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Abstract In the present paper, the concept of convolutors on distribution
spaces has been extended to establish some results of the wavelet transform.
The space of convolutors is characterized in terms of its wavelet transform
with example. Further, Calderón-type reproducing formula is derived in dis-
tributional sense as an application of the same.
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1 Introduction

By applying translation and dilation to the function ψ ∈ L2(R), the wavelet
ψb,a(t) is obtained by

ψb,a(t) = |a|−%ψ
(
t− b
a

)
, t, b ∈ R, a ∈ R0, % > 0. (1)

If % = 1
2 , then we can construct a unitary operator which maps ψ to ψb,a

on L2(R). For f ∈ L2(R), the wavelet transform Wψa
(b) with respect to the

basic wavelet ψb,a(t) ∈ L2(R) is defined by

Wψa(b) =

∫
R

f(t)ψb,a(t)dt. (2)
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Hence, we can write
Wψa(b) = (f ∗Θ0,a)(b), (3)

where Θ(x) = ψ(−x), provided the integral exists. If f ∈ Lp(R) and ψ ∈ Lq(R)
then by [7]:

f ∗Θa,0(b) ∈ Lr(R),
1

r
=

1

p
+

1

q
− 1

and ∗ denotes the classical convolution defined as

(f ∗ g)(y) = 〈f(x− y), g(x)〉 , y ∈ R.

Equation (3) describes the wavelet transform Wψa(b) in terms of the oper-
ation convolution.
The relation between Fourier and wavelet transform is given as follows:

Wψa(b) =
1

2π
|a|−ρ

∫
R

eibω f̂(ω)ψ̂(aω)dω. (4)

Further, if the admissibility condition holds for ψ ∈ L2(R), i.e.,

Cψ =

∫
R

|ψ̂(w)|2

|w|
dw <∞, (5)

then the following inversion formula for the wavelet transform W (b, a) with
ρ = 1

2 , holds at every point x of continuity of f(x)[2]:

1

Cψ

∫
R

∫
R0

1

|a| 12
Wψa

(b)ψ

(
x− b
a

)
dbda

a2
= f(x). (6)

The notion of classical functions have been generalized by the distributions.
Through distributions, we can differentiate the non-differentiable functions in
classical sense [16]. To analyze the continuity results of classical functions, the
wavelet transform has been extended to distribution spaces [7,10,11]. Wavelet
transform behaves to be a continuous linear mapping on such spaces, which
was given by many authors including Pathak et al. [13]. Also, Pathak extended
the continuous wavelet transform to certain distributions and their continuity
results were discussed with boundedness results in some generalized spaces
such as Sobolev space, Besove space and Lizorkin space [8]. Wavelets which
are approximately of exponential decay were investigated by Dziubański and
Hernández [3]. With these wavelets Paley-Wiener-Schwartz type theorem for
wavelet transform using distribution was developed by Pathak et al [12]. The
continuous wavelet transfrom has been extended to Schwartz distributions and
an inversion formula derived by interpreting the convergence of distributions
in weak sense by Pandey [6].

A convolutor is an operator which preserves the convolution operation.
Most of the generalized function spaces can be regarded as spaces of convo-
lutors by a proper selection of the test function space. Generalized functions
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are treated as objects which convolute with test functions and satisfy some
conditions. Any operations which can be studied regarding convolution have
extensions to the space of convolutors. Thus convolutors are operators on a
suitable testing function space which satisfy T (φ∗ψ) = T (φ)∗ψ. Therefore, the
corresponding space of distributions can be characterized by convolutors. Also,
the operations which are defined in respect of convolutions can be extended
on the space of convolutors. Because of its structure preserving property, con-
volutors have been extended to a number of generalized functions. Recently,
Pathak [14] investigated the convolutors on the space of ultradistributions for
Fourier transform. Mikusiński et al. [5] investigated the foundation of convolu-
tors, which allows us to define the wavelet transform for a wide class of spaces
of generalized functions (distributions) more simply. Since the wavelet trans-
form is itself a convolution with the mother wavelet, it can be extended to
convolutors. Further, the results for test function spaces can be extended onto
distributions through wavelet transform. Which allows us to define convolutors
for distributions in terms of wavelet transform.

Note that the structure of the convolutor varies from space to space. Hence
to construct convolutors for the distributional space, we need a suitable test
function space. The algebraic structure of these test functions should be similar
to that of a convolution algebra. Also, the convergence in the corresponding
test function spaces makes the convolutors continuous. Thus, the convolutors
act on a test function like an extension of the convolution operation. Therefore,
we can use the notion of convolution to specify the effect of convolutors [1].

