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Abstract. In this paper, we study the long time behavior of solutions of

the three dimensional (3D) generalized Navier-Stokes equations with nonlin-

ear exponential damping term a(eb|u|
r −1)u (a > 0, b > 0, r ≥ 1) in a periodic

bounded domain. We first study the existence and uniqueness of weak solu-

tions. Then, we investigate the asymptotic behavior of weak solutions via at-

tractors. The difficult issue is that the Cauchy problem could have non-unique
solution and then we cannot use directly the classical schemes. To solve this

problem, we use a new framework developed by Cheskidov and Lu which called
(closed) evolutionary system to obtain various attractors and its properties.

Finally, we investigate the determining wavenumbers and this seems to be the

first result for a fractional equation.

1. Introduction

We study the 3D generalized Navier-Stokes equations with exponential damping
determined by{

∂tu+ ν(−∆)αu+ (u · ∇)u+ a(eb|u|
r − 1)u+∇p = f,

∇ · u = 0,
(1.1)

where u = u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and p = p(t, x) denote the fluid
velocity vector field and the scalar pressure at the point (t, x) ∈ R+ × T; (−∆)α

is α-fractional Laplacian; f(x, t) is the external body force; ν > 0 is the constant
kinematic viscosity; a is the positive damping coefficient; the exponents b and r
are positive constants. It is well-known that the damping term and the fractional
power of the Laplacian are very helpful from the mathematical point of view. The
damping can be raised as the resistance to the motion and it describes various
physical situations such as porous media flow, drag or friction effect, etc (see, e.g.,
[16, 65] and references therein). Dissipation corresponding to the fractional power
of the Laplacian can in principle arise from modeling real physical phenomena. The
fractional diffusion operators can model the anomalous diffusion and have now been
widely used in turbulence modeling to control the effective range of the non-local
dissipation (see, e.g., [5, 15, 33, 35, 39, 56, 57] and references therein). But our
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2 L. T. TINH

motivation for studying (1.1) is mainly mathematical and the goal is to understand
how the nonlinear exponential damping term affect the asymptotic behavior of the
weak solutions. We know that it is flawed because we cannot refer to the many
exciting results of the 2D case and there are a lot of differences between the 2D and
3D cases. However, we only consider the 3D case.

The 3D incompressible Navier-Stokes equations were studied for long ago. There
are many great results in different issues. In the approach of dynamical systems via
attractors, the existence of weak (uniform) global attractors has been established
in [27, 29, 45] by using the abstract theory for multivalued semi-flow (processes)
and evolutionary systems. Moreover, under some additional assumption, the exis-
tence of strong (uniform) global attractors has also been established in [27, 29, 45].
The existence of trajectory attractors were also proved in [54]. On the other hand,
the finite number of determining parameters is also interesting issue as we study
partial differential equations. As we have known that the finite number of deter-
mining modes of the 3D Navier-Stokes equations is not known for lack of regularity
(see [18]). Recently, in [25], without making any assumptions regarding regularity
properties of solutions or bounds on the global attractor, the existence of a time
dependent determining wavenumbers for the forced 3D Navier-Stokes equations de-
fined for each individual solution is investigated (see also [24, 26]). Even though
this wavenumber blows up if the solution blows up, its time average is uniformly
bounded for all solutions on the weak global attractor. The bound is compared to
Kolmogorov’s dissipation wavenumber and the Grashof constant.

The 3D incompressible Navier-Stokes equations with polynomial damping has
been studied extensively. The existence of weak solutions for this system was es-
tablished at first in [16]. Then many authors have considered this system for the
well-posedness and the long-time behavior of solutions (see, e.g., [40, 41, 42, 48, 58,
60, 61, 62, 63, 71, 75, 76]). In [60, 61, 63], the existence of global attractors, uniform
attractors and pullback attractors has established in V and H2 ∩ V by combining
asymptotic a priori estimates with Sobolev compactness embedding theorems. The
existence of an exponential attractor in V was proved in [62] by using the squeezing
property. Specially, the existence of a global attractor in H for weak solutions was
proved in [48, 58] by using the abstract theory for multi-valued semi-flow and the
upper bound of its fractal dimension by using the methods of ℓ-trajectories.

Recently, the 3D generalized Navier-Stokes equations has been extensively in-
vestigated. This system was first studied by J. L. Lions [50] for the existence and
uniqueness of weak solutions with α ∈ [ 54 ,∞). In our exponential damping case, we

will see that the existence and uniqueness of weak solutions still hold for α ∈ [ 54 ,∞).
Moreover, by using the convex integration technique, the existence of non-unique
weak solutions with α < 5

4 was pointed out by T. Luo and E. S. Titi [55]. The
global existence and decay of solutions for the 3D generalized Navier-Stokes equa-
tions have investigated in [32, 43, 73] (see also in [31, 68, 69, 70] and references
therein). The existence of inertial manifolds has studied in [34] for some subcritical
case (α ≥ 3

2 ) on torus. The finite dimensional global attractor and asymptotic de-
termining operators in subcritical case have obtained in [6] as a special case (see also
in [74], the MHD equations reduces to the generalized Navier-Stokes equations).
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GENERALIZED NAVIER-STOKES EQUATIONS WITH EXPONENTIAL DAMPING 3

Especially, the 3D incompressible Navier-Stokes equations with exponential damp-
ing has been first studied in [10] by J. Benameur. Then, the existence and unique-
ness of its strong solutions and the large time decay for some nonlinear exponential
damping term have been considered by J. Benameur and et. al. [11, 12, 13].

It is worth noting that so far there are few results studying the properties and
the asymptotic behaviour of weak solutions of (1.1). Therefore, analyzing (1.1)
seems as an interesting problem. As in the case of the 3D Navier-Stokes system,
several difficulties appear and many problems remain open. We still have to cope
with the main difficulties such as the absence of results concerning the continuity
of weak solutions and the lack of good dissipativity estimates for all weak solutions.
The issue how to describle the limit behavior of solutions of evolution equations for
which the Cauchy problem can have non-unique solution arouses much interest in
recent years (see [19, 20, 22, 46, 54]). In this situation we cannot use directly the
classical scheme of construction of a dynamical system in the phase space of initial
conditions of the Cauchy problem of a given equation and find a global attractor
of this dynamical system. To our knowledge, there are several abstract frameworks
for studying dynamical systems without uniqueness such as the abstract theory for
multivalued semi-flow (processes). Recently, a new framework work was developed
by Cheskidov and Lu in [22, 27, 28, 54] and was called the (closed) evolutionary
system. It was first introduced in [27] to study a weak global attractor and a
trajectory attractor for the autonomous 3D Navier Stokes equation, and the theory
was developed further in [22, 28, 54] to make it applicable to arbitrary autonomous
and nonautonomous dissipative partial differential equation without uniqueness.
The avantage of this framework lies in a simultaneous use of weak and strong
metric and avoid the construction of symbol spaces. The tracking properties of
attractors still can be proved which may be the restriction of another frameworks
(see [22, 27, 28, 54] for more details).

The main purpose of this paper is to investigate the long time dynamical behav-
ior of the weak solutions of (1.1) via attractors and their properties by using the
(closed) evolutionary system (see, e.g., [22, 27, 28, 29, 54]). Then we investigate
the determining wavenumbers. The paper is organized as follows. In Section 2,
we recall the functional setting and some auxiliary results. In Section 3, we study
existence and uniqueness of weak solutions. In Section 4, we prove the existence
of various attractors and its properties. In Section 5, we study the determining
wavenumbers. Moreover, for completeness, we also summarize the theory of the
(closed) evolutionary systems in appendix A and the Littlewood–Paley decompo-
sition for periodic functions in appendix B. In this paper, we sometimes use the
symbol C to denote a non-dimensional constant which may change from line to
line. We also denote by A ≲ B an estimate of the form A ≤ CB with some positive
constant C.

2. Preliminaries

For simplicity, we work on the torus T = [−π, π]3 with periodic boundary condi-
tions. Because of the periodic setting and the lack of natural boundary conditions,
we can restrict ourselves to deal with initial data and f with vanishing spatial
averages; then the solutions will enjoy the same property. This allows us to repre-
sent any divergence free velocity vectors u which are periodic and have zero spatial
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4 L. T. TINH

averages as follows

u :=
∑
k∈J

ukϕk with uk ∈ C3, u∗k = u−k, uk · k = 0 ∀k ∈ J,

where ϕk = eik·x, J = Z3 \ {0}. For s ∈ R, we define the following spaces

V s := {u :=
∑
k∈J

ukϕk, uk ∈ C3, u∗k = u−k, uk · k = 0,

ϕk = eik·x and
∑
k∈J

|uk|2|k|2s <∞}.

These spaces are also Hilbert spaces with scalar product

⟨u, v⟩V s =
∑
k∈J

uk · v−k|k|2s.

For simplicity, we use the notation ⟨·, ·⟩ denoted the scalar product in V 0 and also
the dual pairing of V s − V −s by ⟨u, v⟩ :=

∑
k∈J uk · v−k. We have the following

compact embedding V s+ε ↪→↪→ V s for any ε > 0. Let s1 ≤ s2 and u ∈ V s2 , we
have

∥u∥V s1 ≤ ∥u∥V s2 . (2.1)

Moreover, if s = γs1 + (1− γ)s2, 0 ≤ γ ≤ 1, then

∥u∥V s ≤ ∥u∥γV s1 ∥u∥1−γ
V s2 . (2.2)

Assume that p ≥ 1. If 0 ≤ s < 3
2 and 1

p ≥ 1
2 − s

3 , then V
s ↪→ Lp(T) and there

exists a constant C depending on s and p such that

∥u∥Lp(T) ≲ ∥u∥V s , for all u ∈ V s. (2.3)

If s = 3
2 , then

∥u∥Lp(T) ≲ ∥u∥V s for any finite p and all u ∈ V s, (2.4)

and if s > 3
2 , then

∥u∥L∞(T) ≲ ∥u∥V s , for all u ∈ V s. (2.5)

We define the linear operator Λ = (−∆)
1
2 as follows

Λu =
∑
k∈J

|k|ukϕk with u =
∑
k∈J

ukϕk, ϕk = eik·x,

and its powers Λs by

Λsu =
∑
k∈J

|k|sukϕk,

hence (−∆)s = Λ2s. Since Λs preserves the divergence free condition k ·uk = 0, we
infer that Λs maps V α onto V α−s. It follows from the construction of Λs that

∥u∥V s = ∥Λsu∥V 0 . (2.6)

In particular, Λs maps V s onto V 0 for all s > 0 and so D(Λs) = V s.
Denote by Pσ the Leray-Helmholtz projection. It is the orthogonal projection

from L2(T) onto V 0 and PσΛ
s = ΛsPσ. Setting

b(u, v, w) =

∫
T

3∑
i,j=1

ui
∂vj
∂xi

wjdx.
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GENERALIZED NAVIER-STOKES EQUATIONS WITH EXPONENTIAL DAMPING 5

Let F be the space of formal Fourier series

{u :=
∑
k∈J

ûkϕk, ûk ∈ C3, ϕk = eik·x}.

and

Hs := {u ∈ F : ∥u∥2Hs :=
∑
k∈J

|uk|2|k|2s <∞, û∗k = û−k and û0 = 0}.

Let V be the space of divergence free trigonometric polynomials consisting of all
u ∈ F such that k · ûk = 0 for all k ∈ J and ûk = 0 for all but finitely many values
of k ∈ J . We see that V s is the closure of V in Hs with respect to the ∥ · ∥Hs norm.
We need the following lemma, which we quote from [14, 17, 44, 47], to look into
the properties of the trilinear form b

Lemma 2.1. Let u, v, w ∈ V, it holds that

(i) b(u, v, v) = 0,
(ii) b(u, v, w) = −b(u,w, v),
(iii) b(u− v, u, u− v) = b(u, u, u− v)− b(v, v, u− v)

This result may be extended to larger spaces by the density of V in V σ for
the appropriate values of σ that the trilinear forms are continuous. The following
proposition is taken from [38, Proposition 2.5] (see also [9]).

Proposition 2.1. The trilinear form b : V σ1 ×V σ2 ×V σ3 → R is bounded provided
that all following conditions hold:

(i) σ1 + σ2 + σ3 >
5
2 ,

(ii) σ1 + σ2 ≥ s,
(iii) σ2 + σ3 ≥ 1,
(iv) σ1 + σ3 ≥ 1− s,

for some s ∈ {0, 1}. If the last three conditions are satisfied and if σi is a nonpositive
integer for some i ∈ {1, 2, 3}, then the condition (i) can be replaced by the nonstrict
version of the inequality. The nonstrict inequality is also allowed if for some s ∈
{0, 1},

σ1 ≥ 0, σ2 ≥ s, σ3 ≥ 1− s.

We now apply the projection operator Pσ on (1.1). Due to the periodic setting,
the weak formulation (1.1) can be rewritten by

∂tu+ νΛ2αu+B(u, u) + aPσ

(
(eb|u|

r

− 1)u
)
= Pσf. (2.7)

where B(u, v) := Pσ{(u ·∇)v}. To study (2.7), let us start with a definition of weak
solutions for (2.7) with L2 initial data uτ .

