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Abstract. In this article, by defining trace of Edwards curves Ea,d : x2 + y2 = a2(1 + dx2y2)
over finite field Fp, we establish an interplay between trace of Ea,d and trace of a family of elliptic

curves E : y2 = x3 − 1 + a4d

a2 x2 + dx. Moreover, we express number of points on the Edwards

curves Ea,d in terms of the Gaussian hypergeometric series 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ 1 − a4d

)
, where ϵp

and ϕp are trivial and quadratic characters over Fp, respectively. As a corollary, we express Hasse-
Weil L-function at s = 1 i.e. L(E, 1) associated to E involving the Gaussian hypergeometric
series. Analogous to previous findings, for twisted Edwards curve E′

a,d : ax2 + y2 = 1 + dx2y2

and the family of elliptic curves E′ : y2 = x(x − 1)
(

x − a

d

)
, we also obtain similar results.

1. Introduction

One of the focus of this article is to express the number of points on the Edwards curves over
a finite field in terms of Gaussian hypergeometric series. Another focus is to establish some
relations between trace of Edwards curves and traces of certain elliptic curves. After introducing
by H.M. Edwards in 2007, Edwards models of elliptic curves are gaining attention because of
having simpler group law and has been used in many cryptographic applications. As our target
is to obtain a new connection between Edwards curve and certain elliptic curves, here we start
with an elementary definition of elliptic curves.

An elliptic curve C (defined over field K) is a smooth projective curve of genus one, with a
point at infinity O. C can be described by a global minimal Weierstrass equation of the form,

C : y2 + a1x+ a3xy + a5y = x3 + a2x
2 + a4x+ a6,

where ai are elements in the field K. Counting number of rational points on algebraic varieties
has been a long standing fascination of mathematicians as early as the Gaussian era [SZ08]. For
example, evaluation of the Hasse-Weil L-function at s = 1 can be simply reduced to a point
counting problem and it provides a measure of the density of rational points of an elliptic curve
[Ste68]. We have traced a long and arduous path from there, and in the recent times with the
advent of fast algorithms for point counting, such as Schoof-Elkies-Atkins algorithm [Sch95], the
study of evaluation of L-function has become computationally tractable.

We were drawn towards calculating the number of rational points through a particular
characterization in terms of a particular Gaussian hypergeometric series. A rigorous mention
of this topic can be found in the literature as early as 1656 (Arithmetica Infinitorum) [GG05,
Chapter 2]. In the recent times, Greene elucidates the Gaussian hypergeometric series as a power
series analogue over any finite field [Gre87]. An innovative way was found by Ono in [Ono98] to
count number of points on an elliptic curve through use of the Gaussian hypergeometric series.
Following similar motivation and using several identities from [Gre87], Sadek et. al. in [SES16]
were able to count number of rational points on Edwards curves Ea,1 : x2 + y2 = a2(1 + x2y2),
and twisted Edwards curves E′

a,d : ax2 + y2 = 1 + dx2y2 over Fp.

In this article, we follow similar rationale and extend this result for a generic case of Edwards
curves Ea,d : x2 + y2 = a2(1 +dx2y2) in Proposition 3.2. After counting the number of rational
points on the Edwards curves family, we connect it with the number of rational points of certain
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family of elliptic curves over Fp. In section 3 we provide two formulas which illustrates the
relationship between the trace of certain elliptic curve and trace of an Edwards curve over Fp.
Typically, isogenies of elliptic curves are used to estimate the number of rational points on
alternate parametrization of elliptic curves. We use a very different technique i.e. William’s
transformation formulas [Wil70] to find a closed-form expression to estimate the number of
rational points.

2. Main Results

We start by defining the following two families of elliptic curves which are the main objects of
study in this article.

For two non-zero integers a and d, we denote the following family of Weierstrass equations
over Q as Type-I.

