MONODROMY GROUPS OF DESSINS D'ENFANT ON RATIONAL POLYGONAL

 BILLIARDS SURFACESRICHARD A. MOY
Lee University
rmoy@leeuniversity.edu
JASON SCHMURR
Lee University
jschmurr@leeuniversity.edu
JAPHETH VARLACK
Wake Forest University
varlja22@wfu.edu

Abstract

A dessin d'enfant, or dessin, is a bicolored graph embedded into a Riemann surface, and the monodromy group is an algebraic invariant of the dessin generated by rotations of edges about black and white vertices. A rational polygonal billiards surface is a Riemann surface that arises from the dynamical system of billiards within a rational-angled polygon. In this paper, we compute the monodromy groups of dessins embedded into rational polygonal billiards surfaces and identify all possible monodromy groups arising from rational triangular billiards surfaces.

1. Introduction

Monodromy groups of dessins d'enfant have been studied extensively [1, 2, 6, 5, 7]. In [14], the authors investigated the connection between rational triangular billiards surfaces and dessins d'enfant and classified the monodromy groups of dessins drawn on these surfaces. In this paper, we generalize the main result in [14] by computing the monodromy groups of dessins d'enfant drawn on billiard surfaces of k-gons with $k \geq 3$.

We show that all such monodromy groups can be expressed as the semidirect product $N \rtimes C_{k}$, where N is isomorphic to the column span of a circulant matrix over $\mathbb{Z} / n \mathbb{Z}$ for an appropriate integer n (Theorem 1 and Lemma 4) and C_{k} is the cyclic group of order k.

In Section 4, we show how to use the Smith Normal Form to explicitly compute the monodromy group of any given rational billiards surface (Theorem 2).

Next, for the case when $n=p$ for some prime p, we establish a correspondence between k-gons modulo p and elements of $\mathbb{F}_{p}[x]$ which has the useful property that the monodromy group of the k-gon is completely determined by the greatest common divisor of the polynomial and $x^{k}-1$ (Proposition 6). This correspondence allows us to complete the classification of all monodromy groups of polygonal billiard surfaces for k-gons when $n=p$ is prime and $p>k$ (Theorem 4). Showing this correspondence requires proving the existence of polynomials over \mathbb{F}_{p} with all non-zero coefficients that have the appropriate greatest common divisor with $x^{k}-1$.

2000 Mathematics Subject Classification. Primary 14H57; Secondary 11C08, 11R09, 15B05, 37C83.

Finally, in Section 9, we provide some preliminary results for composite n which are sufficient to give a complete classification for triangles and an analogue of the main result in [14] for quadrilaterals.

Throughout this paper, we will reference many well known algebraic and number theoretic results. See any introductory graduate abstract algebra book, such as [3], or number theory book, such as [12], for a reference.

2. Background

2.1. The Rational Billiard Surface Construction. A rational billiards surface is constructed by gluing together copies of a polygon that result from consecutive reflections across the sides. This name is motivated by the task of examining the paths of balls that bounce around the interior of a billiard table. When a ball hits a side of the table, the resulting bounce is instead represented by gluing a reflection of the table across that side and continuing the billiard path in the reflected copy in the same direction. This way, the path of a ball is represented by a single geodesic on a flat surface instead of a jagged path that may cross back on itself. Equipped with this intuition, a rational billiards surface is constructed from all of the reflections required to account for every possible path a ball could take.
More formally, a rational billiard surface can be constructed from a k-gon P whose angles are rational multiples of π, in the following way. Label the sides of P as $e_{0}, \ldots e_{k-1}$, in consecutive counterclockwise order around P. Label the angles of P as $\theta_{i}=\frac{a_{i} \pi}{n}$, where θ_{i} is the internal angle formed by sides e_{i} and e_{i+1} and $n \in \mathbb{N}$ is the least common denominator for the various $\frac{a_{i}}{n}$. Let Γ be the dihedral group generated by the reflections r_{0}, \ldots, r_{k-1} across lines through the origin parallel to the corresponding sides of P. This group consists of $2 n$ elements [4], consisting of n Euclidean rotations and n Euclidean reflections. The rotation subgroup of Γ is generated by rotation by the angle $\frac{2 \pi}{n}$. Hence we may label the rotations using the notation ρ_{m} for rotation by an angle of $\frac{2 m \pi}{n}$. Let $\mathscr{P}=\{\gamma(P): \gamma \in \Gamma\}$. For each $\gamma(P) \in \mathscr{P}$ and each r_{i}, we glue together $\gamma(P)$ and $\gamma r_{i}(P)$ along their copies of e_{i}. The resulting object X is a Riemann surface called a translation surface. This is because, if we let \tilde{X} be the be the flat surface obtained by puncturing all singularities of X, then all transition functions of \tilde{X} are translations. See [17] and [18] for a detailed description of the rational billiards construction.
2.2. Defining a Monodromy Group on the Surface. Next, we draw a graph on this surface by placing a vertex in the center of each copy of P and labeling it with the corresponding element of Γ. We draw an edge between two vertices α and β precisely when $\alpha=\beta r_{i}$ for some i. This graph is the Cayley graph for Γ with generating set r_{0}, \ldots, r_{k-1}. See [16] for a more in-depth exposition on this graph.

Since the generating set consists of reflections, this graph is bipartite, where one partite vertex set is the set of Euclidean rotations in Γ and the other partite vertex set is the set of Euclidean reflections in Γ.

We will define a labeling scheme, introduced in [14], for the edges of the graph in following way. Take an arbitrary edge of the graph; one endpoint will be a vertex labeled ρ_{m} and the other endpoint will be $\rho_{m} r_{i}$, for integers m and i. We label this edge with the ordered pair $(m, i) \in C_{n} \times C_{k}$ where $C_{n} \times C_{k}$ is viewed as a set and not a group. (Here, C_{n} represents the cyclic group of order n.) In fact this defines a bijection between the edge set of the graph and $C_{n} \times C_{k}$.

We can define a dessin d'enfant on the surface by assigning a color to each of the partite sets (say, black for rotation and white for reflection) and by defining a cyclic ordering of the edges (oriented counterclockwise) around each vertex [11]. The ordering around a black vertex ρ_{m} is $(m, 0),(m, 1), \ldots,(m, k-1)$, and the ordering around a white vertex $\rho_{m} r_{i}$ is $(m, i),\left(m-a_{i-1}, i-\right.$ $1),\left(m-a_{i}-a_{i-1}, i-2\right), \ldots,\left(m+a_{i+1}, i+1\right)$. See Figure 1.
$\frac{\frac{1}{2}}{\frac{3}{4}} \frac{5}{\frac{6}{5}}$

Figure 1

Figure 2
The ordering around a black vertex is apparent from our labeling scheme. To justify the ordering around a white vertex, observe that $r_{i+1} r_{i}=\rho_{-a_{i}}$ and $\rho_{a} \rho_{b}=\rho_{a+b}$, by basic facts about the composition of Euclidean reflections and rotations [16]. See Figure 2 for an example of this construction for the equilateral triangle, and see [14] for further exposition on triangular billiards surfaces.

The monodromy group of this dessin is a group $\left\langle\sigma_{0}, \sigma_{1}\right\rangle$ of permutations of the edges generated by two permutations σ_{0} and σ_{1}. We define σ_{0} to be the permutation that takes each edge to the next edge in the cyclic ordering about its black vertex. Similarly, we define σ_{1} to be the permutation that takes each edge to the next edge in the cyclic ordering about its white vertex.

Therefore, we have that for any edge (m, i),

$$
\begin{equation*}
\sigma_{0}[(m, i)]=(m, i+1) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{1}[(m, i)]=\left(m-a_{i-1}, i-1\right) . \tag{2}
\end{equation*}
$$

2.3. Representing Polygons by k-tuples. Let P be a rational polygon with consecutive internal angles $\frac{a_{i} \pi}{n}$, where $a_{0}+\ldots+a_{k-1}=(k-2) n$ and $\operatorname{gcd}\left(a_{0}, \ldots, a_{k-1}, n\right)=1$. We shall use the

Remark. The angles of a k-gon represented by $\left[a_{0}, \ldots, a_{k-1}\right]$ modulo n are $\frac{a_{0}}{n} \pi, \ldots, \frac{a_{k-1}}{n} \pi$.
It is not obvious that every k-tuple $\left[a_{0}, \ldots, a_{k-1}\right]$ that represents a polygon modulo n corresponds to a polygon in the plane with zero crossings. However, it is in fact true.

Proposition 1 (Theorem 1, [9]). Suppose that $\theta_{0}, \ldots, \theta_{k-1}$ is a sequence of angles (in radians) in the set $(0, \pi) \cup(\pi, 2 \pi)$. If $\theta_{0}+\cdots+\theta_{k-1}=(k-2) \pi$, then there exists a polygon in the plane with no crossings with angles $\theta_{0}, \ldots, \theta_{k-1}$ in that sequence.

Using this same convention, if the polygon P is represented by $\left[a_{0}, a_{1}, \ldots, a_{k-1}\right]$ then we will use the notation $X\left(a_{0}, \ldots, a_{k-1}\right)$ for the rational billiards surface arising from P and $D\left(a_{0}, \ldots, a_{k-1}\right)$ to represent the dessin drawn on $X\left(a_{0}, \ldots, a_{k-1}\right)$. Finally, we will use $G\left(a_{0}, \ldots, a_{k-1}\right)$ to represent the monodromy group of that dessin.

3. Semidirect Product Structure of the Monodromy Group

The goal of this section is to describe the monodromy groups as semidirect products of abelian groups.

Theorem 1. Let $\left[a_{0}, \ldots, a_{k-1}\right]$ represent a k-gon modulo n. Let $G\left(a_{0}, \ldots, a_{k-1}\right)=\left\langle\sigma_{0}, \sigma_{1}\right\rangle$ be the monodromy group of the dessin $D\left(a_{0}, \ldots, a_{k-1}\right)$ drawn on the rational polygonal billiards surface $X\left(a_{0}, \ldots, a_{k-1}\right)$. Setting $N=\left\langle\sigma_{0}^{x} \sigma_{1}^{x}: 0<x<k\right\rangle$ and $H=\left\langle\sigma_{0}\right\rangle$, we have $G\left(a_{0}, \ldots, a_{k-1}\right)=$ $N \rtimes H$.