Definition 2.1. Let ν, α, a, b be positive and let r ≥ 1. Given f ∈ L2
loc(R;V 0),

uτ ∈ V 0 and a fixed T > τ . A weak solution to (2.7) on the interval [τ, T ] is a
function u(t, x) such that

u ∈ L∞(τ, T ;V 0) ∩ L2(τ, T ;V α) ∩ Gr
b (τ, T ;L

1(T)) ∩ Cw([τ, T ];V
0),

where

Gr
b (τ, T ;L

1(T)) :=
{
u : [τ, T ]× T → R3 measurable, (eb|u|

r

− 1)|u|2 ∈ L1(τ, T ;L1(T))
}
.

Moreover, given any t ∈ [τ, T ] and v ∈ V γ ∩L∞(T), γ > max{ 5
2 −α;α}, it satisfies

u(τ) = uτ and
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6 L. T. TINH

⟨u(t), v⟩+ ν

∫ t

τ

⟨Λαu(s),Λαv⟩ds−
∫ t

τ

⟨B(u(s), v), u(s)⟩ds

+ a

∫ t

τ

⟨(eb|u(s)|
r

− 1)u(s), v⟩ds = ⟨uτ , v⟩+
∫ t

τ

⟨f(s), v⟩ds, (2.8)

for a.e. t ∈ [τ, T ].

Remark 2.1. In the weak formulations above, we see that the trilinear terms are
well defined. Indeed, it easily implies that γ > max{ 5

2 − α;α} > 1 and it follows
from Proposition 2.1 with σ1 = 0, σ2 = γ, σ3 = α that

|⟨B(u, v), u⟩| = |b(u, v, u)| ≲ ∥u∥V 0∥v∥V γ∥u∥V α . (2.9)

Lemma 2.2. If r ≥ 1 and u is a weak solution of (2.7) determined by Definition
2.1, then

(eb|u|
r

− 1)u ∈ L1(τ, T ;L1(T)). (2.10)

Proof. Indeed, we define

Ω :=[τ, T ]× T,
Ω1 :={(t, x) ∈ [τ, T ]× T; 0 < |u(t, x)| < 1},
Ω2 :={(t, x) ∈ [τ, T ]× T; |u(t, x)| ≥ 1}.

We then have∫
Ω

(eb|u(s)|
r

− 1)|u(s)|dxds =
∫
Ω1∪Ω2

(eb|u(s)|
r

− 1)|u(s)|dxds

=

∫
Ω1

(eb|u(s)|
r

− 1)|u(s)|dxds+
∫
Ω2

(eb|u(s)|
r

− 1)|u(s)|dxds

=

∫
Ω1

eb|u(s)|
r − 1

|u(s)|
|u(s)|2dxds+

∫
Ω2

1

|u(s)|
(eb|u(s)|

r

− 1)|u(s)|2dxds

≤Mbr

∫
Ω1

|u(s)|2dxds+
∫
Ω2

(eb|u(s)|
r

− 1)|u(s)|2dxds

where Mbr := sup
0<t≤1

ebt
r − 1

t
<∞ for r ≥ 1, b > 0

≤Mbr(T − τ)∥u∥L∞(τ,T ;V 0) +

∫
Ω

(eb|u(s)|
r

− 1)|u(s)|2dxds

≤Mbr(T − τ)∥u∥L∞(τ,T ;V 0) + ∥(eb|u|
r

− 1)|u|2∥L1(τ,T ;L1(T)). (2.11)

This implies the desired result. □

Lemma 2.3. If (eb|u|
r −1)u ∈ L1(τ, T ;L1(T)), then u ∈

∞⋂
k=1

Lrk+2(τ, T ;Lrk+2(T)).

Proof. We have

(eb|u|
r

− 1)|u|2 =

∞∑
k=1

bk

k!
|u|rk+2. (2.12)

This implies that∫ T

τ

∥(eb|u(s)|
r

− 1)|u(s)|2∥L1(T)ds =

∞∑
k=1

bk

k!

∫ T

τ

∥u(s)∥rk+2
Lrk+2(T)ds. (2.13)
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GENERALIZED NAVIER-STOKES EQUATIONS WITH EXPONENTIAL DAMPING 7

We deduce from (2.13) that

(eb|u|
r

− 1)u ∈ L1(τ, T ;L1(T)) implies u ∈
∞⋂
k=1

Lrk+2(τ, T ;Lrk+2(T)). (2.14)

□

We now recall the following strong continuity result for the velocity (see [14,
Lemma 6]).

Lemma 2.4. Assume that u ∈ L2(τ, T ;V s+h) and du
dt ∈ L2(τ, T ;V s−h) for s ∈ R

and h > 0, then u ∈ C([τ, T ];V s) and

d

dt
∥u(t)∥2V s = 2⟨Λ−h du

dt
(t),Λhu(t)⟩V s . (2.15)

We also have the following weak continuity result in time (see [14, Lemma 7])

Lemma 2.5. Let X and Y be Banach spaces such that Y ↪→ X with a continuous
injection. Then

L∞(τ, T ;Y ) ∩ Cw([τ, T ];X) = Cw([τ, T ];Y ).

In particular, we also have the following important inequalities for the damping
(see [8, Lemma 2.2] and [12, Lemma 2.3]).

Lemma 2.6.

(1) Assume that p ∈ (1,∞) and δ ≥ 0. There exist positive constants c1 and
c2 such that for all x, y ∈ R3,

||x|p−2x− |y|p−2y| ≤ c1|x− y|1−δ(|x|+ |y|)p−2+δ,

and

(|x|p−2x− |y|p−2y) · (x− y) ≥ c2|x− y|2+δ(|x|+ |y|)p−2−δ.

(2) Assume that b > 0 and r > 0. There exists positive constant c3 such that
for all x, y ∈ R3,(

(eb|x|
r

− 1)x− (eb|y|
r

− 1)y
)
· (x− y) ≥ c3|x− y|2

(
(eb|x|

r

− 1) + (eb|y|
r

− 1)
)
.

3. Existence and uniqueness of weak solutions

In this section, we will give some results about the existence, uniqueness and
regularity of the global weak solutions of system (2.7). Let us first formulate the
weak solution existence theorem.

Theorem 3.1. Assume that ν, α, a, b are positive and r ≥ 1. Given uτ ∈ V 0 and
f ∈ L2

loc(R;V 0). Then, the system (2.7) possesses a global weak solution obeying
Definition 2.1 with initial condition uτ . Furthermore, if α ≥ 1, the global weak
solution then is unique and depends continuity on the initial data.

Proof. i) Existence. The existence of a weak solution of (2.7) is obtained via
using the Galerkin approximation method. Therefore, we only outline the main
points here.

We define the finite dimensional projectors Πn in V 0 as

Πnu =
∑

0<|k|≤n

ukϕk for u =
∑
k∈J

ukϕk and ϕk = eik·x.
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8 L. T. TINH

Setting Bn(u, v) := ΠnB(u, v). We consider the finite dimensional approximation
of system (2.7) in the unknowns un = Πnu. This is the Galerkin approximation for
n = 1, 2, 3, · · ·{

∂tun = −νΛ2αun −Bn(un, un)− aΠnPσ{(eb|un|r − 1)un}+ΠnPσf,

un(τ) = Πnuτ .
(3.1)

Obviously, un(τ) strongly converges to uτ in V 0. We take L2-scalar product of the
first equation with itself un; bearing in mind Lemma 2.1, we get

1

2

d

dt
∥un(t)∥2V 0 + ν∥un(t)∥2V α + a∥(eb|un|r − 1)|un|2∥L1(T) =

∫
T
f(t)un(t)dx

≤ ν

2
∥un(t)∥2V α +

1

2ν
∥f(t)∥2V 0 , (3.2)

where we have used (2.1) and the Cauchy-Schwarz inequality. Therefore,

d

dt
∥un(t)∥2V 0 + ν∥un(t)∥2V α + 2a∥(eb|un(t)|r − 1)|un(t)|2∥L1(T) ≤

1

ν
∥f(t)∥2V 0 . (3.3)

For all t ∈ [τ, T ], we integrate (3.3) in time from τ to t and obtain

∥un(t)∥2V 0 + ν

∫ t

τ

∥un(s)∥2V αds+ 2a

∫ t

τ

∥(eb|un(s)|r − 1)|un(s)|2∥L1(T)ds

≤ ∥uτ∥2V 0 +
1

ν

∫ t

τ

∥f(s)∥2V 0ds. (3.4)

Since ∥uτ∥2V 0 and
∫ t

τ
∥f(s)∥2V 0ds are bounded, it follows from (3.4) and (2.14)

that the sequence {un} is uniformly bounded in L∞(τ, T ;V 0) ∩ L2(τ, T ;V α) ∩
{

∞⋂
k=1

Lrk+2(τ, T ;Lrk+2(T))}.

We now consider the first equation of (3.1). We see that the dissipative term
Λ2αun ∈ L2(τ, T ;V −α) and it follows from (2.9) that Bn(un, un) ∈ L2(τ, T ;V −γ).
Setting γ0 := max{3, 2α, γ} and we see that γ ≤ γ0. Since L1(T) ↪→ V −γ0 , we
deduce that∫ t

τ

∥(eb|un(s)|r − 1)|un(s)|∥V −γ0ds ≲
∫ t

τ

∥(eb|un(s)|r − 1)|un(s)|∥L1(T)ds

≤Mbr(T − τ)∥un∥L∞(τ,T ;V 0)

+ ∥(eb|un|r − 1)|un|2∥L1(τ,T ;L1(T)), (3.5)

where we have used (2.11). We infer from (3.4) and (3.5) that (eb|un|r − 1)un ∈
L1(τ, T ;V −γ0). Therefore, ∂tun is bounded uniformly in L1(τ, T ;V −γ0). Since

V α ∩ {
∞⋂
k=1

Lrk+2(T)} ↪→↪→ V 0 ↪→ V −γ0 ,

and

V α ∩ {
∞⋂
k=1

Lrk+2(T)} ↪→↪→ V ᾱ ↪→ V −γ0 ,

for some ᾱ ∈ (0, α) such that ᾱ+ γ ≥ 5
2 . We deduce from the Aubin-Lions lemma

(see [64]) that {un} is compact in L2(τ, T ;V 0) and so we can extract a subsequence,
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GENERALIZED NAVIER-STOKES EQUATIONS WITH EXPONENTIAL DAMPING 9

still denoted by un, such that

un ⇀ u weakly in L2(τ, T ;V α), (3.6)

un ⇀ u weakly in Lrk+2(τ, T ;Lrk+2(T)), for any positive integer k, (3.7)

un ⇀
∗ u weakly star in L∞(τ, T ;V 0), (3.8)

un → u strongly in L2(τ, T ;V 0), (3.9)

un → u strongly in L2(τ, T ;V ᾱ). (3.10)

We now prove the convergence of nonlinear term. First, we have∫ T

0

|b(un(t), un(t), v)− b(u(t), u(t), v)|dt ≤ S1
n + S2

n

where v ∈ V γ and the terms S1
n and S2

n are defined as follows

S1
n =

∫ T

τ

|b(un(t), un(t)− u(t), v)|dt

=

∫ T

τ

|b(un(t), v, un(t)− u(t))|dt

[By using Lemma 2.1]

≲
∫ T

τ

∥un(t)∥V 0∥v∥V γ∥un(t)− u(t)∥V ᾱdt

[By using Proposition 2.1]

≲ ∥v∥V γ∥un∥L2(τ,T ;V 0)∥un(t)− u(t)∥L2(τ,T ;V σ̄).

Using (3.10) implies that limn→∞ S1
n = 0.

S2
n =

∫ T

τ

|b(un(t)− u(t), un(t), v)|dt

=

∫ T

τ

|b(un(t)− u(t), v, un(t))|dt

[By using Lemma 2.1]

≲
∫ T

τ

∥un(t)− u(t)∥V ᾱ∥v∥V γ∥un(t)∥V 0dt

[By using Proposition 2.1]

≲ ∥v∥V γ∥un∥L2(τ,T ;V 0)∥un(t)− u(t)∥L2(τ,T ;V σ̄).

Using (3.10) implies that limn→∞ S2
n = 0. Therefore, we have∫ T

τ

b(un(t), un(t), v)dt→
∫ T

0

b(u(t), u(t), v)dt.

Using all convergences above, it is classical results to pass to the limit in the vari-
ational formulations (2.8) and prove that u is the solution of (2.7) and inherits all
the regularity from un, i.e.,

u ∈ L∞(τ, T ;V 0) ∩ L2(τ, T ;V α) ∩ Gr
b (τ, T ;L

1(T)),

where

Gr
b (τ, T ;L

1(T)) :=
{
u : [τ, T ]× T → R3 measurable, (eb|u|

r

− 1)|u|2 ∈ L1(τ, T ;L1(T))
}
.
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We integrate in time the equations for the velocity u and we obtain

u(t) = uτ +

∫ t

τ

[−νΛ2αu(s)−B(u(s), u(s))− aPσ{(eb|u(s)|
r

− 1)u(s)}+ Pσf(s)]ds.

