

(a—=b)(f'(b) = f'(a)) 0.

Taking this into consideration, we have

[ (@) (y+2=20)+ [ (y) (x+2 = 29) + [ (2) (x +y — 22)]

= (y—2)(f'(x) = ['W) + (z = 2)(f'(x) = f'(2) + (y = 2)(f'(2) = ['())
<0.

Having presented a reverse of (1.3), we discuss possible refinements now. The following is a
refinement of Popoviciu’s inequality.

Theorem 2.2. Let f:J — R be a convex function and x,y,z € J x <y < z
(i) If v <y < == then

(5 (57) 0 (5]

AGRIES IO CATAEY

IN

3 3

_§<f(2)+f;(L§f+z) _f(+2—)> (>

S @@ - Fa D).
where t € [0, 1] is arbitrary, and R = max{t,1 —t}.

y+z—2z| —|r— 2y + 2|
22 —x —vy
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(ii) Ifz < Hgﬂ <y, then

() () ()
Sf($+13/+2)+f(x>+f;y)+f<z>

_g (f(%Q)Jrf(x) _f(%yzjtx)) (2_ |$+y_y2j_|z__|m212_2y|>-
(=0 )+ ()~ F (1 D)y +12)).

where t € [0, 1] is arbitrary, and R = max{t,1 —t}.

Proof. If we placed a =m, b= M, and t = 72 in (1.4), we get

(2.6)  f(1) < Az_i”:nf(M)Jr ]\J‘f:;f(m)_ (1_ |M]\—;m;L2t|> (f(M);f(m) _f(M;—m>>

since

. [t—=-m M-t | M + m — 2t
2min , =1-—
M—-—m" M—-—m M —m
We may assume that z <y < 2. Then we have two cases to treat.
(i) If 2 <y < &5 then

rT+y+=z < T+ z <Zandx+y—|—z <y—|—z <.

3 2 - 3 - 2 =

(i) If 2 < ZHE2 <y, then

x<x+z <x+y+z andxgx—i-y <Jc+y+z.

-2 - 3 2 = 3

We focus on the first case. Letting m = %, M =z, and t = Zf£ in (2.6), then

15) = sy Ot g ey (55

_(1_ |y+z—2x|) <f(z)—|—f(%) —f(ﬁ))
22—:L‘—y 2 2

Putting m = %, M=~z and t = ygz, in (2.6), then

f(y;Z) : 2?2jj;i$y)f(z>+ Q(SZ(Z—_SC?J—)y)f <$+g+2)

(1 ) (1) (),
22 —x—y 2 5
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Adding these two inequalities, we obtain

1 3
f(””‘gz) +f(y;2> < 3F @)+

f
_<f<z>+f(%)_f(z+%>

(x—i—y—i—z)
3
(2_ |y+z—2m|—|x—2y+z|)
2 2 22 —x —y '
From the inequality (1.5),
() T a0 s @G- fa- o)
where R = max {¢t,1 —t} and 0 < ¢ < 1. The last two inequalities show
[ (55) s (5) s (3)

f(z) (y fa) | (M)

3

2[0S () (e o)
3 2 2 22 —x —y

S (=) F @) ()~ F (= )+ )

Now we consider the second case. Letting m =z, M = ”é’“ and t =

H(57) < apsmy (F5F) +2(25;f__§x)f<x>

il (1 sy
y+z—21 2 2 '

Letting m = x, M = “g“, and t = x—?, in (2.6), then

() < (1) Bt

_ (1_ \x+z—2y!) (ﬂ%)wm _f(—+))
y+z—2x 2 2

Adding these two inequalities, we reach to

x4z r+y 3. (v+y+z 1
() () =3 (F)

B f(%ﬂ)—l—f(x)_f(%—l—x) (2_|x+y—22|—|m+z—2y|)
2 2 y+2z—2x ’

From the inequality (1.5),

n (2.6), then

f(yﬁz) < f(y)‘;f(z) _%((1_75)]”(3/)—1—75]”(2)—f((l_t)y+t2))
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where R = max {t,1 —t} and 0 < ¢ < 1. The last two inequalities provide

() e (537) v (057)

r+y+z\ , fl@)+fy)+f(2)
() + 1

2 f@%ﬁ)+f@>_f(ﬁ%ﬁ+$> (Z_M+y—2ﬂ—u+z—ZM)
3 2 2 y+z— 2 '

—an (=) +tf(z) = (1 =t)y+12)).

<

~~

This finalizes the proof. O

In Theorem 2.2, we have presented a refinement of Popoviciu inequality. Also, we presented

a reversed version in Theorem 2.1. In the following result, we prove a refinement of the reversed

version, as in Theorem 2.2.

