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BOUNDEDNESS THEOREMS AND FUNCTION SPACES OF DISCRETE FRACTIONAL
CALCULUS

SHU–YU YANG AND GUO–CHENG WU

ABSTRACT. This paper investigates the boundedness of discrete fractional calculus. A finite-dimensional
real vector space is considered and the p-norm of finite dimensions is used. By utilizing the Minkowski
inequality on an isolated time scale, the boundedness theorems of fractional sums and differences in both
nabla and delta types are provided. The h case is also discussed. If the step–size h tends to zero, the
result is consistent with the continuous case.

1 Introduction

The boundedness of operators is important in functional analysis. Kilbas [1] gave the classical fractional
integral’s boundedness theorem in the space Lp which consists of complex-valued Lebesgue measurable
functions f on [a,b] for which ∥ f∥Lp < ∞. The norm ∥ · ∥Lp is defined as

∥ f∥Lp =
(∫ b

a
| f (t)|p dt

)1/p
(1 ⩽ p < ∞)

and
∥ f∥∞ = ess sup

a⩽t⩽b
| f (t)| .

The boundedness of the R-L integral was derived as (see Lemma 2.1, pp. 72 in [1])

∥aIα
t f∥Lp ⩽

(b−a)α

Γ(α +1)
∥ f∥Lp

where α > 0 is the fractional order.
In view of this point, the boundedness theorem was also discussed for the general fractional calculus

in X p
c [2]. The space X p

c (a,b) is defined to consist of those complex-valued Lebesgue measurable
functions on [a,b] for which ∥ f∥X p

c
< ∞, with

∥ f∥X p
c
=
(∫ b

a
|tc f (t)|p dt

t

)1/p
(1 ⩽ p < ∞,c ∈ R)

and
∥ f∥X∞

c = ess sup
a⩽t⩽b

[|tc f (t)|] (p = ∞).
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BOUNDEDNESS THEOREMS AND FUNCTION SPACES OF DISCRETE FRACTIONAL CALCULUS 2

The general fractional integral is defined by

aIα,g
t f (t) =

1
Γ(α)

∫ t

a
(g(t)−g(s))α−1g′(s) f (s)ds,

where the kernel function g(t) is chosen according to the boundedness theorem (see Theorem 2.4 of
[2]).

It can be concluded that the fractional calculus is called to be well-defined if the boundedness
theorem can hold. Recently, the discrete fractional calculus (see Definition 5) is important for fractional
difference equations [3, 4]. However, the boundedness of the fractional sums and differences were not
provided yet. As a result, this paper tries to give the result and the function spaces.

2 Preliminaries

Suppose Na := {a,a+1, . . .} and (hN)a := {a,a+h, . . .}, h > 0, a ∈ R. For any ν ∈ R, the falling
and rising factorial functions are defined by [4]

tν =
Γ(t +1)

Γ(t +1−ν)
, t ∈ Nν ,

tν =
Γ(t +ν)

Γ(t)
, t ∈ N1,

and the h-falling factorial function is defined [5]

tν

h = hν
Γ( t

h +1)
Γ( t

h +1−ν)
, t ∈ (hN)

νh ,

where Γ denotes the famous Gamma function.
The following proposition of the falling factorial function is useful for the study of the paper.

Proposition 1. [6] Let a ∈ R,b ∈ Na,a < b and ν > 0. Then the following equation holds
0

∑
τ=a−b+1

(−τ +ν −1)ν−1 =
(b−a+ν −1)ν

ν
.

The forward and backward differences are defined as follows

∆ f (t) = f (t +1)− f (t), ∇ f (t) = f (t)− f (t −1).

If a function f : (hN)a → R, the differences are defined as

∆h f (t) =
f (t +h)− f (t)

h
, ∇h f (t) =

f (t)− f (t −h)
h

,

respectively.
More generally, a time scale T is defined to be any closed subset of R. We define the forward jump

operator σ : T→ T by [7]
σ(t) := inf{s ∈ T : s > t},

and the backward jump operator ρ : T→ T by [7]

ρ(t) := sup{s ∈ T : s < t}, t ∈ T.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

18 Jan 2024 01:27:57 PST
230730-WuGuoCheng Version 4 - Submitted to Rocky Mountain J. Math.
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Theorem 2. [8] (Holder inequality) Assume f and g : [a,b)→ R are rd-continuous functions.
(i) If a ∈ R , T= Na and b ∈ Na , then

b−1

∑
t=a

| f (t)g(t)|⩽

(
b−1

∑
t=a

| f (t)|p
) 1

p
(

b−1

∑
t=a

|g(t)|q
) 1

q

, t ∈ Na.

