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Abstract6

Despite the fact that the impact of air pollution on respiratory diseases is receiving more and more attention and7

that the level of pollution will undoubtedly have an impact, there aren’t enough studies on how air pollution affects the8

spread of viral respiratory diseases in heterogeneous populations. For different air pollution levels, including patients9

who visited the clinic, asymptomatic patients who did not visit the clinic, and symptomatic patients who did not visit the10

clinic, respectively, the respiratory disease models SIhIsIaS and SIpIhIsIaSP are constructed in this study. Theoretical11

analysis demonstrates that when the air pollution level is high, the thresholds that determine the existence and stability12

of the equilibria of the system are closely related to the daily emissions of air pollutants and the inhalation of pollutants13

by humans, and the system will undergo fold bifurcation at disease-free equilibrium under certain condition. When14

the air pollution level is low, the basic reproduction number of the system and the global stability of the equilibria15

are obtained. Air pollution causes complex dynamical behavior in the spread of viral respiratory diseases, as it can16

be shown by comparing the two models. Finally, the sensitivity analysis and numerical simulation results show that17

regardless of the level of air pollution, the change in the proportion of symptomatic infected patients can significantly18

impact the peak number of patients with viral respiratory diseases. This effect is more pronounced when the level of air19

pollution is high, and the total number of patients is strongly correlated with daily air pollution emissions, pollutant20

inhalation, and the proportion of asymptomatic infected patients. Hence, reducing daily emissions of air pollutants21

and human pollutant inhalation, raising visitor awareness, lowering infection rates, improving cure rates, and boosting22

immunity, can successfully prevent and control the spread of disease.23
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1 Introduction25

Under the current global trend of increasing air pollution, there are widespread epidemics of emerging infectious26

diseases and even the reappearance of once-controlled infectious diseases. Numerous studies in medicine and public health27

have shown how air pollution has a significant impact on the occurrence of respiratory diseases[17, 18, 19, 20]. Carugno[1]28

used Poisson regression models and Bayesian random effects meta-analysis to confirm the relationship between airborne29

∗Corresponding author
Email addresses: qilx@ahu.edu.cn(Longxing Qi)

1
29 Aug 2023 19:42:44 PDT
230720-QiLongxing Version 2 - Submitted to Rocky Mountain J. Math.



PM10 and NO2 concentrations and respiratory illness in haze-polluted areas in Italy. In [2], by using time series analysis,1

Tolbert et al. demonstrated that the presence of patients with respiratory tract infections was substantially linked with2

CO,NO2 and O3. Using the Cox proportional hazards model, Dong et al.[3] discovered a strong association between3

PM10, NO2 concentrations and death from respiratory illnesses.4

The effect of air pollution on the infection transmission of respiratory diseases is a topic that many academics are5

dedicated to researching [29]-[34]. Air pollution, in particular pollutants like NO2 and PM2.5, can erode the respiratory6

system’s defenses. As a result, people may become more susceptible to respiratory illnesses, including the flu, pneumonia,7

and bronchitis. In addition, air pollution can cause inflammatory responses in the respiratory system, increasing infection8

susceptibility. Inflammation can impair the immune system’s performance, making it more difficult for the body to9

fight against infection. Air pollution can also make some infections that spread through the air worse, like tuberculosis.10

Infections can travel through the air for extended lengths of time when carried by pollutants, increasing the risk of11

transmission. According to the study findings of Chowdhury et al [34], aqueous extract of PM2.5 contains elements that12

have an impact on cell viability. The invasion of inhaled xenobiotics, such as allergens, may worsen several respiratory13

diseases due to the decrease in cell viability induced by these components.14

In recent years, many researchers have been examining the effects of PM2.5 on the spread of respiratory diseases15

and human health using the modeling concepts of infectious disease models. Chen et al.[5] presented a system with an16

air pollution state-dependent control approach described by the air quality index (AQI), and the results of this model17

highlighted the significance of proper threshold values of air pollution concentrations to initiate interventions. In [6], Tang18

et al. developed a mathematical model of AQI trends and respiratory infection dynamics. Meanwhile, some academics19

have included viral populations or contaminated compartments to examine the dynamics of these models’ transmission.20

Cai et al.[7] constructed a model of tuberculosis in which the transmission rate is a continuous periodic function, and21

the results showed that a lower level of environmental pollution can effectively inhibit the transmission of tuberculosis.22

In a recent study, Shi et al.[8] treated air pollutant concentrations as a separate compartment and gave thresholds for23

PM2.5 emissions and pathogenicity. However, the heterogeneity of the population is not taken into account in the above24

literature.25

In biological populations, heterogeneity is a common phenomenon in which different things react differently depending26

on particular features, such as an individual’s own physical qualities, way of life, frequency of social interaction, etc. When27

people contract diseases, these heterogeneities may cause them to exhibit a variety of characteristics[4]. When patients28

seek medical assistance, they can be isolated as soon as possible to lessen the likelihood of the disease spreading. Hsu et29

al.[12] modeled the patients who visited the clinic by dividing them into those with asymptomatic infections, and those30

with symptomatic infections, and the results elucidated the effect of asymptomatic infections on disease transmission.31

However, due to their robust immunity, some individuals with respiratory diseases, such as those with acute upper32

respiratory infections and bronchitis with moderate symptoms, will recover on their own[10, 11]. Despite the fact that33

these patients may decide not to seek medical assistance, they are still contagious and could spread the illness to healthy34

individuals[21]. Bao et al.[13] considered the impact of non-visiting patients on the spread of respiratory diseases based on35

Hsu’s study[12] and showed that the number of non-visiting patients had a substantial impact on the initial spread of the36

epidemic. To examine the effect of individual heterogeneity in the transmission of viral respiratory diseases, mathematical37

models must thus be developed.38
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Air pollution, non-visiting patients and the presence or absence of patient symptoms are the factors considered in the1

aforementioned literature that affect disease transmission, but few models have integrated the effect of air pollution on the2

transmission kinetics of viral respiratory diseases in heterogeneous populations. It should be emphasized that susceptible3

individuals have heightened airway reactivity while breathing in air pollutants, which causes enhanced airway reactivity4

to breathed-in aeroallergens[15]. This, however, does not always result in the development of allergic respiratory disease.5

Allergic respiratory disease can occur only when the concentration of air pollutants inhaled by humans is above the critical6

threshold for making susceptible people sick[14].7

Taking into account the sensitivity of different people to air pollutants, awareness of consultation and presence of8

symptoms, we divide the patients into three groups: those with allergic respiratory diseases brought on by inhaling air9

pollutants, those with respiratory viral infections brought on by the effects of air pollution and those with respiratory10

viral infections without the effects of air pollution(specifically, patients with consultation, symptomatic patients without11

consultation, and asymptomatic patients without consultation). According to the level of air pollution, the transmission12

dynamics of two different viral respiratory diseases are modeled. On the one hand, by ignoring the effects of air pollution13

and only taking into account patients who were present at the clinic, asymptomatic infected patients who were not14

present at the clinic, and symptomatic infected patients, a four-dimensional model is developed to study the transmission15

dynamics of viral respiratory diseases at low air pollution levels, and on the other hand, a six-dimensional model is built to16

describe the transmission dynamics of viral respiratory diseases at high air pollution levels by considering the air pollution17

concentration as a separate compartment. The impact of air pollution on the transmission of viral respiratory infections18

in heterogeneous populations can be determined by comparing the dynamics results of these two models.19

This article has the following structure. In Section 2.1, the SIhIsIaS viral respiratory disease transmission dynamics20

are modeled, and the boundedness of solutions is given. In Section 2.2, the basic reproduction number and the existence21

of equilibria of the model are obtained. In Sections 2.3 and 2.4, the local stability and global stability of the equilibria22

of the model are studied. In Section 3.1, the SIpIhIsIaSP respiratory disease transmission model is developed, and23

the boundedness of solutions is given. In Section 3.2, the existence of disease-free equilibrium, boundary equilibria, and24

endemic equilibrium of the model is investigated, and the local stability and global stability of disease-free equilibrium and25

boundary equilibria are given. In Section 3.3, the case in which the system may undergo fold bifurcation at disease-free26

equilibrium is analyzed. In Section 4, the sensitivity analysis of the number of patients, threshold conditions, and the27

basic reproduction number on the parameters is presented. In Section 5, numerical simulations are carried out. Finally,28

the results and discussion of this paper are given.29
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Figure 1: the schematic diagram to the SIhIsIaS model

This section focuses solely on viral respiratory infections, individual heterogeneity, and the impacts of air pollution at2

low levels. It ignores the effects of air pollution and does not take into account the allergic respiratory diseases brought on3

by exposure to air pollution. Susceptible individuals (S) become infectious with viral respiratory disease through contact4

with patients with viral respiratory disease (Iv) (specifically, patients with consultation (Ih); symptomatic patients without5

consultation (Is); and asymptomatic patients without consultation (Ia)). The SIhIsIaS multi-cluster infectious disease6

model shown below is created based on the schematic diagram in Figure 1.7



dS

dt
= Λs − µ0S − β1S(Ih + Is + Ia) + δhIh + δsIs + δaIa,

dIh
dt

= K3β1S(Ih + Is + Ia)− δhIh − µhIh,

dIs
dt

= K4(1−K3)β1S(Ih + Is + Ia)− δsIs − µsIs,

dIa
dt

= (1−K4)(1−K3)β1S(Ih + Is + Ia)− δaIa − µaIa,

(1)

where Λs is the recruitment rate of susceptible persons, µ0 is the natural mortality rate of susceptible persons,µh, µs, µa8

are the total morality rate of Ih ,Is and Ia respectively,β1 is the infection rate of viral patients to persons who are9

not affected by air pollution, δh, δs, δa are the cure rate of Ih ,Is and Ia respectively, the combination of Ki(i=3,4)10

represents the proportion of susceptible persons transformed into different types of patients. It’s reasonable to assume11

that µ0 < min{µh, µs, µa}. All parameters are nonnegative constants.12

It is evident that the right hand of system (1) is continuous with respect to the variables, satisfying the existence of the13

solutions. It is easy to get that the solutions of system (1) with respect to the initial value S(0) > 0, Ih ≥ 0, Is ≥ 0, Ia ≥ 014

are positive for all t > 0, and they are all uniformly bounded on15

D = {(S, Ih, Is, Ia) ∈ R4
+ : 0 ≤ S + Ih + Is + Ia = N ≤ Λs

µ0
}.16

2.1 The basic reproduction number and equilibria of the system (1)17

By a straightforward calculation, we can obtain the disease-free equilibrium of system (1), which is given by E∗
0 =18

(Λs

µ0
, 0, 0, 0).19
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System (1) has three infected compartments Ih, Is and Ia. According to the definition and calculation method of Van1

Den Driessche and Watmough[16], we get the basic reproduction number of system (1) is given by2