Now, we recollect the definitions of the suitable test function space and the
corresponding space of convolutors [1]. Let G be the space which contains all
regular functions φ satisfying

γk(φ) = sup
|Imz|≤k

ek|Rez| |φ(z)| <∞,∀ k ∈ N (7)

where {γk}k∈N is the family of seminorms. Let MG denotes the space of all
regular functions φ such that, there exists m ∈ N for every k ∈ N satisfying

sup
|Imz|≤k

e−m|Rez| |φ(z)| <∞.

Then each multiplier defined on the space will satisfy the condition given by
(7). Thus the space of multipliers of G will coincide withMG [14]. A convolutor
for the space G′ is the generalized function T ∈ G′ such that for every φ ∈ G,
T ∗ φ ∈ G.
Let m ∈ Z. OG,m,c is the space constituted by the entire functions φ such that

γmk (φ) = sup
|Imz|≤k

em|Rez| |φ(z)| <∞, k ∈ N. (8)

Now we denote the space OG,c = ∪m∈ZOG,m,c, i.e., topologized with the in-
ductive limit topology of the spaces ∪OG,m,c, m ∈ Z. Here, the dual space
O′G,c is same as the space of convolutors for G′ [1].
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In the next section, we shall investigate the wavelet transform on the space
of convolutors. Inversion formula for the corresponding distributional wavelet
transform is also obtained. In the last section, we established Calderón’s for-
mula in the space G′. Further, an example for distributional convolutors are
also provided.

2 Wavelet transform on the space of convolutors

In this section, we characterize the space of convolutors in terms of its wavelet
transform. Since convolutors are associated with convolution, to incorporate
wavelet transform on the convolutors we require wavelet convolution.
Along with each integral transform there is a suitable translation, leading to
the construction of the convolution. Assume that D(x, y, z) is a basic general-
ized function satisfying

φ(t, x)φ(t, y) =

∫ ∞
−∞

D(x, y, z)φ(t, z)dz. (9)

D(x, y, z) can be treated as a measure and in some cases as a distribution. In
order to define the wavelet convolution, assume the basic function is such that

Wφa
[D(x, y, z)](b) =

∫ ∞
−∞

D(x, y, z)φb,a(x)dx

= ψb,a(z)θb,a(y).

Its translation is given by

(τxf)(y) =

∫ ∞
−∞

D(x, y, z)f(z)dz

= Cφ
−1
∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

ψb,a(z)θb,a(y)φb,a(x)f(z)|a| 12 dbdadz,

where θ is the distribution taken from the same distribution space as f . Thus,
the corresponding wavelet convolution is given by [7]

(f#g)(x) =

∫
R

∫
R
D(x, y, z)f(z)g(y)dzdy

= Cφ
−1
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

ψb,a(z)θb,a(y)φb,a(x)f(z)g(y)|a| 12 dbdadzdy.

The wavelet transform of a convolutor T ∈ O′G,c is given by

(Wψa
T )(b) = (T#ψa)(b), b ∈ C, a ∈ R+,

where ψa(x) = |a|−1
2 ψ

(−x
a

)
.

Now we give a structure formula for the space of convolutors. The result
in the theorem is a characterization of the space of convolutors in terms of the
wavelet transform.
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Theorem 1 T ∈ G′ is a convolutor for G′ if and only if ∀ k ∈ N there exists
a non-negative d, n ∈ N such that T = (τdi + τ−di)

nf , for a regular function
f on the set {z ∈ C : −k < Imz < k}.

Proof Assume that ∀ k ∈ N0 there exists a non-negative d, n ∈ N such that
T = (τdi+τ−di)

nf , for a regular function f on the set {z ∈ C : −k < Imz < k}.
Then we have T ∈ O′G,c. Also, by using Lemma 2.3 of [1], we have

〈T, φ〉 =

∫
Cl

e−m|Rez|φ(z)dµ(z), φ ∈ G, (10)

where
Cl = {z ∈ C : |Imz| ≤ l}.

Consider

〈(WψT )(b, a), φ〉 = 〈WψaT (b), φ〉
= 〈T (b), (Wψaφ)(−b)〉

=

∫
e−m|Reb|(Wψa

φ)(−b)dµ(b).