This implies that u ∈ C([τ, T ];V −γ0). In addition, since u ∈ L∞(τ, T ;V 0), we
deduce from Lemma 2.5 that

u ∈ L∞(τ, T ;V 0) ∩ L2(τ, T ;V α) ∩ Gr
b (τ, T ;L

1(T)) ∩ Cw([τ, T ];V
0).

ii) Uniqueness and continuous dependence on the initial data. Assume
that u1 and u2 are two weak solutions of (2.7) with initial data u1τ , u2τ ∈ V 0,
respectively. Setting U = u1 − u2 and then U satisfies{
∂tU + νΛ2αU +B(u1, U) +B(U, u2) + aPσ{(eb|u1|r − 1)u1 − (eb|u2|r − 1)u2} = 0,

∇ · U = 0.

(3.11)

We first take the L2-scalar product of the first equation of (3.11) with U and using
Lemma 2.1 leads to

1

2

d

dt
∥U∥2V 0 + ν∥U∥2V α + b(U, u2, U) + a

∫
T
{(eb|u1|r − 1)u1 − (eb|u2|r − 1)u2} · Udx = 0.

(3.12)

Using Lemma 2.6, we get that∫
T
{(eb|u1|r − 1)u1 − (eb|u2|r − 1)u2} · Udx ≥ 0. (3.13)

Now, we are going to estimate the nonlinear term b(U, u2, U).
Case 1. α = 1. It follows from (2.14) that we can take rk ≥ 3 so that u ∈ Lrk+2(T).

Estimation of the nonlinear term now can be done as follows

|b(U, u2, U)| = |b(U,U, u2)|
≲ ∥U∥

L
2(rk+2)

rk (T)
∥∇U∥L2(T)∥u2∥Lrk+2(T)

[By using the Hölder inequality]

≲ ∥U∥V 1∥u2∥Lrk+2(T)∥U∥
rk−1
rk+2

L2(T)∥U∥
3

rk+2

L6(T)

[By using interpolation]

≲ ∥U∥
rk+5
rk+2

V 1 ∥u2∥Lrk+2(T)∥U∥
rk−1
rk+2

V 0

[Since V 0 ↪→ L2 and V 1 ↪→ L6]

≤ ν

2
∥U∥2V 1 + C∥u2∥

2rk+4
rk−1

Lrk+2(T)∥U∥2V 0

[By using the Young inequality]

≤ ν

2
∥U∥2V 1 + C(1 + ∥u2∥rk+2

Lrk+2(T))∥U∥2V 0 (3.14)

[Since
2rk + 4

rk − 1
≤ rk + 2].

It follows from (3.12), (3.13) and (3.14) that

d

dt
∥U∥2V 0 ≲ (1 + ∥u2∥rk+2

Lrk+2(T))∥U∥2V 0 . (3.15)
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GENERALIZED NAVIER-STOKES EQUATIONS WITH EXPONENTIAL DAMPING 11

Using the Grönwall’s inequality, we deduce from (3.15), (2.14) and (3.4) that the
weak solution depends continuously on the initial data and is unique.
Case 2. 1 < α < 5

4 . This implies that there exists rk ∈ ( 5−2α
2α−1 ,

5−2α
α−1 ).

We could estimate the nonlinear term b(U, u2, U) as

|b(U, u2, U)| = |b(U,U, u2)|
≲ ∥U∥

L
6rk+12

rk(2α+1)+4(α−1) (T)
∥∇U∥

L
6

5−2α (T)
∥u2∥Lrk+2(T)

[By using the Hölder inequality]

≲ ∥u2∥Lrk+2(T)∥U∥V α∥U∥
V

rk+5
rk+2

−α

[Since V α−1 ↪→ L
6

5−2α (T) and V
rk+5
rk+2−α ↪→ L

6rk+12
rk(2α+1)+4(α−1) (T)]

≲ ∥u2∥Lrk+2(T)∥U∥θV 0∥U∥2−θ
V α

[we have used interpolation inequalities and

rk + 5

rk + 2
− α = θ · 0 + (1− θ) · α and 0 ≤ θ = 2− rk + 5

α(rk + 2)
≤ 1 ]

≤ ν

2
∥U∥2V α + C∥u2∥

2
θ

Lrk+2(T)∥U∥2V 0

[By using the Young inequality]

≤ ν

2
∥U∥2V α + C∥u2∥rk+2

Lrk+2(T)∥U∥2V 0 (3.16)

[Since
2

θ
≤ rk + 2].

It follows from (3.12), (3.13) and (3.16) that

d

dt
∥U∥2V 0 ≲ (1 + ∥u2∥rk+2

Lrk+2(T))∥U∥2V 0 . (3.17)

Using the Grönwall’s inequality again, (3.17), (2.14) and (3.4), we obtain clearly
the continuous dependence of the weak solution on the initial data, in particular
its uniqueness holds provided that 1 < α < 5

4 .

Case 3. α ≥ 5
4 .

In the hyperdissipative cases (α ≥ 5
4 ), the nonlinear term b(U, u2, U) can be

estimated by using Proposition 2.1 as follows

|b(U, u2, U)| ≲ ∥U∥V 0∥u2∥V α∥U∥V α

[By using the Hölder inequality]

≤ ν

2
∥U∥V α + C∥u2∥2V α∥U∥2V 0 (3.18)

[By using the Young inequality].

Combining (3.12), (3.13) and (3.18), we get

d

dt
∥U∥2V 0 ≲ ∥u2∥2V α∥U∥2V 0 . (3.19)

We also infer from the Grönwall’s inequality, (3.4) and (3.19) the uniqueness of the
global weak solution of the system (2.7) can be obtained with the less restriction
of the damping.

Moreover, using Lemma 2.4 implies that u ∈ C([τ, T ];V 0). □

Remark 3.1. We now give some comments on our result.
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12 L. T. TINH

(i) The existence of the weak solutions of (2.7) still holds with the less regu-
larity of f , i.e., f ∈ L2

loc(R;V −α). We also see that the weak solution can
be extended to the [τ,∞) for any τ ∈ R. Hence, a weak solution defined
globally in times exists for any initial data u(τ) ∈ V 0.

(ii) This theorem shows us how the strength of nonlinearity and the degree
of viscous dissipation can work together to yield the global existence and
uniqueness of the weak solution of (2.7). This result is in addition to
previous results in [10, 11, 12, 13].

(iii) In case of r < 1, since Lemma 2.2 may not be satisfied. This could make
our situation much more difficult.

4. Attractors for the generalized Navier-Stokes equations with
exponential damping

In this section, we apply the theory of the evolutionary systems established to
our generalized Navier-Stokes equations with exponential damping.

Following the ideas in [54, Section 4], [22, Section 8], [29, Section 5-6] and [27],
we first define the strong and weak distances as

ds(u1, u2) := ∥u1 − u2∥V 0 , ∀u1, u2 ∈ V 0,

and

dw(u1, u2) :=
∑
k∈J

2−|k| |u1k − u2k|
1 + |u1k − u2k|

,

where uik, i = 1, 2, are Fourier coefficients of ui, respectively. Note that the weak
metric dw induces the weak topology in any ball in V 0.

Let f0 be a fixed external force which is translation bounded in L2
loc(R;V 0), i.e.,

∥f0∥2b := ∥f0∥2L2
b(R;V 0) := sup

t∈R

∫ t+1

t

∥f0(s)∥2V 0ds <∞.

We denote by L2,w
loc (R;V 0) the space L2

loc(R;V 0) endowed with the local weak con-

vergence topology. Then f0 is translation compact in L2,w
loc (R;V 0), i.e., the trans-

lation family of f0

Σ := {f0(·+ h) : h ∈ R},

is precompact in L2,w
loc (R;V 0) (see [21]). Moreover,

∥f∥2b ≤ ∥f0∥2b , ∀f ∈ Σ. (4.1)

Let u(t), t ∈ [τ,∞), be a weak solution of (2.7) with the initial data u(τ) ∈ V 0

and f ∈ Σ guaranteed by Theorem 3.1. Repeating the same arguments in Theorem
3.1 implies that

d

dt
∥u(t)∥2V 0 + ν∥u(t)∥2V α + 2a∥(eb|u(t)|

r

− 1)|u(t)|2∥L1(T) ≤
1

ν
∥f(t)∥2V 0 . (4.2)

Thus
d

dt
∥u(t)∥2V 0 + ν∥u(t)∥2V 0 ≤ 1

ν
∥f(t)∥2V 0 ,

for t large enough and hence

d

dt
(∥u(t)∥2V 0eνt) ≤

1

ν
∥f(t)∥2V 0eνt.
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GENERALIZED NAVIER-STOKES EQUATIONS WITH EXPONENTIAL DAMPING 13

Integrating in time from t0 to t, we receive

∥u(t)∥2V 0eνt − ∥u(t0)∥2V 0eνt0 ≤ 1

ν

∫ t

t0

∥f(s)∥2V 0eνsds.

On the other hand,∫ t

t0

∥f(s)∥2V 0eνsds ≤
∫ t

t−1

∥f(s)∥2V 0eνsds+

∫ t−1

t−2

∥f(s)∥2V 0eνsds+ · · ·

≤ ∥f∥2b(1 + e−ν + · · · )eνt

≤ eν

eν − 1
∥f∥2beνt

≤ eν

eν − 1
∥f0∥2beνt.

Therefore

∥u(t)∥2V 0 ≤ ∥u(t0)∥2V 0e−ν(t−t0) +
eν

ν(eν − 1)
∥f0∥2b , (4.3)

for all t ≥ t0, t0 a.e. in [τ,∞). Note that we are just looking for estimations and
we use the same units of “1” because of simplicity. In fact, units in (4.2) and (4.3)
are not dimensionally correct.

It follows from (4.3) that there exists a uniformly (w.r.t. τ ∈ R and f ∈ Σ)
absorbing ball Bs(0, R) ⊂ V 0, where the radius R depends on ν and ∥f0∥2b . We
denote by Xcuab a closed uniformly absorbing ball

Xcuab := {u ∈ V 0 : ∥u∥V 0 ≤ R}. (4.4)

Therefore, for any bounded set B ⊂ V 0, there exists a time t ≥ 0 independent of
the initial time τ , such that

u(t) ∈ Xcuab, ∀t ≥ t1 := τ + t, (4.5)

for every weak solutions u with f ∈ Σ and the initial time u(τ) ∈ B. Moreover,
Xcuab is weakly compact in V 0 and metrizable with a metric dw deducing the weak
topology on Xcuab.

The following important result holds.

Lemma 4.1. Let ν, α, a, b be positive and let r ≥ 1. Assume that un is a sequence
of weak solutions of (2.7) with fn ∈ Σ satisfying un(t) ∈ Xcuab for all t ≥ t1. Then

un is bounded in L2(t1, t2;V
α), Gr

b (t1, t2;L
1(T)) and L∞(t1, t2;V

0),

d

dt
un is bounded in L1(t1, t2;V

−γ0),

for all t2 ≥ t1 and γ0 := max{3, 2α}. Moreover, there exists a subsequence unj

converges to some solution u in Cw([t1, t2];V
0), i.e.,

⟨unj
, ψ⟩ → ⟨u, ψ⟩ uniformly on [t1, t2], as nj → ∞, for all ψ ∈ V 0.

Proof. The proof is a straightforward modification of the results of Theorem 3.1.
Therefore, we omit it here (the readers can consult more details in [29, Lemma 5.4],
[54, Lemma 5.3], [53, Lemma 3.2] and [59, Lemma 2.1]). □
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14 L. T. TINH

Let us define the following evolutionary system.

E([τ,∞)) := {u(·) : u(·) is a weak solution of (2.7) with f ∈ Σ on [τ,∞) and

u(t) ∈ Xcuab, ∀t ∈ [τ,∞)}, τ ∈ R,

E((−∞,∞)) := {u(·) : u(·) is a weak solution of (2.7) with f ∈ Σ on (−∞,∞)

and u(t) ∈ Xcuab, ∀t ∈ (−∞,∞)}.

We deduce from the translation identity of (2.7) that all conditions in Definition
5.1 hold for the above evolutionary system.

Since we use the theory of the evolutionary systems, this leads us to check the
properties (A1), (A2) and (A3) for our evolutionary system (see in Appendix A
for these properties). Thus, we will use the following condition for the force which
is called a normal function and was introduced in [51, 52].

Definition 4.1. Let B be a Banach space. A function g ∈ L2
loc(R;B) is said to be

normal in L2
loc(R;B) if for any ϵ > 0, there exists δ > 0, such that

sup
t∈R

∫ t+δ

t

∥g(s)∥2B ds ≤ ϵ.

It is a classical result that the class of normal functions is a proper closed subspace
of the class of translation bounded functions (see [51, 52]). We now prove the
following result.

Lemma 4.2. Let ν, α, a, b be positive and let r ≥ 1. The evolutionary system E
of (2.7) with the force f0 satisfies (A1) and (A3). Moreover, if f0 is normal in
L2
loc(R;V 0), then the evolutionary system E of (2.7) also satisfies (A2).

Proof. We first verify that (A1) holds. Indeed, we deduce from Definition 2.1,
Theorem 3.1 and (4.5) that E([0,∞)) ⊂ Cw([0,∞);V 0). Let {un}∞n=1 be a sequence
in E([0,∞)).