R0 = β1Λs

µ0
[ K3

µh+δh
+ K4(1−K3)

µs+δs
+ (1−K4)(1−K3)

µa+δa
].3

Denote4

R0h = β1ΛsK3

µ0(µh+δh)
, R0s =

β1ΛsK4(1−K3)
µ0(µs+δs)

, R0a = β1Λs(1−K4)(1−K3)
µ0(µa+δa)

.5

Here, each element has its own biological significance. The threshold R0 indicates the average number of second-6

generation infections caused by a patient in a susceptible population during its infectious period. R0h shows the number7

of second-generation infections in the susceptible population caused by the patient attending the clinic during its period8

of illness. R0s represents the transmission from a symptomatic patient who was not seen during its period of illness. R0a9

represents the transmission from an asymptomatic patient who was not seen during its period of illness.10

Next, the existence of equilibria of system (1) is given.11

Theorem 2.1 For system (1), we have:12

(1)When R0 ≤ 1, system (1) has only one disease-free equilibrium E∗
0 = (Λs

µ0
, 0, 0, 0).13

(2)When R0 > 1, system (1) has a unique endemic equilibrium E∗
1 = (S∗, I∗h, I

∗
s , I

∗
a) except for E∗

0 , here14

S∗ = Λs

µ0R0
, I∗h = Λs(R0−1)R0h

R0(µhR0h+µsR0s+µaR0a)
, I∗s = Λs(R0−1)R0s

R0(µhR0h+µsR0s+µaR0a)
, I∗a = Λs(R0−1)R0a

R0(µhR0h+µsR0s+µaR0a)
.15

Proof By adding the second, third and fourth equations of system (1), we can obtain S = (µh+δh)Ih+(µs+δs)Is+(µa+δa)Ia
β1(Ih+Is+Ia)

.16

Substituting the above equation into system (1) yields17

C1I
2
h + C2Ih = 0,18

where C1 = −β1R0

R2
0h

(µhR0h + µsR0s + µaR0a), C2 = Λsβ1(R0−1)
R0h

.19

In addition to the disease-free equilibrium E∗
0 = (Λs

µ0
, 0, 0, 0), when the aforementioned equation is solved, there are20

S∗ = Λs

µ0R0
, I∗h = Λs(R0−1)R0h

R0(µhR0h+µsR0s+µaR0a)
, I∗s = Λs(R0−1)R0s

R0(µhR0h+µsR0s+µaR0a)
, I∗a = Λs(R0−1)R0a

R0(µhR0h+µsR0s+µaR0a)
.21

Denote E∗
1 = (S∗, I∗h, I

∗
s , I

∗
a), then if and only if R0 > 1, there are S∗ > 0, I∗h > 0, I∗s > 0, I∗a > 0, that is, the endemic22

equilibrium E∗
1 exists.23

2.2 Stability of disease-free equilibrium E∗
024

2.2.1 Local stability25

First, we prove the local stability of the disease-free equilibrium. As a result, the following is the outcome.26

Theorem 2.2 For system (1), if R0 < 1, the disease-free equilibrium E∗
0 is locally asymptotically stable; it is unstable27

when R0 > 1.28

Proof The corresponding characteristic equation is29

det(λI − J(E∗
0 )) = (λ+ µ0)(λ

3 + b1λ
2 + b2λ+ b3),30
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where1

b1 = (µh + δh) + (µs + δs) + (µa + δa)− β1Λs

µ0
,2

b2 = (µh + δh)(µs + δs) + (µh + δh)(µa + δa) + (µs + δs)(µa + δa) − β1Λs

µ0
[(µh + δh)(1 −K3) + (µs + δs)(1 −K4(1 −3

K3)) + (µa + δa)(1− (1−K4)(1−K3))],4

b3 = (µh+ δh)(µs+ δs)(µa+ δa)− β1Λs

µ0
[K3(µs+ δs)(µa+ δa)+K4(1−K3)(µh+ δh)(µa+ δa)+ (1−K4)(1−K3)(µh+5

δh)(µs + δs)].6

And b3 > 0, (µh + δh)(µs + δs)(µa + δa)(1 − R0) > 0, R0 < 1. b1 > 0 is equal to (µh + δh)(1 − R0h) + (µs + δs)(1 −7

R0s) + (µa + δa)(1−R0a) > 0. If R0 < 1, then obviously there are R0h < 1, R0s < 1, R0a < 1. When b3 > 0, i.e., R0 < 1,8

the computation reveals that b2 > 0, b1b2 − b3 > 0.9

According to the Routh-Hurwitz criterion, if R0 < 1, then the real part of all eigenvalues of E∗
0 are negative. As a10

result, E∗
0 is locally asymptotically stable.11

2.2.2 Global stability12

The global stability of the disease-free equilibrium is given below.13

Theorem 2.3 If R0 < 1, then the disease-free equilibrium E∗
0 is globally asymptotically stable.14

Proof We construct a Lyapunov function as follows15

V (t) = Ih(t)
µh+δh

+ Is(t)
µs+δs

+ Ia(t)
µa+δa

.16

Calculating the derivative of V(t) along the solutions of system (1) yields17

dV

dt
=

1

µh + δh

dIh
dt

+
1

µs + δs

dIs
dt

+
1

µa + δa

dIa
dt

=
1

µh + δh
[K3β1S(Ih + Is + Ia)− (δh + µh)Ih] +

1

µs + δs
[K4(1−K3)β1S(Ih + Is + Ia)− (δs + µs)Is]

+
1

µa + δa
[(1−K4)(1−K3)β1S(Ih + Is + Ia)− (δa + µa)Ia]

≤ Iv(R0 − 1).

Therefore,when R0 < 1, we have dV
dt < 0. And dV

dt = 0 if and only if Ih = 0, Is = 0, Ia = 0. The disease-free18

equilibrium E∗
0 is globally asymptotically stable according to the LaSalle invariant set principle.19

2.3 Stability of endemic equilibrium E∗
120

2.3.1 Local stability21

Theorem 2.4 For system (1), if R0 > 1, the endemic equilibrium E∗
1 is locally asymptotically stable.22

Proof The characteristic equation of Jacobian matrix of E∗
1 is23

λ4 + c1λ
3 + c2λ

2 + c3λ+ c4 = 0,24
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where1

c1 = µ0 + β1I
∗
v +

(µh + δh)(R0s +R0a)

R0
+

(µs + δs)(R0h +R0a)

R0
+

(µa + δa)(R0h +R0s)

R0
> 0,

c2 =
µ0

R0
[(µh + δh)(R0s +R0a) + (µs + δs)(R0h +R0a) + (µa + δa)(R0h +R0s)] + β1I

∗
v [µh + µs + µa + δh(1−K3)

+δs(1−K4(1−K3)) + δa(1− (1−K4)(1−K3))] + (µh + δh)(µs + δs) + (µh + δh)(µa + δa) + (µs + δs)(µa + δa)

− β1Λs

µ0R0
[(µh + δh)(1−K3) + (µs + δs)(1−K4(1−K3)) + (µa + δa)(1− (1−K4)(1−K3))],

c3 = µ0{(µh + δh)(µs + δs) + (µh + δh)(µa + δa) + (µs + δs)(µa + δa)−
β1Λs

µ0R0
[(µh + δh)(1−K3) + (µs + δs)

(1−K4(1−K3)) + (µa + δa)(1− (1−K4)(1−K3))]}+ β1I
∗
v [K3(µs + δs)(µa + δa) +K4(1−K3)µs(µa + δa)

+(1−K4)(1−K3)µa(µs + δs) +K3µh(µa + δa) +K4(1−K3)(µh + δh)(µa + δa) + (1−K4)(1−K3)µa(µh + δh)

+K3µh(µs + δs) +K4(1−K3)µs(µh + δh) + (1−K4)(1−K3)(µh + δh)(µs + δs)],

c4 = β1Λs(µh + δh)(µs + δs)(µa + δa)(R0 − 1).

When R0 > 1, there is naturally c4 > 0. To prove that c2 > 0, c3 > 0, we simply prove that (µh+ δh)(µs+ δs)+ (µh+2

δh)(µa+δa)+(µs+δs)(µa+δa)− β1Λs

µ0R0
[(µh+δh)(1−K3)+(µs+δs)(1−K4(1−K3))+(µa+δa)(1−(1−K4)(1−K3))] > 0.3

Let4

H1 = c1,H2 =

∣∣∣∣∣∣c1 c3

1 c2

∣∣∣∣∣∣ ,H3 =

∣∣∣∣∣∣∣∣∣
c1 c3 0

1 c2 c4

0 c1 c3

∣∣∣∣∣∣∣∣∣ ,H4 =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 0 0

1 c2 c4 0

0 c1 c3 0

0 1 c2 c4

∣∣∣∣∣∣∣∣∣∣∣∣
.5

When R0 > 1, it is easy to get that H1 = c1 > 0,H2 = c1c2 − c3 > 0,H3 = c3H2 − c21c4 > 0,H4 = H3c4 > 0.6

According to the Routh-Hurwitz criterion, if R0 > 1, then the real part of all eigenvalues of E∗
1 are negative. Therefore,7

E∗
1 is locally asymptotically stable.8

2.3.2 Global stability9

By building a Lyapunov function, we analyze the global stability of the endemic equilibrium E∗
1 in this section under10

a particular set of circumstances. The conclusion is given below.11

Theorem 2.5 Assume that δ = δh = δs = δa. If R0 > 1, then the endemic equilibrium E∗
1 is globally asymptotically12

stable.13

Proof For convenience, we note Ih = I1, Is = I2, Ia = I3,K3 = p1,K4(1−K3) = p2, (1−K4)(1−K3) = p3.14

Substituting E∗
1 into system (1) yields15 

Λs − µ0S
∗ − β1S

∗I∗v +
3∑

i=1

δI∗i = 0,

piβ1S
∗I∗v = (µi + δ)I∗i (i = 1, 2, 3),

then
3∑

i=1

piβ1

µi+δ = 1
S∗ .16
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And for i = 1, 2, 3, there is1

dIi
dt

= piβ1SIv − (µi + δ)Ii

= (µi + δ)(
piβ1

µi + δ
SIv − Ii)

= (µi + δ)[(
1

S∗ −
∑
j ̸=i

piβ1

µi + δ
)S(Ii +

∑
j ̸=i

Ij)− Ii]

= (µi + δ)[(
S

S∗ − 1)Ii + S(
1

S∗

∑
j ̸=i

Ij −
∑
j ̸=i

piβ1

µi + δ
Iv)]

= (µi + δ)(
S

S∗ − 1)Ii + S(µi + δ)
∑
j ̸=i

[
pjβ1I

∗
i

µj + δ

Ii − I∗i
Ii

(
Ij
I∗j

− Ii
I∗i

)].