Thus, by the definition of wavelet transform

〈(WψaT )(b), φ〉 =

∫
Cl

e−m|Reb|
∫
φ(x)ψa(−b− x)dxdµ(b)

=

∫
φ(x)

∫
e−m|Reb|ψa(−b− x)dµ(b)dx.

Therefore,

(Wψa
T )(x) =

∫
e−m|Rex|ψa(−b− x)dµ(b), |Imb| ≤ k,

and
|(Wψa

T )(x)| ≤ |µ|M el|Reb|,

where M = sup|ψa(−b− x)|. Thus, we obtain

sup el|Reb|e−pa |(WψaT )(x)| <∞.

Hence,
(Wψa

T )(b) ∈MG(C× R+).

Consider the continuous linear mapping that maps T → T#φ on G [4]. Since
(Wψa

T )(b) = (T#ψa)(b), ψa ∈ G, then T is a convolutor of G′.
Conversely, assume that T is a convolutor of G′. Then (WψaT )(b) is a

multiplier of G. Consider the function defined by hλ,n(z) = (ezλ + e−zλ)n,
z ∈ C, with the following properties:

(i) hλ,n(z) = 0⇔ z = πi
2λ (2k + 1), k ∈ Z.
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(ii) |hλ,n(z)| ≤ Cenλ|Rez|, z ∈ C.

(iii) |hλ,n(z)| ≥ Cenλ|Rez|, |Imz| ≤ π
4λ .

By using (4), we obtain

e−σb(Wψa
T )(b) = (Wψa

(τ−iσT ))(b).

Hence,

hγ,n(b)(Wψa
T )(b) =

(
e−γb + eγb

)n
(Wψa

T )(b)

= Wψa
((τ−iγ + τiγ)nT )(b).

Now, define

Gn,γ(b, a) =
(Wψa

T )(b)

hγ,n(b)
, |Imb| ≤ π

2γ
.

Thus,

|Gn,γ(b, a)| =
∣∣∣∣ (Wψa

T )(b)

hγ,n(b)

∣∣∣∣
≤ |µ|M el|Reb|

Cenγ|Reb|

≤ M ′e(l−nγ)|Reb|, l, n ∈ N,

where |µ|MC ≤M ′.
Therefore, for φ ∈ G, we have

〈T, φ〉 = Cψ 〈(Wψa
T )(b), (Wψa

φ)(b)〉 (by Parseval relation)

= Cψ

∫ ∫
Gn,γ(b, a)hγ,n(b)(Wψa

φ)(b)dbda

= Cψ

∫ ∫
Gn,γ(b, a)Wψa

((τ−iγ + τiγ)nφ)(b)dbda

= Cψ 〈Gn,γ(b, a),Wψa((τ−iγ + τiγ)nφ)(b)〉
= 〈(τ−iγ + τiγ)ng, φ〉 .

This completes the proof of the theorem.

Now we establish inversion formula for the distributional wavelet transform
on the space of convolutors.

Theorem 2 Assume that (WψaT )(b) be the wavelet transform of T ∈ O′G,m,c.
Then

T (x) = lim
r→∞
n→∞

1

Cψ

r∫
0

n∫
−n

(Wψa
T )(b)ψb,a(x)

dbda

a2
.
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Proof We consider

Hr,n(x) =
1

Cψ

r∫
0

n∫
−n

(WψaT )(b)ψb,a(x)
dbda

a2
.

Then

〈Hr,n, φ〉 =

∞∫
−∞

Hr,n(x)φ(x)dx

=
1

Cψ

∞∫
−∞

φ(x)

r∫
0

n∫
−n

(Wψa
T )(b)ψb,a(x)

dbda

a2
dx

=
1

Cψ

∞∫
−∞

φ(x)

r∫
0

n∫
−n

ψb,a(x)

∞∫
−∞

em|Rew|ψa(−w − x)dµ(w)
dbda

a2
dx

=
1

Cψ

∞∫
−∞

em|Rew|

 r∫
0

n∫
−n

(Wψa
φ)(b)ψa(−w − x)

dbda

a2

 dµ(w)

=
1

Cψ
em|Rew|

 ∞∫
0

∞∫
−∞

(Wψaφ)(b)ψa(−w − x)
dbda

a2

 dµ(w)

− 1

Cψ
em|Rew|

 ∫
a>r

∫
|b|>n

(Wψa
φ)(b)ψa(−w − x)

dbda

a2

 dµ(w)

=

∫
em|Rew|φ(w)dµ(w)

− 1

Cψ

∫
em|Rew|

 ∫
a>r

∫
|b|>n

(Wψa
φ)(b)ψa(−w − x)

dbda

a2

 dµ(w)

= I1 − I2.