• It follows from Lemma 4.1 that there exists a subsequence, still denoted by
{un}∞n=1, which converges in Cw([0, 1];V

0) to some u1 ∈ Cw([0, 1];V
0) as

n→ ∞.
• Passing to a subsequence and dropping a subindex once more, we have that
this subsequence converges in Cw([0, 2];V

0) to some u2 ∈ Cw([0, 2];V
0) as

n→ ∞. Note that u1(t) = u2(t) on [0, 1].
• Continuing this diagonalization process, we obtain a subsequence {unj} of

{un}∞n=1 that converges in Cw([0,∞);V 0) to some u ∈ Cw([0,∞);V 0) as
nj → ∞.

Therefore, (A1) holds.
Next, we prove that (A3) is valid. Take a sequence {un}∞n=1 ⊂ E([0,∞)) be

such that it is a dCw([0,T ];V 0)-Cauchy sequence in Cw([0, T ];V
0) for some T > 0.

Using Lemma 4.1 again and the sequence {un}∞n=1 is bounded in L2(0, T ;V α), we
deduce that there exists some u ∈ Cw([0, T ];V

0), such that∫ T

0

∥un(s)− u(s)∥2V 0ds→ 0, as n→ ∞.

In particular, ∥un(t)∥V 0 → ∥u(t)∥V 0 as n → ∞ a.e. on [0, T ], which means that
{un(t)}∞n=1 is a ds-Cauchy sequence a.e. on [0, T ]. Thus, (A3) is valid.
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Finally, for any u ∈ E([0,∞)) and t > 0, using the property of normal functions,
we can infer from (4.1) and (4.2) that, for any ϵ > 0, there exists δ > 0 such that

∥u(t)∥V 0 ≤ |u(t0)|V 0 + ϵ,

for t0 a.e. in (t− δ, t). This implies that (A2) holds.
The proof is adapted from [29, Lemma 5.7] and the readers can consult more

details in there. □

We now apply the general theory of the evolutionary system which is summa-
rized in Appendix A to get the following results. The following result is a direct
consequence of Theorem 5.3, Theorem 5.4, Theorem 5.5 and Lemma 4.2.

Theorem 4.1.

(i) Assume that ν, α, a, b are positive and r ≥ 1. Let f0 be translation bounded
in L2

loc(R;V 0). There exist the weak uniform global attractor Aw and the
weak trajectory attractor Aw for (2.7) with the fixed force f0. The weak
uniform global attractor Aw is the maximal invariant and maximal quasi-
invariant set w.r.t. the closure Ē of the corresponding evolutionary system
E and

Aw = ωw(Xcuab) = ωs(Xcuab) = {u(0) : u ∈ K̄},
Aw = Π+K̄ = {u(·)|[0,∞) : u ∈ K̄},
Aw = Aw(t) = {u(t) : u ∈ Aw}, ∀t ≥ 0.

Moreover, Aw satisfies the finite weak uniform tracking property and is
weakly equicontinuity on [0,∞).

(ii) Furthermore, assume that f0 is normal in L2
loc(R;V 0) and every complete

trajectory of Ē is strongly continuous, then the weak global attractor Aw

becomes a strongly compact strong global attractor As, and the weak trajec-
tory attractor Aw becomes a strongly compact strong trajectory attractor As.
Moreover, As = Π+K̄ satisfies the finite strong uniform tracking property
and is strongly equicontinuous on [0,∞).

We now give some supplementaries with the better condition of f0 which is
translation compact in L2

loc(R;V 0), i.e., the closure of the translation family Σ of
f0 in L2

loc(R;V 0),

Σ̄ := {f0(·+ h) : h ∈ R}
L2

loc(R;V
0)
,

is compact in L2
loc(R;V 0). Following the results in [21, 51, 52], we infer that

L2
loc(R;V 0) is metrizable and the corresponding metric space is complete; and the

class of translation compact functions is also a closed subspace of the class of trans-
lation bounded functions, but it is a proper subset of the class of normal functions.

The results in Lemma 4.1 are valid for Σ replaced by Σ̄. We only give the result
and omit the proof here since it can be adapted from Theorem 3.1, [29, Lemma 6.1]
and the property of the class of translation compact functions as follows

Lemma 4.3. Let ν, α, a, b be positive and let r ≥ 1. Assume that un is a sequence
of weak solutions of (2.7) with fn ∈ Σ̄ satisfying un(t) ∈ Xcuab for all t ≥ t1. Then

un is bounded in L2(t1, t2;V
α), Gr

b (t1, t2;L
1(T)) and L∞(t1, t2;V

0),

d

dt
un is bounded in L1(t1, t2;V

−γ0),

28 Jun 2023 03:52:18 PDT
221206-TinhLe Version 2 - Submitted to Rocky Mountain J. Math.



16 L. T. TINH

for all t2 ≥ t1 and γ0 := max{3, 2α}. Moreover, there exists a subsequence nj
such that fnj

∈ Σ̄ converges in L2
loc(R;V 0) to some f ∈ Σ̄ and unj

converges in

Cw([t1, t2];V
0) to some solution u with the force f ∈ Σ̄, i.e.,

⟨unj
, ψ⟩ → ⟨u, ψ⟩ uniformly on [t1, t2], as nj → ∞, for all ψ ∈ V 0.

We now define the following evolutionary system with Σ̄ as a symbol space. The
family of trajectories for this evolutionary system consists of all weak solutions of
(2.7) with the force f ∈ Σ̄ in Xcuab determined by

EΣ̄([τ,∞)) := {u(·) : u(·) is a weak solution on [τ,∞) with f ∈ Σ̄

and u(t) ∈ Xcuab, ∀t ∈ [τ,∞)}, τ ∈ R,

EΣ̄((−∞,∞)) := {u(·) : u(·) is a weak solution on (−∞,∞) with

f ∈ Σ̄ and u(t) ∈ Xcuab, ∀t ∈ (−∞,∞)}.
Following step by step as in arguments of [29, Section 6] and [54, Section 4.1] with
the straightforward modification of these results, we can prove the following results.
Because the proofs are only adapted, we also omit them here.

Lemma 4.4. Let ν, α, a, b be positive and let r ≥ 1. Assume that the external body
force f belongs to Σ̄. Then, the following results hold for the evolutionary system
EΣ̄ of the family of the 3D generalized Navier-Stokes equations with damping

(i) It satisfies (B1), (B2) and (B3).
(ii) It is closed.
(iii) ĒΣ̄ = EΣ̄.

Theorem 4.2.

(i) Assume that ν, α, a, b are positive and r ≥ 1. Let f0 be translation compact

in L2
loc(R;V 0). Then the weak uniform global attractor AΣ̄

w and the weak

trajectory attractor AΣ̄
w for (2.7) with the external body force f ∈ Σ̄ exist,

AΣ̄
w is the maximal invariant and maximal quasi-invariant set w.r.t. the

corresponding evolutionary system EΣ̄ and

AΣ̄
w = {u(0) : u ∈ EΣ̄((−∞,∞)) =

⋃
f∈Σ̄

Ef ((−∞,∞))},

AΣ̄
w = Π+

⋃
f∈Σ̄

Ef ((−∞,∞)),

AΣ̄
w = AΣ̄

w(t) =
{
u(t) : u ∈ AΣ̄

w

}
, ∀t ≥ 0,

where Ef ((−∞,∞)) is nonempty for any f ∈ Σ̄. Moreover, AΣ̄
w satisfies

the finite weak uniform tracking property and is weakly equicontinuous on
[0,∞).

(ii) Furthermore, assume that the external body force f ∈ Σ̄ and every complete
trajectory of the family of the 3D generalized Navier-Stokes equations with
damping is strongly continuous, then the weak uniform global attractor AΣ̄

w

is a strongly compact strong global attractor AΣ̄
s , and the weak trajectory

attractor AΣ̄
w is a strongly compact strong trajectory attractor AΣ̄

s . More-

over, AΣ̄
s satisfies the finite strong uniform tracking property and is strongly

equicontinuous on [0,∞).
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We deduce from Lemma 4.4 that E ⊂ Ē ⊂ EΣ̄. We now concern with the

question: Are the attractors A•, A• and AΣ̄
• , A

Σ̄
• in Theorem 4.1 and Theorem 4.2

are identical ? We may get the negative answer as the weak solutions of (2.7) are
not unique. The positive answer is the content of the following results

Theorem 4.3. Assume that ν, a, b are positive and α, r ≥ 1. Let f0 be translation
compact in L2

loc(R;V 0). Let EΣ be the evolutionary system of (2.7) with the external
body force in Σ and ĒΣ be the closure of EΣ. Let EΣ̄ be the evolutionary system of
(2.7) with the external body force in Σ̄. Hence, the following results hold.

(1) The three weak uniform global attractors AΣ
w, ĀΣ

w and AΣ̄
w for evolutionary

systems EΣ, ĒΣ and EΣ̄, respectively, exist.
(2) AΣ

w, ĀΣ
w and AΣ̄

w are the maximal invariant and maximal quasi-invariant
set with respect to ĒΣ and satisfy the following

AΣ
w = ĀΣ

w = AΣ̄
w =

{
u(0) : u ∈ EΣ̄((−∞,∞))

}
.

(3) The three weak trajectory attractors AΣ
w, Ā

Σ
w and AΣ̄

w for evolutionary sys-
tems EΣ, ĒΣ and EΣ̄, respectively, exist and satisfy the following

AΣ
w = ĀΣ

w = AΣ̄
w = Π+

⋃
f∈Σ̄

Ef ((−∞,∞)).

Hence, the three weak trajectory attractors satisfy the finite weak uniform
tracking property for all the three evolutionary systems and are weakly
equicontinuous on [0,∞).

(4) AΣ
w, ĀΣ

w and AΣ̄
w are sections of AΣ

w, Ā
Σ
w and AΣ̄

w :

AΣ
w = ĀΣ

w = AΣ̄
w

= AΣ
w(t) = ĀΣ

w(t) = AΣ̄
w(t) =

{
u(t) : u ∈ AΣ̄

w

}
, ∀t ≥ 0.

(5) The three weak uniform global attractors AΣ
w, ĀΣ

w and AΣ̄
w for evolutionary

systems EΣ, ĒΣ and EΣ̄, respectively, are strongly compact strong uniform

global attractors and the three weak trajectory attractors AΣ
w, Ā

Σ
w and AΣ̄

w

for evolutionary systems EΣ, ĒΣ and EΣ̄, respectively, are strongly compact
strong trajectory attractors. Moreover, the three trajectory attractors satisfy
the finite strong uniform tracking property for all the three evolutionary
systems and are strongly equicontinuous on [0,∞).

Remark 4.1. These results also extend and improve the recent results for the
Navier-Stokes equations in [22, 27, 29, 54].

5. Determining wavenumbers

In this section we will point out the finite uniform tracking property of attrac-
tors via determining wavenumbers. We define the determining wavenumber in the
following way:

Nα
u (t) := min{λq = 2q : λ−α+1+δ

p λ−α−δ
q ∥up∥L∞(T) < c0ν, ∀p > q

and λ−2α
q

q∑
j=0

λj∥uj∥L∞(T) < c0ν, q ∈ N}, (5.1)
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18 L. T. TINH

where 0 < δ < α is a fixed (small) parameter, and c0 is an dimensionless constant
that depends only on α and λq, up = ∆pu which is the localized Fourier projection
operators (see in Appendix B for more details).

We are now ready to state and prove our main results.

Theorem 5.1. Assume that ν, a, b are positive, α ≥ 1
2 and r ≥ 1. Let u(t) and

v(t) be two global weak solutions of (2.7) on the weak global attractor A. Let
N (t) := max{Nα

u (t),Nα
v (t)} and Q(t) be such that N (t) = λQ(t). If

u(t)≤Q(t) = v(t)≤Q(t), ∀t < 0, (5.2)

then

u(t) = v(t), ∀t ≤ 0. (5.3)

Proof. Denote w := u− v, which satisfies the equation

wt + νΛ2αw +B(u,w) +B(w, v) + a
(
(eb|u|

r

− 1)u− (eb|v|
r

− 1)v
)
= 0 (5.4)

in the sense of distributions. We deduce from (5.2) that w(t)≤Q(t) ≡ 0.