2

Firstly, let V1(t) =
(S−S∗)2

2 , then the derivative of V1(t) along system (1) is3

dV1

dt
= (S − S∗)(Λs − µ0S − β1SIv +

3∑
i=1

δIi)

= −(µ0 + β1Iv)(S − S∗)2 − (β1S
∗ − δ)(S − S∗)(Iv − I∗v ).

Secondly, let V2(t) = S∗(β1S
∗ − δ)

3∑
i=1

1
µi+δ (Ii − I∗i − I∗i ln

Ii
I∗
i
), we have4

β1S
∗ − δ =

β1S0

R0
− δ =

1− δ[ K3

µh+δ + K4(1−K3)
µs+δ + (1−K4)(1−K3)

µa+δ ]

K3

µh+δ + K4(1−K3)
µs+δ + (1−K4)(1−K3)

µa+δ

> 0,

so V2(t) is a positive definite function on D.5

The derivative of V2(t) along system (1) is6

dV2

dt
= S∗(β1S

∗ − δ)
3∑

i=1

(1− I∗i
Ii
){( S

S∗ − 1)Ii + S
∑
j ̸=i

[
pjβ1I

∗
i

µj + δ

Ii − I∗i
Ii

(
Ij
I∗j

− Ii
I∗i

)]}

= (β1S
∗ − δ)(S − S∗)(Iv − I∗v ) + SS∗(β1S

∗ − δ)
3∑

i=1

∑
j ̸=i

wij ,

where wij =
pjβ1I

∗
i

µj+δ
Ii−I∗

i

Ii
(
Ij
I∗
j
− Ii

I∗
i
). We have7

wij + wji = (
pjβ1I

∗
i

µj + δ

Ii − I∗i
Ii

−
piβ1I

∗
j

µi + δ

Ij − I∗j
Ij

)(
Ij
I∗j

− Ii
I∗i

) = −
pjβ1I

∗
j (I

∗
i )

2

(µj + δ)IiIj
(
Ij
I∗j

− Ii
I∗i

)2 < 0.

Finally, we construct a Lyapunov function V (t) = V1(t) + V2(t), from the above analysis, we know that V (t) is a8

positive definite function on D. And the total derivative of V (t) along system (1) is9
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dV

dt
= −(µ0 + β1Iv)(S − S∗)2 − (β1S

∗ − δ)(S − S∗)(Iv − I∗v ) + (β1S
∗ − δ)(S − S∗)(Iv − I∗v ) + SS∗(β1S

∗ − δ)
3∑

i=1

∑
j ̸=i

wij

= −(µ0 + β1Iv)(S − S∗)2 − SS∗(β1S
∗ − δ)

∑
i,j=1,i<j

pjβ1I
∗
j (I

∗
i )

2

(µj + δ)IiIj
(
Ij
I∗j

− Ii
I∗i

)2.

If R0 > 1, we get dV
dt < 0, and dV

dt = 0 if and only if S = S∗,
Ij
I∗
j
= Ii

I∗
i
, the maximum invariant set is {E∗

1}. According1

to LaSalle invariant set principle, the endemic equilibrium E∗
1 is globally asymptotically stable.2

3 Model (2)3

3.1 Model Formulation and boundedness of solutions4

q(S + Ip + Iv) µ0S Ip //
δpIp

vv

bcddefgghij
k

l
l

m

µpIp

P0 // P

OO

SP //_______

��

S

OO

K0pSP

33ggggggggggggggggggggggggggggggggggggggggggggggg K1(1−K0)pSPβIv+K3(1−p)SPβ1Iv //

K2(1−K1)(1−K0)pSPβIv+K4(1−K3)(1−p)SPβ1Iv

((

(1−K2)(1−K1)(1−K0)pSPβIv+(1−K4)(1−K3)(1−p)SPβ1Iv

--

Ih //
δhIh

nn baaa``___^^]]]\ µhIh

cP Λs

OO

Is //
δsIs

ff

_^\[ZYXWUT
S

R
P

O
N

µsIs

Ia
δaIa

VV

edcba_^][ZXV
S

N
J

D
?

<
9

7
5

3
1
0
.
-

// µaIa

Figure 2: the schematic diagram of the SIpIhIsIaSP model

When the level of air pollution is high, on the one hand, some susceptible individuals (K0pSP ) in S become allergic5

respiratory disease patients (Ip) by inhaling air pollutants; on the other hand, susceptible persons ((1 − K0)pSP ) in S6

who inhaled air pollutants but did not experience allergic reactions may become infected with viral respiratory disease7

patients by interacting with viral respiratory disease patients (Iv) (especially divided into (Ih)for patients who have8

visited, symptomatic patients without consultation(Is) and the asymptomatic patients without consultation (Ia)), while9

susceptible people ((1 − p)SP ) in S who are not affected by air pollution may also contract a viral respiratory illness10

through contact with sufferers Iv. Based on the schematic diagram depicted in Figure 2, the following SIpIhIsIaSP11

infectious disease model is established.12
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

dS

dt
= Λs − µ0S −K0pSP − (1−K0)pSPβ(Ih + Is + Ia)− (1− p)SPβ1(Ih + Is + Ia) + δpIp + δhIh + δsIs + δaIa,

dIp
dt

= K0pSP − δpIp − µpIp,

dIh
dt

= K1(1−K0)pSPβ(Ih + Is + Ia) +K3(1− p)SPβ1(Ih + Is + Ia)− δhIh − µhIh,

dIs
dt

= K2(1−K1)(1−K0)pSPβ(Ih + Is + Ia) +K4(1−K3)(1− p)SPβ1(Ih + Is + Ia)− δsIs − µsIs,

dIa
dt

= (1−K2)(1−K1)(1−K0)pSPβ(Ih + Is + Ia) + (1−K4)(1−K3)(1− p)SPβ1(Ih + Is + Ia)− δaIa − µaIa,

dP

dt
= P0 − cP − q(S + Ip + Ih + Is + Ia),

(2)

where P represents air pollutant concentration, Λs is the recruitment rate of susceptible persons, µ0 is the natural mortality1

rate of susceptible persons, p is the conversion rate of susceptible persons become individuals affected by air pollution,2

µp, µh, µs, µa are the total morality rate of Ip, Ih , Is and Ia respectively, β is the infection rate of viral patients to3

individuals affected by air pollution, β1 is the infection rate of viral patients to persons who are not affected by air4

pollution, δp, δh, δs, δa are the cure rate of Ip, Ih, Is and Ia respectively, the combination of Ki(i=0,1,2,3,4) represents the5

proportion of susceptible persons transformed into different types of patients, P0 is the daily emission of air pollutants,6

c is the clearance rate of air pollutants, q is the inhalation rate for air pollutants per person. It’s reasonable to assume7

that µ0 < min{µp, µh, µs, µa}. All parameters are nonnegative constants. It is evident that the right hand of system (2)8

is continuous with respect to the variables, satisfying the existence of the solutions.9

Theorem 3.1 The solutions of system (2) with respect to the initial value S(0) > 0, Ip ≥ 0, Ih ≥ 0, Is ≥ 0, Ia ≥ 0, P (0) > 010

are positive for all t > 0. All solutions of system (2) are uniformly bounded on11

Ω = {(S, Ip, Ih, Is, Ia, P ) ∈ R6
+ : 0 ≤ S + Ip + Ih + Is + Ia = N ≤ Λs

µ0
, 0 ≤ P ≤ P0

c }.12

Proof Let N(t) = S(t) + Ip(t) + Ih(t) + Is(t) + Ia(t), the derivative of N(t) along the solution of system (2) is13

dN(t)

dt
=

dS(t)

dt
+

dIp(t)

dt
+

dIh(t)

dt
+

dIs(t)

dt
+

dIa(t)

dt

= Λs − µ0S(t)− µpIp(t)− µhIh(t)− µsIs(t)− µaIa(t)

≤ Λs − µ0(S(t) + Ip(t) + Ih(t) + Is(t) + Ia(t))

= Λs − µ0N(t).

Thus, we get N(t) ≤ Λs

µ0
− (Λs

µ0
−N(0))e−µ0t for all t ≥ 0. Therefore, limt→∞supN(t) ≤ Λs

µ0
.14

From the sixth equation of system (2)15

dP (t)
dt = P0 − cP (t)− q(S(t) + Ip(t) + Ih(t) + Is(t) + Ia(t)) ≤ P0 − cP (t),16

there is P (t) ≤ P0

c − (P0

c − P (0))e−ct for all t ≥ 0. So, limt→∞supP (t) ≤ P0

c .17

To sum up, the positive invariant set of system (2) is18

Ω = {(S, Ip, Ih, Is, Ia, P ) ∈ R6
+ : 0 ≤ S + Ip + Ih + Is + Ia = N ≤ Λs

µ0
, 0 ≤ P ≤ P0

c }.19
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3.2 Existence and stability of equilibria1

3.2.1 Existence and stability of disease-free equilibrium2

Theorem 3.2 For system (2), there exists a disease-free equilibrium E0 = (S0, 0, 0, 0, 0, 0) if q = q1, here S0 = Λs

µ0
= P0

q ,3

q1 = µ0P0

Λs
.4

Theorem 3.3 For system (2), if q = q1, R1=
P0K0p

c(µp+δp)
(
µp

µ0
− 1) < 1, the disease-free equilibrium E0 is locally asymptoti-5

cally stable.6

Proof The corresponding characteristic equation is7

det(λI − J(E0)) = (λ+ µh + δh)(λ+ µs + δs)(λ+ µa + δa)(λ
3 + a1λ

2 + a2λ+ a3),8

where9

a1 = c+ µ0 + µp + δp > 0, a2 = cµ0 + (c+ µ0)(µp + δp) > 0, a3 = cµ0(µp + δp) + ΛsK0pq(1− µp

µ0
).10

Obviously, λ1 = −(µh + δh) < 0, λ2 = −(µs + δs) < 0, λ3 = −(µa + δa) < 0, the remaining characteristic roots are11

given by λ3+a1λ
2+a2λ+a3 = 0. When cµ0(µp+ δp)+ΛsK0pq(1− µp

µ0
) > 0, that ΛsK0pq

cµ0(µp+δp)
(
µp

µ0
−1) < 1, we have a3 > 0.12

Denote R1 = P0K0p
c(µp+δp)

(
µp

µ0
−1). Thus, R1 = ΛsK0pq

cµ0(µp+δp)
µp−µ0

µ0
when q = q1. Here,

1
µ0

represents the average life span of13

the population, 1
µp+δp

represents the average period of infection of allergic respiratory disease patients, µp − µ0 represents14

the case fatality rate for allergic respiratory disease. In fact, R1 represents the number of disease-related fatalities in the15

new generation of patients with allergic respiratory diseases.16

And we have a1a2 − a3 = cµ0(c+ µ0) + (c+ µ0)(µp + δp)(c+ µ0 + µp + δp) + ΛsK0pq(
µp