Lemma 1. The permutations $\sigma_{0}^{x} \sigma_{1}^{x}$ and $\sigma_{0}^{y} \sigma_{1}^{y}$ commute.
Proof. Let $(m, i) \in C_{n} \times C_{k}$ be an arbitrary edge of the dessin.
From (1) and (2) we have that

$$
\begin{equation*}
\sigma_{0}^{x} \sigma_{1}^{x}[(m, i)]=\sigma_{0}^{x}\left[\left(m-\sum_{j=1}^{x} a_{i-j}, i-x\right)\right]=\left(m-\sum_{j=i-x}^{i-1} a_{j}, i\right) \tag{3}
\end{equation*}
$$

The lemma follows from a modest computation.
Definition 2. Let $N=\left\langle\sigma_{0}^{x} \sigma_{1}^{x}: 0<x<k\right\rangle$. Observe that $\sigma_{1}^{y} \sigma_{0}^{y}=\left(\sigma_{0}^{k-y} \sigma_{1}^{k-y}\right)^{-1}$.
Now we proceed with the proof of Theorem 1.
Proof of Theorem 1. To prove that $N \triangleleft G\left(a_{0}, \ldots, a_{k-1}\right)$, observe that this is equivalent to proving the following statements:
(1) $\sigma_{1}\left(\sigma_{0}^{x} \sigma_{1}^{x}\right) \sigma_{1}^{-1} \in N$
(2) $\sigma_{0}\left(\sigma_{0}^{x} \sigma_{1}^{x}\right) \sigma_{0}^{-1} \in N$

To prove 1, observe that

$$
\sigma_{1}\left(\sigma_{0}^{x} \sigma_{1}^{x}\right) \sigma_{1}^{-1}=\left(\sigma_{1} \sigma_{0}\right)\left(\sigma_{0}^{x-1} \sigma_{1}^{x-1}\right)=\left(\sigma_{0}^{k-1} \sigma_{1}^{k-1}\right)^{-1}\left(\sigma_{0}^{x-1} \sigma_{1}^{x-1}\right) \in N
$$

To prove 2, observe that

$$
\sigma_{0}\left(\sigma_{0}^{x} \sigma_{1}^{x}\right) \sigma_{0}^{-1}=\left(\sigma_{0}^{x+1} \sigma_{1}^{x+1}\right)\left(\sigma_{1}^{k-1} \sigma_{0}^{k-1}\right)=\left(\sigma_{0}^{x+1} \sigma_{1}^{x+1}\right)\left(\sigma_{0} \sigma_{1}\right)^{-1} \in N
$$

To prove that $N \cap H=\{i d\}$, suppose instead that the intersection of these groups is not trivial. Then there is an element in N that is equal to σ_{0}^{ℓ} for some $0<\ell<k$. Observe that $\sigma_{0}^{\ell}(m, i)=(m, i+\ell)$ and thus does not fix the second component of the edge labels. However, N

Remark. The action of H on N in the semidirect product is via conjugation by elements of H.

4. Computing the Structure of N

In this section, we prove several properties about the subgroup $N \triangleleft G\left(a_{0}, \ldots, a_{k-1}\right)$, introduced in Definition 2, to provide more precise information about the structure of N and, by extension, $G\left(a_{0}, \ldots, a_{k-1}\right)$.

Let $S=\left\{\sigma_{1}^{-j}\left(\sigma_{0}^{-1} \sigma_{1}^{-1}\right) \sigma_{1}^{j}: 0 \leq j<k\right\}$. We first show that one can generate N using the elements of S.

Lemma 2. The subgroup N is precisely the subgroup of $G\left(a_{0}, \ldots, a_{k-1}\right)$ that fixes the second component of the coordinates (m, i).

Proof. Let N^{\prime} be the collection of elements in $G\left(a_{0}, \ldots, a_{k-1}\right)$ that fix the second component of (m, i). Clearly the identity is an element of N^{\prime}. If $g, h \in N^{\prime}$ then $g h$ and g^{-1} also fix the second component of (m, i). Hence, N^{\prime} is a subgroup of $G\left(a_{0}, \ldots, a_{k-1}\right)$ and the formula for $\sigma_{0}^{x} \sigma_{1}^{x}$ in (3) shows that $\sigma_{0}^{x} \sigma_{1}^{x} \in N^{\prime}$. Since $\sigma_{0}^{x} \sigma_{1}^{x}$ generate N as x ranges from 1 to $k-1$, we see that $N \leq N^{\prime}$.

Every element in $G\left(a_{0}, \ldots, a_{k-1}\right)$ (and thus in N^{\prime}) can be written as a product $g=\left(\sigma_{0}^{x_{1}} \sigma_{1}^{y_{1}}\right) \ldots\left(\sigma_{0}^{x_{t}} \sigma_{1}^{y_{t}}\right)$ of t pairs of the form $\sigma_{0}^{x_{i}} \sigma_{1}^{y_{i}}$ where $x_{i}, y_{i} \in \mathbb{Z}$. We will show that $N^{\prime} \leq N$ by induction on t. If $g=\sigma_{0}^{x_{1}} \sigma_{1}^{y_{1}} \ldots \sigma_{0}^{x_{t}} \sigma_{1}^{y_{t}} \in N^{\prime}$, we know that $\sum x_{i} \equiv \sum y_{i} \bmod k$ by (1) and (2).

Base Case: $t=1$ In this case, we see that $x_{1} \equiv y_{1} \bmod k$. Since the orders of σ_{0} and σ_{1} are both k, we can assume $x_{1}=y_{1}$. Furthermore, we can also assume that $0 \leq x_{1}<k$. Hence, $g \in N$.

Induction Step: Suppose our theorem is true for $t \geq 1$ and consider $t+1$. That is, suppose $g=\sigma_{0}^{x_{1}} \sigma_{1}^{y_{1}} \ldots \sigma_{0}^{x_{t+1}} \sigma_{1}^{y_{t+1}} \in N^{\prime}$. Consider

$$
g^{\prime}=\left(\sigma_{0}^{x_{1}} \sigma_{1}^{x_{1}}\right)^{-1} g\left(\sigma_{0}^{y_{t+1}} \sigma_{1}^{y_{t+1}}\right)^{-1}=\sigma_{1}^{y_{1}-x_{1}} \sigma_{0}^{x_{2}} \sigma_{1}^{y_{2}} \ldots \sigma_{0}^{x_{t}} \sigma_{1}^{y_{t}} \sigma_{0}^{x_{t+1}-y_{t+1}}
$$

Since $g \in N^{\prime}$ then $g^{\prime} \in N^{\prime}$ and $\left(g^{\prime}\right)^{-1} \in N^{\prime}$. Let $z_{1}=y_{t+1}-x_{t-1}, z_{2}=-x_{t}, \ldots, z_{t}=-x_{2}$ and $w_{1}=-y_{t}, \ldots, w_{t-1}=-y_{2}, w_{t}=x_{1}-y_{1}$. Observe that $\left(g^{\prime}\right)^{-1}=\sigma_{0}^{z_{1}} \sigma_{1}^{w_{1}} \ldots \sigma_{0}^{z_{t}} \sigma_{1}^{w_{t}}$. Thus by the induction hypothesis, $\left(g^{\prime}\right)^{-1} \in N$. Hence, $g^{\prime} \in N$ and $g \in N$. By induction, we have proven the desired result.

Lemma 3. The subgroup N is generated by S.
Proof. Recall that $N=\left\langle\sigma_{0}^{x} \sigma_{1}^{x}: 0<x<k\right\rangle$. Let $S=\left\{\sigma_{1}^{-j}\left(\sigma_{0}^{-1} \sigma_{1}^{-1}\right) \sigma_{1}^{j}: 0 \leq j<k\right\}$. We claim $\langle S\rangle=N$. Using (1) and (2), we see that $\sigma_{1}^{-j}\left(\sigma_{0}^{-1} \sigma_{1}^{-1}\right) \sigma_{1}^{j}$ fixes the second component of the coordinates (m, i) and is thus an element of N by Lemma 2. Hence, $\langle S\rangle \leq N$.

We will prove that $\sigma_{0}^{j} \sigma_{1}^{j} \in\langle S\rangle$ using induction. Observe that $\sigma_{1}^{-1}\left(\sigma_{0}^{-1} \sigma_{1}^{-1}\right) \sigma_{1}^{1}=\left(\sigma_{0} \sigma_{1}\right)^{-1}$. Hence, $\sigma_{0} \sigma_{1} \in\langle S\rangle$.

Suppose $\sigma_{0}^{j-1} \sigma_{1}^{j-1} \in\langle S\rangle$. Observe that $\sigma_{1}^{-j}\left(\sigma_{0}^{-1} \sigma_{1}^{-1}\right) \sigma_{1}^{j}=\left(\sigma_{0}^{j} \sigma_{1}^{j}\right)^{-1} \sigma_{0}^{j-1} \sigma_{1}^{j-1}$ which implies $\sigma_{0}^{j} \sigma_{1}^{j} \in\langle S\rangle$. Thus, $\sigma_{0}^{j} \sigma_{1}^{j} \in\langle S\rangle$ for all $j>0$ and hence $N \leq\langle S\rangle$.

As we observed in Lemma 2, the subgroup N is precisely the subgroup of $G\left(a_{0}, \ldots, a_{k-1}\right)$ which fixes the second component of the edge (m, i). Hence, we may view any element $g \in N$ as a column vector $\left[\begin{array}{c}x_{0} \\ \vdots \\ x_{k-1}\end{array}\right] \in(\mathbb{Z} / n \mathbb{Z})^{k}$, where $g(m, i)=\left(m+x_{i}, i\right)$ and x_{i} depends only on i

$$
C=\left[\begin{array}{ccccc}
a_{0} & a_{k-1} & \ldots & a_{2} & a_{1} \tag{4}\\
a_{1} & a_{0} & a_{k-1} & & a_{2} \\
\vdots & a_{1} & a_{0} & \ddots & \vdots \\
a_{k-2} & & \ddots & \ddots & a_{k-1} \\
a_{k-1} & a_{k-2} & \ldots & a_{1} & a_{0}
\end{array}\right]
$$

in $M_{k}(\mathbb{Z} / n \mathbb{Z})$ where $M_{k}(\mathbb{Z} / n \mathbb{Z})$ is the set of $k \times k$ matrices with entries in $\mathbb{Z} / n \mathbb{Z}$. We make this statement more formal in the following lemma.

Lemma 4. The subgroup N is isomorphic to the span of the columns of C.
Proof. From (1), (2), and Lemma 2, we see that an arbitrary element $g \in N$ has the form $g(m, i)=$ $\left(m+x_{i}, i\right)$ where $\mathbf{x}=\left[\begin{array}{c}x_{0} \\ \vdots \\ x_{k-1}\end{array}\right] \in(\mathbb{Z} / n \mathbb{Z})^{k}$. We define a homomorphism $\varphi: N \rightarrow(\mathbb{Z} / n \mathbb{Z})^{k}$ via $\varphi(g)=\mathbf{x}$. It is easy to check that φ is a well-defined map with $\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{1}\right)+\varphi\left(g_{2}\right)$.
It is also easy to see that φ is injective. If $\varphi(g)=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$, then g fixes every edge of the dessin. Hence, g is the identity element since the monodromy group acts faithfully on the edges of the dessin. Thus, we may conclude that φ maps N bijectively onto $\varphi(N)$.

Since the elements of the set S generate N, we conclude that the set of vectors of the form $\varphi\left(\sigma_{1}^{-j}\left(\sigma_{0}^{-1} \sigma_{1}^{-1}\right) \sigma_{1}^{j}\right)=\left[\begin{array}{c}a_{k-j} \\ \vdots \\ a_{k-j-1}\end{array}\right]$ where $0 \leq j<k$ spans $\varphi(N)$. And thus, N is isomorphic to the span of the columns of C.