As r →∞ and n→∞, I2 converges to zero. Further, by [1, Lemma 2.3]

〈T, φ〉 =

∫
em|Rew|φ(w)dµ(w) = I1.

Therefore,
lim

r→∞,n→∞
Hr,n(x) = T (x).

This completes the proof of the theorem.
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Corollary 1 Let m ∈ Z−, m < 0 and T ∈ O′G,m,c. If (WψaT )(b) = 0 for
b ∈ C and a ∈ R, then T = 0.

Example 1. Consider the Mexican hat wavelet defined as the second deriva-
tive of Gaussian function [9] by

ψ(t) = (1− t2)e(
−t2

2 ) =
d2

dt2
e(

−t2

2 ).

Then, we have

〈(Wψa
T )(b), φ〉 = 〈Wψa

T (b), φ〉
= 〈T (b), (Wψa

φ)(−b)〉

=

∫
R

e−m|Reb|(Wψaφ)(−b)dµ(b)

= a
3
2

∫
R

e−m|Reb|
∫
R

φ(x)D2
xe

(
(−b−x)2

2a2 )dxdµ(b)

= a
3
2

∫
R

φ(x)

∫
R

e−m|Reb|D2
xe

(
(−b−x)2

2a2 )dxdµ(b).

Thus, we get

(WψaT )(x) = a
3
2

∫
R

e−m|Reb|D2
xe

(
(−b−x)2

2a2 )dµ(b)

=

∫
R

e−m|Reb|ψa(−b− x)dµ(b).

Now, by using Theorem 1, we obtain

e−σbWψaT (b) =
1

2π
|a|−ρ

∫
R

e−σbeibωT̂ (ω)ψ̂(aω)dω

=
1

2π
|a|−ρ

∫
R

ei(iσ+ω)bT̂ (ω)ψ̂(aω)dω

=
1

2π
|a|−ρ

∫
R

eiξbT̂ (ξ − iσ)ψ̂(a(ξ − iσ))dξ

= Wψa
(τ−iσT )(b),

which is the corresponding structure formula.
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3 Calderón’s formula

In this section, we obtain Calderóns reproducing formula on the space of con-
volutors by using the following theorem [10].

Theorem 3 Suppose 0 < ε < δ <∞, and ψ be a real valued radial satisfies
∞∫
0

[ψ̂(tξ)]2 dtt = 1. If

fε,δ(x) =

δ∫
ε

(f ∗ ψa ∗ ψa)(x)
da

a
,

then ‖ f − fε,δ ‖2→ 0 as ε→ 0 and δ →∞.

Now we use the structure formula given in condition (iii) of Theorem 1 for
the space G′ to derive the following result.

Theorem 4 Let ψ ∈ G satisfies the conditions of Theorem 3. Then the fol-
lowing Calderón’s formula holds:

T (x) =

∞∫
0

(T ∗ ψa ∗ ψa)(x)
da

a
, ∀ T ∈ G′.

Proof Let T ∈ G′. Then by Theorem 1,

T = (τdi+τ−di)
nf, for an analytic function f on the strip {z ∈ C : |Imz|< k}.

Also, let φ ∈ G. Hence,

R∫
ε

〈
(T ∗ ψa ∗ ψa)

da

a
, φ

〉
=

R∫
ε

〈
((τdi + τ−di)

nf ∗ ψa ∗ ψa)
da

a
, φ

〉

=

〈 R∫
ε

(f ∗ ψa ∗ ψa)
da

a
, (τdi + τ−di)

nφ

〉
. (11)

〈
lim

ε→0,δ→∞

R∫
ε

(f ∗ ψa ∗ ψa)
da

a
, (τdi + τ−di)

nφ

〉
= 〈f, (τdi + τ−di)

nφ〉

= 〈(τdi + τ−di)
nf, φ〉

= 〈T, φ〉 . (12)

Then from (11) and (12), we obtain

∞∫
0

〈
(T ∗ ψa ∗ ψa)

da

a
, φ

〉
= 〈T, φ〉 .

This completes the proof of the theorem.
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3. Dziubański J, and Hernández E, Band-limited wavelets with sub-exponential decay,

Canad. Math. Bull. 41(4) (1998) 398-403
4. Howell K B, Exponential bounds on elementary multipliers of generalized functions, J.

Math. Anal. Appl. 193(3) (1995) 832-838
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