(ii) If a ∈ R , T= (hN)a and b ∈ (hN)a, then

b
h−1

∑
t= a

h

| f (th)g(th)|h ⩽

 b
h−1

∑
t= a

h

| f (th)|ph

 1
p
 b

h−1

∑
t= a

h

|g(th)|qh

 1
q

, t ∈ (hN)a .

where p > 1 and q = p/(p−1).

Theorem 3. [9] (Minkowski inequality) Let T = T1 ×T2 = [a,b)× [c,d) = {(x,y) : x ∈ [a,b) and
y ∈ [c,d)}. Assume f : T→ R is an rd-continuous function.
(i) If a,c ∈ R , T1 = Na, T2 = Nc, b ∈ Na and d ∈ Nc , then(

b

∑
x=a

∣∣∣∣∣ d

∑
y=c

f (x,y)

∣∣∣∣∣
p) 1

p

⩽
d

∑
y=c

(
b

∑
x=a

| f (x,y)|p
) 1

p

, x ∈ Na, y ∈ Nc.

(ii) If a,c ∈ R , T1 = (hN)a, T2 = (hN)c , b ∈ (hN)a and d ∈ (hN)c , then b
h−1

∑
x= a

h

∣∣∣∣∣∣
d
h−1

∑
y= c

h

f (xh,yh)h

∣∣∣∣∣∣
p

h


1
p

⩽

d
h−1

∑
y= c

h

 b
h−1

∑
x= a

h

| f (xh,yh)|p h

 1
p

h, x ∈ (hN)a , y ∈ (hN)c .

where p > 1 and q = p
p−1 .

Definition 4. [10] Let 1 ⩽ p ⩽ ∞ and 0 < a < b < ∞ . The space Lp(T) is defined to consist of those
complex-valued Lebesgue measurable functions. The following norms are defined on T.
(i) If T= Na and b ∈ Na , then

∥ f∥Lp =

(
b−1

∑
t=a

| f (t)|p
) 1

p

, f ∈ Lp, 1 ⩽ p < ∞.

(ii) If T= (hN)a and b ∈ (hN)a, then

∥ f∥Lp =

 b
h−1

∑
t= a

h

| f (th)|ph

 1
p

, f ∈ Lp, 1 ⩽ p < ∞

and

∥ f∥∞ = ess sup
a⩽t⩽b

| f (t)| , f ∈ Lp, p = ∞.
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BOUNDEDNESS THEOREMS AND FUNCTION SPACES OF DISCRETE FRACTIONAL CALCULUS 4

3 Boundedness theorem of fractional sums

3.1 Fractional sums of delta type

Definition 5. [4] Let f : Na → R and ν > 0 be given. Then the ν-th order delta fractional sum of f is
given by

∆
−ν
a f (t) =

1
Γ(ν)

t−ν

∑
s=a

(t −σ(s))ν−1 f (s), t ∈ Na+ν ,

where σ(s) = s+1 and a ∈ R is fixed.

Theorem 6. For ν > 0 and 1 ⩽ p < ∞, the delta fractional sum ∆−ν
a f is bounded in Lp(Ω1)

(1) ∥∆
−ν
a f∥Lp ⩽

(b−a+ν −1)ν

Γ(ν +1)
∥ f∥Lp ,

where Ω1 = {a,a+1, · · · ,b−1}.

For p = ∞, the delta fractional sum ∆−ν
a f is bounded in L∞

(2) ∥∆
−ν
a f∥∞ ⩽

(t −a)ν

Γ(ν +1)
∥ f∥∞.

Proof. According to the domain of the fractional sum ∆−ν
a f (t), let t ∈ {a+ν ,a+1+ν , · · · ,b−1+ν},

then

(3)

∥∆
−ν
a f∥Lp =

(
b−1+ν

∑
t=a+ν

∣∣∣∣∣t−ν

∑
s=a

(t −σ(s))ν−1

Γ(ν)
f (s)

∣∣∣∣∣
p) 1

p

=

(
b−1

∑
t=a

∣∣∣∣ t

∑
s=a

(t +ν −σ(s))ν−1

Γ(ν)
f (s)

∣∣∣∣p
) 1

p

.

Replace the variable with τ = s− t

∥∆
−ν
a f∥Lp =

(
b−1

∑
t=a

∣∣∣∣∣ 0

∑
τ=a−t

(−τ +ν −1)ν−1

Γ(ν)
f (t + τ)

∣∣∣∣∣
p) 1

p

.