Applying ∆q to (5.4) yields

∂t∆qw + νΛ2α∆qw +∆q(u · ∇w) + ∆q(w · ∇v)

+ a∆q

(
(eb|u|

r

− 1)u− (eb|v|
r

− 1)v
)
= 0. (5.5)

Dotting (5.5) with ∆qw, integrating by parts and using ∇ · u = 0, we have

1

2

d

dt
∥wq∥2L2(T) + ν∥Λαwq∥2L2(T) +

∫
T
∆q(u · ∇w)wqdx+

∫
T
∆q(w · ∇v)wqdx

+ a

∫
T
∆q

(
(eb|u|

r

− 1)u− (eb|v|
r

− 1)v
)
wqdx = 0. (5.6)

Integrating in time, taking the ℓ2-norm of the sequence in (5.6), identifying B0
2,2

with V 0 and using Lemma 2.6, we deduce that

1

2
∥w(t)∥2V 0 −

1

2
∥w(t0)∥2V 0 + ν

∫ t

t0

∥Λαw(τ)∥2V 0dτ

≲
∫ t

t0

∑
q≥0

|
∫
T
∆q(u · ∇w)wqdx|dτ

+

∫ t

t0

∑
q≥0

|
∫
T
∆q(w · ∇v)wqdx|dτ

:=

∫ t

t0

Idτ +

∫ t

t0

Jdτ. (5.7)

Using Bony’s paraproduct implies

w · ∇v =

∞∑
m=0

w≤m−2 · ∇vm +

∞∑
m=0

wm · ∇v≤m−2 +

∞∑
m=0

w̃m · ∇vm,

where w̃m = wm−1 + wm + wm+1. Therefore,

∆q(w · ∇v) =
∞∑

m=0

∆q(w≤m−2 · ∇vm) +

∞∑
m=0

∆q(wm · ∇v≤m−2) +

∞∑
m=0

∆q(w̃m · ∇vm).
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GENERALIZED NAVIER-STOKES EQUATIONS WITH EXPONENTIAL DAMPING 19

We use the triangle inequality and Lemma 5.4 to decompose J as follows

J ≲
∑
q≥0

∑
|q−m|≤1

|
∫
T
∆q(w≤m−2 · ∇vm)wqdx|

+
∑
q≥0

∑
|q−m|≤1

|
∫
T
∆q(wm · ∇v≤m−2)wqdx|

+
∑
q≥0

∑
m≥q−1

|
∫
T
∆q(w̃m · ∇vm)wqdx|

:= J1 + J2 + J3. (5.8)

We will estimate the above terms in turn. We adapt the convention that (Q,m−2]
is empty if m− 2 ≤ Q. Thus, the first term J1 can be estimated as follows

J1 ≤
∑

m≥Q+2

∑
|q−m|≤1

|
∫
T3

∆q(w≤m−2 · ∇vm)wqdx|

since w(t)≤Q(t) ≡ 0 and we need m− 2 ≥ Q

≲
∑

m≥Q+2

∑
|q−m|≤1

∥w(Q,m−2]∥L2(T)λm∥vm∥L∞(T)∥wq∥L2(T), (5.9)

by using Hölder’s inequality and Proposition 5.1

It follows from (5.1) that

∥vm∥L∞(T) < c0νλ
α+δ
Q λα−1−δ

m , ∀m > Q, (5.10)

and

λ−2α
Q ∥∇v≤Q∥L∞(T) ≲ λ−2α

Q

Q∑
q=0

λq∥vq∥L∞(T) ≲ c0ν. (5.11)

We deduce from (5.9), (5.10) and Young’s inequality that

J1 ≲ c0ν
∑

m≥Q+2

∑
|q−m|≤1

λα−δ
m λα+δ

Q ∥wq∥L2(T)
∑

Q<p≤m−2

∥wp∥L2(T)

≲ c0ν
∑

q≥Q+1

λαq ∥wq∥L2(T)
∑

Q<p≤q−1

λ−δ
q λα+δ

Q ∥wp∥L2(T)

since Q+ 1 ≤ m− 1 ≤ q ≤ m+ 1 and λα−δ
m ≲ λα−δ

q

≲ c0ν
∑

q≥Q+1

λαq ∥wq∥L2(T)
∑

Q<p≤q−1

λαp ∥wp∥L2(T)λ
−α
p λ−δ

q λα+δ
Q

≲ c0ν
∑

q≥Q+1

λαq ∥wq∥L2(T)
∑

Q<p≤q−1

λαp ∥wp∥L2(T)λ
−δ
q−p

since λ−α
p λ−δ

q λα+δ
Q ≤ λ−α

p λ−δ
q λα+δ

p = λ−δ
q−p

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T) + c0ν
∑

q≥Q+1

( ∑
Q<p≤q−1

λαp ∥wp∥L2(T)λ
−δ
q−p

)2

by using Young’s inequality

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T) + c0ν
∑

q≥Q+1

∑
Q<p≤q−1

λ2αp ∥wp∥2L2(T)λ
−δ
q−p
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20 L. T. TINH

by using Cauchy-Schwarz’s inequality and 0 < δ < α

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T) + c0ν
∑

p≥Q+1

λ2αp ∥wp∥2L2(T)

∑
q≥p+1

λ−δ
q−p

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T). (5.12)

We now estimate J2 by the similar strategy. We have

J2 ≤
∑

m≥Q+2

∑
|q−m|≤1

|
∫
T
∆q(wm · ∇v≤m−2)wqdx|

≲
∑

m≥Q+2

∑
|q−m|≤1

∥wm∥L2(T)∥∇v(Q,m−2]∥L∞(T)∥wq∥L2(T)

+
∑

m≥Q+2

∑
|q−m|≤1

∥wm∥L2(T)∥∇v≤Q∥L∞(T)∥wq∥L2(T)

:= J21 + J22. (5.13)

To estimate J21.

J21 =
∑

m≥Q+2

∑
|q−m|≤1

∥wm∥L2(T)∥∇v(Q,m−2]∥L∞(T)∥wq∥L2(T)

≲
∑

m≥Q+2

∑
|q−m|≤1

∥wm∥L2(T)∥wq∥L2(T)
∑

Q<p≤m−2

∥∇vp∥L∞(T)

by using the triangle inequality

≲
∑

m≥Q+2

∑
|q−m|≤1

∥wm∥L2(T)∥wq∥L2(T)
∑

Q<p≤m−2

λp∥vp∥L∞(T)

by using Proposition 5.1

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T)

∑
Q<p<q

λ−2α
q λα−δ

p λα+δ
Q

since Q+ 1 ≤ m− 1 ≤ q ≤ m+ 1 and by using (5.10)

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T), (5.14)

since
∑

Q<p<q

λ−2α
q λα−δ

p λα+δ
Q is bounded.

To estimate J22.

J22 =
∑

m≥Q+2

∑
|q−m|≤1

∥wm∥L2(T)∥∇v≤Q∥L∞(T)∥wq∥L2(T)

≲
∑

q≥Q+1

λ2αq ∥wq∥2L2(T)λ
−2α
Q ∥∇v≤Q∥L∞(T)

since Q+ 1 ≤ m− 1 ≤ q ≤ m+ 1 and 0 < λQ ≤ λq

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T), (5.15)

by using (5.11).
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We now consider the term J3. It follows from (5.8) that

J3 =
∑
q≥0

∑
m≥q−1

|
∫
T
∆q(w̃m · ∇vm)wqdx|

≲
∑
q≥0

∑
m≥q−1

∫
T
|∆q(w̃m ⊗ vm)∇wq|dx

by using integration by parts and divergence free condition

≲
∑

m≥Q+1

∑
Q<q≤m+1

∥w̃m∥L2(T)∥vm∥L∞(T)∥∇wq∥L2(T)

since w(t)≤Q(t) ≡ 0 and using Hölder’s inequality

≲
∑

m≥Q+1

∥w̃m∥L2(T)∥vm∥L∞(T)
∑

Q<q≤m+1

λq∥wq∥L2(T)

by using Proposition 5.1

≲ c0ν
∑

m≥Q+1

λα−1−δ
m λα+δ

Q ∥wm∥L2(T)
∑

Q<q≤m+1

λq∥wq∥L2(T)

by using (5.1), (5.10) and the triangle inequality

= c0ν
∑

m≥Q+1

λαm∥wm∥L2(T)
∑

Q<q≤m+1

λαq ∥wq∥L2(T)λ
α+δ
Q λ−1−δ

m λ1−α
q

≲ c0ν
∑

m≥Q+1

λαm∥wm∥L2(T)
∑

Q<q≤m+1

λαq ∥wq∥L2(T)λ
−(1+δ)
m−q

since λα+δ
Q λ−1−δ

m λ1−α
q ≤ λ−1−δ

m λ1+δ
q := λ

−(1+δ)
m−q

≲ c0ν
∑

m≥Q+1

λ2αm ∥wm∥2L2(T) + c0ν
∑

m≥Q+1

( ∑
Q<q≤m+1

λαq ∥wq∥L2(T)λ
−(1+δ)
m−q

)2

by using Young’s inequality

≲ c0ν
∑

m≥Q+1

λ2αm ∥wm∥2L2(T), (5.16)

where we have used 1 + δ > 0 and Q < q ≤ m+ 1.

It follows from (5.8), (5.12), (5.13), (5.14), (5.15) and (5.16) that

J ≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T). (5.17)

We now investigate estimation for I. We have

I =
∑
q≥0

|
∫
T
∆q(u · ∇w)wqdx|

Applying Bony’s paraproduct to I yields

u · ∇w =

∞∑
m=0

u≤m−2 · ∇wm +

∞∑
m=0

um · ∇w≤m−2 +

∞∑
m=0

um · ∇w̃m,

where w̃m = wm−1 + wm + wm+1. Therefore,

∆q(u · ∇w) =
∞∑

m=0

∆q(u≤m−2 · ∇wm) +

∞∑
m=0

∆q(um · ∇w≤m−2) +

∞∑
m=0

∆q(um · ∇w̃m).
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Using the triangle inequality and Lemma 5.4, we can decompose I as follows

I ≲
∑
q≥0

|
∑

|q−m|≤1

∫
T
∆q(u≤m−2 · ∇wm)wqdx|

+
∑
q≥0

|
∑

|q−m|≤1

∫
T
∆q(um · ∇w≤m−2)wqdx|

+
∑
q≥0

|
∑

m≥q−1

∫
T
∆q(um · ∇w̃m)wqdx|

:= I1 + I2 + I3. (5.18)

We deduce from (5.50) that

∆q(u≤m−2 · ∇wm) =[∆q, u≤m−2 · ∇]wm + u≤q−2 · ∇∆qwm

+ (u≤m−2 − u≤q−2) · ∇∆qwm. (5.19)

We now can further decompose I1 as

I1 =
∑
q≥0

|
∑

|q−m|≤1

∫
T
∆q(u≤m−2 · ∇wm)wqdx|

≤
∑
q≥0

|
∑

|q−m|≤1

∫
T
[∆q, u≤m−2 · ∇]wmwqdx|

+
∑
q≥0

|
∑

|q−m|≤1

∫
T
u≤q−2 · ∇wqwqdx|

+
∑
q≥0

|
∑

|q−m|≤1

∫
T
(u≤m−2 − u≤q−2) · ∇wqwqdx|

where we have used
∑

|q−m|≤1

∆qwm = wq

= I11 + I12 + I13. (5.20)

To estimate I11.

I11 =
∑
q≥0

|
∑

|q−m|≤1

∫
T
[∆q, u≤m−2 · ∇]wmwqdx|

≤
∑

q≥Q+1

∑
m≥Q+1,|q−m|≤1

∥[∆q, u≤m−2 · ∇]wm∥L2(T)∥wq∥L2(T)

by using Hölder’s inequality and w(t)≤Q(t) ≡ 0

≲
∑

q≥Q+1

∑
m≥Q+1,|q−m|≤1

∥∇u≤m−2∥L∞(T)∥wm∥L2(T)∥wq∥L2(T)

by using (5.51)

≤
∑

q≥Q+1

∑
m≥Q+1,|q−m|≤1

∥∇u≤(Q,m−2]∥L∞(T)∥wm∥L2(T)∥wq∥L2(T)

+
∑

q≥Q+1

∑
m≥Q+1,|q−m|≤1

∥∇u≤Q∥L∞(T)∥wm∥L2(T)∥wq∥L2(T)
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≲
∑

q≥Q+1

∥wq∥2L2(T)

∑
Q<p<q

λp∥up∥L∞(T)

by using Proposition 5.1 and Young’s inequality

+ c0νλ
2α
Q

∑
q≥Q+1

∥wq∥2L2(T)

by using (5.11) and Young’s inequality

≲ c0ν
∑

q≥Q+1

∥wq∥2L2(T)

∑
Q<p<q

λα+δ
Q λα−δ

p

by using (5.10)

+ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T)

since λQ < λq for all q ≥ Q+ 1

= c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T)

∑
Q<p<q

λα+δ
Q λα−δ

p λ−2α
q

+ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T)

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T) (5.21)

since λQ < λp < λq for all Q < p < q and δ > 0.

It follows from integration by parts and divu≤m−2 = 0 that

I12 = 0. (5.22)

To estimate I13.

I13 =
∑
q≥0

|
∑

|q−m|≤1

∫
T
(u≤m−2 − u≤q−2) · ∇wqwqdx|

≲
∑

q≥Q+1

λq∥u(q−4,q]∥L∞(T)∥wq∥2L2(T)

by using w(t)≤Q(t) ≡ 0, Young’s inequality and Proposition 5.1

≤
∑

Q+4>q≥Q+1

λq∥u(q−4,Q]∥L∞(T)∥wq∥2L2(T) +
∑

q≥Q+4

λq∥u(Q,q]∥L∞(T)∥wq∥2L2(T)

≲ c0ν
∑

Q+4>q≥Q+1

λ2αq ∥wq∥2L2(T)

by using (5.1)

+ c0ν
∑

q≥Q+4

∑
Q<p≤q

λqλ
α−1−δ
p λα+δ

Q ∥wq∥2L2(T)

by using the triangle inequality and (5.10)

≲ c0ν
∑

Q+4>q≥Q+1

λ2αq ∥wq∥2L2(T) + c0ν
∑

q≥Q+4

λ2αq ∥wq∥2L2(T)

∑
Q<p≤q

λ1−2α
q λα−1−δ

p λα+δ
Q

= c0ν
∑

Q+4>q≥Q+1

λ2αq ∥wq∥2L2(T) + c0ν
∑

q≥Q+4

λ2αq ∥wq∥2L2(T)

∑
Q<p≤q

λ
−(2α−1)
q−p λ

−(α+δ)
p−Q
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≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T), (5.23)

where we have used α ≥ 1

2
and λQ < λp ≤ λq for all Q < p ≤ q.