Remark. It is worth noting that when viewing N as a set of vectors in $(\mathbb{Z} / n \mathbb{Z})^{k}$, there is a natural group action of $C_{k} \cong H$ on N which is the cyclic permutation of the vector entries. That is, the homomorphic image of H in $\operatorname{Aut}(N)$ is precisely the subgroup of cyclic permutations of vector entries.

In order to determine the group structure of N, we will use row and column operations on the matrix C.
4.1. Smith Normal Form. In previous sections we establish that the monodromy group $G\left(a_{0}, \ldots, a_{k-1}\right)$ can be expressed as the semidirect product of C_{k} and some finite abelian subgroup N, where N has a natural $\mathbb{Z} / n \mathbb{Z}$-module structure. In this section we explore the explicit computation of N. This can be done via the Smith Normal Form. See [3] or [15] for a reference.
Definition 3. The Smith Normal Form of a matrix A with entries from a ring R is a factorization $A=U D V$ where

- $D=\left[\begin{array}{lll}d_{1} & & \\ & \ddots & \\ & & d_{k}\end{array}\right]$ is a diagonal matrix
- $d_{i} \mid d_{i+1}$ for all i
- U and V are square matrices with determinant ± 1

Consider the R-module M, which is a submodule of R^{k}, generated by the columns of A. Then as a group, M is isomorphic to the direct product

$$
d_{1} R \times \cdots \times d_{k} R
$$

Theorem 2. Let C be the matrix defined in (4) and let d_{1}, \ldots, d_{k} be the elementary divisors of C coming from its Smith Normal Form when viewing C as a matrix over \mathbb{Z}. Then

$$
G\left(a_{0}, \ldots, a_{k-1}\right)=\left(\bigoplus_{i=1}^{k} C_{\delta_{i}}\right) \rtimes C_{k}
$$

where $\delta_{i}=\frac{n}{\operatorname{gcd}\left(d_{i}, n\right)}$.
Note that some of the δ_{i} may equal 1 , in which case the group $C_{\delta_{i}}$ is trivial.
Example 1. Consider the quadrilateral with angles $\left(\frac{2}{5} \pi, \frac{2}{5} \pi, \frac{2}{5} \pi, \frac{4}{5} \pi\right)$. This gives the billiards surface $X(2,2,2,4)$ and dessin $D(2,2,2,4)$. To calculate the monodromy group $G(2,2,2,4)$ of the dessin, we compute the smith normal form for the circulant matrix
$C=\left[\begin{array}{llll}2 & 4 & 2 & 2 \\ 2 & 2 & 4 & 2 \\ 2 & 2 & 2 & 4 \\ 4 & 2 & 2 & 2\end{array}\right]=U D V=\left[\begin{array}{cccc}-11 & -12 & -14 & -3 \\ -11 & -12 & -13 & -3 \\ -7 & -8 & -9 & -2 \\ -11 & -13 & -14 & -3\end{array}\right]\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 10\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 4 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & -3\end{array}\right]$ where U and V are unimodular. This gives us

$$
\delta_{1}=\delta_{2}=\delta_{3}=\frac{5}{\operatorname{gcd}(2,5)}=5, \quad \delta_{4}=\frac{5}{\operatorname{gcd}(10,5)}=1
$$

Then we have

$$
G(2,2,2,4)=\left(C_{5} \times C_{5} \times C_{5}\right) \rtimes C_{4}
$$

As a consequence of Theorem 2, one can quickly compute the monodromy groups of any rational triangular billiards surfaces.
2

Corollary 1 (Theorem 1, [14]). Let $\left[a_{0}, a_{1}, a_{2}\right]$ represent a triangle modulo n. Let $G\left(a_{0}, a_{1}, a_{2}\right)=$ $\left\langle\sigma_{0}, \sigma_{1}\right\rangle$ be the monodromy group of the dessin $D\left(a_{0}, a_{1}, a_{2}\right)$ drawn on the triangular billiards surface $X\left(a_{0}, a_{1}, a_{2}\right)$. Setting $N=\left\langle\sigma_{0} \sigma_{1}, \sigma_{0}^{2} \sigma_{1}^{2}\right\rangle$ and $H=\left\langle\sigma_{0}\right\rangle$, we have $G\left(a_{0}, a_{1}, a_{2}\right)=N \rtimes H$. Furthermore, if $n=a_{0}+a_{1}+a_{2}$ and $\alpha=\operatorname{gcd}\left(n, a_{0} a_{1}-a_{2}^{2}\right)$, then

$$
G\left(a_{0}, a_{1}, a_{2}\right) \cong\left(C_{n} \times C_{\frac{n}{\alpha}}\right) \rtimes C_{3} .
$$

One can easily compute that $\operatorname{gcd}\left(n, a_{0} a_{1}-a_{2}^{2}\right)=\operatorname{gcd}\left(n, a_{0} a_{2}-a_{1}^{2}\right)=\operatorname{gcd}\left(n, a_{1} a_{2}-a_{0}^{2}\right)$ and thus α in the above Corollary doees not depend on the order of a_{0}, a_{1}, and a_{2}.
Proof. Consider the arbitrary rational triangle with angles $\left(\frac{a_{0} \pi}{n}, \frac{a_{1} \pi}{n}, \frac{a_{2} \pi}{n}\right)$, where the a_{i} are positive integers, $a_{0}+a_{1}+a_{2}=n$, and $\operatorname{gcd}\left(a_{0}, a_{1}, a_{2}, n\right)=1$. Observe that it follows that $\operatorname{gcd}\left(a_{0}, a_{1}, n\right)=1$ as well. The normal subgroup N of the associated monodromy group is represented by the column span of $C=\left[\begin{array}{lll}a_{0} & a_{1} & a_{2} \\ a_{1} & a_{2} & a_{0} \\ a_{2} & a_{0} & a_{1}\end{array}\right]$ over $\mathbb{Z} / n \mathbb{Z}$.

Since $\operatorname{gcd}\left(a_{0}, a_{1}, n\right)=1$, there exist integers s, t, and u such that $s a_{0}+t a_{1}+u n=1$, and hence $s a_{0}+t a_{1} \equiv 1 \bmod n$.

Using elementary row and column operations modulo n, we obtain the following factorization:
$C=\left[\begin{array}{lll}a_{0} & a_{1} & a_{2} \\ a_{1} & a_{2} & a_{0} \\ a_{2} & a_{0} & a_{1}\end{array}\right]=\left[\begin{array}{ccc}a_{0} & -t & 0 \\ a_{1} & s & 0 \\ -a_{0}-a_{1} & -s+t & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -a_{1}^{2}+a_{0} a_{2} & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}1 & s a_{1}+t a_{2} & -s a_{1}-t a_{2}-1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$.
One easily checks that the diagonalizing matrices are unimodular. It then follows from Theorem 2 that the monodromy group of the $\left(a_{0}, a_{1}, a_{2}\right)$ triangle is

$$
\left(C_{n} \times C_{n / \alpha}\right) \rtimes C_{3},
$$

where $\alpha=\operatorname{gcd}\left(n, a_{0} a_{2}-a_{1}^{2}\right)$.
The following corollary follows from Theorem 2 after a short computation.
Corollary 2 (Corollary to Theorem 2). The monodromy group of the dessin drawn on the rational billiards surface of the regular k - gon is $C_{\frac{k}{\operatorname{gcd}(k, 2)}} \times C_{k}$.

5. Algebraic Polygons

In this section, we introduce the notion of an algebraic polygon and develop the relevant theory with the goal of proving results about actual polygons. We arrive at the concept of an algebraic polygon by relaxing the constraints on polygons modulo n slightly:
Definition 4. If $k, n \in \mathbb{N}$ with $k \geq 2$, then an ordered k-tuple of nonnegative integers $\left[a_{0}, \ldots, a_{k-1}\right.$] represents an algebraic polygon, or k-gon, modulo n if $a_{0}+\cdots+a_{k-1} \equiv 0 \bmod n \operatorname{and} \operatorname{gcd}\left(a_{0}, \ldots, a_{k-1}, n\right)=$ 1. Observe that $[0, \ldots, 0]$ is not an algebraic k-gon.

Every geometric polygon modulo n is also an algebraic polygon modulo n. We shall define a "monodromy group" for any algebraic polygon in a natural way which coincides with the monodromy groups associated to geometric polygons described in Section 4. It turns out that it is relatively easy to classify the possible monodromy groups for all algebraic polygons modulo a prime p (we do this in Theorem 3). The challenge is to determine when, for a given monodromy group G of an algebraic polygon, there exists a geometric polygon with a monodromy group isomorphic to G. Lemmas 5 and 6 show that this is always possible if none of the entries in the algebraic polygon are zero modulo n. This motivates work in Section 8 to produce algebraic polygons with nonzero entries.

Remark. Note that the definition of an algebraic polygon allows for an algebraic 2-gon even though no geometric 2-gons exist. Despite this fact, algebraic 2-gons can be used to produce geometric k-gons via Proposition 3.

${ }_{3}$

in the $\mathbb{Z} / n \mathbb{Z}$ module $(\mathbb{Z} / n \mathbb{Z})^{k}$. The group C_{k} acts on the columns of C by cyclicly permuting the entries of a vector.

The monodromy groups that arose in Section 2 were monodromy groups of dessins d'enfant drawn on rational billiards surfaces. Although these surfaces and dessins do not exist for algebraic polygons, associating a monodromy group with them will still prove quite useful theoretically.

Remark. If $\left[a_{0}, \ldots, a_{k-1}\right]$ is a k-gon modulo n, then its monodromy group above is the same as the monodromy group of $D\left(a_{0}, \ldots, a_{k-1}\right)$ drawn on the rational polygonal billiards surface $X\left(a_{0}, \ldots, a_{k-1}\right)$. See Sections 2 and 4 for reference.