Then, using the Minkowski inequality of Theorem 3, we give

(4)

∥∆
−ν
a f∥Lp ⩽

0

∑
τ=a−b+1

(
b−1

∑
t=a−τ

∣∣∣∣(−τ +ν −1)ν−1

Γ(ν)
f (t + τ)

∣∣∣∣p
) 1

p

=
0

∑
τ=a−b+1

(−τ +ν −1)ν−1

Γ(ν)

(
b−1

∑
t=a−τ

| f (t + τ)|p
) 1

p

.
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BOUNDEDNESS THEOREMS AND FUNCTION SPACES OF DISCRETE FRACTIONAL CALCULUS 5

By interchange of variables again, we obtain

(5)

∥∆
−ν
a f∥Lp ⩽

0

∑
τ=a−b+1

(−τ +ν −1)ν−1

Γ(ν)

(
b−1+τ

∑
s=a

| f (s)|p
) 1

p

⩽
0

∑
τ=a−b+1

(−τ +ν −1)ν−1

Γ(ν)

(
b−1

∑
s=a

| f (s)|p
) 1

p

.

From Proposition 1, we arrive at

∥∆
−ν
a f∥Lp ≤

(b−a+ν −1)ν

Γ(ν +1)
∥ f∥Lp .

For p = ∞,

(6)

∣∣∆−ν
a f (t)

∣∣= ∣∣∣∣∣t−ν

∑
s=a

(t −σ(s))ν−1

Γ(ν)
f (s)

∣∣∣∣∣
⩽

t−ν

∑
s=a

(t −σ(s))ν−1

Γ(ν)
| f (s)|

⩽
t−ν

∑
s=a

(t −σ(s))ν−1

Γ(ν)
∥ f∥∞.

Due to Proposition 1,

(7)
t−ν

∑
s=a

(t −σ(s))ν−1

Γ(ν)
=

(t −a)ν

Γ(ν +1)
,

consequently, we give

∥∆
−ν
a f∥∞ ⩽

(t −a)ν

Γ(ν +1)
∥ f∥∞, t ∈ Na+ν

from which the proof is completed. □

Since the proof of the case p = ∞ is relatively easy, we only discuss the case 1 ⩽ p < ∞ in the rest
of this study.

Goodrich studied the continuity of solutions to discrete fractional initial value problems [12] where
the norm is the absolute value | · |. We investigate the boundedness theorems with the norm ∥ · ∥Lp .
They are clearly different. A concept of lp solution was given in [13] and the norm ∥ · ∥Lp should be
used. In addition, we can compare two norms’ roles through the solutions’ dependence.

Suppose there exists a unique solution of the initial value problem of the fractional difference
equation

(8)
{ C∆ν

a x(t) = F(x(t +ν −1), t +ν −1), t ∈ Na+1−ν , 0 < ν ⩽ 1,
x(a) =C.

F : R×Na → R, F(x, t) is continuous with respect to t and x. It satisfies the Lipschitz condition

∥F(x, t)−F(y, t)∥Lp ≤ L∥x− y∥Lp .
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BOUNDEDNESS THEOREMS AND FUNCTION SPACES OF DISCRETE FRACTIONAL CALCULUS 6

The solution satisfies the fractional sum equation

x(t) = x(a)+∆
−ν

a+1−ν
F(x(t +ν −1), t +ν −1), t ∈ Na+1.

Considering a minor change in x(a), we have a new initial value x̃(a) and

x̃(t) = x̃(a)+∆
−ν

a+1−ν
F(x̃(t +ν −1), t +ν −1), t ∈ Na+1.

The differences between the two solutions from a to b−1 are estimated by

(9) ∥x(t)− x̃(t)∥Lp ⩽ ∥x(a)− x̃(a)∥Lp +∥∆
−ν

a+1−ν
(F(x, t +ν −1)−F(x̃, t +ν −1))∥Lp .

According to Theorem 6 and the Lipschitz condition, we give

∥x(t)− x̃(t)∥Lp ⩽ ∥x(a)− x̃(a)∥Lp +KL∥x(t)− x̃(t)∥Lp

where K = (b−a+ν−1)ν

Γ(ν+1) and 0 < KL < 1. As a result, we arrive at the global estimation from a to b−1

(10) ∥x(t)− x̃(t)∥Lp =

(
b−1

∑
t=a

|x(t)− x̃(t)|p
) 1

p

≤
∥x(a)− x̃(a)∥Lp

1−KL
, t ∈ Na+1.