µ0
− 1) > 0.17

According to Routh-Hurwitz criterion, the real part of all eigenvalues of E0 are negative when R1 < 1. Therefore, E018

is locally asymptotically stable.19

Lemma 3.1 There is no periodic solution for system (2).20

Proof Let X = (S, Ip, Ih, Is, Ia, P ). By constructing a Dulac function G = 1
S(Ih+Is+Ia)

= 1
SIv

, we have21

GdS
dt = Λs

SIv
− µ0

Iv
− K0pP

Iv
− (1−K0)pβP − (1− p)β1P +

δpIp+δhIh+δsIs+δaIa
SIv

,22

G
dIp
dt = K0pP

Iv
− (δp+µp)Ip

SIv
,23

GdIh
dt = K1(1−K0)pPβ +K3(1− p)Pβ1 − (δh+µh)Ih

SIv
,24

GdIs
dt = K2(1−K1)(1−K0)pPβ +K4(1−K3)(1− p)Pβ1 − (δs+µs)Is

SIv
,25

GdIa
dt = (1−K2)(1−K1)(1−K0)pPβ + (1−K4)(1−K3)(1− p)Pβ1 − (δa+µa)Ia

SIv
,26

GdP
dt = P0

SIv
− cP

SIv
− q(S+Ip+Iv)

SIv
.27

Further, there are28

dGX

dt
=

∂

∂S
(G

dS

dt
) +

∂

∂Ip
(G

dIp
dt

) +
∂

∂Ih
(G

dIh
dt

) +
∂

∂Is
(G

dIs
dt

) +
∂

∂Ia
(G

dIa
dt

) +
∂

∂P
(G

dP

dt
)

= − 1

SIv
[
1

S
+

δpIp + δhIh + δsIs + δaIa
S

+ (δp + µp) +
1

Iv
((δh + µh)(Is + Ia) + (δs + µs)(Ih + Ia)

+(δa + µa)(Ih + Is)) + c] < 0.

Thus, there is no periodic solution for system (2).29
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Meanwhile, Ω is the positive invariant set of system (2), the following theorem can be deduced from Poincarè −1

Bendixson theorem [28].2

Theorem 3.4 For system (2), if q = q1, R1=
P0K0p

c(µp+δp)
(
µp

µ0
− 1) < 1, the disease-free equilibrium E0 is globally asymptoti-3

cally stable.4

Proof According to Theorem 3.3, when q = q1 and R1=
P0K0p

c(µp+δp)
(
µp

µ0
− 1) < 1, disease-free equilibrium E0 is locally5

asymptotically stable. Further, we know that there is no periodic solution for system (2) from Lemma 3.1. Hence, all6

trajectories in region Ω approach E0, as t → ∞. That is, E0 is globally asymptotically stable.7

3.2.2 Existence and stability of boundary equilibria8

Theorem 3.5 For system (2), we have:9

(1)There is a unique boundary equilibrium E1 = (S∗
1 , I

∗
p1, 0, 0, 0, P

∗
1 ) when 0 < q < q1,where10

S∗
1 =

Λs−µpI
∗
p1

µ0
, P ∗

1 =
µ0P0−qΛs+q(µp−µ0)I

∗
p1

cµ0
,I∗p1 = −A2−

√
∆1

2A1
> 0.11

(2)There is a unique boundary equilibrium E2 = (S∗
2 , I

∗
p2, 0, 0, 0, P

∗
2 ) if q = q1 and R1=

P0K0p
c(µp+δp)

(
µp

µ0
− 1) > 1,where12

S∗
2 =

Λs−µpI
∗
p2

µ0
= Λs

µ0R1
, P ∗

2 =
µ0P0−qΛs+q(µp−µ0)I

∗
p2

cµ0
=

P0(µp−µ0)(R1−1)
cµpR1

,I∗p2 = −A2

A1
= Λs

µp
(1− 1

R1
) > 0.13

(3)There is a unique boundary equilibrium E3 = (S∗
3 , I

∗
p3, 0, 0, 0, P

∗
3 ) if q = q3 and R1=

P0K0p
c(µp+δp)

(
µp

µ0
− 1) > 1,where14

S∗
3 =

Λs−µpI
∗
p3

µ0
, P ∗

3 =
µ0P0−qΛs+q(µp−µ0)I

∗
p3

cµ0
,I∗p3 = −A2

2A1
> 0.15

(4)There are two boundary equilibria E31 = (S∗
31, I

∗
p31, 0, 0, 0, P

∗
31), and E32 = (S∗

32, I
∗
p32, 0, 0, 0, P

∗
32), if q1 < q < q3 and16

R1=
P0K0p

c(µp+δp)
(
µp

µ0
− 1) > 1,where17

S∗
31 =

Λs−µpI
∗
p31

µ0
, P ∗

31 =
µ0P0−qΛs+q(µp−µ0)I

∗
p31

cµ0
, S∗

32 =
Λs−µpI

∗
p32

µ0
, P ∗

32 =
µ0P0−qΛs+q(µp−µ0)I

∗
p32

cµ0
18

I∗p31 = −A2−
√
∆1

2A1
> I∗p32 = −A2+

√
∆1

2A1
> 0.19

Here, q3 = 1
ΛsK0p

{c(µp+δp)(2µp−µ0)+K0pµpP0−2
√
cµp(µp + δp)(µp − µ0)[c(µp + δp) +K0pP0]} > 0, A1 = −qµp(

µp

µ0
−20

1) < 0, A2 = qΛs(
2µp

µ0
− 1)− µpP0 − cµ0(µp+δp)

K0p
, A3 = Λs(P0 − qΛs

µ0
), ∆1 = A2

2 − 4A1A3.21

Proof Let the right side of system (2) be zero, we can obtain that22

(1)If Ip = 0,then P = 0, Ih + Is + Ia = 0, and S = Λs

µ0
= P0

q , that is the disease-free equilibrium E0 of system (2).23

(2)Ih+Is+Ia = 0 or P = 0 if at least one of Ih, Is, and Ia is zero. The disease-free equilibrium is now reached, assuming24

Ip = 0.25

Therefore, we consider the case Ih + Is + Ia = 0 and Ip ̸= 0, P ̸= 0 in the following.26

We have S =
Λs−µpIp

µ0
, P =

µ0P0−qΛs+q(µp−µ0)Ip
cµ0

, these two expressions are substituted into the first equation of the27

system (2) to produce28

f(Ip) = A1I
2
p +A2Ip +A3 = 0, (3)
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where1

A1 = −qµp(
µp

µ0
− 1) < 0, A2 = qΛs(

2µp

µ0
− 1)− µpP0 − cµ0(µp+δp)

K0p
, A3 = Λs(P0 − qΛs

µ0
), ∆1 = A2

2 − 4A1A3.2

To take the existence of the boundary equilibrium E∗ = (S∗, I∗p , 0, 0, 0, P
∗), then S∗, P ∗ must be positive, and the roots3

I∗p of the quadratic equation (3) must also be positive. Therefore, the quadratic equation (3) has no real roots if ∆1 < 0.4

The quadratic equation (3) has one real root I∗p3 = −A2

2A1
when ∆1 = 0. The quadratic equation (3) has two different real5

roots I∗p = −A2±
√
∆1

2A1
if ∆1 > 0.6

From what has been discussed above,we can draw the following conclusion:7

(i)When A3 > 0, that is 0 < q < q1, from the relationship between roots and coefficients of a quadratic equation,8

I∗p1I
∗
p2 = A3

A1
< 0, we have I∗p1 = −A2−

√
∆1

2A1
> 0 > I∗p2 = −A2+

√
∆1

2A1
, hence, there is a unique boundary equilibrium9

E1 = (S∗
1 , I

∗
p1, 0, 0, 0, P

∗
1 ), if ∆1 > 0,Λs − µpI

∗
p1 > 0, µ0P0 − qΛs + q(µp − µ0)I

∗
p1 > 0, here I∗p1 = −A2−

√
∆1

2A1
. And we10

know ∆1 > 0,Λs − µpI
∗
p1 > 0, µ0P0 − qΛs + q(µp − µ0)I

∗
p1 > 0 are always true from 0 < q < q1. As a result, system11

(2) has a single boundary equilibrium E1 when 0 < q < q1.12

(ii)When A3 = 0, that is q = q1, we have13

A2 = qΛs(
2µp

µ0
−1)−µpP0− cµ0(µp+δp)

K0p
= (µp−µ0)P0− cµ0(µp+δp)

K0p
= (µp − µ0)P0[1− cµ0(µp+δp)

(µp−µ0)P0K0p
] = (µp − µ0)P0(1− 1

R1
).14

The two scenarios below are discussed:15

(a)If A2 < 0, that is R1 < 1, equation (3) has no positive roots and there is only a disease-free equilibrium E0.16

(b)If A2 > 0, that is R1 > 1, there is a unique positive root I∗p2 = −A2

A1
= Λs

µp
(1 − 1

R1
) for equation (3). At17

this time, S∗
2 =

Λs−µpI
∗
p2

µ0
= Λs

µ0R1
, P ∗

2 =
µ0P0−qΛs+q(µp−µ0)I

∗
p2

cµ0
=

P0(µp−µ0)(R1−1)
cµpR1

. We get Λs − µpI
∗
p2 >18

0, P0(µp − µ0)(R1 − 1) > 0 from q = q1 and R1 > 1, hence, system (2) has one boundary equilibrium E2.19

(iii)When A3 < 0, that is q > q1, there are two positive roots I∗p = −A2±
√
∆1

2A1
for equation (3) if A2 > 0,∆1 ≥ 0. From20

A2 > 0, one has q > µ0P0

Λs
[

µp

2µp−µ0
+

cµ0(µp+δp)
K0pP0(2µp−µ0)

] = q2; we have21

∆1 = A2
2 − 4A1A3 = Λ2

sq
2 − 2Λs[µpP0 +

c(µp+δp)(2µp−µ0)
K0p

]q + [µpP0 +
cµ0(µp+δp)

K0p
]2. Due to Λ2

s > 0, 2Λs[µpP0 +22

c(µp+δp)(2µp−µ0)
K0p

] > 0, [µpP0 +
cµ0(µp+δp)

K0p
]2 > 0, equation ∆1 ≥ 0 has two positive roots q3 and q4,23


0 < q ≤ 1

ΛsK0p
{c(µp + δp)(2µp − µ0) +K0pµpP0 − 2

√
cµp(µp + δp)(µp − µ0)[c(µp + δp) +K0pP0]} = q3,

q ≥ 1

ΛsK0p
{c(µp + δp)(2µp − µ0) +K0pµpP0 + 2

√
cµp(µp + δp)(µp − µ0)[c(µp + δp) +K0pP0]} = q4.