The following lemma illustrates that the monodromy group of associate algebraic polygons are isomorphic.
Lemma 6. Fix $n \in \mathbb{N}$. If $\left[a_{0}, \ldots, a_{k-1}\right]$ and $\left[b_{0}, \ldots, b_{k-1}\right]$ are associate algebraic polygons, then their monodromy groups are the same.
Proof. Since $\left[a_{0}, \ldots, a_{k-1}\right]$ and $\left[b_{0}, \ldots, b_{k-1}\right]$ are associates, there exists $c \in(\mathbb{Z} / n \mathbb{Z})^{\times}$such that $b_{i} \equiv c a_{i}$ for all i. Let C^{\prime} and $C^{\prime \prime}$ be the corresponding circulant matrices for $\left[b_{0}, \ldots, b_{k-1}\right]$ and $\left[a_{0}, \ldots, a_{k-1}\right]$ respectively. Therefore, $C^{\prime} \equiv c \cdot C^{\prime \prime} \bmod n$. Since C^{\prime} and $C^{\prime \prime}$, are scalar multiples of each other by a unit, the spans of their columns are equal. The result follows.
Proposition 3. Suppose that $\left[a_{0}, \ldots, a_{k-1}\right]$ and $\left[b_{0}, \ldots, b_{k-1}\right]$ represent algebraic k-gons modulo n_{1} and n_{2} respectively where $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. Suppose their respective monodromy groups are $N_{1} \rtimes C_{k}$ and $N_{2} \rtimes C_{k}$. Then there exists an algebraic k-gon $\left[c_{0}, \ldots, c_{k-1}\right]$ modulo $n_{1} n_{2}$ with monodromy group $\left(N_{1} \times N_{2}\right) \rtimes C_{k}$. Furthermore, if $a_{i} \not \equiv 0 \bmod n_{1}$ or $b_{i} \not \equiv 0 \bmod n_{2}$ for every i, then $c_{i} \not \equiv 0 \bmod n_{1} n_{2}$ for all i.
Proof. By the Chinese Remainder Theorem, there exist unique integers c_{i} with $0<c_{i}<n_{1} n_{2}$ such that $c_{i} \equiv a_{i} \bmod n_{1}$ and $c_{i} \equiv b_{i} \bmod n_{2}$ for all i. Since $c_{i} \equiv a_{i} \bmod n_{1}$, we see that $c_{0}+\cdots+c_{k-1} \equiv 0 \bmod n_{1}$ and $\operatorname{gcd}\left(c_{0}, \ldots, c_{k-1}, n_{1}\right)=1$. A similar argument shows that $c_{0}+\cdots+c_{k-1} \equiv 0 \bmod n_{2}$ and $\operatorname{gcd}\left(c_{0}, \ldots, c_{k-1}, n_{2}\right)=1$. Hence, $c_{0}+\cdots+c_{k-1} \equiv 0 \bmod n_{1} n_{2}$ and $\operatorname{gcd}\left(c_{0}, \ldots, c_{k-1}, n_{1} n_{2}\right)=1$ since $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$.
Now, we will will compute the monodromy group of $\left[c_{0}, \ldots, c_{k-1}\right]$ which is $N \rtimes C_{k}$ where N is an abelian group and submodule of $\left(\mathbb{Z} / n_{1} n_{2} \mathbb{Z}\right)^{k}$. Let C^{\prime} and $C^{\prime \prime}$ be the circulant matrices associated to $\left[c_{0}, \ldots, c_{k-1}\right]$ and $\left[a_{0}, \ldots, a_{k-1}\right]$ respectively. Since $c_{i} \equiv a_{i} \bmod n_{1}$ for all i, we see that $C^{\prime} \equiv C^{\prime \prime} \bmod n_{1}$.

Let d_{1}, \ldots, d_{k} be the elementary divisors of C^{\prime}. They are the same modulo n_{1} as the elementary divisors of $C^{\prime \prime}$. By Theorem 2, we know the monodromy group of $\left[c_{0}, \ldots, c_{k-1}\right]$ is

since $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. Thus, the monodromy group of $\left[a_{0}, \ldots, a_{k-1}\right]$ is $N_{1}=\bigoplus_{i=1}^{k} C_{\frac{n_{1}}{\operatorname{gcd}\left(d_{i}, n_{1}\right)}}$. Therefore, $N_{1} \cong n_{2} N \cong N / n_{1} N$. If N_{2} is the monodromy group of $\left[b_{0}, \ldots, b_{k-1}\right]$, then a similar argument shows that $N_{2} \cong n_{1} N \cong N / n_{2} N$. We conclude that $N \cong N_{1} \times N_{2}$ and the main result follows. 13 14 th
15
16
22
23 a

$$
5
$$

\qquad
${ }_{36}^{37}$ th
7
38
39 ${ }_{3}$ the matrix C repeats $\frac{\ell}{k}$ times in each row and column. Therefore, the group generated by the

Example 5. Let $k=2, \ell=4$ and consider the algebraic 2 -gon $[3,4]$ modulo $n=7$. Using Proposition 5, lift $[3,4]$ to the algebraic 4 -gon $[3,4,3,4]$ modulo 7 . The monodromy group of [3,4] is $C_{7} \rtimes C_{2}$ and the monodromy group of $[3,4,3,4]$ is $C_{7} \rtimes C_{4}$.

A quick lemma about semidirect products is needed to complete our series of results about combining algebraic polygons to form new algebraic polygons. The following lemma follows from an easy elementary group theory argument.

Lemma 7. Suppose that $N_{1}, H_{1}, N_{2}, H_{2}$ are finite groups. If $G_{1} \cong N_{1} \rtimes H_{1}$ and $G_{2} \cong N_{2} \rtimes H_{2}$ then $G_{1} \times G_{2} \cong\left(N_{1} \times N_{2}\right) \rtimes\left(H_{1} \times H_{2}\right)$.

Now, let us combine the results from Propositions 3 and 5 to obtain the following corollary.
Corollary 3. Fix $n_{1}, n_{2}, k, \ell \in \mathbb{N}$ with $k, \ell \geq 2$. Suppose that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ and $\operatorname{gcd}(k, \ell)=1$. If $\left[a_{0}, \ldots, a_{k-1}\right]$ is an algebraic k-gon modulo n_{1} with monodromy group $N_{1} \rtimes C_{k}$ and $\left[b_{0}, \ldots, b_{\ell-1}\right]$ is an algebraic ℓ-gon modulo n_{2} with monodromy group $N_{2} \rtimes C_{\ell}$, then there exists an algebraic $k \ell$ gon $\left[c_{0}, \ldots, c_{k \ell-1}\right]$ modulo $n_{1} n_{2}$ with monodromy group $\left(N_{1} \times N_{2}\right) \rtimes C_{\ell k} \cong\left(N_{1} \rtimes C_{k}\right) \times\left(N_{2} \rtimes C_{\ell}\right)$. Proof. Combining Propositions 3 and 5 give us the desired algebraic $k \ell$-gon $\left[c_{0}, \ldots, c_{k \ell-1}\right]$ with monodromy group $\left(N_{1} \rtimes N_{2}\right) \rtimes C_{k \ell}$. Since $\operatorname{gcd}(k, \ell)=1, C_{k \ell} \cong C_{k} \times C_{\ell}$. Thus, by Lemma 7, $\left(N_{1} \rtimes N_{2}\right) \rtimes C_{k \ell} \cong\left(N_{1} \rtimes C_{k}\right) \times\left(N_{2} \rtimes C_{\ell}\right)$.

The following example illustrates how to use Corollary 3.
Example 6. Let $k=3, \ell=4, n_{1}=7$ and $n_{2}=5$. Let $[1,2,4]$ be our algebraic 3 -gon modulo 7 and let $[2,3,3,2]$ be our algebraic 4 -gon modulo 5 . The monodromy group of group of $[1,2,4]$ is $C_{7} \rtimes C_{3}$ and the monodromy group of $[2,3,3,2]$ is $C_{5}^{2} \rtimes C_{4}$. Using Proposition 5 , we lift $[1,2,4]$ to $[1,2,4,1,2,4,1,2,4,1,2,4]$ and we lift $[2,3,3,2]$ to $[2,3,3,2,2,3,3,2,2,3,3,2]$. Using Proposition 3, we combine these algebraic 12 -gons to obtain $[22,23,8,22,2,18,8,2,32,8,23,32]$ modulo 35 which has monodromy group $\left(C_{7} \times C_{5}^{2}\right) \rtimes C_{12} \cong\left(C_{7} \rtimes C_{3}\right) \times\left(C_{5}^{2} \rtimes C_{4}\right)$.

6. Results about Circulant Matrices

The following results on circulant matrices will be needed to compute monodromy groups of polygons modulo p when p is prime. The results are well known over \mathbb{C}, and we provide the proofs for the corresponding results over finite fields for completeness.

Definition 7. A $k \times k$ circulant matrix C has the following form

$$
C=\left[\begin{array}{ccccc}
a_{0} & a_{k-1} & \ldots & a_{2} & a_{1} \\
a_{1} & a_{0} & a_{k-1} & & a_{2} \\
\vdots & a_{1} & a_{0} & \ddots & \vdots \\
a_{k-2} & & \ddots & \ddots & a_{k-1} \\
a_{k-1} & a_{k-2} & \ldots & a_{1} & a_{0}
\end{array}\right]
$$

For the purposes of this paper, the entries c_{i} are integers or integers modulo n.
Definition 8. We call the polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}$ the associated polynomial of the circulant matrix C.

The following result can be found in any introductory text about circulant matrices such as [8].

Lemma 8. The rank of a $k \times k$ circulant matrix C over a field \mathbb{F} which has an algebraic extension with k distinct k th roots of unity is equal to $k-d$ where d is the degree of $\operatorname{gcd}\left(f(x), x^{k}-1\right)$.

$$
10
$$

Proof. By Lemma 9, we know that $x^{p_{2}-1}+\cdots+x+1$ is irreducible over $\mathbb{F}_{p_{1}}$. Hence $x^{p_{2}}-1$ factors as $(x-1)\left(x^{p_{2}-1}+\cdots+x+1\right)$ over $\mathbb{F}_{p_{1}}$. By Lemma 8 , we see that $d=0,1, p_{2}-1$, or p_{2} from which our result follows.

7. Results for $n=p$ Prime

In Section 4.1, we gave a description of the monodromy group in terms of the elementary divisors of a particular circulant matrix. Although this result (Theorem 2) allows one to easily compute the monodromy group, the result is not explicit. We will prove several results below in the special case when n is equal to a prime p. In other words, $\left[a_{0}, \ldots, a_{k-1}\right]$ represents an algebraic k-gon modulo a prime p. In this case, the group N can be viewed as a $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$ module and is thus a vector space. In this section, \mathbb{F}_{p} will denote the finite field with p elements and \mathbb{F}_{p}^{\times}will denote its group of units.
Proposition 6. Suppose that $\left[a_{0}, \ldots, a_{k-1}\right]$ represents an algebraic k-gon modulo a prime p. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}$ and let d be the degree of $\operatorname{gcd}\left(f(x), x^{k}-1\right)$. Then the monodromy group of $\left[a_{0}, \ldots, a_{k-1}\right]$ is $G\left(a_{0}, \ldots, a_{k-1}\right)=C_{p}^{k-d} \rtimes C_{k}$.

Proof. Let C be the circulant matrix associated to $\left[a_{0}, \ldots, a_{k-1}\right]$. By Lemma 8, we know that the rank of C is equal to $k-d$ where d is the degree of $\operatorname{gcd}\left(f(x), x^{k}-1\right)$. The rank of a subspace of a vector space determines the group structure and the result follows.

This allows us to translate the problem of finding the rank of a matrix to that of a degree of a gcd. The following corollary shows how we can use this connection to compute the monodromy groups of a large collection of dessins on rational billiards surfaces.