Therefore, we deduce from (5.20), (5.21), (5.22) and (5.23) that

I1 ≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T). (5.24)

We continue with the estimation of I2. Since w(t)≤Q(t) ≡ 0, we have

I2 =
∑
q≥0

|
∑

|q−m|≤1

∫
T
∆q(um · ∇w≤m−2)wqdx|

=
∑

q≥Q+1

|
∑

m>Q+2,|q−m|≤1

∫
T
∆q(um · ∇w≤m−2)wqdx|

≤
∑

q≥Q+1

∑
m>Q+2,|q−m|≤1

∥um∥L∞(T)∥∇w(Q,m−2]∥L2(T)∥wq∥L2(T)

by using Hölder’s and Young’s inequalities

≲ c0ν
∑

q≥Q+1

∑
m>Q+2,|q−m|≤1

λα+δ
Q λα−1−δ

m ∥∇w(Q,m−2]∥L2(T)∥wq∥L2(T)

by using (5.10)

≲ c0ν
∑

q≥Q+1

λα−1−δ
q λα+δ

Q ∥∇w(Q,q)∥L2(T)∥wq∥L2(T)

≲ c0ν
∑

q≥Q+1

λα−1−δ
q λα+δ

Q ∥wq∥L2(T)
∑

Q<p<q

λp∥wp∥L2(T)

by using Proposition 5.1 and the triangle inequality

≲ c0ν
∑

q≥Q+1

λαq ∥wq∥L2(T)
∑

Q<p<q

λαp ∥wp∥L2(T)λ
−1−δ
q λ1−α

p λα+δ
Q

≲ c0ν
∑

q≥Q+1

λαq ∥wq∥L2(T)
∑

Q<p<q

λαp ∥wp∥L2(T)λ
−(1+δ)
q−p λ

−(α+δ)
p−Q

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T) + c0ν
∑

q≥Q+1

(
∑

Q<p<q

λαp ∥wp∥L2(T)λ
−(1+δ)
q−p λ

−(α+δ)
p−Q )2

by using Young’s inequalities

≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T), (5.25)

where we have used λQ < λp ≤ λq for all Q < p ≤ q.

We can estimate I3 the same as J3 as follows

I3 =
∑
q≥0

|
∑

m≥q−1

∫
T
∆q(um · ∇w̃m)wqdx|

≲
∑
q≥0

∑
m≥q−1

∫
T
|∆q(um ⊗ w̃m)∇wq|dx

by using integration by parts and divergence free condition
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≲
∑

m≥Q+1

∑
Q<q≤m+1

∥um∥L∞(T)∥w̃m∥L2(T)∥∇wq∥L2(T)

since w(t)≤Q(t) ≡ 0 and using Hölder’s inequality

≲
∑

m≥Q+1

∥w̃m∥L2(T)∥um∥L∞(T)
∑

Q<q≤m+1

λq∥wq∥L2(T)

by using Proposition 5.1

≲ c0ν
∑

m≥Q+1

λα−1−δ
m λα+δ

Q ∥wm∥L2(T)
∑

Q<q≤m+1

λq∥wq∥L2(T)

by using (5.1), (5.10) and the triangle inequality

= c0ν
∑

m≥Q+1

λαm∥wm∥L2(T)
∑

Q<q≤m+1

λαq ∥wq∥L2(T)λ
α+δ
Q λ−1−δ

m λ1−α
q

≲ c0ν
∑

m≥Q+1

λαm∥wm∥L2(T)
∑

Q<q≤m+1

λαq ∥wq∥L2(T)λ
−α
q−Qλ

−δ
m−Q

since λα+δ
Q λ−1−δ

m λ1−α
q ≲ λα+δ

Q λ−δ
m λ−α

q := λ−α
q−Qλ

−δ
m−Q

≲ c0ν
∑

m≥Q+1

λ2αm ∥wm∥2L2(T) + c0ν
∑

m≥Q+1

( ∑
Q<q≤m+1

λαq ∥wq∥L2(T)λ
−α
q−Qλ

−δ
m−Q

)2

by using Young’s inequality

≲ c0ν
∑

m≥Q+1

λ2αm ∥wm∥2L2(T), (5.26)

where we have used λQ ≤ λq for all Q ≤ q and λQ ≤ λm for all Q ≤ m.

We deduce from (5.18), (5.24), (5.25) and (5.26) that

I ≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T). (5.27)

Combining (5.17) and (5.27), we get

I + J ≲ c0ν
∑

q≥Q+1

λ2αq ∥wq∥2L2(T) ≤ Cc0ν∥Λαw∥2V 0 . (5.28)

It follows from (2.1), (5.7) and (5.28) that if we take c0 := 1
2C , we infer

∥w(t)∥2V 0 ≤ ∥w(t0)∥2V 0 − ν

∫ t

t0

∥Λαw(τ)∥2V 0dτ

≤ ∥w(t0)∥2V 0 − ν

∫ t

t0

∥w(τ)∥2V 0dτ

for all t0 ≤ t. Thus

∥w(t)∥2V 0 ≤ ∥w(t0)∥2V 0e−ν(t−t0) (5.29)

for all t0 ≤ t. Let t0 → −∞, the proof is completed. □

We see that if we repeat the same arguments in Theorem 5.1, we also obtain the
following result

Theorem 5.2. Assume that ν, a, b are positive, α ≥ 1
2 and r ≥ 1. Let u(t) and

v(t) be two global weak solutions of (2.7) on the weak global attractor A. Let
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N (t) := max{Nα
u (t),Nα

v (t)} and Q(t) be such that N (t) = λQ(t). If

u(t)≤Q(t) = v(t)≤Q(t), ∀t > 0,

then

lim
t→∞

∥u(t)− v(t)∥V 0 = 0.

For simplicity, we will drop the subscript u and superscript α in Nα
u . We still

define Q such that λQ = N .

Lemma 5.1.

(1) If λ0 ≤ N <∞, then

(c0ν)
2N 4α ≲ 16α

Q−1∑
q=0

λ2q∥uq∥2L∞(T) + sup
p≥Q

16αλ−2α+2+2δ
p N 2α−2δ∥up∥2L∞(T). (5.30)

(2) If N = ∞, then

sup
q
λ−α+1+δ
q ∥uq∥L∞(T) = ∞. (5.31)

Proof. If λ0 ≤ N <∞, then both conditions in the definition of N are satisfied for
q = Q, but one of the conditions is not satisfied for q = Q− 1, that is,

λ−α+1+δ
p λ−α−δ

Q−1 ∥up∥L∞(T) ≥ c0ν, for some p ≥ Q, (5.32)

or
Q−1∑
q=0

λq∥uq∥L∞(T) ≥ c0νλ
2α
Q−1 :=

1

4α
c0νN 2α. (5.33)

We deduce from (5.32) and 0 < δ < α that

(c0ν)
2N 4α ≤ 16αλ−2α+2+2δ

p N 2α−2δ∥up∥2L∞(T), for some p ≥ Q. (5.34)

It follows from (5.33) that

(c0ν)
2N 4α ≲ 16α

Q−1∑
q=0

λ2q∥uq∥2L∞(T). (5.35)

Combining (5.34) and (5.35), we obtain (5.30).
We now consider the case N = ∞. Then for every q ∈ N either

sup
p>q

λ−α+1+δ
p λ−α−δ

q ∥up∥L∞(T) ≥ c0ν, (5.36)

or

λ−2α
q

q∑
j=0

λj∥uj∥L∞(T) ≥ c0ν. (5.37)

If (5.36) is satisfied, then

lim sup
q→∞

sup
p>q

λ−α−δ
q λ−α+1+δ

p ∥up∥L∞(T) ≥ c0ν.

This immediately implies that (5.31) holds.
If (5.37) is satisfied, then

lim sup
q→∞

λ−2α
q

q∑
j=0

λj∥uj∥L∞(T) ≥ c0ν.
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Using 0 < δ < α, we have

λ−2α
q

q∑
j=0

λj∥uj∥L∞(T) = λ−α−δ
q

q∑
j=0

λ−α+δ
q−j λ−α+1+δ

j ∥uj∥L∞(T)

≲ λ−α−δ
q sup

j≤q
λ−α+1+δ
j ∥uj∥L∞(T).

Since −α− δ < 0, we deduce that (5.31) holds. □

Remark 5.1. We have established the determining wavenumbers to estimate the
number of determining modes for the 3D generalized Navier-Stokes equations with
nonlinear exponential damping term. We see that the determining wavenumber Nα

u

depends on time and may not be bounded. These results also improve and extend
the results in [23, 25]. We also see that these results could be extended in the
limiting case of no damping. Follow the same arguments in [23, 25], we also might
give a bound of the average determining wavenumber in terms of the Kolmogorov
dissipation number or Grashof constant. For more details about the determining
wavenumbers, we refer readers to [23, 25] and references therein.

Appendix A

In this appendix, for completeness, we briefly recall here the basic definitions
and main results on the evolutionary systems which was developed in recent years
by Cheskidov and Lu in order to study dynamical systems without uniqueness of
solutions. This theory was developed by series of papers of Cheskidov and Lu and
all results can be found in [22, 27, 28, 29, 54].

5.1. Phase space endowed with two metrics. Assume that a set X is endowed
with two metrics ds(·, ·) and dw(·, ·) respectively, satisfying the following conditions:

(1) X is dw-compact.
(2) If ds(un, vn) → 0 as n → ∞ for some un, vn ∈ X, then dw(un, vn) → 0 as

n→ ∞.

Due to the property (2), dw(·, ·) will be referred to as a weak metric on X. Denote
by Ā• the closure of a set A ⊂ X in the topology generated by d•. Here (the same
below) • = s or w. Note that any strongly compact (ds-compact) set is weakly
compact (dw-compact), and any weakly closed set is strongly closed.

5.2. Autonomous case. Let

T := {I : I = [τ,∞) ⊂ R, or I = (−∞,∞)},

and for each I ∈ T , let F(I) denote the set of all X-valued functions on I. Now we
define an evolutionary system E as follows

Definition 5.1. A map E that associates to each I ∈ T a subset E(I) ⊂ F(I) will
be called an evolutionary system if the following conditions are satisfied:

(1) E([0,∞)) ̸= ∅.
(2) E(I + s) = {u(·) : u(·+ s) ∈ E(I)} for all s ∈ R.
(3) {u(·)|I2 : u(·) ∈ E(I1)} ⊂ E(I2) for all pairs I1, I2 ∈ T , such that I2 ⊂ I1.
(4) E((−∞,∞)) = {u(·) : u(·)|[τ,∞) ∈ E([τ,∞)),∀τ ∈ R}.
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We will refer to E(I) as the set of all trajectories on the time interval I. The set
E((−∞,∞)) is called the kernel of E and the trajectories in it are called complete.

Let C([a, b];X•) be the space of d•-continuous X-valued functions on [a, b] en-
dowed with the metric

dC([a,b];X•)(u, v) := sup
t∈[a,b]

d•(u(t), v(t)).

Denote by C([a,∞);X•) the space of d•-continuous X-valued functions on [a,∞)
endowed with the metric

dC([a,∞);X•)(u, v) :=
∑
l∈N

1

2l
dC([a,a+l];X•)(u, v)

1 + dC([a,a+l];X•)(u, v)
.

Note that the convergence in C([a,∞);X•) is equivalent to uniform convergence on
compact sets.

Let

Ē([τ,∞)) := E([τ,∞))
C([τ,∞);Xw)

, ∀τ ∈ R,
and

Ē((−∞,∞)) := {u(·) : u(·)|[τ,∞) ∈ Ē([τ,∞)),∀τ ∈ R}.

It can be checked that Ē is also an evolutionary system and it is called the closure
of the evolutionary system E . We add for Ē the top-script − to the corresponding
notations for E .

Let K := E((−∞,∞)) and K̄ := Ē((−∞,∞)), which are called the kernel of E
and Ē , respectively. Let also

Π+K := {u(·)|[0,∞) : u ∈ K} and Π+K̄ := {u(·)|[0,∞) : u ∈ K̄}.
We will investigate evolutionary systems E satisfying the following properties:

(A1) E([0,∞)) is a precompact set in C([0,∞);Xw).
(A2) (Energy inequality) Assume that X is a set in some Banach space H sat-

isfying the Radon-Riesz property (see below) with the norm denoted | · |,
such that ds(x, y) = |x− y| for x, y ∈ X and dw induces the weak topology
on X. Assume also that for any ε > 0, there exists δ > 0, such that for
every u ∈ E([0,∞)) and t > 0,

|u(t)| ≤ |u(t0)|+ ε,

for t0 a.e. in (t− δ, t).
(A3) (Strong convergence a.e.) Let un ∈ E([0,∞)) be such that, un is dC([0,T ];Xw)-

Cauchy sequence in C([0, T ];Xw) for some T > 0. Then un(t) is ds-Cauchy
sequence a.e. in [0, T ].

