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ABSTRACT. A dessin d’enfant, or dessin, is a bicolored graph embedded into a Riemann surface,
and the monodromy group is an algebraic invariant of the dessin generated by rotations of edges
about black and white vertices. A rational polygonal billiards surface is a Riemann surface that
arises from the dynamical system of billiards within a rational-angled polygon. In this paper, we
compute the monodromy groups of dessins embedded into rational polygonal billiards surfaces
and identify all possible monodromy groups arising from rational triangular billiards surfaces.

1. Introduction

Monodromy groups of dessins d’enfant have been studied extensively [1, 2, 6, 5, 7]. In [14], the
authors investigated the connection between rational triangular billiards surfaces and dessins
d’enfant and classified the monodromy groups of dessins drawn on these surfaces. In this paper,
we generalize the main result in [14] by computing the monodromy groups of dessins d’enfant
drawn on billiard surfaces of k-gons with k ≥ 3.

We show that all such monodromy groups can be expressed as the semidirect product N ⋊Ck,
where N is isomorphic to the column span of a circulant matrix over Z/nZ for an appropriate
integer n (Theorem 1 and Lemma 4) and Ck is the cyclic group of order k.

In Section 4, we show how to use the Smith Normal Form to explicitly compute the mon-
odromy group of any given rational billiards surface (Theorem 2).

Next, for the case when n = p for some prime p, we establish a correspondence between
k-gons modulo p and elements of Fp[x] which has the useful property that the monodromy
group of the k-gon is completely determined by the greatest common divisor of the polynomial
and xk −1(Proposition 6). This correspondence allows us to complete the classification of all
monodromy groups of polygonal billiard surfaces for k-gons when n = p is prime and p > k
(Theorem 4). Showing this correspondence requires proving the existence of polynomials over
Fp with all non-zero coefficients that have the appropriate greatest common divisor with xk −1.
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Finally, in Section 9, we provide some preliminary results for composite n which are sufficient
to give a complete classification for triangles and an analogue of the main result in [14] for
quadrilaterals.

Throughout this paper, we will reference many well known algebraic and number theoretic
results. See any introductory graduate abstract algebra book, such as [3], or number theory book,
such as [12], for a reference.

2. Background

2.1. The Rational Billiard Surface Construction. A rational billiards surface is constructed by
gluing together copies of a polygon that result from consecutive reflections across the sides. This
name is motivated by the task of examining the paths of balls that bounce around the interior of
a billiard table. When a ball hits a side of the table, the resulting bounce is instead represented
by gluing a reflection of the table across that side and continuing the billiard path in the reflected
copy in the same direction. This way, the path of a ball is represented by a single geodesic on a
flat surface instead of a jagged path that may cross back on itself. Equipped with this intuition, a
rational billiards surface is constructed from all of the reflections required to account for every
possible path a ball could take.

More formally, a rational billiard surface can be constructed from a k-gon P whose angles are
rational multiples of π , in the following way. Label the sides of P as e0, . . .ek−1, in consecutive
counterclockwise order around P. Label the angles of P as θi =

aiπ

n
, where θi is the internal

angle formed by sides ei and ei+1 and n ∈ N is the least common denominator for the various
ai

n
. Let Γ be the dihedral group generated by the reflections r0, . . . ,rk−1 across lines through the

origin parallel to the corresponding sides of P. This group consists of 2n elements [4], consisting
of n Euclidean rotations and n Euclidean reflections. The rotation subgroup of Γ is generated by

rotation by the angle
2π

n
. Hence we may label the rotations using the notation ρm for rotation by

an angle of
2mπ

n
. Let P = {γ(P) : γ ∈ Γ}. For each γ(P) ∈ P and each ri, we glue together

γ(P) and γri(P) along their copies of ei. The resulting object X is a Riemann surface called a
translation surface. This is because, if we let X̃ be the be the flat surface obtained by puncturing
all singularities of X , then all transition functions of X̃ are translations. See [17] and [18] for a
detailed description of the rational billiards construction.

2.2. Defining a Monodromy Group on the Surface. Next, we draw a graph on this surface by
placing a vertex in the center of each copy of P and labeling it with the corresponding element
of Γ. We draw an edge between two vertices α and β precisely when α = β ri for some i. This
graph is the Cayley graph for Γ with generating set r0, . . . ,rk−1. See [16] for a more in-depth
exposition on this graph.

Since the generating set consists of reflections, this graph is bipartite, where one partite vertex
set is the set of Euclidean rotations in Γ and the other partite vertex set is the set of Euclidean
reflections in Γ.