E : y2 = x3 − 1 + a4d

a2 x2 + dx. (Type-I)

Correspondingly, for a and d an Edwards curve [Edw07] over Q characterized by the following
equation.

Ea,d : x2 + y2 = a2(1 + dx2y2). (1)
Moreover, for a prime p, the mod p reduction of E (respectively, Ea,d) is denoted by Ep

(respectively, Ea,d,p). In this article, for Edwards curves, we define;
tr(Ea,d,p) = p+ 2 − #Ea,d(Fp).

Now we state the main result as follows.

Theorem 2.1. Let a, d be non-zero integers and E be an elliptic curve defined as above Type-I.
Let p be an odd prime such that,

(a) E and Ea,d have good reduction at p.
(b) a, d ̸≡ 0 (mod p) and a4d ̸≡ 1 (mod p).

Then, we have

tr(Ep) =
(
d

p

)
tr(Ea,d,p) − 1 and tr(Ea,d,p) = ϕp(d) − p 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ 1 − a4d

)
,

where ϵp and ϕp are trivial and quadratic character over Fp, respectively. Here 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ x)
denotes the Gaussian hypergeometric series defined in (5), tr(·) denotes the trace of the curve,
and

(
.

p

)
is the Legendre symbol.

Remark 1. Here we note that, finding examples for Type-I elliptic curves is a little difficult.
If we consider E : 900y2 = 900x3 − 4860001x2 + 5400x, it satisfies both relations obtained in
Theorem 2.1, for only four primes out of the first hundred primes.

Remark 2. [Dam12, Section 4.3] We note that there exists a bi-rational equivalency between
Edwards curve and elliptic curves in Weierstrass form. The corresponding Weierstrass equation
for Ea,d is,

EW,a,d : y2 = x3 + 2(a4d+ 1)x2 + (a4d− 1)2
x.

Next, for two chosen non-zero integers a and d, we frame the following equation in Legendre
form as Type-II,

E′ : y2 = x(x− 1)
(
x− a

d

)
. (Type-II)
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Correspondingly, for a and d, we also define a twisted Edwards curve [BBJ+08] over Q charac-
terized by the following equation

E′
a,d : ax2 + y2 = 1 + dx2y2. (2)

Similarly as above, for a prime p, the mod p reduction of E′ (respectively, E′
a,d) is denoted by

E′
p (respectively, E′

a,d,p). The evaluation of number of rational points of E′ over Fp in terms of
the hypergeometric series can be derived as a special case of [Ono04, Theorem 11.6] and [Gre87,
Theorem 3.6]. This will again reappear in the final expression of the following theorem, though
we use a different method to obtain it.

Theorem 2.2. Let a, d be non-zero integers and E′ be an elliptic curve defined as above Type-II.
Let p be an odd prime such that,

(a) E′ and E′
a,d have good reduction at p,

(b) a, d ̸≡ 0 (mod p).

Then, we have

tr(E′
p) =

(
d

p

)
tr(E′

a,d,p) −
(
a

p

)
.

Remark 3. We found a typical example for Type-II elliptic curve, namely, E : 4y2 =
4x3 − 21x2 + 17x. We note that, E satisfies the above relation for 74 primes, if we consider the
first hundred primes.

Remark 4. [BBJ+08, Theorem 3.2] It is interesting to mention that there exists a bi-rational
equivalency (a well defined map ψ) between twisted Edwards curve and elliptic curves in Weier-
strass form. The corresponding Weierstrass equation for E′

a,d is,

E′
W,a,d : y2 = x3 − 1

4

(
1
3

(
a+ d

2

)2
+ ad

)
x+ a+ d

27

(
ad− 1

2

(
a− d

4

)2)
. (3)

Corollary 2.3. For the aforementioned elliptic curves E and E′, the Hasse-Weil L – functions
at s = 1 can be expressed like;

L(E′, 1) =
∏
p

[
1 + ϕp(−ad) 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ a−1d

)
+ ϕp(a)

p

]−1

and
L(E, 1) =

∏
p

[
p+ 1
p

+ ϕp(d) 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ 1 − a4d

)]−1
,

where ϵp, ϕp and 2F1 (•) as mentioned in Theorem 2.1.