Corollary 5. Suppose p_{2} is a prime number and p_{1} is a prime number that generates the cyclic group $\left(\mathbb{F}_{p_{2}}\right)^{\times}$. Suppose that $\left[a_{0}, \ldots, a_{p_{2}-1}\right]$ represents an algebraic p_{2}-gon modulo p_{1} with monodromy group $G\left(a_{0}, \ldots, a_{p_{2}-1}\right)$. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{p_{2}-1} x^{p_{2}-1}$, then $G\left(a_{0}, \ldots, a_{p_{2}-1}\right) \cong C_{p_{1}}^{p_{2}-1} \rtimes C_{p_{2}}$.
Proof. By Corollary 4, the rank of the appropriate matrix C is $0,1, p_{2}-1$, or p_{2}. Since $f(1) \equiv 0 \bmod p_{1}$, we know $x-1 \mid f(x)$ and thus $\operatorname{rank}(C) \leq p_{2}-1$. Since $x^{p_{2}-1}+\cdots+x+1$ is irreducible over $\mathbb{F}_{p_{1}}$ by Lemma 9, the $\operatorname{deg}\left(\operatorname{gcd}\left(f(x), x^{p_{2}}-1\right)\right)=1$ or p_{2}. If $\operatorname{deg}\left(\operatorname{gcd}\left(f(x), x^{p_{2}}-\right.\right.$ $1))=p_{2}$ then $a_{0}=\cdots=a_{p_{2}-1}=0$ since $\operatorname{deg}(f) \leq p_{2}-1$, which is a contradiction. Hence, $\operatorname{deg}\left(\operatorname{gcd}\left(f(x), x^{p_{2}}-1\right)\right)=1$ and the result follows.

Example 7. Choose $p_{2}=17$. Observe that $p_{1}=41$ generates the multiplicative group \mathbb{F}_{17}^{\times}. Hence, any algebraic 17-gon modulo 41 has monodromy group $C_{41}^{16} \rtimes C_{17}$.
7.1. Possible Monodromy Groups. Now, let's prove a general theorem that lists all possible monodromy groups for polygons $\left[a_{0}, \ldots, a_{k-1}\right]$ modulo p.
Proposition 7. Suppose that $\left[a_{0}, \ldots, a_{k-1}\right]$ represents an algebraic polygon modulo a prime p. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}$ and suppose $x^{k}-1=\prod g_{i}(x)$ where the $g_{i}(x)$ are
irreducible over \mathbb{F}_{p}. Further suppose that $\operatorname{gcd}\left(f(x), x^{k}-1\right)=\prod_{j=1}^{\ell} g_{i_{j}}(x)$. Then the monodromy group of $\left[a_{0}, \ldots, a_{k-1}\right]$ is $G\left(a_{0}, \ldots, a_{k-1}\right)=C_{p}^{k-d} \rtimes C_{k}$ where $d=\sum_{j=1}^{m} \operatorname{deg}\left(g_{i_{j}}(x)\right)$.

In essence, Proposition 7 gives a list of all potential monodromy groups of algebraic k-gons modulo p. If $\left[a_{0}, \ldots, a_{k-1}\right]$ is an algebraic k-gon modulo p with monodromy group $C_{p}^{k-d} \rtimes C_{k}$ then d must be equal to the sum of degrees of distinct irreducible factors of $x^{k}-1$ in \mathbb{F}_{p}. The factor $x-1$ must be one of these factors. If there is no way to add up to d the degrees $\operatorname{deg}\left(g_{i_{j}}(x)\right)$ of a subset of the irreducible factors $g_{i}(x)$ of $x^{k}-1$ in \mathbb{F}_{p}, then such a monodromy group cannot occur.

Example 8. Consider $k=3$ and $p=5$. We see that $x^{3}-1$ factors as $(x-1)\left(x^{2}+x+1\right)$ modulo 5. Since $x-1$ is required to be a factor of $\operatorname{gcd}\left(f(x), x^{k}-1\right)$, we see that this gcd cannot have degree two. Therefore, the monodromy group $C_{5}^{3-2} \rtimes C_{3}$ is not achieved by any algebraic 3-gon modulo 5.

Proof of Proposition 7. By Proposition 6, we know that d is the degree of $\operatorname{gcd}\left(f(x), x^{k}-1\right)$. Since the gcd must be a product of some subset of $\left\{g_{i}(x)\right\}$, we see that d is the sum of the degrees of some subset of $\left\{g_{i}(x)\right\}$. The theorem follows.

Observe that $\ell \geq 1$ because $f(1)=a_{0}+\ldots a_{k-1} \equiv 0 \bmod p$ implies $x-1$ divides $f(x)$.
Theorem 3. Fix a prime $p \nmid k$. Suppose $x^{k}-1=\prod g_{i}(x)$ where the $g_{i}(x)$ are irreducible over \mathbb{F}_{p}. Let $d=\sum_{j=1}^{\ell} \operatorname{deg}\left(g_{i_{j}}(x)\right)$. Further suppose that $g_{i_{j}}=x-1$ for some i_{j}. Then there exists an algebraic k-gon $\left[a_{0}, \ldots, a_{k-1}\right]$ modulo p with monodromy group $G\left(a_{0}, \ldots, a_{k-1}\right) \cong C_{p}^{k-d} \rtimes C_{k}$.

Proof. Let $f(x)=\prod g_{i_{j}}(x)$. We see that $\operatorname{deg}\left(\operatorname{gcd}\left(f(x), x^{k}-1\right)\right)=d$. If $f(x)=a_{0}+\cdots+$ $a_{k-1} x^{k-1}$ then $a_{0}+\cdots+a_{k-1} \equiv 0 \bmod p$ since $(x-1) \mid f(x)$.

Since $f(x)$ is not the zero polynomial over \mathbb{F}_{p}, we see that $\operatorname{gcd}\left(a_{0}, \ldots, a_{k-1}, p\right)=1$. Therefore, $\left[a_{0}, \ldots, a_{k-1}\right]$ is an algebraic k-gon with monodromy group $G\left(a_{0}, \ldots, a_{k-1}\right) \cong C_{p}^{k-d} \rtimes C_{k}$ by Proposition 6.

Since $\operatorname{deg}(f(x))=d$, then $a_{k-1}=0$ when $d<k-1$. This is allowed since the associated polynomial $f(x)$ for an algebraic k-gon may have degree $d<k-1$.

Theorem 3 proves that all possible monodromy groups from Proposition 7 are achieved by algebraic polygons modulo p for a fixed prime p. Therefore, it is natural to ask which groups can occur for k-gons modulo p. The following theorem shows that for primes $p>k$, all possible monodromy groups from Proposition 7 are achieved by k-gons modulo p.

Theorem 4. Fix a prime $p>k \geq 3$. Suppose $x^{k}-1=g_{1}(x) \cdots g_{\ell}(x)$ where the $g_{i}(x)$ are irreducible over \mathbb{F}_{p}. Let $d=\sum_{j=1}^{m} \operatorname{deg}\left(g_{i_{j}}(x)\right)$ where m is a positive integer less than ℓ and $1 \leq i_{1}<\cdots<i_{m} \leq \ell$. Further suppose that $g_{i_{j}}=x-1$ for some i_{j}. Then there exists a k-gon $\left[a_{0}, \ldots, a_{k-1}\right]$ modulo p with monodromy group $G\left(a_{0}, \ldots, a_{k-1}\right) \cong C_{p}^{k-d} \rtimes C_{k}$.

Remark. We only consider primes $p>k$ in Theorem 4, because $p \nmid k$ in this case. The polynomial, $x^{k}-1$, has no repeated factors over \mathbb{F}_{p} when $p \nmid k$ which implies that there is an algebraic extension of \mathbb{F}_{p} with k distinct k th roots of unity. Furthermore, Theorem 4 is not true for primes $p \leq k$ in its current formulation. Consider $k=3$ and $p=3$. Since $x^{3}-1=(x-1)^{3}$ modulo 3 , Theorem 4 would predict the existence of 3 -gons with monodromy groups $C_{3}^{2} \rtimes C_{3}$ and $C_{3} \rtimes C_{3}$. However, the only 3 -gon is $[1,1,1]$, and thus the only possible monodromy group of a 3-gon modulo 3 is $C_{3} \rtimes C_{3}$.

Here we lay out the basic strategy and supporting lemmas we will use to prove Theorem 4.
8.1. Strategy for Proving Theorem 4. Recall that Lemmas 8 and 9 allow us to construct a geometric polygon with monodromy group G if we can find an algebraic polygon with all nonzero entries that has an isomorphic monodromy group. To control the number of nonzero entries in an algebraic polygon, we define:

Definition 9. For a polynomial $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $a_{n} \neq 0$, let $w(f(x))$ be the maximum number of consecutive coefficients of $f(x)$ that are zero. For example, if $g(x)=$ $x^{7}-x^{3}+1$, then $w(g(x))=3$ since $a_{6}=a_{5}=a_{4}=0$ while $a_{3}, a_{7} \neq 0$.

Now, our strategy for proving Theorem 4 is the following:
(1) For a given monodromy group $G \cong C_{p}^{k-d} \rtimes C_{k}$ described in Theorem 4, find an appropriate polynomial $g(x)$ satisfying $g(x)\left|x^{k}-1, x-1\right| g(x)$, and $\operatorname{deg}(g(x))=d$.
(2) Using Proposition 8, multiply $g(x)$ by a series of linear polynomials to produce a polynomial $f(x)$, each of which reduces the value of the w function but leaves $\operatorname{gcd}\left(f(x), x^{k}-\right.$ 1) $=g(x)$. Repeat until $g(x)$ has been transformed into a polynomial $f(x)=\sum b_{i} x^{i}$ of degree $k-1$ with $w(f(x))=0$ and $\operatorname{gcd}\left(f(x), x^{k}-1\right)=g(x)$.
(3) Use Lemmas 5 and 6 to transform $\left[b_{0}, \ldots, b_{k-1}\right]$ into a geometric polygon with monodromy group G.

Remark. The proofs of Theorem 5 and Proposition 11 follow the above approach. However, the proof of Proposition 12 differs slightly.

In the following proposition, we show that if we choose α appropriately, then $w((x-\alpha)$. $f(x))=\max (w(f(x))-1,0)$.
Proposition 8. Let \mathbb{F} be a field. Suppose that $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{F}[x]$ with $a_{0}, a_{n} \neq 0$. If $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\}$ are distinct non-zero elements of \mathbb{F}, then there exists at least one α_{i} such that $w\left(f(x) \cdot\left(x-\alpha_{i}\right)\right)=\max (w(f(x))-1,0)$.

Proof. Consider the coefficients of $f(x) \cdot\left(x-\alpha_{i}\right)=b_{n+1} x^{n+1}+b_{n} x^{n}+\cdots+b_{1} x+b_{0}$. Observe that $b_{0}, b_{n+1} \neq 0$. Further observe that for $0<j<n+1, b_{j}=a_{j-1}-\alpha_{i} a_{j}$. If $b_{j}=0$ then one of three situations must arise:
(a) $a_{j-1}=a_{j}=0$
(b) $a_{j-1}=\alpha_{i}=0$
(c) $\alpha_{i}=\frac{a_{j-1}}{a_{j}}$ and $a_{j} \neq 0$

Situation (b) cannot arise, because α_{i} is chosen from non-zero elements of \mathbb{F}. By the pigeon hole principle, there exists at least one α_{i} in $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\}$ such that $\alpha_{i} \neq \frac{a_{j-1}}{a_{j}}$ for all $0 \leq j \leq n$. Our choice of α_{i} prevents situation (c) from arising. Since situation (a) cannot occur if $w(f(x))=0$ then $w\left(f(x) \cdot\left(x-\alpha_{i}\right)\right)=0$ in this case.