We will define a labeling scheme, introduced in [14], for the edges of the graph in following
way. Take an arbitrary edge of the graph; one endpoint will be a vertex labeled ρm and the
other endpoint will be ρmri, for integers m and i. We label this edge with the ordered pair
(m, i) ∈Cn×Ck where Cn×Ck is viewed as a set and not a group. (Here, Cn represents the cyclic
group of order n.) In fact this defines a bijection between the edge set of the graph and Cn ×Ck.

We can define a dessin d’enfant on the surface by assigning a color to each of the partite sets
(say, black for rotation and white for reflection) and by defining a cyclic ordering of the edges
(oriented counterclockwise) around each vertex [11]. The ordering around a black vertex ρm is
(m,0),(m,1), . . . ,(m,k−1), and the ordering around a white vertex ρmri is (m, i),(m−ai−1, i−
1),(m−ai −ai−1, i−2), . . . ,(m+ai+1, i+1). See Figure 1.
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FIGURE 1

FIGURE 2

The ordering around a black vertex is apparent from our labeling scheme. To justify the
ordering around a white vertex, observe that ri+1ri = ρ−ai and ρaρb = ρa+b, by basic facts about
the composition of Euclidean reflections and rotations [16]. See Figure 2 for an example of
this construction for the equilateral triangle, and see [14] for further exposition on triangular
billiards surfaces.

The monodromy group of this dessin is a group ⟨σ0,σ1⟩ of permutations of the edges generated
by two permutations σ0 and σ1. We define σ0 to be the permutation that takes each edge to
the next edge in the cyclic ordering about its black vertex. Similarly, we define σ1 to be the
permutation that takes each edge to the next edge in the cyclic ordering about its white vertex.

Therefore, we have that for any edge (m, i),

(1) σ0[(m, i)] = (m, i+1)

and

(2) σ1[(m, i)] = (m−ai−1, i−1).

2.3. Representing Polygons by k-tuples. Let P be a rational polygon with consecutive internal
angles

aiπ

n
, where a0 + . . .+ ak−1 = (k− 2)n and gcd(a0, . . . ,ak−1,n) = 1. We shall use the
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notation [a0,a1, . . . ,ak−1] to represent P. Although this notation does not uniquely define P up
to geometric similarity when k > 3, it does uniquely define the dessin drawn on P up to graph
isomorphism. This motivates the following definition.

Definition 1. If k,n ∈ N with k ≥ 3, then an ordered k-tuple of positive integers [a0, . . . ,ak−1]
represents a geometric polygon, or geometric k-gon, modulo n when a0 + · · ·+ak−1 = (k−2)n
and ai < 2n, ai ̸= n for all i and gcd(a0, . . . ,ak−1,n) = 1. Throughout this paper, we will
regularly use the term k-gon to refer to a geometric k-gon.

Remark. The angles of a k-gon represented by [a0, . . . ,ak−1] modulo n are a0
n π, . . . ,

ak−1
n π .

It is not obvious that every k-tuple [a0, . . . ,ak−1] that represents a polygon modulo n corre-
sponds to a polygon in the plane with zero crossings. However, it is in fact true.

Proposition 1 (Theorem 1, [9]). Suppose that θ0, . . . ,θk−1 is a sequence of angles (in radians)
in the set (0,π)∪ (π,2π). If θ0 + · · ·+θk−1 = (k−2)π , then there exists a polygon in the plane
with no crossings with angles θ0, . . . ,θk−1 in that sequence.

Using this same convention, if the polygon P is represented by [a0,a1, . . . ,ak−1] then we
will use the notation X(a0, . . . ,ak−1) for the rational billiards surface arising from P and
D(a0, . . . ,ak−1) to represent the dessin drawn on X(a0, . . . ,ak−1). Finally, we will use G(a0, . . . ,ak−1)
to represent the monodromy group of that dessin.

3. Semidirect Product Structure of the Monodromy Group

The goal of this section is to describe the monodromy groups as semidirect products of abelian
groups.

Theorem 1. Let [a0, . . . ,ak−1] represent a k-gon modulo n. Let G(a0, . . . ,ak−1) = ⟨σ0,σ1⟩ be the
monodromy group of the dessin D(a0, . . . ,ak−1) drawn on the rational polygonal billiards surface
X(a0, . . . ,ak−1). Setting N = ⟨σ x

0 σ x
1 : 0 < x < k⟩ and H = ⟨σ0⟩, we have G(a0, . . . ,ak−1) =

N ⋊H.