Remark 5. In [BK13], Barman and Kalita studied the relation between traces of certain elliptic
curves and certain hypergeometric series. In that article, they considered those elliptic curves in
terms of the Weierstrass model with some specific coefficients. However, their coefficients does
not include the cases we are considering in this article as Type-I and Type-II.

3. Preliminaries

In this section, we begin by introducing trace of a given elliptic curve which is one of the
important objects in this article. Let EG be an elliptic curve defined over Q, characterized by
the global minimal Weierstrass equation,

EG : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (4)

and ∆ be the discriminant of EG. For each prime p, we denote EG,p as the reduction modulo p
of EG and we have the trace, tr(EG,p), as

tr(EG,p) = p+ 1 − #EG,p(Fp).
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If p|∆, then EG,p has a singularity and,

tr(EG,p) =


0, for the case of a cusp,
1, for the case of a split node,
−1, for the case of a non-split node.

If p ∤ ∆, then EG has good reduction at p and we have, tr(EG,p) ≤ 2√
p, by the Hasse’s theorem

[Sil09].
Since we intend to connect number of points of Edwards curve with hypergeometric series,

now, we briefly discuss hypergeometric series which will be useful to proceed towards the proof
of the main results. Following [Gre87] and [SES16], the Gaussian hypergeometric series can be
treated as a power series analogue in a finite field. For that purpose, choose p is an odd prime
and A, B are two characters over Fp. Then we define the Jacobi sum as,

J(A,B) =
∑

x∈Fp

A(x)B(1 − x) and define the symbol
(
A
B

)
= B(−1)

p
J

(
A,

1
B

)
.

Further, we assume that χ is a multiplicative character over Fp. Then the Gaussian hypergeo-
metric series for characters Ai and Bi is defined as

n+1Fn

(
A0 A1 ... An

B1 ... Bn

∣∣∣∣ x) = p

p− 1
∑

χ

(
A0χ
χ

)(
A1χ
B1χ

)
...

(
Anχ
Bnχ

)
χ(x). (5)

Now, we turn our attention towards counting points on Edwards curves in terms of the Gaussian
hypergeometric series in Proposition 3.2. For doing so, we collect some identities which are
available in literature as follows.

Lemma 3.0.1. [Gre87] For any character Ap, we have

Āp(1 − x) = δp(x) + p

p− 1
∑
χp

χp(x)
(
Apχp

χp

)
, where δp =

{
1, if x = 0
0, otherwise

,

and the sum is over all multiplicative characters χp on Fp.

Lemma 3.0.2. [SES16, Lemma 4.1] If χp is a multiplicative character and ϕp is a quadratic
character over Fp, then∑

y∈Fp

χp(y2)ϕp(1 − y2) = pϕp(−1)
[(
ϕpχp

χp

)
+
(
χp

ϕpχp

)]
.

We prove an analogue of the above lemma in the following proposition.

Proposition 3.1. If χp is a multiplicative character and ϕp is a quadratic character over Fp,
then ∑

z∈Fp

χp(z2)ϕp(a2 − z2) = pϕp(−1)χp(a2)
[(
ϕpχp

χp

)
+
(
χp

ϕpχp

)]
.

Proof. In Lemma 3.0.2 we substitute y = z

a
, and the proof follows. □

Lemma 3.1.1. [Gre87, Corollary 3.16(ii)] If ϕp and ϵp are quadratic and trivial characters
respectively over Fp, then

2F1

(
ϕp ϵp

ϕp

∣∣∣∣ a4d

)
= −ϕp(−1)

p

[
ϕp(d−1) + 1

]
.