Now we consider the case where $w(f(x))>0$. By our choice of $\alpha_{i}, b_{j}=0$ implies $a_{j}=$ $a_{j-1}=0$. Assume that $w(f(x))=d+1$ which implies there exist $a_{\ell}, \ldots, a_{\ell+d}$, which are 0 , with $a_{\ell-1} \neq 0$ and $a_{\ell+d+1} \neq 0$. We see that $b_{\ell} \neq 0$ and $b_{\ell+d+1} \neq 0$ and $b_{\ell+1}, \ldots, b_{\ell+d}=0$. Hence, we have shown that $w\left(f(x) \cdot\left(x-\alpha_{i}\right)\right)=w(f(x))-1$.

Now, we prove a useful result about the gcd of collections of polynomials with $x^{k}-1$.
Lemma 10. Let \mathbb{F} be a field and let $f(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0} \in \mathbb{F}[x]$. Then $\operatorname{gcd}\left(f(x), x^{k}-1\right)=$ $\operatorname{gcd}\left(x \cdot f(x)-a_{k-1}\left(x^{k}-1\right), x^{k}-1\right)$. Furthermore, $\operatorname{gcd}\left(f(x), x^{k}-1\right)=\operatorname{gcd}\left(x^{t} \cdot f(x)-\left(a_{k-1} x^{t-1}+\right.\right.$ $\left.\cdots+a_{k-t+1} x+a_{k-t}\right) \cdot\left(x^{k}-1\right)$ for any positive integer $t<k$.
Proof. Observe that $\operatorname{gcd}\left(f(x), x^{k}-1\right)=\operatorname{gcd}\left(x \cdot f(x), x^{k}-1\right)$ since x does not divide $x^{k}-1$. It is clear that $\operatorname{gcd}\left(x \cdot f(x), x^{k}-1\right)$ divides $\operatorname{gcd}\left(x \cdot f(x)-a_{k-1}\left(x^{k}-1\right), x^{k}-1\right)$. If $h(x)=\operatorname{gcd}(x$.
11
2
3
5
6

Use Lemma 10 with $t=k-(\ell+k-d-1)=d-\ell$. That is, consider

$$
g(x)=x^{d-\ell} f(x)-\left(a_{k-1} x^{d-\ell-1}+a_{k-2} x^{d-\ell-2}+\cdots+x \cdot a_{\ell+k-d+1}+a_{\ell+k-d}\right)\left(x^{k}-1\right)
$$

which can be rewritten as

$$
g(x)=\sum_{i=d}^{k-1} a_{i-d+\ell} x^{i}+\sum_{i=d-\ell}^{d-1} a_{i-d+\ell} x^{i}+\sum_{i=0}^{d-\ell-1} a_{i+k-d+\ell} x^{i} .
$$

Lemma 10 states that $\operatorname{gcd}\left(g(x), x^{k}-1\right)=\operatorname{gcd}\left(f(x), x^{k}-1\right)$. Since the first summation above is equal to zero, we see that $\operatorname{deg}(g(x)) \leq d-1$. This implies that $\operatorname{deg}\left(\operatorname{gcd}\left(g(x), x^{k}-1\right)\right)<d$ which is a contradiction since $\operatorname{gcd}\left(f(x), x^{k}-1\right)=f(x)$ and $\operatorname{deg}(f(x))=d$.
8.2. Proving Theorem 4 for $p>k+1$. In this section, we prove Theorem 4 in the case where $p>k+1$.

Proposition 10. Fix an integer $k \geq 3$. Suppose that $d \mid k$ and $d<k$. For primes $p>k$, there exists a k-gon $\left[a_{0}, \ldots, a_{k-1}\right]$ modulo p with monodromy group $G\left(a_{0}, \ldots, a_{k-1}\right) \cong C_{p}^{k-d} \rtimes C_{k}$.

Proof. Consider $f(x)=\left(x^{d}-1\right)^{\frac{k}{d-1}}\left(x^{d-1}+\cdots+x+1\right)=b_{0}+b_{1} x+\cdots+b_{k-1} x^{k-1}$. Since $p>k$, the binomial coefficients in the expansion of $\left(x^{d}-1\right)^{\frac{k}{d}-1}$ are nonzero modulo p, and thus $b_{i} \not \equiv 0 \bmod p$ for $0 \leq i \leq k-1$. Further observe that $x^{k}-1$ has no repeated factors since $p \nmid k$. Since $x^{d-1}+\cdots+x+1$ divides $x^{d}-1$ and $x^{d}-1$ divides $x^{k}-1$, we deduce that $\operatorname{gcd}\left(f(x), x^{k}-1\right)=x^{d}-1$. Therefore, $\left[b_{0}, \ldots, b_{k-1}\right]$ is an algebraic k-gon modulo p.

By Lemma 5, Lemma 6, Proposition 2, and Proposition 6, $\left[b_{0}, \ldots, b_{k-1}\right]$ has a k-gon associate $\left[a_{0}, \ldots, a_{k-1}\right]$ modulo p with monodromy group $G\left(a_{0}, \ldots, a_{k-1}\right) \cong C_{p}^{k-d} \rtimes C_{k}$.

The following theorem is crucial in the proof of Theorem 4.
Theorem 5. Let $k \geq 3$ be an integer, and let $p>k$ be a prime. Suppose $x^{k}-1=\prod g_{i}(x)$ where the $g_{i}(x)$ are irreducible over \mathbb{F}_{p}. Let $d=\sum_{j=1}^{\ell} \operatorname{deg}\left(g_{i_{j}}(x)\right)$. Let M equal the number of roots of $\frac{x^{k}-1}{\Pi g_{i}}$ in \mathbb{F}_{p}. Further suppose that $g_{i_{j}}=x-1$ for some i_{j}. If $p>k+M$, there exists a k-gon $\left[a_{0}, \ldots, a_{k-1}\right]$ modulo p with monodromy group $G\left(a_{0}, \ldots, a_{k-1}\right)=C_{p}^{k-d} \rtimes C_{k}$.
Proof. Let $g(x)=\prod g_{i_{j}}(x)$ which implies $\operatorname{deg}(g(x))=d$. By Proposition $9, w(g(x))<k-d$. To produce a degree $k-1$ polynomial $f(x)$ with $\operatorname{gcd}\left(f(x), x^{k}-1\right)=g(x)$, we will use Proposition 8 exactly $k-d-1$ times. The result of this process will be a new polynomial $f(x)$ equal to $g(x)$ times $k-d-1$ linear polynomials, and $f(x)$ will have the property that $w(f(x))=0$.

$$
{ }_{4} \mathrm{~d}
$$

Theorem 5 proves Theorem 4 for most k and p as illustrated in the following corollary.
Corollary 6. Fix an integer $k \geq 3$. Theorem 4 is true for primes $p>k+1$.
Proof. Fix $p>k+1$. Suppose that $\operatorname{gcd}(p-1, k)=d$. We claim that \mathbb{F}_{p}^{\times}contains exactly d distinct k th roots of unity. Observe that $\mathbb{F}_{p}^{\times} \cong C_{p-1} \cong \mathbb{Z} /(p-1) \mathbb{Z}$. Finding the number of k th roots of unity in \mathbb{F}_{p}^{\times}is equivalent to finding the number of solutions to $k x \equiv 0 \bmod p-1$ in $\mathbb{Z} /(p-1) \mathbb{Z}$. Since $\operatorname{gcd}\left(\frac{k}{d}, p-1\right)=1$, we see that the number of solutions to $k x=\frac{k}{d}(d x) \equiv 0$ $\bmod p-1$ is the same as the number of solutions to $d x \equiv 0 \bmod p-1$. Since $d \mid p-1$, there are d solutions to $d x \equiv 0 \bmod p-1$ and thus \mathbb{F}_{p}^{\times}contains exactly d distinct k th roots of unity. The remaining k th roots of unity lie in an algebraic extension of \mathbb{F}_{p}.

In Theorem 5, $M \leq d-1$ since the factor $g_{i_{j}}=x-1$ for some i_{j}. Since $p \neq k+1$ and $\operatorname{gcd}(p-1, k)=d$, we deduce that $p>k+d>k+M$. Thus, Theorem 4 is true when $p>$ $k+1$.

Remark. To prove Theorem 4, one need only verify it for integers $k \geq 3$ where $p=k+1$ is prime.
8.3. Proving Theorem 4 for $p=k+1$. In this section, we prove Theorem 4 in the remaining cases in which $p=k+1$.

Remark. If $p=k+1$ then $x^{k}-1$ splits completely into linear terms over \mathbb{F}_{p} since $x^{p}-x=$ $x\left(x^{k}-1\right)$ is the polynomial whose roots are the elements of \mathbb{F}_{p}.
Lemma 11. Suppose $p=k+1$ is an odd prime. Let $d \mid k$ with $d>1$. There exists a polynomial $x^{d}-a \in \mathbb{F}_{p}[x]$ with no roots in \mathbb{F}_{p}.

Proof. Since \mathbb{F}_{p}^{\times}is a cyclic group under multiplication, let a be a generator of this cyclic group. We claim $x^{d}-a$ has no roots in \mathbb{F}_{p}. Suppose $x^{d}-a$ had a root in \mathbb{F}_{p}. This would imply that there exists an element $b \in \mathbb{F}_{p}$ satisfying $b^{d}=a$. However, this would imply that $a^{k / d}=\left(b^{d}\right)^{k / d}=b^{k}=1$, a contradiction with the fact that the order of a under multiplication is k.

Proposition 11. Suppose $p=k+1$ is an odd prime. Further suppose $0<d<\frac{k}{2}$. There exists a k-gon $\left[a_{0}, \ldots, a_{k-1}\right]$ modulo p with monodromy group $G\left(a_{0}, \ldots, a_{k-1}\right)=C_{p}^{k-d} \rtimes C_{k}$.
Proof. By Lemma 11, there exists a polynomial $x^{k / 2}-a$ that has no linear factors in \mathbb{F}_{p}. Thus, $\operatorname{gcd}\left(x^{k / 2}-a, x^{k}-1\right)=1$. We need to produce a polynomial $g(x)$ of degree $\frac{k}{2}-1$ so that $w(g(x))=0$ and the $\operatorname{gcd}\left(g(x), x^{k}-1\right)$ has degree d. If we can find such a $g(x)$, then $h(x)=\left(x^{k / 2}-a\right) \cdot g(x)$ has degree $k-1$, the $\operatorname{gcd}\left(h(x), x^{k}-1\right)$ has degree d, and $w(h(x))=0$.

Consider $(x-1)^{k / 2-d}$ whose coefficients are nonzero modulo p. We need to find a sequence of distinct elements $\alpha_{i} \in \mathbb{F}_{p}$ so that if we set $g(x)=(x-1)^{k / 2-d} \prod_{i=1}^{d-1}\left(x-\alpha_{i}\right)$ then $w(g(x))=0$. We proceed by induction. Suppose we have already found j distinct elements $\alpha_{i} \in \mathbb{F}_{p}$ so that $\tilde{g}(x)=(x-1)^{k / 2-d} \prod_{i=1}^{j}\left(x-\alpha_{i}\right)$ and $w(\tilde{g}(x))=0$. How many choices for α_{j+1} are there? By Proposition 8 , since $\operatorname{deg}(\tilde{g})=\frac{k}{2}-d+j$, we need more than $\frac{k}{2}-d+j$ choices to select α_{j+1} so

$$
8
$$

1
3
3 for all i.