On the other hand, if we use the absolute value norm, we have

(11) |x(t)− x̃(t)|⩽ |x(a)− x̃(a)|+L∆
−ν

a+1−ν
|x(t +ν −1)− x̃(t +ν −1)|.

With the delay discrete–time Mittag-Leffler function

eν(λ ,(t −σ(a))(ν)) :=
∞

∑
k=0

λ k(t −a+ kν − k)(kν)

Γ(kν +1)
, 0 < ν ≤ 1, t ∈ Na+1,

we give the following Gronwall inequality for the delayed fractional difference equation (8).

Lemma 7. [14] Let η and L be two non-negative constants. If u : Na → R satisfies

u(t)⩽ η +L∆
−ν

a+1−ν
u(t +ν −1), t ∈ Na+1,

then u(t) is bounded by

u(t)⩽ ηeν(L,(t −σ(a))(ν)).

As a result, we obtain

|x(t)− x̃(t)|⩽ |x(a)− x̃(a)|eν(L,(t −σ(a))(ν)), t ∈ Na+1

which is a point-wise estimation result for each time t. It can be concluded that they are different and
both of the two norms are useful in real–world applications of fractional difference equations.
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BOUNDEDNESS THEOREMS AND FUNCTION SPACES OF DISCRETE FRACTIONAL CALCULUS 7

3.2 Fractional sums of nabla type

Definition 8. [4, 11] Let ν > 0 be given. Then the ν-th order nabla fractional sum of f is given by

∇
−ν
a f (t) =

1
Γ(v)

t

∑
s=a+1

(t −ρ(s))ν−1 f (s), t ∈ Na+1.

Theorem 9. For ν > 0, 1 ⩽ p < ∞, the nabla fractional sum ∇−ν
a f is bounded in Lp(Ω2)

∥∇
−ν
a f∥Lp ⩽

(b−a)ν

Γ(ν +1)
∥ f∥Lp ,

where Ω2 = {a+1,a+2, · · · ,b}.

Proof. Use a change of variable τ = s− t, then

∥∇
−ν
a f∥Lp =

(
b

∑
t=a+1

∣∣∣∣∣ t

∑
s=a+1

(t −ρ(s))ν−1

Γ(ν)
f (s)

∣∣∣∣∣
p) 1

p

=

(
b

∑
t=a+1

∣∣∣∣∣ 0

∑
τ=a+1−t

(−τ +1)ν−1

Γ(ν)
f (t + τ)

∣∣∣∣∣
p) 1

p

.

By using of the Minkowski inequality,

∥∇
−ν
a f∥Lp ⩽

0

∑
τ=a+1−b

(
b

∑
t=a+1−τ

∣∣∣∣∣(−τ +1)ν−1

Γ(ν)
f (t + τ)

∣∣∣∣∣
p) 1

p

=
0

∑
τ=a+1−b

(−τ +1)ν−1

Γ(ν)

(
b

∑
t=a+1−τ

| f (t + τ)|p
) 1

p

.

With s = t + τ , we have

∥∇
−ν
a f∥Lp ⩽

0

∑
τ=a+1−b

(−τ +1)ν−1

Γ(ν)

(
b+τ

∑
s=a+1

| f (s)|p
) 1

p

⩽
0

∑
τ=a+1−b

(−τ +1)ν−1

Γ(ν)

(
b

∑
s=a+1

| f (s)|p
) 1

p

=
(b−a)ν

Γ(ν +1)
∥ f∥Lp ,

where ∑
0
τ=a+1−b

(−τ+1)ν−1

Γ(ν) is a fractional sum and its result reads

0

∑
τ=a+1−b

(−τ +1)ν−1

Γ(ν)
=

(b−a)ν

Γ(ν +1)
.
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BOUNDEDNESS THEOREMS AND FUNCTION SPACES OF DISCRETE FRACTIONAL CALCULUS 8

As a result,

∥∇
−ν
a f∥Lp ⩽

(b−a)ν

Γ(ν +1)
∥ f∥Lp ,

from which the proof is completed. □

4 Boundedness theorem of fractional differences

Let us revisit the definitions of the fractional differences.

Definition 10. [4] Let f : Na → R, ν > 0 and n−1 < ν ⩽ n. The ν-th order R-L difference of f is
defined by

∆
ν
a f (t) = ∆

n
∆
−(n−ν)
a x(t)

=
1

Γ(−ν)

t+ν

∑
s=a

(t −σ(s))−ν−1x(s), t ∈ Na+n−ν .