Now, we mention a functional property from [Gre87] of the Gaussian hypergeometric series

2F1

(
ϕp ϕp

ϵp

∣∣∣∣ x).
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Lemma 3.1.2. [Gre87, Theorem 4.4 (i)] If ϕp and ϵp are quadratic and trivial characters
respectively over Fp then,

2F1

(
ϕp ϕp

ϵp

∣∣∣∣ x) = ϕp(−1) 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ 1 − x

)
.

Now, we will count the number of points on Edwards curves Ea,d,p through the Gaussian
hypergeometric series using the following proposition.

Proposition 3.2. Suppose Ea,d is an Edwards curve as mentioned in (1). Let p be a prime
number which satisfies the conditions as in Theorem 2.1. If ϕp and ϵp are quadratic and trivial
characters respectively over Fp then,

tr(Ea,d,p) = ϕp(d−1) − p 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ 1 − a4d

)
.

Proof. We start by observing that,

Ea,d,p : x2 = y2 − a2

da2y2 − 1 .

For counting the number of points of Ea,d modulo p, i.e., #Ea,d,p, we invoke quadratic character
ϕp as follows.

#Ea,d,p = 2 + p+
∑

y∈Fp\{(a
√

d)−1}

ϕp

(
y2 − a2

da2y2 − 1

)

= 2 + p+
∑

y

ϕp(a2 − y2)ϕ̄p(1 − da2y2)

= 3 + p+
∑

y

ϕp(a2 − y2)

 p

p− 1
∑
χp

χp(a2dy2)
(
ϕpχp

χp

) (Lemma 3.0.1)

= 3 + p+ p

p− 1
∑
χp

χp(a2d)
(
ϕpχp

χp

)(∑
y

χp(y2)ϕp(a2 − y2)
)

= 3 + p+ p

p− 1
∑
χp

χp(a2d)
(
ϕpχp

χp

)(
pϕp(−1)χp(a2)

[(
ϕpχp

χp

)
+
(
χp

ϕpχp

)])
(Prop. 3.1)

= 3 + p+ pϕp(−1)

 p

p− 1
∑
χp

(
ϕpχp

χp

)[(
ϕpχp

χp

)
+
(
χp

ϕpχp

)]
χp(a4d)


= 3 + p+ pϕp(−1)

[
2F1

(
ϕp ϕp

ϵp

∣∣∣∣ a4d

)
+ 2F1

(
ϕp ϵp

ϕp

∣∣∣∣ a4d

)]
= 2 + p− ϕp(d−1) + p 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ 1 − a4d

)
(Lemma 3.1.1 and Lemma 3.1.2)

□

After taking d = 1 in the above proposition, we conclude the following corollary which was
proved in [SES16, Theorem 3.2].

Corollary 3.3. Suppose Ea,1 = Ea,d=1 is an Edwards curve as mentioned in (1). Let p be a
prime number which satisfies the conditions as in Theorem 2.1. If ϕp and ϵp are quadratic and
trivial characters respectively over Fp then,

tr(Ea,1,p) = 1 − p 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ 1 − a4
)
.
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The following lemma connects the number of points on a twisted Edwards curve modulo a
prime and hypergeometric series.

Lemma 3.3.1. [SES16, Theorem 4.2] Suppose E′
a,d is an Edwards curve as mentioned in (2).

Let p be a prime number which satisfies the conditions as in Theorem 2.2. If ϕp and ϵp are
quadratic and trivial characters over Fp, then

tr(E′
a,d,p) = ϕp(d) − pϕp(−a)2F1

(
ϕp ϕp

ϵp

∣∣∣∣ a−1d

)
.

Till now, we have witnessed connection between number of points on Edwards curves and
hypergeometric series. For proving main results, we have to connect number of Edwards curve
with trace of certain families of elliptic curves. One of the main focus of this article is to observe
number of points on certain curves through the Williams transformation formula.

For that purpose, Williams transformation formula will be used as a tool in Propositions 4.1
and 5.1. Prior to that, we note Williams transformation formula as follows.