We calculate the size of q1, q2, q3, and q4 in the following.24

Assume q1 > q3, that is25

µ0P0

Λs
< 1

ΛsK0p
{c(µp + δp)(2µp − µ0) +K0pµpP0 − 2

√
cµp(µp + δp)(µp − µ0)[c(µp + δp) +K0pP0]},26

[K0pP0(µp − µ0)− cµ0(µp + δp)]
2 < 0, this contradicts the fact that the squared term is non-negative, so q1 < q3.27

Assume q2 > q4, that is28

2K0pµpP0(µp − µ0) + 4cµp(µp + δp)(µp − µ0) + 2(2µp − µ0)
√
cµp(µp + δp)(µp − µ0)[c(µp + δp) +K0pP0] < 0. By29

µ0 < min{µp, µh, µs, µa}, we know that this is a contradiction. so q2 < q4.30
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Suppose q2 < q1, that is
P0K0p

c(µp+δp)
(
µp

µ0
− 1) > 1, R1 > 1. Therefore, q2 < q1 if and only if R1 > 1.1

Suppose q2 < q3, that is (R1 − 1)(R1 − (µ0

µp
− 1)) > 0, R1 > 1 or R1 < µ0

µp
− 1 < 0. So, q2 < q3 if and only if R1 > 1.2

From the above analysis, we can know that q1 < q3, q2 < q4, q2 < q1 if and only if R1 > 1, and when q2 > q1, one3

has q3 < q2 < q4. The existence of the boundary equilibria is discussed below in two cases.4

(c)If q > q1, A2 > 0,∆1 = 0, then equation (3) has only one positive root I∗p3 = −A2

2A1
. According to q = q3, R1 > 1,5

we get Λs − µpI
∗
p3 > 0, µ0P0 − qΛs + q(µp − µ0)I

∗
p3 > 0, hence, there is only one boundary equilibrium E3 for6

system (2).7

(d)If q > q1, A2 > 0,∆1 > 0, there are two positive roots I∗p31 = −A2−
√
∆1

2A1
, and I∗p32 = −A2+

√
∆1

2A1
, (I∗p31 > I∗p32). We8

can acquire Λs −µpI
∗
p31 > 0, µ0P0 − qΛs + q(µp −µ0)I

∗
p31 > 0,Λs −µpI

∗
p32 > 0, µ0P0 − qΛs + q(µp −µ0)I

∗
p32 > 09

from q1 < q < q3, and R1 > 1, so system (2) has two coexisting boundary equilibria E31 and E32.10

In the following, the conditions for determining the local asymptotic stability of the boundary equilibria of system11

(2) are given.12

For convenience, let the arbitrary boundary equilibrium be E∗ = (S∗, I∗p , 0, 0, 0, P
∗), accordingly, the Jacobian matrix13

of system (2) at boundary equilibrium E∗ is14

J(E∗) =


−µ0−K0pP

∗ δp δh−(d+e) δs−(d+e) δa−(d+e) −K0pS
∗

K0pP
∗ −µp−δp 0 0 0 K0pS

∗

0 0 −µh−δh+(d1+e1) d1+e1 d1+e1 0
0 0 d2+e2 −µs−δs+(d2+e2) d2+e2 0
0 0 d3+e3 d3+e3 −µa−δa+(d3+e3) 0
−q −q −q −q −q −c

 ,

where15

d = (1−K0)pβS
∗P ∗, d1 = K1d, d2 = K2(1−K1)d, d3 = (1−K2)(1−K1)d, d = d1 + d2 + d3,16

e = (1− p)β1S
∗P ∗, e1 = K3e, e2 = K4(1−K3)e, e3 = (1−K4)(1−K3)e, e = e1 + e2 + e3.17

The corresponding characteristic equation is18

det(λI − J(E∗)) = (λ3 +M1λ
2 +M2λ+M3)(λ

3 +D1λ
2 +D2λ+D3),19

where20

M1 = c+µ0+µp+δp+K0pP
∗, M2 = cµ0+(c+µ0)(µp+δp)+cK0pP

∗+K0pµpP
∗, M3 = cµ0(µp+δp)+cK0pµpP

∗−21

K0pqS
∗(µp − µ0),22

D1 = (µh + δh) + (µs + δs) + (µa + δa)− (d+ e),23

D2 = (µh + δh)(µs + δs) + (µh + δh)(µa + δa) + (µs + δs)(µa + δa) − [(µh + δh)(d2 + d3 + e2 + e3) + (µs + δs)(d1 +24

d3 + e1 + e3) + (µa + δa)(d1 + d2 + e1 + e2)],25

D3 = (µh + δh)(µs + δs)(µa + δa)[1− ( d1+e1
µh+δh

+ d2+e2
µs+δs

+ d3+e3
µa+δa

)].26

It is clear that M1 > 0,M2 > 0,M1M2 − M3 > 0. If M3 > 0, we get f ′(I∗p ) < 0. Hence, when M3 > 0, that is27

f ′(I∗p ) < 0, the real parts of the eigenvalues of the equation λ3 +M1λ
2 +M2λ+M3 = 0 are all negative according to the28

Routh-Hurwitz criterion.29

D1 > 0, D2 > 0, and D1D2 −D3 > 0 can be calculated directly by D3 > 0. Denote R2 = d1+e1
µh+δh

+ d2+e2
µs+δs

+ d3+e3
µa+δa

.30

Thus, D3 > 0 if and only if R2 < 1. According to the Routh-Hurwitz criterion, the real parts of the eigenvalues of the31

equation λ3 +D1λ
2 +D2λ+D3 = 0 are all negative when R2 < 1.32
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In summary, the local stability theorem for boundary equilibria is given below.1

Theorem 3.6 The boundary equilibrium E∗ is locally asymptotically stable if and only if R2 < 1, f ′(I∗p ) < 0.2

Note: It is obvious that the boundary equilibria E3 and E32 are not locally asymptotically stable based on the boundary3

equilibria’ existence and stability requirements f ′(I∗p ) < 0. On the contrary, the boundary equilibria E1, E2 and E31 are4

locally asymptotically stable when the existence and stability conditions are satisfied.5

Theorem 3.7 The boundary equilibrium E∗ is globally asymptotically stable if and only if R2 < 1, f ′(I∗p ) < 0, subject to6

the corresponding existence conditions of Theorem 3.5.7

Proof We construct a Lyapunov function8

V (t) = Ih(t)
µh+δh

+ Is(t)
µs+δs

+ Ia(t)
µa+δa

.9

Calculating the total derivative of the solution of V (t) along system (2) yields10

dV

dt
=

1

µh + δh

dIh
dt

+
1

µs + δs

dIs
dt

+
1

µa + δa

dIa
dt

=
1

µh + δh
[K1(1−K0)pSPβ(Ih + Is + Ia) +K3(1− p)SPβ1(Ih + Is + Ia)− (δh + µh)Ih] +

1

µs + δs
[K2(1−K1)(1

−K0)pSPβ(Ih + Is + Ia) +K4(1−K3)(1− p)SPβ1(Ih + Is + Ia)− (δs + µs)Is] +
1

µa + δa
[(1−K2)(1−K1)(1

−K0)pSPβ(Ih + Is + Ia) + (1−K4)(1−K3)(1− p)SPβ1(Ih + Is + Ia)− (δa + µa)Ia]

≤ Iv(
d1 + e1
µh + δh

+
d2 + e2
µs + δs

+
d3 + e3
µa + δa

− 1)

= Iv(R2 − 1).

Hence, dV
dt < 0 if R2 < 1. Meanwhile, dV

dt = 0 if and only if Ih = 0, Is = 0, Ia = 0, the maximum invariant set is11

{E∗}. If the boundary equilibrium E∗ at this time satisfies the conditions specified for existence in Theorem 3.5, then ,12

according to LaSalle invariant set principle, E∗ is globally asymptotically stable.13

3.2.3 Existence of epidemic equilibrium14

Theorem 3.8 For system (2), there is only one endemic equilibrium E4 = (S∗
4 , I

∗
p4, I

∗
h4, I

∗
s4, I

∗
a4, P

∗
4 ) if and only if q5 <15

q < q8, here q5 = µ0P0

Λs−(µp−µ0)I∗
p4
, q8 = P0Q1

Q1I∗
p4+(Λs−µpI∗

p4)Q2
.16

Proof From the third, fourth, and fifth equations of the system (2), eliminating Ia, Is, and Ih in turn, we get17

I∗p4 = K0p
Ch

µh+δh
+ Cs

µs+δs
+ Ca

µa+δa

, Is =
Cs(µh+δh)
Ch(µs+δs)

Ih, Ia = Ca(µh+δh)
Ch(µa+δa)

Ih,18

where19

Ch = [K1(1 − K0)pβ + K3(1 − p)β1](µp + δp), Cs = [K2(1 − K1)(1 − K0)pβ + K4(1 − K3)(1 − p)β1](µp + δp),20

Ca = [(1−K2)(1−K1)(1−K0)pβ + (1−K4)(1−K3)(1− p)β1](µp + δp).21

From the first and second equations of system (2), we have22

S =
Λs−µpI

∗
p4−µhIh−µsIs−µaIa

µ0
, P =

(µp+δp)I
∗
p4

K0pS
.23

In the sixth equation of the system (2), substituting the aforementioned expressions for S, Is, Ia, and P results in24
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qQ1

µ0
(Q1

µ0
−Q2)I

2
h + [− 2q(Λs−µpI

∗
p4)Q1

µ2
0

+
q(Λs−µpI

∗
p4)Q2

µ0
− (qI∗

p4−P0)Q1

µ0
]Ih + [

q(Λs−µpI
∗
p4)

2

µ2
0

+
(qI∗

p4−P0)(Λs−µpI
∗
p4)

µ0
] = 0,1

where Q1 = µh + µs
Cs(µh+δh)
Ch(µs+δs)

+ µa
Ca(µh+δh)
Ch(µa+δa)

, Q2 = 1 + Cs(µh+δh)
Ch(µs+δs)

+ Ca(µh+δh)
Ch(µa+δa)

, P0 − qI∗p4 > 0,Λs − µpI
∗
p4 > 0.2

The above quadratic equation with respect to Ih is written as3

B2I
2
h +B1Ih +B0 = 0, (4)

where4

B2 = qQ1

µ0
(Q1

µ0
− Q2) = qQ1

µ0
[(µh

µ0
− 1) + (µs

µ0
− 1)Cs(µh+δh)

Ch(µs+δs)
+ (µa

µ0
− 1)Ca(µh+δh)

Ch(µa+δa)
] > 0, B1 = −2q(Λs−µpI

∗
p4)Q1

µ2
0

+5

q(Λs−µpI
∗
p4)Q2

µ0
− (qI∗

p4−P0)Q1

µ0
, B0 =

q(Λs−µpI
∗
p4)

2

µ2
0

+
(qI∗

p4−P0)(Λs−µpI
∗
p4)