We also recall stronger properties (see [22, 27, 28, 29, 54]) as follows

(B1) E([0,∞)) is a compact set in C([0,∞);Xw).
(B2) (Energy inequality) Assume that X is a set in some Banach space H sat-

isfying the Radon-Riesz property (see below) with the norm denoted | · |,
such that ds(x, y) = |x− y| for x, y ∈ X and dw induces the weak topology
on X. Assume also that for any ε > 0, there exists δ > 0, such that for
every u ∈ E([0,∞)) and t > 0,

|u(t)| ≤ |u(t0)|+ ε,

for t0 a.e. in (t− δ, t).
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(B3) (Strong convergence a.e.) Let u, un ∈ E([0,∞)) be such that un → u in
C([0, T ];Xw) for some T > 0. Then un(t) → u(t) strongly a.e. in [0, T ].

A Banach B is said to satisfy the Radon-Riesz property if for any sequence
{xn} ⊂ B,

xn → x strongly in B ⇔

{
xn → x weakly in B,
∥xn∥B → ∥x∥B,

as n→ ∞.

In many applications X is bounded closed set in a uniformly convex separable
Banach space H. Then the weak topology of H is metrizable on X, and X is
compact with respect to such a metric dw. Moreover, the Radon-Riesz property is
automatically satisfied.

If E satisfies the conditions (A1)-(A3), then Ē satisfies (B1)-(B3) (see [29]).
Let P (X) be the set of all subsets of X. For every t ≥ 0, define a set-valued map

R(t) : P (X) → P (X),

R(t)A := {u(t) : u(0) ∈ A, u(·) ∈ E([0,∞))}, A ⊂ X.

Note that the assumptions on E implies that R(t) enjoys the following property:

R(t+ s)A ⊂ R(t)R(s)A, A ⊂ X, t, s ≥ 0.

Consider an arbitrary evolutionary system E . For a set A ⊂ X and r > 0, denote

B•(A, r) = {u ∈ X : d•(u,A) < r},

where

d•(u,A) := inf
x∈A

d•(u, x), • = s, w.

Definition 5.2.

(1) A set A ⊂ X uniformly attracts a set B ⊂ X in d•-metric (• = s, w) if for
any ε > 0, there exists t0, such that

R(t)B ⊂ B•(A, ε), ∀t ≥ t0.

(2) A set A ⊂ X is a d•-attracting set (• = s, w) if it uniformly attracts X in
d•-metric.

Definition 5.3. A set A• is a d•-global attractor (• = s, w) if A• is a minimal
d•-closed d•-attracting set.

Note that the empty set is never an attracting set. Note also that since X is not
strongly compact, the intersection of two ds-closed ds-attracting sets might not be
ds-attracting. Nevertheless, the global attractor A• is unique if it exists.

Definition 5.4. The ω•-limit (• = s, w) of a set A ⊂ X is

ω•(A) :=
⋂
τ≥0

⋃
t≥τ

R(t)A
•
.

An equivalent definition of the ω•-limit set is given by

ω•(A) = {x ∈ X : there exist sequences tn → ∞ as n→ ∞ and xn ∈ R(tn)A,

such that xn → x in d•-metric as n→ ∞}.
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Definition 5.5. An evolutionary system E is asymptotically compact if for any
tn → +∞ and any xn ∈ R(tn)X, the sequence {xn} is relatively strongly compact.

Theorem 5.3. Let E be an evolutionary system satisfying (A1), (A2), and (A3),
and assume that its closure Ē satisfies Ē((−∞,∞)) ⊂ C((−∞,∞);Xs). Then E is
asymptotically compact.

Definition 5.6. Let E be an evolutionary system. If an map E1 that associates to
each I ∈ T a subset E1(I) ⊂ E(I) is also an evolutionary system, we will call it an
evolutionary subsystem of E, and denote by E1 ⊂ E.

We define the following mapping:

R̃(t)A := {u(t) : u(0) ∈ A, u ∈ K}, A ⊂ X, t ∈ R.

Definition 5.7. A set A ⊂ X is positively invariant if

R̃(t)A ⊂ A, ∀t ≥ 0.

A is invariant if

R̃(t)A = A, ∀t ≥ 0.

A is quasi-invariant if for every a ∈ A there exists a complete trajectory u ∈ K with
u(0) = a and u(t) ∈ A for all t ∈ R.

We now reconsider the evolutionary systems E satisfying E([0,∞)) ⊂ C([0,∞);Xw).
Note that E([0,∞)) may not be closed in C([0,∞);Xw). Define the family of trans-
lation operators {T (s)}s≥0,

(T (s)u)(·) := u(·+ s)|[0,∞), u ∈ C([0,∞);Xw).

We consider the dynamics of the translation semigroup {T (s)}s≥0 acting on the
phase space C([0,∞);Xw). Due to the property (3) of the evolutionary system, we
see that T (s)E([0,∞)) ⊂ E([0,∞)),∀s ≥ 0.

Definition 5.8.

(1) A set P ⊂ C([0,∞);Xw) weakly uniformly attracts a set Q ⊂ E([0,∞)) if
for any ε > 0, there exists t0, such that

T (t)Q ⊂ {v ∈ C([0,∞);Xw) : inf
u∈P

dC([0,∞);Xw)(u, v) < ε},∀t ≥ t0.

(2) A set P ⊂ C([0,∞);Xw) is a weak trajectory attracting set for an evolu-
tionary system E if it weakly uniformly attracts E([0,∞)).

Definition 5.9. A set Aw ⊂ C([0,∞);Xw) is a weak trajectory attractor for an
evolutionary system E if Aw is a minimal weak trajectory attracting set that is

(i) Closed in C([0,∞);Xw).
(ii) Invariant: T (t)Aw = Aw, ∀t ≥ 0.

Definition 5.10. A set P ⊂ C([0,∞);Xw) satisfies the weak uniform tracking
property for an evolutionary system E if for any ε > 0, there exists t0, such that
for any t∗ > t0, every trajectory u ∈ E([0,∞)) satisfies

dC([t∗,∞);Xw)(u(·), v(· − t∗)) < ε,

for some trajectory v ∈ P .
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Definition 5.11. A set P ⊂ C([0,∞);Xw) satisfies the finite weak uniform track-
ing property for an evolutionary system E if for any ε > 0, there exist t0 and a finite
subset P f ⊂ P , such that for any t∗ > t0, every trajectory u ∈ E([0,∞)) satisfies

dC([t∗,∞);Xw)(u(·), v(· − t∗)) < ε,

for some trajectory v ∈ P f .

Theorem 5.4. Let E be an evolutionary system. Then

(1) The weak global attractor Aw exists, and Aw = ωw(X).

Furthermore, assume that E satisfies (A1). Let Ē be the closure of E. Then

(2) Aw = ωw(X) = ω̄w(X) = ω̄s(X) = Āw.
(3) Aw is the maximal invariant and maximal quasi-invariant set w.r.t. Ē :

Aw := {u0 ∈ X : u0 := u(0) for some u ∈ K̄}.

(4) The weak trajectory attractor Aw exists, it is weakly compact, and Aw =
Π+K̄. Hence, Aw satisfies the finite weak uniform tracking property for E
and is weakly equicontinuous on [0,∞).

(5) Aw is a section of Aw:

Aw = Aw(t) := {u(t) : u ∈ Aw}, ∀t ≥ 0.

Definition 5.12.

(1) A set P ⊂ C([0,∞);Xw) strongly uniformly attracts a set Q ⊂ E([0,∞)) if
for any ε > 0 and T > 0, there exists t0, such that

T (t)Q ⊂ {v ∈ C([0,∞);Xw) : inf
u∈P

sup
τ∈[0,T ]

ds(u(τ), v(τ)) < ε},∀t ≥ t0.

(2) A set P ⊂ C([0,∞);Xw) is a strong trajectory attracting set for an evolu-
tionary system E if it strongly uniformly attracts E([0,∞)).

Note that a strong trajectory attracting set for an evolutionary system E is a
weak trajectory attracting set for E .

Definition 5.13. A set As ⊂ C([0,∞);Xw) is a strong trajectory attractor for an
evolutionary system E if As is a minimal strong trajectory attracting set that is

(1) Closed in C([0,∞);Xw).
(2) Invariant: T (t)As = As, ∀t ≥ 0.

It is said that As is strongly compact if it is compact in C([0,∞);Xs).

Definition 5.14. A set P ⊂ C([0,∞);Xw) satisfies the strong uniform tracking
property for an evolutionary system E if for any ε > 0 and T > 0, there exists t0,
such that for any t∗ > t0, every trajectory u ∈ E([0,∞)) satisfies

ds(u(t), v(t− t∗)) < ε, ∀t ∈ [t∗, t∗ + T ],

for some T -time length piece v ∈ PT . Here PT := {v(·)|[0,T ] : v ∈ P}.

Definition 5.15. A set P ⊂ C([0,∞);Xw) satisfies the finite strong uniform track-
ing property for an evolutionary system E if for any ε > 0 and T > 0, there exist

t0 and a finite subset P f
T ⊂ As|[0,T ], such that for any t∗ > t0, every trajectory

u ∈ E([0,∞)) satisfies

ds(u(t), v(t− t∗)) < ε, ∀t ∈ [t∗, t∗ + T ],
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for some T -time length piece v ∈ P f
T .

Theorem 5.5. Let E be an asymptotically compact evolutionary system. Then

(1) The strong global attractor As exists, it is strongly compact, and As = Aw.

Furthermore, assume that E satisfies (A1). Let Ē be the closure of E. Then

(2) The strong trajectory attractor As exists and As = Aw = Π+K̄, it is strongly
compact.

(3) As satisfies the finite strong uniform tracking property for E.
(4) As = Π+K̄ is strongly equicontinuous on [0,∞), i.e.,

ds(v(t1), v(t2)) ≤ θ(|t1 − t2|), ∀t1, t2 ≥ 0,∀v ∈ As,

where θ(s) is a positive function tending to 0 as s→ 0+.

Theorem 5.5 gives us the results that indicate how the dynamics on the global
attractor determine the long-time dynamics of all trajectories of an evolutionary
system (see [54, Corollary 3.13; Corollary 3.14]). Comparing with Theorem 5.4,
Theorem 5.5 implies that the strong compactness of both the strong global attrac-
tor and the strong trajectory attractor follow simultaneously once we obtain the
asymptotical compactness of an evolutionary system. Moreover, the global attrac-
tor is a section of the trajectory attractor and the trajectory attractor consists
of the restriction of all the complete trajectories on the global attractor on time
semiaxis [0,∞); the notion of a global attractor stresses the property of attracting
trajectories starting from sets in phase space X while the notion of a trajectory
attractor emphasizes the uniform tracking property.

The following theorem is an important result for the asymptotical compactness
of E .

Theorem 5.6. An evolutionary system E is asymptotically compact if and only if
its strongly compact strong global attractor As exists

Corollary 5.1. Let E be an evolutionary system satisfying (A1) and let Ē be the
closure of E. If the strongly compact strong global attractor As for E exists, then
the strongly compact strong trajectory attractor As for E exists. Hence

(1) As = Π+K̄ satisfies the finite strong uniform tracking property for E, i.e.,
for any ε > 0 and T > 0, there exist t0 and a finite subset P f

T ⊂ As|[0,T ],
such that for any t∗ > t0, every trajectory u ∈ E([0,∞)) satisfies

ds(u(t), v(t− t∗)) < ε, ∀t ∈ [t∗, t∗ + T ],

for some T -time length piece v ∈ P f
T .

(2) As = Π+K̄ is strongly equicontinuous on [0,∞), i.e.,

ds(v(t1), v(t2)) ≤ θ(|t1 − t2|), ∀t1, t2 ≥ 0,∀v ∈ As,

where θ(s) is a positive function tending to 0 as s→ 0+.

5.3. Nonautonomous case and reducing to autonomous case. Let Σ be a
parameter set and {T (h)|h ≥ 0} be a family of operators acting on Σ satisfying
T (h)Σ = Σ, ∀h ≥ 0. Any element σ ∈ Σ is called (time) symbol and Σ is called
(time) symbol space.

Definition 5.16. A family of maps Eσ, σ ∈ Σ that for every σ ∈ Σ associates
to each I ∈ T a subset Eσ(I) ⊂ F(I) will be called a nonautonomous evolutionary
system if the following conditions are satisfied:
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(1) Eσ([τ,∞)) ̸= ∅, ∀τ ∈ R.
(2) Eσ(I + s) = {u(·) : u(·+ s) ∈ ET (s)σ(I)}, ∀s ≥ 0.
(3) {u(·)|I2 : u(·) ∈ Eσ(I1)} ⊂ Eσ(I2) for all pairs I1, I2 ∈ T , such that I2 ⊂ I1.
(4) Eσ((−∞,∞)) = {u(·) : u(·)|[τ,∞) ∈ Eσ([τ,∞)),∀τ ∈ R}.

Define

EΣ(I) :=
⋃
σ∈Σ

Eσ(I), ∀I ∈ T \{(−∞,∞)},

and

EΣ((−∞,∞)) := {u(·) : u(·)|[τ,∞) ∈ EΣ([τ,∞)),∀τ ∈ R}.

Therefore, the nonautonomous evolutionary system can be viewed as an (autonomous)
evolutionary system in the following way

E(I) := EΣ(I), ∀I ∈ T .
Consequently, the above notions of invariance, quasi-invariance, and a global at-
tractor for E can be extended to the nonautonomous evolutionary system {Eσ}σ∈Σ.
The global attractor in the nonautonomous case will be conventionally called a uni-
form global attractor (or simply a global attractor). Thus, we will not distinguish
between autonomous and nonautonomous evolutionary systems. If it is necessary,
we denote an evolutionary system with a symbol space Σ by EΣ and its global
attractor by AΣ, trajectory attractor by AΣ.