Definition 1. (Williams Transformation Formula) [Wil70] Let F be any complex valued periodic
function with period p. For any integer x,

p−1∑
x=0

F(x) =
p−1∑
x=0

F(x2) −
p−1∑
x=0

(
x

p

)
F(x), (6)

where
(
.

p

)
is the Legendre symbol.

Formula (6) was used by Williams in [Wil79] to derive the following,
p−1∑
x=0

F
(
a∗x2 + bx+ c

Ax2 +Bx+ C

)
=

p−1∑
x=0

F(x) +
p−1∑
x=0

(
Dx2 + ∆x+ d∗

p

)
F(x) − F

(
a∗

A

)
, (7)

where a∗, b, c, A,B,C are integers and
D = B2 − 4AC, ∆ = 4a∗C − 2bB + 4cA, d∗ = b2 − 4a∗c,

satisfying
∆2 − 4Dd∗ ̸≡ 0 (mod p) and Ax2 +Bx+ C ̸≡ 0 (mod p). (8)

We know Legendre symbol is a complex valued function defined over integers and is also a
periodic function on Fp with period p. Hence, we can consider F in (7) as the Legendre symbol
and get,

p−1∑
x=0

 a∗x2+bx+c
Ax2+Bx+C

p

 =
p−1∑
x=0

(
x

p

)
+

p−1∑
x=0

(
Dx2 + ∆x+ d∗

p

)(
x

p

)
−
(

a∗

A

p

)
. (9)

Next, we note that Legendre symbol is a multiplicative function and it satisfies
p−1∑
x=0

(
x

p

)
= 0.

Using this, we can manipulate (9) to derive,
p−1∑
x=0

 a∗x2+bx+c
Ax2+Bx+C

p

 =
(
D

p

) p−1∑
x=0

(
x3 + ∆

Dx
2 + d∗

D x

p

)
−
(
a∗A

p

)
. (10)

4. Proof of Theorem 2.1

We prove the theorem through the following proposition.
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Proposition 4.1. Suppose E is an elliptic curve as mentioned in Type-I. Also assume conditions
as in Theorem 2.1. Then, the tr(Ep) satisfies the following relation,

tr(Ep) =
(
d

p

)
tr(Ea,d,p) − 1,

where Ea,d as mentioned in (1).

Proof. We consider the mod p reduction of the Edwards curve in (1) as,
Ea,d,p : x2 + y2 = a2(1 + dx2y2),

which can be re-written as,

y2 = x2 − a2

a2dx2 − 1 ,

where, a2dx2 − 1 ̸≡ 0 (mod p) (this condition is equivalent to equation (8)). We also consider the
mod p reduction of Type-I elliptic curves characterized by the following equation in Weierstrass
form.

E : y2 = x3 − 1 + a4d

a2 x2 + dx.

Now, using equation (10), we will relate the aforementioned mod p reduction of the Edwards
curves and elliptic curves of Type-I. In equation (10) we set,

a∗ = 1; b = 0; c = −a2 and A = a2d; B = 0; C = −1.
Now, we compute,

D = 4a2d; ∆ = −4(1 + a4d); d∗ = 4a2

and
∆2 − 4Dd∗ = (4(a4d− 1))2 ̸≡ 0 (mod p).

An important aspect to note here is that the non-zero integers a and d are chosen so that the
Type-I family of curves is non-singular. Also, p is chosen under the conditions mentioned in
Theorem 2.1. Substituting these values in (10), we have,

p−1∑
x=0

 x2−a2

a2dx2−1
p

 =
p−1∑
x=0

(
4a2d

p

)(
x3 − 1+a4d

a2 x2 + dx

p

)
−
(
a2d

p

)
.

Note that
p−1∑
x=0

 x2−a2

a2dx2−1
p

 = #Ea,d(Fp) − p− 2. Since,
(
d

p

)
̸≡ 0, multiplying by

(
d

p

)
, we can

substantiate our claim,
tr(Ep) =

(
d

p

)
tr(Ea,d,p) − 1.