µ0
, ∆h =

{q[(Λs−µpI
∗
p4)Q2+Q1I

∗
p4]−P0Q1}2

µ2
0

≥ 0.6

Solving the equation (4) gives I∗h41 = −B1−
√
∆h

2B2
, I∗h42 = −B1+

√
∆h

2B2
. The following three scenarios are covered.7

(1)When B0 < 0,that is q < µ0P0

Λs−(µp−µ0)I∗
p4

= q5, then equation (4) has only one positive root I∗h42 = −B1+
√
∆h

2B2
=

Λs−µpI
∗
p4

Q1
,8

but S =
Λs−µpI

∗
p4−µhIh−µsIs−µaIa

µ0
=

Λs−µpI
∗
p4−Q1I

∗
h42

µ0
= 0 at this time. Therefore, there is no endemic equilibrium.9

(2)When B0 = 0, that is q = q5, there is a unique positive root I∗h = −B1

B2
=

Λs−µpI
∗
p4

Q1
if B1 < 0. And B1 < 0 if and10

only if q > µ0P0Q1

µ0Q1I∗
p4−(Λs−µpI∗

p4)(µ0Q2−2Q1)
= q7 , P0 − qI∗p4 > 0 if and only if q < P0

I∗
p4

= q6, after calculation, we get11

q7 < q5 < q6 satisfying B1 < 0, however, S =
Λs−µpI

∗
p4−Q1I

∗
h

µ0
= 0, there is no endemic equilibrium.12

(3)When B0 > 0,that is q > q5, the sufficient condition for the existence of positive roots of the equation (4) is B1 <13

0,∆h ≥ 0. Here are two scenarios.14

(i) When B1 < 0,∆h = 0, that is q > q7, q = P0Q1

Q1I∗
p4+(Λs−µpI∗

p4)Q2
= q8, satisfying q5 < q8 < q6, there is a unique15

positive root I∗h42 =
Λs−µpI

∗
p4

Q1
, but there is no endemic equilibrium for S =

Λs−µpI
∗
p4−Q1I

∗
h42

µ0
= 0.16

(ii) When B1 < 0,∆h > 0, we have q ∈ (q5, q8)
∪
(q8, q6) from q < q6, the equation (4) has two different positive17

roots I∗h41 =
q[Λs−(µp−µ0)I∗

p4]−µ0P0

q(Q1−µ0Q2)
, I∗h42 =

Λs−µpI
∗
p4

Q1
.18

(a)When q ∈ (q5, q8), we get S∗∗
4 =

Λs−µpI
∗
p4−Q1I

∗
h42

µ0
= 0, S∗

4 =
P0Q1−q[Q1I

∗
p4+Q2(Λs−µpI

∗
p4)]

q(Q1−µ0Q2)
> 0, thus, there is19

a unique endemic equilibrium E4 = (S∗
4 , I

∗
p4, I

∗
h4, I

∗
s4, I

∗
a4, P

∗
4 ), here I∗h4 = I∗h42, I

∗
s4 = Cs(µh+δh)

Ch(µs+δs)
I∗h4, I

∗
a4 =20

Ca(µh+δh)
Ch(µa+δa)

I∗h4.21

(b)When q ∈ (q8, q6), we have S∗∗
4 =

Λs−µpI
∗
p4−Q1I

∗
h42

µ0
= 0, S∗

4 =
P0Q1−q[Q1I

∗
p4+Q2(Λs−µpI

∗
p4)]

q(Q1−µ0Q2)
< 0. Hence, there22

is no endemic equilibrium.23

In conclusion, the unique endemic equilibrium E4 = (S∗
4 , I

∗
p4, I

∗
h4, I

∗
s4, I

∗
a4, P

∗
4 ) exists when q5 < q < q8.24

Assume q5 ≥ q3, that is
Λs−(µp−µ0)I

∗
p4

Λs+µpI∗
p4+2

√
ΛsµpI∗

p4

≤ R1 ≤ Λs−(µp−µ0)I
∗
p4

Λs+µpI∗
p4−2

√
ΛsµpI∗

p4

. Denote R∗
1 =

Λs−(µp−µ0)I
∗
p4

Λs+µpI∗
p4+2

√
ΛsµpI∗

p4

,25

R∗∗
1 =

Λs−(µp−µ0)I
∗
p4

Λs+µpI∗
p4−2

√
ΛsµpI∗

p4

. It is easy to derive R∗
1 < 1, R∗∗

1 > 1 by calculation, therefore, q5 ≥ q3 if and only if26

R∗
1 ≤ R1 ≤ R∗∗

1 .27

The following Theorem 3.9 can be condensed by combining Theorem 3.2, Theorem 3.5 and Theorem 3.8.28

Theorem 3.9 . For system (2), we have:29

(1)If q3 ≤ q5 < q < q8, that is R∗
1 ≤ R1 ≤ R∗∗

1 , the endemic equilibrium E4 does not coexist with the disease-free30

equilibrium, nor with boundary equilibria.31
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(2)If q3 > q5, q5 < q < q8, that is R1 < R∗
1 < 1 or R1 > R∗∗

1 > 1.1

(i) When R1 < R∗
1 < 1, the endemic equilibrium E4 does not coexist with the disease-free equilibrium, nor with2

boundary equilibria.3

(ii)When R1 > R∗∗
1 > 1, there are four cases as follows.4

(a)If q8 ≤ q3, then the endemic equilibrium E4 coexists with the boundary equilibria E31, E32.5

(b)If q8 > q3, and q5 < q < q3, then the endemic equilibrium E4 coexists with the boundary equilibria E31, E32.6

(c)If q8 > q3, and q3 < q < q8, then the endemic E4 does not coexist with either the disease-free equilibrium7

or boundary equilibria.8

(d)If q8 > q3, and q = q3, then only the boundary equilibrium E3 exists.9

where R∗
1 =

Λs−(µp−µ0)I
∗
p4

Λs+µpI∗
p4+2

√
ΛsµpI∗

p4

< 1, R∗∗
1 =

Λs−(µp−µ0)I
∗
p4

Λs+µpI∗
p4−2

√
ΛsµpI∗

p4

> 1.10

Table 1: Existence of equilibria of system (2)

q R1 Equilibrium

0 < q < q1 ― (BE)E1

q = q1 ― (DFE)E0

R1 > 1 (DFE)E0 and (BE)E2

q1 < q < q3 R1 > 1 (BE)E31, E32

q = q3 R1 > 1 (BE)E3

q5 < q < q8 R∗
1 < R1 < R∗∗

1 (EE)E4

R1 < R∗
1 < 1 (EE)E4

q5 < q < q8 ≤ q3 R1 > R∗∗
1 > 1 (EE)E4 and (BE)E31, E32

q5 < q < q3 < q8 R1 > R∗∗
1 > 1 (EE)E4 and (BE)E31, E32

q5 < q = q3 < q8 R1 > R∗∗
1 > 1 (BE)E3 and (EE)E4

q3 < q < q8 R1 > R∗∗
1 > 1 (EE)E4

Boundary equilibrium(BE), endemic equilibrium(EE), and disease-free equilibrium (DFE), respectively, are denoted.
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(a) (b)

(c) (d)

Figure 3: Existence of equilibria in system (2).

According to the results of the analysis of Tabel 1 and Theorem 3.9 above, the existence of equilibria of system (2)1

is influenced by the threshold R1 = P0K0p
c(µp+δp)

(
µp

µ0
− 1) and individual inhalation of air pollutants q. In other words, by2

adjusting threshold R1 and human pollutant inhalation q, the equilibrium of system can be controlled so that, to the3

greatest extent possible, only disease-free equilibrium exist in the system, minimizing the harm caused by air pollution4

and achieving the goal of stopping the epidemic of respiratory diseases.5

3.3 Bifurcation analysis6

Theorem 3.10 When q = q1, R1 = 1 and σ ̸= 0, system (2) occurs fold bifurcation at disease-free equilibrium E0.7

Disease-free equilibrium E0 exists if and only if q = q1, When a3 = 0, i.e., R1 = 1, the characteristic equation8

corresponding to E0 is9

λ(λ+ µh + δh)(λ+ µs + δs)(λ+ µa + δa)(λ
2 + a1λ+ a2) = 0,10

where a1 > 0, a2 > 0, a21 − 4a2 > 0. Thus the characteristic equation has five negative characteristic roots and one zero11

characteristic root.12
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Let X1 = S − Λs

µ0
, X2 = Ip, X3 = Ih, X4 = Is, X5 = Ia, X6 = P, system (2) can be deformed as1



dX1

dt
=−K0p(X1 +

Λs

µ0
)X6 − (1−K0)p(X1 +

Λs

µ0
)X6β(X3 +X4 +X5)− (1− p)(X1 +

Λs

µ0
)X6β1(X3 +X4 +X5)

+ δpX2 + δhX3 + δsX4 + δaX5 − µ0X1,

dX2

dt
=K0p(X1 +

Λs

µ0
)X6 − (µp + δp)X2,

dX3

dt
=K1(1−K0)p(X1 +

Λs

µ0
)X6β(X3 +X4 +X5) +K3(1− p)(X1 +

Λs

µ0
)X6β1(X3 +X4 +X5)− (µh + δh)X3,

dX4

dt
=K2(1−K1)(1−K0)p(X1 +

Λs

µ0
)X6β(X3 +X4 +X5) +K4(1−K3)(1− p)(X1 +

Λs

µ0
)X6β1(X3 +X4 +X5)

− (µs + δs)X4,

dX5

dt
=(1−K2)(1−K1)(1−K0)p(X1 +

Λs

µ0
)X6β(X3 +X4 +X5) + (1−K4)(1−K3)(1− p)(X1 +

Λs

µ0
)X6β1(X3

+X4 +X5)− (µa + δa)X5,

dX6

dt
=− cX6 − q(X1 +X2 +X3 +X4 +X5),

(5)

Let Fk(X1, X2, X3, X4, X5, X6) =
dXk

dt (k = 1, 2, 3, 4, 5, 6). Taking the partial derivatives of Fk(X1, X2, X3, X4, X5, X6)(k =2

1, 2, 3, 4, 5, 6) separately, we can obtain the matrix H =
(
( ∂Fi

∂Xj
)ij

)
1≤i,j≤6

, substituting the origin into H gives3

H =


−µ0 δp δh δs δa −K0p

Λs
µ0

0 −µp−δp 0 0 0 K0p
Λs
µ0

0 0 −µh−δh 0 0 0
0 0 0 −µs−δs 0 0
0 0 0 0 −µa−δa 0
−q −q −q −q −q −c

 ,

If the eigenvalue of H corresponds to an eigenvector x and the adjoint eigenvector is y, we know from the Center4

Manifold Theorem[27] that5

G(x, y) =
(
G1(x, y), G2(x, y), G3(x, y), G4(x, y), G5(x, y), G6(x, y)