Definition 5.17. An evolutionary system EΣ is a system with uniqueness if for
every u0 ∈ X and σ ∈ Σ, there is a unique trajectory u ∈ Eσ([0,∞)) such that
u(0) = u0.

Definition 5.18. An evolutionary system EΣ is (weakly) closed if for any τ ∈ R,
un ∈ Eσn

([τ,∞)), the convergences un → u in C([τ,∞), Xw) and σn → σ in some
topological space T as n→ ∞ imply u ∈ Eσ([τ,∞)).

Lemma 5.2. Let T be some topological space and Σ ⊂ T be sequentially compact in
itself. Let EΣ be a closed evolutionary system satisfying (A1). Then, Eσ((−∞,∞))
is nonempty for any σ ∈ Σ, and

EΣ((−∞,∞)) =
⋃
σ∈Σ

Eσ((−∞,∞)),

and

EΣ([τ,∞)) =
⋃
σ∈Σ

Eσ([τ,∞)),

is closed in C([τ,∞);Xw).

Suppose that Σ̄ is the sequential closure of Σ in some topological space T. Let
EΣ̄ be an evolutionary system with symbol space Σ̄.

Theorem 5.7. Let EΣ be an evolutionary system with uniqueness and with symbol
space Σ satisfying (A1) and let ĒΣ be the closure of EΣ. Let Σ̄ be the sequential
closure of Σ in some topological space T and EΣ̄ ⊃ EΣ be a closed evolutionary
system with uniqueness and with symbol space Σ̄. Then, EΣ̄ ⊂ ĒΣ. Hence,

(1) The three weak uniform global attractors AΣ
w, ĀΣ

w and AΣ̄
w for evolutionary

systems EΣ, ĒΣ and EΣ̄, respectively, exist.
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(2) AΣ
w, ĀΣ

w and AΣ̄
w are the maximal invariant and maximal quasi-invariant

set with respect to ĒΣ and satisfy the following

AΣ
w = ĀΣ

w = AΣ̄
w = {u0 : u0 = u(0) for some u ∈ ĒΣ((−∞,∞))}.

(3) The three weak trajectory attractors AΣ
w, Ā

Σ
w and AΣ̄

w for evolutionary sys-
tems EΣ, ĒΣ and EΣ̄, respectively, exist and satisfy the following

AΣ
w = ĀΣ

w = AΣ̄
w = Π+ĒΣ((−∞,∞)).

Hence, the three weak trajectory attractors satisfy the finite weak uniform
tracking property for all the three evolutionary systems and are weakly
equicontinuous on [0,∞).

(4) AΣ
w, ĀΣ

w and AΣ̄
w are sections of AΣ

w, Ā
Σ
w and AΣ̄

w :

AΣ
w = ĀΣ

w = AΣ̄
w = AΣ

w(t) = ĀΣ
w(t) = AΣ̄

w(t), ∀t ≥ 0.

Furthermore, assume that Σ̄ ⊂ T is sequentially compact in itself. Then, EΣ̄ = ĒΣ.
Hence,

(5) The following relationships on kernels hold:

ĒΣ((−∞,∞)) = EΣ̄((−∞,∞)) =
⋃
σ∈Σ̄

Eσ((−∞,∞)),

and Eσ((−∞,∞)) is nonempty for any σ ∈ Σ̄.

Theorem 5.8. Assume that all conditions of Theorem 5.7 hold and one of the
followings is valid:

(1) ĒΣ is asymptotically compact.
(2) EΣ satisfies (A1), (A2) and (A3), and ĒΣ((−∞,∞)) ⊂ C((−∞,∞);Xs).
(3) ĒΣ possesses a strongly compact strong global attractor.

Then the three weak uniform global attractors in Theorem 5.7 are strongly compact
strong uniform global attractors and the three weak trajectory attractors are strongly
compact strong trajectory attractors. Moreover, the three trajectory attractors sat-
isfy the finite strong uniform tracking property for all the three evolutionary systems
and are strongly equicontinuous on [0,∞).

Appendix B

In this appendix, we present the Littlewood-Paley decomposition for periodic
functions. Our intension here is to provide the techniques for section of determin-
ing wavenumbers. The review of the convergence results and properties of partial
sums (see, e.g., [30]) allows us to choose the suitable cutoff in the definition of
the Littlewood-Paley blocks (or the localized Fourier projections). We choose the
square-cutoff defined as follows

SNf(x) :=
∑

|kj |≤N,j=1,2,3

f̂(k)eik·x = DN ∗ f, (5.38)

where DN denotes the 3D square Dirichlet kernel

DN :=
∑

|kj |≤N,j=1,2,3

eik·x and f̂(k) :=
1

(2π)3

∫
T
f(x)e−ik·xdx. (5.39)

28 Jun 2023 03:52:18 PDT
221206-TinhLe Version 2 - Submitted to Rocky Mountain J. Math.



GENERALIZED NAVIER-STOKES EQUATIONS WITH EXPONENTIAL DAMPING 35

The partial sum defined via the square-cutoff is bounded on any Lp for 1 < p <∞
and converges to the original function in Lp. They are stated in the following lemma
(see, e.g., [30, 36, 66]).

Lemma 5.3. The partial sum with the square cutoff SNf satisfies, for any f ∈
Lp(T) with 1 < p <∞,

∥SNf∥Lp(T) ≤ Cp∥f∥Lp(T),

and

∥SNf − f∥Lp(T) → 0 as N → ∞. (5.40)

However, (5.40) is false for p = 1 and for p = ∞. In addition, if f ∈ Lp(T) with
1 < p ≤ ∞, then

SNf → f a.e. as N → ∞.

For an integer j ≥ 0, we set Aj to be the 2j-sized block of 3D integer lattice
points,

Aj = {k = (k1, k2, k3) ∈ Z3 : |km| ≤ 2j ,m = 1, 2, 3}. (5.41)

We define the following localized Fourier projection operators as

∆0f(x) =
∑
k∈A0

f̂(k)eik·x, (5.42)

∆jf(x) =
∑

k∈Aj\Aj−1

f̂(k)eik·x, j ≥ 1, j ∈ N. (5.43)

For notational convenience, we also write ∆j = 0 for j < 0. With a slight abuse
of notation, we set

Sjf(x) =

j∑
m=0

∆mf(x) =
∑
k∈Aj

f̂(k)eik·x. (5.44)

In terms of these operators, we can write the Littlewood-Paley decomposition,
for any f ∈ Lp(T) with 1 < p ≤ ∞,

f(x) =

∞∑
m=0

∆mf(x). (5.45)

The following lemma presents useful basic properties of the operators defined
above.

Lemma 5.4. Let j ≥ 0 be an integer. Let ∆j and Sj be defined as in (5.42), (5.43)
and (5.44). Then the following properties hold.

(a) If f ∈ Lp(T) with 1 < p ≤ ∞, then

∥∆jf∥Lp(T) ≤ C∥f∥Lp(T),

∥Sjf∥Lp(T) ≤ C∥f∥Lp(T),

where C’s are constants depending on p and d only.
(b) Let h ≥ 0 and j ≥ 0 be integers. Assume f ∈ Lp(T) with 1 < p ≤ ∞, then

∆h∆jf = 0 if h ̸= j.
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(c) Let j ≥ 0, m ≥ 0 and n ≥ 1 be integers. Assume f, g ∈ Lp(T) with
1 < p ≤ ∞. Then

∆j(Sm−nf∆mg) = 0 if |m− j| ≥ n,

and

∆j(∆mf∆̃mg) = 0 if |m− j| ≥ n,

where

∆̃mg = ∆m−n+1g +∆m−n+2g + · · ·+∆m+n−1g.

Proof.

(a) This result follows directly from Lemma 5.3.
(b) We have

∆hf(x) =
∑

ℓ∈Ah\Ah−1

f̂(ℓ)eiℓ·x,

where

f̂(ℓ) :=
1

(2π)3

∫
T
f(x)eiℓ·xdx.

Thus,

∆j∆hf(x) =
∑

k∈Aj\Aj−1

∆̂hf(k)e
ik·x,

where

∆̂hf(k) =
1

(2π)3

∫
T
∆hf(x)e

ik·xdx

=
1

(2π)3

∫
T

∑
ℓ∈Ah\Ah−1

f̂(ℓ)eiℓ·xeik·xdx

=
1

(2π)3

∑
ℓ∈Ah\Ah−1

f̂(ℓ)

∫
T
ei(ℓ+k)·xdx.

Since
∫
T e

i(ℓ+k)·xdx = 0 if ℓ+ k ̸= 0. This implies the proof of (b).
(c) We now prove (c). We have

Sm−nf(x) =
∑

k∈Am−n

f̂(k)eik·x,

∆mg(x) =
∑

ℓ∈Am\Am−1

ĝ(ℓ)eiℓ·x.

Hence

Sm−nf(x)∆mg(x) =
∑

k∈Am−n;ℓ∈Am\Am−1

f̂(k)ĝ(ℓ)ei(ℓ+k)·x,

where

k = (k1, k2, k3), such that |kd| ≤ 2m−n, d = 1, 2, 3.

ℓ = (ℓ1, ℓ2, ℓ3), such that 2m−1 < |ℓd| ≤ 2m, d = 1, 2, 3.
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Therefore,

2m−n < |kd + ℓd| < 2m+1.

Thus, k+ ℓ ∈ Am+1 \Am−n. It follows from (b) that if j /∈ (m−n,m+1),
then

∆j(Sm−nf∆mg) = 0.

This means that |m− j| ≥ n. By the same manner, we can also prove the
remaining equality.

□

We also have the following Bernstein type inequalities for the operators ∆j (see,
e.g., [30, Proposition 2.8]).

Proposition 5.1. Let σ ≥ 0 and 1 ≤ q ≤ p ≤ ∞.

(a) There exists a constant C > 0 such that

∥∆jΛ
σf∥Lp(T) ≤ C2σj+3j( 1

q−
1
p )∥∆jf∥Lq(T), (5.46)

and

∥Sjf∥Lp(T) ≤ C23j(
1
q−

1
p )∥Sjf∥Lq(T). (5.47)

(b) Let 1 ≤ p ≤ ∞. There exists constants 0 < C1 < C2 (depending on p) such
that, for any integer j ≥ 0,

C12
σj∥∆jf∥Lp(T) ≤ ∥∆jΛ

σf∥Lp(T) ≤ C22
σj∥∆jf∥Lp(T). (5.48)

In terms of the operators ∆j and Sj , we can write a standard product of two
periodic functions as a sum of paraproducts, as in the whole space case (see, e.g.,
[7]) .

fg = Tfg + Tgf +R(f, g), (5.49)

where

Tfg =

∞∑
m=0

Sm−nf∆mg,

Tgf =
∞∑

m=0

Sm−ng∆mf,

R(f, g) =

∞∑
m=0

∑
h≥m−1

∆hf∆̃hg,

with ∆̃hg = ∆h−n+1g +∆h−n+2g + · · ·+∆h+n−1g.
We have simplified the notation by defining

u≤Q :=

Q∑
m=0

uq, u(P,Q] :=

Q∑
m=P+1

uq, uq = ∆qu.

We will also use the following commutator notation

[∆q, u≤m−2 · ∇]wm := ∆q(u≤m−2 · ∇wm)− u≤m−2 · ∇∆qwm. (5.50)

By using integration by parts, the definition of ∆q and Young’s inequality,

∥[∆q, u≤m−2 · ∇]wm∥Lr(T) ≲ ∥∇u≤m−2∥L∞(T)∥wm∥Lr(T), (5.51)
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for all r > 1 (see also [24, 26]).
We now define the Besov type space Bs

p,q(T) via the operators ∆j defined above.
Let S denote the usual Schwarz class and S ′ the distributions.

Definition 5.19. Let f ∈ S ′. The nonhomogeneous Besov space Bs
p,q(T) with

1 ≤ p, q ≤ ∞ and s ∈ R consists of functions f ∈ S ′(T) satisfying

∥f∥Bs
p,q(T) :=

∥∥∥2js∥∆jf∥Lp(T)

∥∥∥
ℓq

=
[ ∞∑
j=0

(
2js∥∆jf∥Lp(T)

)q] 1
q

<∞.

The nonhomogeneous Besov spaces contain Sobolev spaces. Indeed, using the
Fourier-Plancherel formula, we find that the Besov space Bs

2,2 coincides with the
Sobolev space V s (see, e.g., [7, p.99]). Moreover, we have the following embedding:
Let s ∈ R, 1 ≤ p ≤ ∞ and q1 ≤ q2, B

s
p,q1(T) ⊂ Bs

p,q2(T) (see, e.g., [30, Lemma
2.11]).

We can also define the space-time spaces for periodic functions (see, e.g., [7]).

Definition 5.20. For t > 0, s ∈ R and 1 ≤ p, q, r ≤ ∞, the space-time space

L̃r
tB

s
p,q is defined the norm

∥f∥L̃r
tB

s
p,q

:=
∥∥∥2js∥∆jf∥Lr

tL
p(T)

∥∥∥
ℓq
.
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