Lemma 1. The permutations σ x
0 σ x

1 and σ
y
0 σ

y
1 commute.

Proof. Let (m, i) ∈Cn ×Ck be an arbitrary edge of the dessin.
From (1) and (2) we have that

σ
x
0 σ

x
1 [(m, i)] = σ

x
0

[(
m−

x

∑
j=1

ai− j, i− x

)]
=

(
m−

i−1

∑
j=i−x

a j, i

)
.(3)

The lemma follows from a modest computation. □

Definition 2. Let N = ⟨σ x
0 σ x

1 : 0 < x < k⟩. Observe that σ
y
1 σ

y
0 = (σ k−y

0 σ
k−y
1 )−1.

Now we proceed with the proof of Theorem 1.

Proof of Theorem 1. To prove that N ◁G(a0, . . . ,ak−1), observe that this is equivalent to proving
the following statements:

(1) σ1(σ
x
0 σ x

1)σ
−1
1 ∈ N

(2) σ0(σ
x
0 σ x

1)σ
−1
0 ∈ N

To prove 1, observe that

σ1(σ
x
0 σ

x
1)σ

−1
1 = (σ1σ0)(σ

x−1
0 σ

x−1
1 ) = (σ k−1

0 σ
k−1
1 )−1(σ x−1

0 σ
x−1
1 ) ∈ N.

To prove 2, observe that

σ0(σ
x
0 σ

x
1)σ

−1
0 = (σ x+1

0 σ
x+1
1 )(σ k−1

1 σ
k−1
0 ) = (σ x+1

0 σ
x+1
1 )(σ0σ1)

−1 ∈ N.

To prove that N ∩H = {id}, suppose instead that the intersection of these groups is not
trivial. Then there is an element in N that is equal to σ ℓ

0 for some 0 < ℓ < k. Observe that
σ ℓ

0(m, i) = (m, i+ ℓ) and thus does not fix the second component of the edge labels. However, N
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is generated by elements that fix the second component of the edge labels (3). Hence, we have
reached a contradiction.

Finally, to prove that NH = G(a0, . . . ,ak−1), observe that since N ◁G(a0, . . . ,ak−1) and
H ≤ G(a0, . . . ,ak−1), we know that NH ≤ G(a0, . . . ,ak−1). Observe that σ0 ∈ NH and σ1 =

(σ k−1
0 σ

k−1
1 )−1σ

−1
0 ∈ NH. Because NH contains the generators of G(a0, . . . ,ak−1), we conclude

that NH = G(a0, . . . ,ak−1).
Now we may conclude that G(a0, . . . ,ak−1) is a semidirect product of subgroups N and

H. □

Remark. The action of H on N in the semidirect product is via conjugation by elements of H.

4. Computing the Structure of N

In this section, we prove several properties about the subgroup N ◁G(a0, . . . ,ak−1), introduced
in Definition 2, to provide more precise information about the structure of N and, by extension,
G(a0, . . . ,ak−1).

Let S = {σ
− j
1 (σ−1

0 σ
−1
1 )σ j

1 : 0 ≤ j < k}. We first show that one can generate N using the
elements of S.

Lemma 2. The subgroup N is precisely the subgroup of G(a0, . . . ,ak−1) that fixes the second
component of the coordinates (m, i).

Proof. Let N′ be the collection of elements in G(a0, . . . ,ak−1) that fix the second component of
(m, i). Clearly the identity is an element of N′. If g,h ∈ N′ then gh and g−1 also fix the second
component of (m, i). Hence, N′ is a subgroup of G(a0, . . . ,ak−1) and the formula for σ x

0 σ x
1 in (3)

shows that σ x
0 σ x

1 ∈ N′. Since σ x
0 σ x

1 generate N as x ranges from 1 to k−1, we see that N ≤ N′.
Every element in G(a0, . . . ,ak−1) (and thus in N′) can be written as a product g=(σ x1

0 σ
y1
1 ) . . .(σ xt

0 σ
yt
1 )

of t pairs of the form σ
xi
0 σ

yi
1 where xi,yi ∈ Z. We will show that N′ ≤ N by induction on t. If

g = σ
x1
0 σ

y1
1 . . .σ xt

0 σ
yt
1 ∈ N′, we know that ∑xi ≡ ∑yi mod k by (1) and (2).

Base Case: t = 1 In this case, we see that x1 ≡ y1 mod k. Since the orders of σ0 and σ1 are
both k, we can assume x1 = y1. Furthermore, we can also assume that 0 ≤ x1 < k. Hence, g ∈ N.