)T

,6

where7

G1(x, y) = −K0pX1Y6−(1−K0)p
Λs

µ0
β(X3+X4+X5)Y6−(1−p)Λs

µ0
β1(X3+X4+X5)Y6−K0pX6Y1−(1−K0)p

Λs

µ0
β(Y3+8

Y4 + Y5)X6 − (1− p)Λs

µ0
β1(Y3 + Y4 + Y5)X6,9

G2(x, y) = K0pX1Y6 +K0pX6Y1,10

G3(x, y) = K1(1−K0)p
Λs

µ0
β(X3+X4+X5)Y6+K3(1−p)Λs

µ0
β1(X3+X4+X5)Y6+K1(1−K0)p

Λs

µ0
β(Y3+Y4+Y5)X6+11

K3(1− p)Λs

µ0
β1(Y3 + Y4 + Y5)X6,12

G4(x, y) = K2(1−K1)(1−K0)p
Λs

µ0
β(X3 +X4 +X5)Y6 +K4(1−K3)(1− p)Λs

µ0
β1(X3 +X4 +X5)Y6 +K2(1−K1)(1−13

K0)p
Λs

µ0
β(Y3 + Y4 + Y5)X6 +K4(1−K3)(1− p)Λs

µ0
β1(Y3 + Y4 + Y5)X6,14

G5(x, y) = (1−K2)(1−K1)(1−K0)p
Λs

µ0
β(X3 +X4 +X5)Y6 + (1−K4)(1−K3)(1− p)Λs

µ0
β1(X3 +X4 +X5)Y6 + (1−15

K2)(1−K1)(1−K0)p
Λs

µ0
β(Y3 + Y4 + Y5)X6 + (1−K4)(1−K3)(1− p)Λs

µ0
β1(Y3 + Y4 + Y5)X6,16

G6(x, y) = 0.17

At this time, system (5) is18

ẋ = Hx+
1

2
G(x, y) +

1

6
C1(x, y, z) +O(||x||4), (6)
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where1

x = (X1, X2, X3, X4, X5, X6)
T ∈ R6, y = (Y1, Y2, Y3, Y4, Y5, Y6)

T ∈ R6.

It is easy to find that when R1 = 1 i.e., a3 = 0, the characteristic roots of H are2

λt1 = 0, λt2 = −(µh + δh) < 0, λt3 = −(µs + δs) < 0, λt4 = −(µa + δa) < 0,

λt5 =
−a1 −

√
a21 − 4a2
2

< 0, λt6 =
−a1 +

√
a21 − 4a2
2

< 0,

therefore, system (2) may occur fold bifurcation at disease-free equilibrium E0. Note that µ2 = µh, δ2 = δh, µ3 = µs, δ3 =3

δs, µ4 = µa, δ4 = δa.4

The eigenvector corresponding to the eigenvalue λt1 = 0 is p̃ = (p̃1, p̃2, 0, 0, 0, 1) and the adjoint eigenvector is5

q̃ = (q̃1, q̃2, q̃3, q̃4, q̃5, 1), where6



p̃1 =− cµp

q(µp − µ0)
+

c+ µp

q(µp − µ0)
A11 −

1

q(µp − µ0)
A2

11 < 0, p̃2 =
cµ0

q(µp − µ0)
− c+ µ0

q(µp − µ0)
A11 +

1

q(µp − µ0)
A2

11 > 0,

q̃1 =− q

µ0
+

q(c+ µp + δp)

cµ0(µp + δp)
A11 −

q

cµ0(µp + δp)
A2

11 < 0, q̃2 = − q(µ0 + δp)

µ0(µp + δp)
+

q(c+ µ0 + δp)

cµ0(µp + δp)
A11 −

q

cµ0(µp + δp)
A2

11 < 0,

q̃i+1 =
Ai1

Ai2
+

Ai3A11

Ai4
+

Ai5A
2
11

Ai6
(i = 2, 3, 4),

A11 =
a1

3
+

−a2
1
9

+ a2
3

[−a3
1

27
+ a1a2

6
+ a2

3

√
a2
3

− a2
1

12
]
1
3

− [−a3
1

27
+

a1a2

6
+

a2

3

√
a2

3
− a2

1

12
]
1
3 < 0,

Ai1 =q
{
µ2
0(c+ µp + δp − µi − δi) + µ0[c(δp − µi) + µi(µi + δi − δp) + µp(δi − µp − δp)] + µp[c(µi − µp − δp)

+ µi(µp + δp − µi − δi)]
}
< 0,

Ai2 =[µ2
0 + µp(µi + δi)](c− µi − δi)(µp + δp − µi − δi) + µ0

{
c(µp + δp)(µp − µ0) + (µi + δi)[c(µi + δi)− δp]

− µp(µp + δp) + (µi + δi)[µp(µp + δp) + (µi + δi)(δp − µi − δi)]
}
> 0,

Ai3 =µ2
0

{
cµ0(µp + δp)(c+ µp + δp + µ0 − µi) + δi(µp + δp − µi − δi)[c(c+ µp + δp − µi − δi)− (µp + δp)(µi + δi)]

}
,

Ai4 =
c2µ3

0(µp + δp)

q(µp − µ0)

{
µ0(µp + δp)(µp − µ0) + (µp + δp − µi − δi)[µ

2
0 + µp(µi + δi)] + µ0[(µi + δi)

2 − µp(µp + δp)

− δp(µi + δi)]
}
> 0,

Ai5 =µ2
0[δi(µi + δi − µp − δp)(c− µi − δi)− cµ0(µp + δp)],

Ai6 =Ai4 +
cµ3

0(µp + δp)(µi + δi)

q(µp − µ0)

{
µ2
0(µi + δi − µp − δp) + µ0[µp(µp + δp) + δp(µi + δi)− (µi + δi)

2] + µp(µi

+ δi)(µi + δi − µp − δp)
}
> 0.

We get G(p̃, q̃) =
(
G1(p̃, q̃), G2(p̃, q̃), G3(p̃, q̃), G4(p̃, q̃), G5(p̃, q̃), G6(p̃, q̃)

)T

, where7

G1(p̃, q̃) = −K0p(p̃1 + q̃1)− [(1−K0)pβ + (1− p)β1]
Λs

µ0
(q̃3 + q̃4 + q̃5),8

G2(p̃, q̃) = K0p(p̃1 + q̃1),9

G3(p̃, q̃) = [K1(1−K0)pβ +K3(1− p)β1]
Λs

µ0
(q̃3 + q̃4 + q̃5),10

G4(p̃, q̃) = [K2(1−K1)(1−K0)pβ +K4(1−K3)(1− p)β1]
Λs

µ0
(q̃3 + q̃4 + q̃5),11

G5(p̃, q̃) = [(1−K2)(1−K1)(1−K0)pβ + (1−K4)(1−K3)(1− p)β1]
Λs

µ0
(q̃3 + q̃4 + q̃5),12

G6(p̃, q̃) = 0.13
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The following system is produced by limiting the system to a one-dimensional center manifold:1

Ẋ = σX2 +O(|X|3), X ∈ R1, σ =
1

2
⟨q̃, G(p̃, q̃)⟩.

When the condition σ ̸= 0 is satisfied, the local topological equivalence of system (5) has the following form: Ẋ =2

ξ + σX2. That is, system (2) occurs fold bifurcation at disease-free equilibrium E0 when q = q1, R1 = 1 and σ ̸= 0.3

4 Sensitivity analysis about the number of infected4

Sensitivity indices can be used to determine how much the state variables have changed relatively to the parameters.5

They might be either positive or negative for these indicators. The absolute value of the index reveals the intensity of the6

connection, and its positive and negative values reveal positive and negative correlations. The PRCC approach is then7

used to investigate how the parameters affect various patient categories.8

Table 2: Ranges for parameters

Parameters Range Sources Parameters Range Sources

Λs [1000,5000],[0.00005,0.005] [9, 8] K3 [0.05,0.75]
K4 [0.1,0.7] [22, 23] µ0 [0.00003,0.00006],[0.00006,0.005] [9, 8]
µh [0.00003,0.00008],[0.00007,0.015] [26] µs [0.00004,0.0001],[0.00007,0.015] [26]
µa [0.00003,0.00006],[0.00006,0.005] [9] δh [1/30,1/3] [22, 24, 25]
δs [1/30,1/3] [22, 24, 25] δa [1/14,1/3] [22, 24]
β1 [3e-10,2.5e-8],[0.000005,0.0001] [9] K0 [0.1,0.7]
K1 [0.1,0.7] K2 [0.1,0.7]
µp [0.00007,0.015] [8] δp [0.05,0.3] [8]
p [0.0001,0.01] [8] β [0.00001,0.001]
P0 [0.00001,0.01] [8] c [0.00001,0.01] [8]
q [0.0001,0.01] [8]

Table 2 displays the range of parameter values. The significance of numerous characteristics on various state variables9

of system (1) and system (2) is depicted in Figure 4 and Figure 5, respectively.10

Combining Figure 4, a significant negative correlation can be seen between the cure rate (δh, δs, δa) and the total11

number of patients not seen, the number of symptomatic infected individuals who were not seen and the number of12

asymptomatic infections who were not seen, respectively. However, a positive correlation is presented between the number13

of patient pairs and infection rate β1, whereas a significant positive correlation is presented between the cure rate (δh, δs, δa).14

Meanwhile, the total number of patients not seen show a negative correlation with K3, but there is a positive correlation15

between the number of patients and the proportion of patients who go to the hospital (K3).16

21
29 Aug 2023 19:42:44 PDT
230720-QiLongxing Version 2 - Submitted to Rocky Mountain J. Math.



0.9999

0.1482

0.0291

-0.4066

0.0223

-0.1867

0.0189

0.1039 0.0914

-0.1548

0.0915

s
K

3
K

4 0 h s a h s a 1

parameter

-0.5

0

0.5

1

P
R

C
C

(a)

0.1555

-0.1116

0.1632

0.0601

-0.0079

-0.0428

0.2265

-0.5184
-0.5480

-0.5085

0.2290

s
K

3
K

4 0 h s a h s a 1

parameter

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

P
R

C
C

(b)

0.0977

0.0498

-0.1609

0.0305
0.0065

-0.0729

-0.0365

-0.5286

-0.4286

-0.5804

0.1401

s
K

3
K

4 0 h s a h s a 1

parameter

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

P
R

C
C

(c)

Figure 4: The significance analysis diagram of parameters to (a)Ih, (b)Is, (c)Ia of system (1).