□

The second desired relation has been obtained in the conclusion of Proposition 3.1. □

5. Proof of Theorem 2.2

Here we furnish the proof through the following proposition.

Proposition 5.1. Suppose E′ is an elliptic curve as mentioned in Type-II. Also assume
conditions as in Theorem 2.2. Then, tr(E′

p) satisfies the following relation,

tr(E′
p) =

(
d

p

)
tr(E′

a,d,p) −
(
a

p

)
,

where E′
a,d as mentioned in equation (2).
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Proof. We consider the mod p reduction of the twisted Edwards curve (2) as,
E′

a,d,p : ax2 + y2 = 1 + dx2y2,

which can be re-written like,

E′
a,d,p : y2 = ax2 − 1

dx2 − 1 , (11)

where, dx2 − 1 ̸≡ 0 (mod p) (this condition is equivalent to equation (8)). We also consider the
mod p reduction of Type-II elliptic curves characterized by the following equation in Legendre
form.

E′ : y2 = x(x− 1)
(
x− a

d

)
. (12)

Now, using equation (10), we will relate the aforementioned mod p reduction of the twisted
Edwards curves and elliptic curves of Type-II. In equation (10) we set,

a∗ = a; b = 0; c = −1 and A = d; B = 0; C = −1.
Thus, we compute,

D = 4d; ∆ = −4(a+ d); d∗ = 4a and ∆2 − 4Dd∗ = (4(a− d))2 ̸≡ 0 (mod p).
This is equivalent to a ̸≡ d ̸≡ 0 (mod p). An important aspect to note here is that the non-zero
integers a and d are chosen so that the Type-II family of curves is non-singular. Also, p is
chosen under the conditions discussed in section 2. Thus, we are ready to substitute these values
in (10). Hence, we have

p−1∑
x=0

 ax2−1
dx2−1
p

 =
p−1∑
x=0

(4d
p

)(
x3 − a+d

d x2 + a
dx

p

)
−
(
ad

p

)
.

Using basic properties of Legendre symbol, we obtain,
p−1∑
x=0

 ax2−1
dx2−1
p

 =
(
d

p

) p−1∑
x=0

(
x(x− 1)

(
x− a

d

)
p

)
−
(
ad

p

)
and this implies

−(p+ 2 − #E′
a,d,p(Fp)) = −

(
d

p

)
tr(E′

p) −
(
ad

p

)
.

To relate the trace of (11) and (12), we follow the similar notation as equation (2). Next, we
multiply both sides by

(
d

p

)
and derive the following,

−
(
d

p

)
tr(E′

a,d,p) = −tr(E′
p) −

(
a

p

)
,

where
(
d

p

)
and

(
a

p

)
are non-zero, since a and d are non-zero and not divisible by p and the

proof follows. □

Remark 6. If we choose D,∆, and d∗, in such a way that, x3 + ∆
D
x2 + d∗

D
x is an elliptic curve

over Q having complex multiplication, then the character sum
p−1∑
x=0

(
x3 + ∆

Dx
2 + d∗

D x

p

)
can be

explicitly evaluated using Deuring’s Lifting Theorem [Deu41].
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6. Proof of Corollary 2.3

As we mentioned earlier, our another goal is to study the Hasse-Weil L-function at s = 1 for
certain families of elliptic curves. The L-function associated to EG (eq (4)) is defined by,

L(EG, s) =
∏

p ∤ ∆

(
1 − tr(EG,p)

ps
+ p

p2s

)−1 ∏
p|∆

(
1 − tr(EG,p)

ps

)−1
. (13)

The infinite product in (13) is absolutely convergent for ℜ(s) > 3/2, and it can be expanded

into the Dirichlet series L(EG, s) =
∞∑

n=1
ann

−s. In general, the Euler product (13) for L(EG, s)

may not converge at s = 1, but formally evaluating (13) at s = 1 gives,

L(EG, 1) =
∏

p ∤ ∆

(#EG,p

p

)−1
.