Theorem 2.3. Let f: J — R be a convex function and x,y,z € J with x <y < z.
(i) Ifr<y< M then

f()-i-fé (x+y+z)

[f(%z)ﬂf(yz )+ ()

2
3

+§<f<z>+f(%) _f(+—)> (2+|y+z—2x|—|x—2y+z|>
1

2 2 22 —x—y

+ o (A=) f (@) +tf(y) = F((A=t)z+1ty)),

where t € [0, 1] is arbitrary, and r = min{t,1 — t}.
(ii) If z < “:”L?)ﬂ <y, then

f(x+g+z)+f(a:)+féy)+f(z) Sg[f(m;y) +f<x+z>+f(y+z)]

+z(f<%>+f<x> _f(%w)) e

3 5 92 y+z—2x
+%((1—t)f(y)+tf(z)—f((l—t)y+tz))7

where t € [0, 1] is arbitrary, and r = min{t,1 — t}.

Proof. If we put a =m, b= M, and t = {72 in (1.5), we obtain

L on+ M=l py < p+ (1+ 'MAZT;%') (f(M>§f(m) g (M?;m))

(2.7)
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due to

M—m'"M—-m M —m
The inequality (1.4) also indicates

ey TOTIO <p (0) s L0 f @ 0) - F( - e )

t—m M—t |M +m — 2t|
2 max =14+—.

2r
where r = min{¢,1 — ¢} and 0 < ¢ < 1. Employing (2.7) and (2.8) and operating the same
strategy as in the proof of Theorem 2.2, we deduce the desired result. O

Notice that Mercer’s inequality (1.23) implies
rtyt+=z r+y+z
f<M+m—T) Sf(M)"‘f(m)_f(T)

In the following, we introduce an interesting refinement via Popoviciu’s inequality.

Theorem 2.4. (Popoviciu-Mercer inequality) Let f : [m, M] — R be a convex function. Then
for any x,y, z € [m, M]

f(]\/[+ x+y+z>

3 rsm 22 e 22 s 22)
S%(f(M+m—x)+f(M+3m—y)+f(M+m—z)+f<M+m_%>)
< fM+m—x)+ f(M+m—y)+ f(M+m-—2)
<f(M)+f<m)f(:c>+?féy)+f(2>

< 00 + flm) - f (22,

Proof. Since m < z,y,z < M, then

m<M+m—-ax M+m—-—y M+m—2z< M,

m<Miam—"TY Mmooy
2 2 2
and
m<M+m—2TYT2 5
Consequently,

g[f (M+m—xT+y>+f(M+m—%)+f<M+m—x;Z)}

Sf(M+m—x)—i—f(M—|—3m—y)—|—f(M—i—m—z)+f(M+m_x+g+z).
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On the other hand, by the Jensen inequality, we can write

(- )
B M+m—-—x M+m-y M+m-—=z
_f( 3 * 3 * 3 )
< f(M+m—-—x)+f(M+m—y)+ f(M+m-—=2)
< 5 :
So,
2<f(M+m—$+Z3J+Z)>
g%(f <M+m—x;y)+f<M+m—y;rz) +f<M+m—xJ2rZ>)
< f(M+m—x)—|—f(M—i—3m—y)—|—f(M—i—m—z)+f(M+m_x+3;+z)
<2(f(M+m—x)+f(M+m—y)+f(M+m—z))
- 3
§2(f(M)+f(m)—f(x)+féy)+f(z)),
which completes the proof. O

We conclude this paper with a new discussion of the monotony of certain quotients related to
convex functions. We know that if f is a convex function on J and x,y,z € J with z <y < z
then (as in (1.24))

fW=J@) _JE&=1@) _1E)-fb)

y—x Z—x z—1y

The following result provides refinement and reverse of this inequality.

Theorem 2.5. Let f be a convex function on J and x,y,z € J with v <y < z. Then

J““(y)—f(ﬂ?)Jr 1 (1_!z+x—2y|>(f(2)+f(x)_f(z+x)>

y—z oy i 2 2
S(}c(»’i):i(ﬂf)
<f(zzgj/”(y)zly<1z+zxx2y) (f(@;f(@_}c(z;x))’
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" M0 1 (Bl (£ 10 (240))
SNIEENE
- f(yzi(x)erlx (1+|z+zx_—ny!) (f(z)-gf(:c) —f<242”5>).

Proof. By (2.6), we have
F) <V ey 2 ) — <1_ |2+x—2y|> <f(Z)J2rf($) _f<z-;w)>

So, h o -

st 1 ey ()

On the other hand,

(2??@._f(y)>>f(@"f(z)+» 1 (1_|z+ar—QM) (f(@-+f(x)_xf(z—kz>).
-y = -z z—y SO 2 ’

By (2.9) and (2.10), we get the desired result. The other inequality can be proved similarly,
thanks to (2.7). O
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