Figure 5(a) shows that, to varying degrees, the parameters p, c, and q have a substantial correlation with the number1

of patients Ip. Combining Figure 5, we find a strong positive correlation between the total number of patients Iv and daily2

air pollutant emissions P0, the natural clearance rate of air pollutants c, as well as a strong negative correlation between3

Iv and pollutant inhalation q. This suggests that an increase in daily air pollutant emissions P0 and the natural clearance4

rate of air pollutants c causes an increase in the overall number of viral respiratory patients Iv; especially, an increase5

in the inhalation of air pollutants q causes a decrease in the total number of Iv because an increase in the conversion6

of susceptible people to allergic respiratory disease due to the inhalation of more air pollutants causes an increase in7

the conversion of susceptible people to allergic respiratory disease. In addition, Figure 5 (c)(d) demonstrate a strong8

negative correlation between δh, and δs and the number of unattended patients, indicating that an increase in the cure9

rate of attending patients and symptomatic infected patients will result in a reduction in the overall number of unattended10

patients.11
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Figure 5: The significance analysis diagram of parameters to (a)Ip, (b)Ih, (c)Is, (d)Ia of system (2).

5 Numerical simulation1

In this section, we investigate alternative values of these parameters in order to examine the influence of parameters2

that are more closely connected with the number of patients in each group on disease transmission. Figures 6 through 113

display the findings.4

For system (1), we take the initial values S(0) = 80, Ih(0) = 5, Is(0) = 5, and Ia(0) = 5. As shown in Figure 6, at5

low levels of air pollution, the infection rate β1 of viral respiratory diseases is a significant determinant of the spread of6

the disease. An increase in β1 results in a marked increase in the peak number of patients Ih, Ia, and Is, as well as a7

larger final number of patients. In addition, a rise in cure rate δh decreases the peak number of viral respiratory disease8

patients, the duration to peak and the overall number, and it has very big impact on patients Ih(see Figure 7).9

For system (2), initial values of S(0) = 70, Ip(0) = 3, Ih(0) = 3, Is(0) = 3, Ia(0) = 3, and P (0) = 2 are taken to10

investigate the effect of individual parameter changes on disease transmission. Evidently, the final number and peak value11

23
29 Aug 2023 19:42:44 PDT
230720-QiLongxing Version 2 - Submitted to Rocky Mountain J. Math.



of Ip are not significantly impacted by the shift in daily air pollution emissions P0. However, when P0 fall, so do the1

overall number and peak numbers of Iv, particularly Ip, as shown in Figure 8. An increase in air pollution inhalation q,2

as indicated in Figure 9, decreases the number of patients with viral respiratory disease but has no effect on the total3

number of patients.4
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Figure 6: Effect of different infection rates β1 on the number of patients (a)Iv, (b)Ih, (c)Is, (d)Ia in model (1)
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Figure 7: Effect of different visit cure rates δh on the number of patients (a)Iv, (b)Ih, (c)Is, (d)Ia in model (1)
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Figure 8: Effect of different daily air pollution emissions P0 on the number of patients (a)Ip, (b)Ih, (c)Is, (d)Ia.

25
29 Aug 2023 19:42:44 PDT
230720-QiLongxing Version 2 - Submitted to Rocky Mountain J. Math.



0 20 40 60 80 100 120 140 160 180 200

t

2

4

6

8

10

12

I p

(a)

q=0.004
q=0.006
q=0.008
q=0.01

0 20 40 60 80 100 120 140 160 180 200

t

0

5

10

15

20

25

I h

(b)

q=0.004
q=0.006
q=0.008
q=0.01

0 20 40 60 80 100 120 140 160 180 200

t

0

2

4

6

8

10

I s

(c)

q=0.004
q=0.006
q=0.008
q=0.01

0 20 40 60 80 100 120 140 160 180 200

t

0

5

10

15

20

I a

(d)

q=0.004
q=0.006
q=0.008
q=0.01

0 5 10 15 20
0

5

10

15

0 5 10 15 20
0

10

20

0 5 10 15 20
0

5

10

0 5 10 15 20
0

10

20

Figure 9: Effect of different air pollution inhalation levels q on the number of patients (a)Ip, (b)Ih, (c)Is, (d)Ia.

We provide simulation results in Figures 10 and 11 so that one can more clearly observe how parameters K3 and K41

affect viral respiratory diseases at various degrees of air pollution. Initial values of S(0) = 80, Ip(0) = 5, Ih(0) = 3, Is(0) =2

1, Ia(0) = 8, and P (0) = 2 are selected.3

In Figure 10, we choose parameters As = 0.38,K0 = 0.4,K1 = 0.6,K2 = 0.8,K4 = 0.4, µ0 = 0.008, µp = 0.02, µh =4

0.012, µs = 0.018, µa = 0.008, δp = 0.45, δh = 0.25, δs = 0.2; δa = 0.3, p = 0.08, β = 0.03, β1 = 0.005, P0 = 1, c = 0.6, q =5

0.01, and K3 as shown in the figure. We can see that at lower levels of air pollution, the influence of K3 changes on the6

spread of viral respiratory diseases is more pronounced. An increase in K3 causes an increase in the peak in patients7

selected for hospitalization Ih, while decreasing the peak in Is, Ia.8

And we choose parameters As = 0.5,K0 = 0.2,K1 = 0.6,K2 = 0.8,K3 = 0.4, µ0 = 0.005, µp = 0.02, µh = 0.03, µs =9

0.04, µa = 0.02, δp = 0.25, δh = 0.35, δs = 0.2, δa = 0.45, p = 0.15, β = 0.003, β1 = 0.002, P0 = 1, c = 0.2, q = 0.01 in Figure10

11. The number of hospitalized patients Ih and the number of asymptomatic individuals who aren’t hospitalized Ia aren’t11

significantly impacted by the change in K4 in the event that the disease eventually goes extinct, regardless of whether air12

pollution levels are high or low. The peak of Is, however, is greatly raised by an increase in K4.13
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Figure 10: Contrasting the effects of K3 on people with viral respiratory infections in two models, where the dashed line

represents patients in model (1) and the solid line represents patients in model (2).
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Figure 11: Contrasting the effects of K4 on people with viral respiratory infections in two models, where the dashed line

represents patients in model (1) and the solid line represents patients in model (2).

6 Conclusion and discussion1

In order to study the effect of air pollution on the transmission of viral respiratory diseases in a heterogeneous2

population, this paper takes into account the sensitivity of individuals to air pollutants, their awareness of consultation,3

and the presence or absence of symptoms and classifies patients with allergic respiratory diseases caused by inhalation of4
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air pollutants and patients with respiratory viral infections (specifically, patients with consultation, symptomatic patients1

without consultation, and asymptomatic patients without consultation). When the level of air pollution is low and does2

not produce allergic reactions in people, only the effect of individual heterogeneity on the transmission dynamics of viral3

respiratory infections is taken into account when constructing the SIhIsIaS model. The differential equation describing4

the change in air pollutant concentration is added at higher levels of air pollution, and a SIpIhIsIaSP respiratory disease5

model is established to obtain the threshold R1 for the equilibrium state of the system. The effects of this threshold and6

pollutant inhalation on the kinetics of disease transmission are then examined.7

The basic reproduction number R0, the disease-free equilibrium E∗
0 , and the endemic equilibrium E∗

1 are all derived by8

studying the system (1). From the stability analysis results, we can deduce that the endemic equilibrium, which indicates9

that viral respiratory diseases are persistently prevalent in the population, is globally asymptotically stable when R0 > 1,10

and the disease-free equilibrium, which is where viral respiratory diseases are extinct, is globally asymptotically stable11

when R0 < 1.12

For system (2), it is demonstrated that when the threshold R1 < 1 and pollutant inhalation q = q1 are reached, an13

equilibrium E0 exists where both viral and allergic respiratory diseases are eliminated. If either R1 > 1, q = q1 or q < q114

or R1 > 1, q1 < q < q3 holds and the stability condition of boundary equilibrium is satisfied, allergic respiratory disease15

will persist and viral respiratory disease will disappear. The existence of the endemic equilibrium is complicated; under16

certain conditions, it can coexist with the boundary equilibria (E31 and E32) or exist alone. When q5 < q < q8, R1 < R∗∗
117

or q3 < q < q8, R1 > R∗∗
1 ,there is a unique endemic equilibrium E4. In the case of inhalation q5 < q < min{q3, q8} and18

R1 > R∗
1, E4 coexists with E31 and E32.19

Sensitivity analysis of system (1) reveals that the number of patients seen and the number of patients not seen have a20

relatively high positive correlation with the infection rate β1, the total number of patients not seen has a strong negative21

correlation with the cure rate (δh, δs, and δa), and and the number of patients seen and the number of patients not seen22

shows a positive and negative correlation with the proportion of patients seen K3, respectively. In other words, when the23

infection rate β1 increases, the number of patients seen and the number of patients not seen will increase; the higher the24

cure rate is, the lower the number of patients will be.25

According to sensitivity analysis of system (2), the number of patients has a strong positive correlation with the air26

pollutant inhalation rate q; the number of viral patients Iv has a strong positive correlation with the natural clearance27

rate of pollutants c; the number of Ip has a strong negative correlation with both the natural clearance rate c and the28

cure rate δp; the number of unattended patients has a strong negative correlation with the cure rate δp; and the number29

of unattended patients has a strong negative correlation with the cure rate δp.The number of unattended patients has a30

strong correlation with the parameters K0,K3, as well as the cure rates δh, δs.31

Numerical simulation allows us to observe an interesting phenomenon. Although higher levels of air pollution may32

trigger an epidemic of allergic respiratory disease, the increase in the proportion of susceptible individuals affected by air33

pollution at this time who become asymptomatic with respiratory viral infections (i.e., K2 decreases) does not have a34

significant effect on the spread of allergic respiratory disease and viral respiratory disease. The peak number of patients35

Is can rise as a result of a increase in the proportion of susceptible people not affected by air pollution who develop into36

symptomatic patients not seen (i.e., a increase in K4). At lower air pollution levels, no allergic respiratory disease occurs,37

and at this time, the proportion of symptomatic patients with viral respiratory disease decreases, causing the peak number38
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of symptomatic patients to increase with a weaker change than at higher air pollution levels. In conclusion, the proportion1

of Is increases regardless of air pollution level, leading to an increase in the peak number of symptomatic patients, with2

the change in the peak number of patients being less pronounced at lower levels of air pollution than at higher levels of3

air pollution.4

To sum up, the dynamic behavior of the system is more complex when the level of air pollution is high, and there are5

more equilibrium states, but due to the variation of pollutant inhalation, the disease-free equilibrium is only a more ideal6

state. Combined with the results of numerical simulation, a more realistic and feasible way to control the spread of viral7

respiratory diseases is to reduce the amount of pollutant inhalation, by wearing masks, reducing travel in bad weather,8

reducing pollutant emissions, and by increasing the natural clearance rate of air pollutants. In the case of low levels of air9

pollution, increasing the attendance rate, reducing the infection rate, and increasing the cure rate, can effectively inhibit10

the spread of viral respiratory diseases, such as by strengthening outpatient consultation, raising awareness of consultation,11

reducing contact with patients, improving medical care, and enhancing immunity.12
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