Setting $\tilde{g}(x)=\prod_{i=1}^{d-k / 2}\left(x-\alpha_{i}\right)$, observe that $\tilde{g}(x)$ divides $x^{k / 2}-1$. By Proposition 9 , we see that $w(\tilde{g}(x))<\frac{k}{2}-\left(d-\frac{k}{2}\right)=k-d<\frac{k}{2}$. Now, we want to use Proposition 8 exactly $k-d-1$ times to find β_{j} in \mathbb{F}_{p} so that $g(x)=\prod_{i=1}^{d-k / 2}\left(x-\alpha_{i}\right) \cdot \prod_{j=1}^{k-d-1}\left(x-\beta_{j}\right)$ and $w(g(x))=0$ and each $\beta_{j} \in S \cup T$. If we have at least $\frac{k}{2}$ eligible distinct nonzero elements of \mathbb{F}_{p}, we can use Proposition 8 exactly $k-d-1$ times. Since there are d nonzero elements in $S \cup T$ and $d>\frac{k}{2}$, we can use Proposition 8 to select our β_{j}. The result of using Proposition 8 these $k-d-1$ times is the polynomial $g(x)=\prod_{i=1}^{d-k / 2}\left(x-\alpha_{i}\right) \cdot \prod_{j=1}^{k-d-1}\left(x-\beta_{j}\right)$ which has the properties that $w(g(x))=0$ and each $\beta_{j} \in S \cup T$.

Now, let $h(x)=g(x) \cdot\left(x^{k / 2}+1\right)$. We see that $\operatorname{deg}(h(x))=k-1$, and that $\operatorname{gcd}\left(h(x), x^{k}-1\right)=$ $\tilde{g}(x) \cdot\left(x^{k / 2}+1\right)$ has degree d, and that $w(h(x))=0$. By Lemma 5, Lemma 6, and Proposition 6, there exists a k-gon $\left[a_{0}, \ldots, a_{k-1}\right]$ modulo p with monodromy group $G\left(a_{0}, \ldots, a_{k-1}\right) \cong C_{p}^{k-d} \rtimes$ C_{k}.

Now, we proceed with the proof of Theorem 4.
Proof of Theorem 4. The case where $p>k+1$ was proven in Corollary 6 . Now consider the case when $p=k+1$ is an odd prime. If $1 \leq d \leq k-1$, we claim there exists a k-gon modulo p with monodromy group $C_{p}^{k-d} \rtimes C_{k}$. The case where $d<\frac{k}{2}$ was proven in Proposition 11 and the case where $d>\frac{k}{2}$ was proven in Proposition 12. The case where $d=\frac{k}{2}$ is a consequence of Proposition 10 because $\frac{k}{2}$ divides k. Thus, the proof of Theorem 4 is complete.

9. Results for Composite n

In this section, we will prove several results about monodromy groups when n is composite relying heavily on the theory of algebraic polygons from Section 5. This first proposition shows that you can combine k-gons with relatively prime moduli to create a new k-gon whose monodromy group is closely related to the monodromy groups of the initial k-gons.

Proposition 13. Suppose that $\left[a_{0}, \ldots, a_{k-1}\right]$ and $\left[b_{0}, \ldots, b_{k-1}\right]$ represent k-gons modulo n_{1} and n_{2} respectively where $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. Suppose their respective monodromy groups are $N_{1} \rtimes C_{k}$ and $N_{2} \rtimes C_{k}$. Then there exists a k-gon $\left[c_{0}, \ldots, c_{k-1}\right]$ modulo $n_{1} n_{2}$ with monodromy group $\left(N_{1} \times N_{2}\right) \rtimes C_{k}$.

Here is an example of the use of Proposition 13.
Example 10. Consider the quadrilateral $\left[a_{0}, a_{1}, a_{2}, a_{3}\right]=[1,4,4,1]$ which has modulus $n_{1}=5$. The monodromy group of $D(1,4,4,1)$ is $C_{5}^{2} \rtimes C_{4}$. Also consider the quadrilateral $\left[b_{0}, b_{1}, b_{2}, b_{3}\right]=$ [2, 3, 4, 3] which has modulus $n_{2}=6$. The monodromy group of $D(2,3,4,3)$ is $C_{6}^{2} \rtimes C_{4}$. We can solve a system of four congruences modulo $5 \cdot 6=30$. Observe that if we set $\left[c_{0}, c_{1}, c_{2}, c_{3}\right]=$ $[26,9,4,21]$ then we have $c_{i} \equiv a_{i} \bmod 5$ and $c_{i} \equiv b_{i} \bmod 6$. We see that $c_{0}+c_{1}+c_{2}+c_{3}=$ $2 \cdot 30$. If this had not been the case, we could have modified the coefficients using Lemma 5 and Lemma 6 without changing the monodromy group. Finally, by Proposition 13, the monodromy group of $D(26,9,4,21)$ is $C_{30}^{2} \rtimes C_{4} \cong\left(C_{5}^{2} \times C_{6}^{2}\right) \rtimes C_{4}$.

You can use Proposition 4 to project a k-gon modulo $n_{1} n_{2}$ to an algebraic k-gon modulo n_{1}. However, this proposition does not guarantee that the new algebraic k-gon will have a k-gon associate, as illustrated in the following example.

Example 11. Consider the polygon $\left[c_{0}, c_{1}, c_{2}\right]=[1,1,4]$ modulo 6 which has monodromy group $\left(C_{6} \times C_{2}\right) \rtimes C_{3}$. Consider the reduction $c_{i} \equiv a_{i} \bmod 2$ to obtain $\left[a_{0}, a_{1}, a_{2}\right]=[1,1,0]$. The monodromy group of $[1,1,0]$ modulo 2 is $C_{2}^{2} \rtimes C_{3}$. However, there do not exist any 3-gons modulo 2.

The above example illustrates how we must understand monodromy groups of algebraic polygons, and not polygons, in order to classify all possible monodromy groups for k-gons modulo composite n.

Proposition 14. Fix an abelian group N and a positive integer $n=\Pi p_{j}^{x_{j}}$ where the p_{j} are distinct primes. There exists a k-gon $\left[c_{0}, \ldots, c_{k-1}\right]$ modulo n with monodromy group $N \rtimes C_{k}$ if and only if there exist algebraic k-gons $\left[a_{0}^{(j)}, \ldots, a_{k-1}^{(j)}\right]$ modulo $p_{j}^{x_{j}}$ with monodromy groups $\left(N / p_{j}^{x_{j}} N\right) \rtimes C_{k}$ and for every $0 \leq i \leq k-1$ there exists some j for which $a_{i}^{(j)} \not \equiv 0 \bmod p_{j}^{x_{j}}$.

Proof. If $\left[c_{0}, \ldots, c_{k-1}\right]$ is a k-gon with the desired monodromy group $N \rtimes C_{k}$, then the forward direction of the proof follows immediately from Proposition 4 and the fact that $c_{i} \not \equiv 0 \bmod n$ for all i.

Suppose there exist algebraic k-gons $\left[a_{0}^{(j)}, \ldots, a_{k-1}^{(j)}\right]$ modulo $p_{j}^{x_{j}}$ with monodromy groups $\left(N / p_{j}^{x_{j}} N\right) \rtimes C_{k}$ and for every $0 \leq i \leq k-1$ there exists some j for which $a_{i}^{(j)} \not \equiv 0 \bmod p_{j}^{x_{j}}$. The reverse direction of the proof follows from Proposition 3, Lemma 5, and Lemma 6.

Remark. The condition that $a_{i}^{(j)} \not \equiv 0 \bmod p_{j}^{x_{j}}$ in Proposition 14 is satisfied if at least one of the algebraic k-gons $\left[a_{0}^{(j)}, \ldots, a_{k-1}^{(j)}\right]$ is an actual k-gon. This is sufficient but not necessary.

Proposition 14 translates the problem of understanding the monodromy groups of all algebraic k-gons to the problem of understanding monodromy groups for algebraic k-gons with prime power moduli.

Example 12. There does not exist a 3 -gon modulo 35 with monodromy group $N \rtimes C_{3}$ where $N \cong C_{35}$ or where $N \cong C_{35} \times C_{7}$. Suppose there were such a 3 -gon $\left[c_{0}, c_{1}, c_{2}\right]$ modulo 35 . Then the projection of $\left[c_{0}, c_{1}, c_{2}\right]$ modulo 5 (using Proposition 4) would have monodromy group $7 N \rtimes C_{3} \cong(N / 5 N) \rtimes C_{3}$ which is isomorphic to $C_{5} \rtimes C_{3}$ in both the case where $N \cong C_{35}$ and $N \cong C_{35} \times C_{7}$. However, $C_{5} \rtimes C_{3}$ is not a possible monodromy group for any algebraic 3-gon modulo 5 by Proposition 7.
9.1. Triangular Billiards Surfaces. One well-known property of the Smith Normal Form for \mathbb{Z} is summarized in the following lemma.

$$
\overline{41}
$$

$$
\frac{41}{42}
$$

$$
\overline{50}
$$

$\frac{50}{51}$ in $\mathbb{Z}\left[\zeta_{3}\right]$, suppose the ideal $\left(a_{0}-a_{1} \zeta_{3}\right)=\Pi \mathfrak{p}_{j}^{n_{j}}$ where the \mathfrak{p}_{j} are distinct prime ideals in $\mathbb{Z}\left[\zeta_{3}\right]$. If $\mathfrak{p}_{j}=\left(b_{0}-b_{1} \zeta_{3}\right)$ then $\operatorname{gcd}\left(b_{0}, b_{1}, n\right)=1$. If $\operatorname{gcd}\left(b_{0}, b_{1}, n\right) \neq 1$, then $\operatorname{gcd}\left(a_{0}, a_{1}, n\right) \neq 1$. Secondly, if $p^{n_{j}} \mid \operatorname{gcd}\left(N\left(a_{0}-a_{1} \zeta_{3}\right), n\right)$ one of the following three situations must arise:

Example 13. If $n=81$, there are only two possible monodromy groups. The triangle $[1,2,78]$ has associated monodromy group $\left(C_{81} \times C_{81}\right) \rtimes C_{3}$ and the triangle [1,1,79] has associated
9.2. Quadrilateral Billiards Surfaces. One can also use Lemma 12 to produce an analogue of Corollary 1 in the quadrilateral case.