Definition 11. [4] Let f : Na → R, ν > 0 and n−1 < ν ⩽ n. The ν-th order Caputo difference of f is
defined as

C
∆

ν
a f (t) = ∆

−(n−ν)
a ∆

n f (t)

=
1

Γ(n−ν)

t−(n−ν)

∑
s=a

(t −σ(s))n−ν−1
∆

n f (s), t ∈ Na+n−ν .

Theorem 12. For n−1 < ν ⩽ n and 1 ⩽ p < ∞, the R-L difference ∆ν
a f is bounded in Lp(Ω3)

∥∆
ν
a f∥Lp ⩽

(b−a−ν −1)−ν

Γ(−ν +1)
∥ f∥Lp ,

where Ω3 = {a,a+1, . . . ,b−1−n}.

Proof. Similarly, the R-L difference can be rewritten as

∥∆
ν
a f∥Lp =

(
b−1−ν

∑
t=a+n−ν

∣∣∣∣∣t+ν

∑
s=a

(t +n−ν −σ(s))−ν−1

Γ(−ν)
f (s)

∣∣∣∣∣
p) 1

p

=

(
b−1−n

∑
t=a

∣∣∣∣∣t+n

∑
s=a

(t +n−ν −σ(s))−ν−1

Γ(−ν)
f (s)

∣∣∣∣∣
p) 1

p

=

(
b−1−n

∑
t=a

∣∣∣∣∣ n

∑
τ=a−t

(−τ +n−ν −1)−ν−1

Γ(−ν)
f (t + τ)

∣∣∣∣∣
p) 1

p

.
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The Minkowski inequality is employed to give

∥∆
ν
a f∥Lp ⩽

0

∑
τ=a−b+1+n

(
b−1−n

∑
t=a−τ

∣∣∣∣(−τ +n−ν −1)−ν−1

Γ(−ν)
f (t + τ)

∣∣∣∣p
) 1

p

+

n

∑
τ=1

(
b−1−n

∑
t=a

∣∣∣∣(−τ +n−ν −1)−ν−1

Γ(−ν)
f (t + τ)

∣∣∣∣p
) 1

p

=
0

∑
τ=a−b+1+n

(−τ +n−ν −1)−ν−1

Γ(−ν)

(
b−1−n

∑
t=a−τ

| f (t + τ)|p
) 1

p

+

n

∑
τ=1

(−τ +n−ν −1)−ν−1

Γ(−ν)

(
b−1−n

∑
t=a

| f (t + τ)|p
) 1

p

.

By interchange of variables, it can be presented as

∥∆
ν
a f∥Lp ⩽

0

∑
τ=a−b+1+n

(−τ +n−ν −1)−ν−1

Γ(−ν)

(
b−1−n+τ

∑
s=a

| f (s)|p
) 1

p

+

n

∑
τ=1

(−τ +n−ν −1)−ν−1

Γ(−ν)

(
b−1−n+τ

∑
s=a+τ

| f (s)|p
) 1

p

⩽
0

∑
τ=a−b+1+n

(−τ +n−ν −1)−ν−1

Γ(−ν)

(
b−1−n

∑
s=a

| f (s)|p
) 1

p

+

n

∑
τ=1

(−τ +n−ν −1)−ν−1

Γ(−ν)

(
b−1

∑
s=a

| f (s)|p
) 1

p

⩽
n

∑
τ=a−b+1+n

(−τ +n−ν −1)−ν−1

Γ(−ν)

(
b−1

∑
s=a

| f (s)|p
) 1

p

=
(b−a−ν −1)−ν

Γ(−ν +1)
∥ f∥Lp ,

the proof is completed. □

Theorem 13. For n−1 < ν ⩽ n and 1 ⩽ p < ∞, the Caputo difference C∆ν
a f is bounded in Lp(Ω3)

∥C
∆

ν
a f∥Lp ⩽

(b−a+n−ν −1)n−ν

Γ(n−ν +1)
∥∆

n f∥Lp .
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5 Boundedness theorem of h-discrete fractional calculus

Definition 14. [5, 15] Let f : (hN)a → R and ν > 0 be given. Then the ν-th order h sum of f is given
by

h∆
−ν
a f (t) =

h
Γ(ν)

t
h−ν

∑
s= a

h

(t −σ(sh))ν−1
h f (sh), σ(sh) = (s+1)h, t ∈ (hN)a+νh .