Here the equality implies almost equal. Since, ∆ is finite, thus there are only finite number of
terms in the second product.

In equation (13), we have observed that for any elliptic curve EG over Q, the Hasse-Weil
L-function at s = 1 can be written as

L(EG, 1) =
∏
p

p

p+ 1 − tr(EG,p) . (14)

Now we are ready to give the proof of the Corollary.
Proof of Corollary 2.3: A relation between trace of Type-I elliptic curves and trace of Edwards
curve (eq (1)) has been obtained in Proposition 4.1 like;

tr(Ep) =
(
d

p

)
tr(Ea,d,p) − 1. (15)

For proving the first expression, we re-write equation (14) for the Type-I family of curves as

L(E, 1) =
∏
p

p

p+ 1 − tr(Ep) .

Using equation (15), we obtain

L(E, 1) =
∏
p

p

p−
(

d
p

)
tr(Ea,d,p) + 2

.

Now, we connect trace of the Edwards curve, tr(Ea,d,p), with hypergeometric series as obtained
in Theorem 2.1. Using that, we get the following expression of L-function which concludes the
proof of first part;

L(E, 1) =
∏
p

[
p+ 1
p

+ ϕp(d) 2F1

(
ϕp ϕp

ϵp

∣∣∣∣ 1 − a4d

)]−1
.

For concluding the second statement, we use the relation proved in Proposition 5.1 as tr(E′
p) =(

d

p

)
tr(E′

a,d,p) −
(
a

p

)
. For the expression of L(E′, 1), similar as above, we re-write equation

(14) for Type-II elliptic curves to get

L(E′, 1) =
∏
p

p

p+ 1 − tr(E′
p) . (16)

Invoking the aforementioned trace relation, we obtain

L(E′, 1) =
∏
p

p

p−
(

d
p

)
tr(E′

a,d,p) +
(

a
p

)
+ 1

. (17)
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Now, we invoke Lemma 3.3.1 in equation (17) to determine tr(E′
a,d,p) in terms of hypergeometric

series. Thus we obtain

L(E′, 1) =
∏
p

[
1 + ϕp(a)

p
+ ϕp(−ad)

{
2F1

(
ϕp ϕp

ϵp

∣∣∣∣ a−1d

)}]−1
,

which concludes the proof of Theorem 2.2. □

7. Conclusion and Remarks

Our holistic objective was to conjoin two disparate transformation formulae ([Wil70] and
[Gre87], the first one is obtained by purely algebraic means, whereas the second one is analytic).
To the best of our knowledge, the literature is devoid of the reconciliation of these paradigms
and techniques. In this article, we illustrated a method for the evaluation of the Hasse-Weil
L-function at s = 1 for some families of elliptic curves, utilizing Edwards curve [Edw07], the
Gaussian hypergeometric series [SES16], and finite transformation formula [Wil70].

One of the remark is about point counting on elliptic curves and their alternate parametrization.
The Schoof-Elkies-Atkins (SEA) [Sch95] technique can be used to efficiently compute the trace
of E′

a,d,p or E′
p; once one of them is known, the other can be computed using Proposition 5.1.

Similar argument follows for Ea,d,p and Ep from Proposition 4.1. In section 2, we mentioned
the conditions for choosing the prime p. If we introduce one more condition that we will only
consider those primes for which the bi-rational map between the twisted Edwards curve E′

a,d

(characterized by equation (2)) and the corresponding elliptic curve E′
W,a,d in Weierstrass form

(characterized by equation (3)), i.e.; ψ : E′
a,d → E′

W,a,d is invariant under mod p reduction; Then,
for such primes p, proposition 5.1 can be expressed in terms of E′

W,a,d. Similar argument would
follow for the Type-I elliptic curves too.
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