Proposition 15. Suppose that $\left[a_{0}, a_{1}, a_{2}, a_{3}\right]$ represents a 4-gon modulo n. Let $G\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ be the monodromy group of the dessin $D\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ drawn on the quadrilateral billiards surface $X\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$. Then

$$
G\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \cong\left(C_{n} \times C_{\frac{n}{d_{2}}} \times C_{\frac{n}{d_{3}}}\right) \rtimes C_{4}
$$

where

$$
d_{2}=\operatorname{gcd}\left(a_{0} a_{2}-a_{3}^{2}, a_{0} a_{1}-a_{2} a_{3}, a_{0}^{2}-a_{2}^{2}, a_{1} a_{3}-a_{2}^{2}, a_{0} a_{3}-a_{1} a_{2}, a_{0} a_{2}-a_{1}^{2}, n\right)
$$

and

$$
d_{3}= \begin{cases}\operatorname{gcd}\left(\frac{\left(a_{0}+a_{2}\right)\left(\left(a_{0}+a_{1}\right)^{2}+\left(a_{1}+a_{2}\right)^{2}\right)}{d_{2}}, n\right) & \text { if } d_{2} \neq n \\ n & \text { if } d_{2}=n\end{cases}
$$

Proof. The normal subgroup N of the associated monodromy group is represented by the column span of $C=\left[\begin{array}{llll}a_{0} & a_{1} & a_{2} & a_{3} \\ a_{1} & a_{2} & a_{3} & a_{0} \\ a_{2} & a_{3} & a_{0} & a_{1} \\ a_{3} & a_{0} & a_{1} & a_{2}\end{array}\right]$ over $\mathbb{Z} / n \mathbb{Z}$. Let $\tilde{a}_{3}=-a_{0}-a_{1}-a_{2}$. Consider the matrix $C^{\prime}=\left[\begin{array}{cccc}a_{0} & a_{1} & a_{2} & \tilde{a}_{3} \\ a_{1} & a_{2} & \tilde{a}_{3} & a_{0} \\ a_{2} & \tilde{a}_{3} & a_{0} & a_{1} \\ \tilde{a}_{3} & a_{0} & a_{1} & a_{2}\end{array}\right]$. elementary divisors modulo n. We will proceed by finding the elementary divisors of C^{\prime} over \mathbb{Z} and then reducing them modulo n to get the elementary divisors of C^{\prime}. Let $d_{1}, d_{2}, d_{3}, d_{4}$ be the elementary divisors of C and let $\tilde{d}_{1}, \tilde{d}_{2}, \tilde{d}_{3}, \tilde{d}_{4}$ be the elementary divisors of C^{\prime}. Since $\operatorname{gcd}\left(a_{0}, a_{1}, a_{2}, \tilde{a}_{3}, n\right)=\operatorname{gcd}\left(a_{0}, a_{1}, a_{2}, a_{3}, n\right)=1$, the gcd of the one by one minors is 1. Hence, $d_{1}=\tilde{d}_{1}=1$ by Lemma 12

Observe that

$$
C^{\prime}=\left[\begin{array}{llll}
a_{0} & a_{1} & a_{2} & \tilde{a}_{3} \\
a_{1} & a_{2} & \tilde{a}_{3} & a_{0} \\
a_{2} & \tilde{a}_{3} & a_{0} & a_{1} \\
\tilde{a}_{3} & a_{0} & a_{1} & a_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & 0 \\
a_{1} & a_{2} & \tilde{a}_{3} & 0 \\
a_{2} & \tilde{a}_{3} & a_{0} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Thus the elementary divisors of C^{\prime} are the same modulo n as the elementary divisors of

$$
C^{\prime \prime}=\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & 0 \\
a_{1} & a_{2} & \tilde{a}_{3} & 0 \\
a_{2} & \tilde{a}_{3} & a_{0} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence, $d_{4}=\tilde{d}_{4}=0$. To compute d_{2}, we compute the gcd of the 2 by 2 minors of $C^{\prime \prime}$ of which there are only 9 that are nonzero. Three of the minors are duplicates, thus leaving us with 6. These minors are $\left\{a_{0} a_{2}-\tilde{a}_{3}^{2}, a_{0} a_{1}-a_{2} \tilde{a}_{3}, a_{0}^{2}-a_{2}^{2}, a_{1} \tilde{a}_{3}-a_{2}^{2}, a_{0} \tilde{a}_{3}-a_{1} a_{2}, a_{0} a_{2}-a_{1}^{2}\right\}$. Using Lemma 12, we obtain $d_{2}=\operatorname{gcd}\left(\tilde{d}_{2}, n\right)=\operatorname{gcd}\left(a_{0} a_{2}-a_{3}^{2}, a_{0} a_{1}-a_{2} a_{3}, a_{0}^{2}-a_{2}^{2}, a_{1} a_{3}-a_{2}^{2}, a_{0} a_{3}-\right.$ $\left.a_{1} a_{2}, a_{0} a_{2}-a_{1}^{2}, n\right)$.

Lastly, \tilde{d}_{3} will be equal to the third elementary divisor of C^{\prime} which is the same as the third elementary divisor of $\left[\begin{array}{lll}a_{0} & a_{1} & a_{2} \\ a_{1} & a_{2} & \tilde{a}_{3} \\ a_{2} & \tilde{a}_{3} & a_{0}\end{array}\right]$. By Lemma 12, we know that $\tilde{d}_{2} \tilde{d}_{3}=\operatorname{det}\left[\begin{array}{lll}a_{0} & a_{1} & a_{2} \\ a_{1} & a_{2} & \tilde{a}_{3} \\ a_{2} & \tilde{a}_{3} & a_{0}\end{array}\right]=$ $a_{0}^{2} a_{2}+2 a_{1} a_{2} \tilde{a}_{3}-a_{2}^{3}-a_{0} \tilde{a}_{3}^{2}-a_{0} a_{1}^{2}=-\left(a_{0}+a_{2}\right)\left(\left(a_{0}+a_{1}\right)^{2}+\left(a_{1}+a_{2}\right)^{2}\right)$. Hence, $\tilde{d}_{3}=\frac{\left(a_{0}+a_{2}\right)\left(\left(a_{0}+a_{1}\right)^{2}+\left(a_{1}+a_{2}\right)^{2}\right)}{\tilde{d}_{2}}$
0
2
3
24
provided $\tilde{d}_{2} \neq 0$. If $\tilde{d}_{2}=0$ then $\tilde{d}_{3}=0$. Therefore, $d_{3}=\operatorname{gcd}\left(\tilde{d}_{3}, n\right)=\operatorname{gcd}\left(\frac{\left(a_{0}+a_{2}\right)\left(\left(a_{0}+a_{1}\right)^{2}+\left(a_{1}+a_{2}\right)^{2}\right)}{d_{2}}, n\right)$ unless $d_{2}=n$ in which case $d_{3}=n$.

10. Future Directions

There are many questions that naturally arose in the study of monodromy groups of dessin drawn on rational billiards surfaces. Here are some possible future questions to investigate.

Question 1. Throughout this paper, we used Proposition 2, Lemma 5, and Lemma 6 many times to produce a polygon with the same monodromy group as a particular algebraic polygon. Using Lemma 5, we can produce an associate convex polygon in the case where the modulus $n=p$ is prime and $p \geq k$. It is natural to ask if G is the monodromy group of a k-gon modulo n, is it the monodromy group of a convex k-gon modulo n ?

Question 2. How can one generalize Theorem 4 to primes $p \leq k$? For $p \leq k$, a monodromy group attained by an algebraic k-gon may not be attainable by a k-gon. For example, $x^{6}-1=$ $(x-1)^{2}\left(x^{2}+x+1\right)^{2}$ modulo 2 . Thus, there exist algebraic 6 -gons modulo 2 with monodromy groups $C_{2} \rtimes C_{6}, C_{2}^{2} \rtimes C_{6}, C_{2}^{3} \rtimes C_{6}, C_{2}^{4} \rtimes C_{6}$, and $C_{2}^{5} \rtimes C_{6}$. However, there is only one 6-gon modulo 2 , namely $[3,1,1,1,1,1]$, which has monodromy group $C_{2} \rtimes C_{6}$.

Question 3. Can one generalize Proposition 15 to k-gons where $k>4$?
Question 4. In Theorem 6, we classified which groups appear as the monodromy group of a triangle. Can one prove an analogous result for the monodromy groups that arise for an arbitrary k-gon?

References

[1] N. M. Adrianov, Yu. Yu. Kochetkov, and A. D. Suvorov. Plane trees with exceptional primitive edge rotation groups. Fundam. Prikl. Mat., 3(4):1085-1092, 1997.
[2] N. M. Adrianov, A. Zvonkin, and F. Pakovich. Davenport-Zannier polynomials and Dessins d'enfants. American Mathematical Society, 2020.
[3] P. Aluffi. Algebra: Chapter 0. American Mathematical Society, 2009.
[4] E. Aurell and C. Itzykson. Rational billiards and algebraic curves. Journal of Geometry and Physics, 5(2):191-208, 1988.
[5] Z. Batterman, I. Chung-Halpern, J. M. Clark, E. H. Goins, and E. Semere. Monodromy groups of Belyí Lattès maps. PRiME REU, 2022. https://pages.pomona.edu/~ehga2017/prime/ previousresearch.html.
[6] J. A. Bond. On the computation and composition of Belyı̌ maps and dessins d'enfants. PhD thesis, ProQuest Dissertations amp; Theses, 2018.
[7] N. Cameron, M. Kemp, S. Maslak, G. Melamed, R. A. Moy, J. Pham, and A. Wei. Shabat polynomials and monodromy groups of trees uniquely determined by ramification type. Involve, a Journal of Mathematics, 12(5):791-812, 2019.
[8] Philip J. Davis. Circulant matrices. John Wiley Sons, 1979.
[9] A. Efrat, R. Fulek, S. Kobourov, and C. D. Tóth. Polygons with prescribed angles in 2d and 3d. Lecture Notes in Computer Science, page 135-147, 2020.
[10] I. Kaplansky. Elementary divisors and modules. Transactions of the American Mathematical Society, 66(2):464-491, 1949.
[11] S. K. Lando and A. K. Zvonkin. Graphs on surfaces and their applications. Springer, 2004.
[12] S. Lang. Algebraic Number Theory. Springer, 2014.
13] M. D. Larsen, W. J. Lewis, and T. S. Shores. Elementary divisor rings and finitely presented modules. Transactions of the American Mathematical Society, 187:231-248, 1974.
[14] M. Mabe, R. A. Moy, J. Schmurr, and J. Varlack. Monodromy groups of dessins d'enfant on rational triangular billiards surfaces. Involve, a Journal of Mathematics, 16(1):49-58, 2023.
[15] A. Miller and V. Reiner. Differential posets and smith normal forms. Order, 26(3):197-228, 2009.
16] J. Schmurr, J. L. McCartney, and J. Grzegrzolka. Cayley graphs on billiard surfaces. Involve, a Journal of Mathematics, 2024. Forthcoming.
17] Y. B. Vorobets. Planar structures and billiards in rational polygons: the veech alternative. Russian Mathematical Surveys, 51(5):779, 1996.

MONODROMY GROUPS OF DESSINS D'ENFANT ON RATIONAL POLYGONAL BILLIARDS SURFACES24
[18] A. N. Zemlyakov and A. B. Katok. Topological transitivity of billiards in polygons. Mathematical Notes of the Academy of Sciences of the USSR, 18(2):760-764, 1975.

17 Jan 2024 13:08:05 PST