Definition 15. [5, 15] Let f : (hN)a → R and n−1 < ν ⩽ n. Then the ν-th order R-L h-difference of
f is defined by

h∆
ν
a f (t) =

h
Γ(−ν)

t
h+ν

∑
s= a

h

(t −σ(sh))−ν−1
h f (sh), σ(sh) = (s+1)h, t ∈ (hN)a+(n−ν)h .

Definition 16. [5, 15] Let f : (hN)a → R and n−1 < ν ⩽ n. Then the ν-th order Caputo h-difference
of f is defined by

C
h ∆

ν
a f (t) =

h
Γ(n−ν)

t
h−(n−ν)

∑
s= a

h

(t −σ(sh))n−ν−1
h ∆

n
h f (sh), σ(sh) = (s+1)h, t ∈ (hN)a+(n−ν)h .

We use the same idea for boundedness of the discrete fractional calculus on the isolate time scale
Na. So we extend it to the case of (hN)a directly and give the following theorems without proof.

Theorem 17. For 0 < ν and 1 ⩽ p < ∞, the ν-th order h-sum h∆−ν
a f is bounded in Lp(Ω4)

∥h∆
−ν
a f∥Lp ⩽

(b−a+νh−h)ν

h
Γ(ν +1)

∥ f∥Lp ,

where Ω4 = {a,a+h, . . . ,b−h}.

Theorem 18. For n−1 < ν ⩽ n, 1 ⩽ p < ∞, the R-L h-difference h∆ν
a f is bounded in Lp(Ω5)

∥h∆
ν
a f∥Lp ⩽

(b−a−νh−h)−ν

h
Γ(−ν +1)

∥ f∥Lp ,

where Ω5 = {a,a+h, . . . ,b−h−nh}.

Theorem 19. For n−1 < ν ⩽ n and 1 ⩽ p < ∞, the Caputo h-difference C
h ∆ν

a f is bounded in Lp(Ω5)

∥C
h ∆

ν
a f∥Lp ⩽

(b−a+(n−ν)h−h)n−ν

h
Γ(n−ν +1)

∥∆
n
h f∥Lp .

6 Boundedness theorem of the continuous fractional calculus

The boundedness results can be reduced to that of the continuous fractional calculus (see Lemma 2.1
of [1]).

Theorem 20. For n−1 < ν ⩽ n, h → 0 and 1 ⩽ p < ∞, the R-L integral is bounded in Lp(Ω6)

∥aIν
t f∥Lp ⩽

(b−a)ν

Γ(ν +1)
∥ f∥Lp .
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Proof. We have
lim
h→0

h∆
−ν
a f (t) = aIν

t f (t)

and

∥aIν
t f∥Lp ⩽ lim

h→0

(b−a+νh−h)ν

h
Γ(ν +1)

∥ f∥Lp .

The approximation formula of the Beta function holds

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

∼ Γ(x)y−x,

when y is large and x is fixed.
The approximation formula can be rewritten as

Γ(x+ y)
Γ(y)

∼ yx,

therefore

lim
h→0

(b−a+νh−h)ν

h = lim
h→0

hν
Γ(b−a+νh−h

h +1)

Γ(b−a+νh−h
h +1−ν)

= lim
h→0

hν(
b−a+νh−h

h
+1−ν)ν

=(b−a)ν .

As a result, we obtain

∥aIν
t f∥Lp ⩽

(b−a)ν

Γ(ν +1)
∥ f∥Lp ,

from which the proof is completed. □

Theorem 21. For n−1 < ν ⩽ n and 1 ⩽ p < ∞, the Caputo derivative C
a Dν

t f is bounded in Lp(Ω6)

∥C
a Dν

t f∥Lp ⩽
(b−a)n−ν

Γ(n−ν +1)
∥ f (n)∥Lp .

Conclusion

The boundedness of discrete fractional calculus is given in this paper. It is discussed in space Lp(T)
on an isolated time scale which unifies both the continuous and discrete–time cases: For h = 1, the
results can be reduced to the standard discrete fractional calculus; For h tends to zero, the boundedness
theorem meets that of the fractional calculus [1] in Lp[a,b] space. The discrete fractional calculus’s
definitions are provided with the function space Lp(T) in which the bounded theorems can hold. In
addition, we use the boundedness theorem in dependence of solutions on initial values. These results
are useful for numerical analysis and stability theory of fractional difference equations. We will
consider these possible applications in future work.
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