Induction Step: Suppose our theorem is true for t ≥ 1 and consider t +1. That is, suppose
g = σ

x1
0 σ

y1
1 . . .σ

xt+1
0 σ

yt+1
1 ∈ N′. Consider

g′ = (σ x1
0 σ

x1
1 )−1g(σ yt+1

0 σ
yt+1
1 )−1 = σ

y1−x1
1 σ

x2
0 σ

y2
1 . . .σ xt

0 σ
yt
1 σ

xt+1−yt+1
0

Since g ∈ N′ then g′ ∈ N′ and (g′)−1 ∈ N′. Let z1 = yt+1 − xt−1,z2 = −xt , . . . ,zt = −x2 and
w1 =−yt , . . . ,wt−1 =−y2,wt = x1 − y1. Observe that (g′)−1 = σ

z1
0 σ

w1
1 . . .σ zt

0 σ
wt
1 . Thus by the

induction hypothesis, (g′)−1 ∈ N. Hence, g′ ∈ N and g ∈ N. By induction, we have proven the
desired result. □

Lemma 3. The subgroup N is generated by S.

Proof. Recall that N = ⟨σ x
0 σ x

1 : 0 < x < k⟩. Let S = {σ
− j
1 (σ−1

0 σ
−1
1 )σ j

1 : 0 ≤ j < k}. We claim
⟨S⟩ = N. Using (1) and (2), we see that σ

− j
1 (σ−1

0 σ
−1
1 )σ j

1 fixes the second component of the
coordinates (m, i) and is thus an element of N by Lemma 2. Hence, ⟨S⟩ ≤ N.

We will prove that σ
j

0 σ
j

1 ∈ ⟨S⟩ using induction. Observe that σ
−1
1 (σ−1

0 σ
−1
1 )σ1

1 = (σ0σ1)
−1.

Hence, σ0σ1 ∈ ⟨S⟩.
Suppose σ

j−1
0 σ

j−1
1 ∈ ⟨S⟩. Observe that σ

− j
1 (σ−1

0 σ
−1
1 )σ j

1 = (σ j
0 σ

j
1 )

−1σ
j−1

0 σ
j−1

1 which im-
plies σ

j
0 σ

j
1 ∈ ⟨S⟩. Thus, σ

j
0 σ

j
1 ∈ ⟨S⟩ for all j > 0 and hence N ≤ ⟨S⟩. □

As we observed in Lemma 2, the subgroup N is precisely the subgroup of G(a0, . . . ,ak−1)
which fixes the second component of the edge (m, i). Hence, we may view any element g ∈ N

as a column vector

 x0
...

xk−1

 ∈ (Z/nZ)k, where g(m, i) = (m+ xi, i) and xi depends only on i
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and not on m. It follows from equations (1) and (2) that σ
− j
1 (σ−1

0 σ
−1
1 )σ j

1 (m, i) = (m+ai− j, i).
Therefore the set S = {σ

− j
1 (σ−1

0 σ
−1
1 )σ j

1 : 0 ≤ j < k} can be identified with the columns of the
matrix

(4) C =


a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . . . . . ak−1

ak−1 ak−2 . . . a1 a0


in Mk(Z/nZ) where Mk(Z/nZ) is the set of k× k matrices with entries in Z/nZ. We make this
statement more formal in the following lemma.

Lemma 4. The subgroup N is isomorphic to the span of the columns of C.

Proof. From (1), (2), and Lemma 2, we see that an arbitrary element g∈N has the form g(m, i)=

(m+ xi, i) where x =

 x0
...

xk−1

 ∈ (Z/nZ)k. We define a homomorphism ϕ : N → (Z/nZ)k via

ϕ(g) = x. It is easy to check that ϕ is a well-defined map with ϕ(g1g2) = ϕ(g1)+ϕ(g2).

It is also easy to see that ϕ is injective. If ϕ(g) =

0
...
0

, then g fixes every edge of the dessin.

Hence, g is the identity element since the monodromy group acts faithfully on the edges of the
dessin. Thus, we may conclude that ϕ maps N bijectively onto ϕ(N).

Since the elements of the set S generate N, we conclude that the set of vectors of the form

ϕ(σ− j
1 (σ−1

0 σ
−1
1 )σ j

1 ) =

 ak− j
...

ak− j−1

 where 0 ≤ j < k spans ϕ(N). And thus, N is isomorphic to

the span of the columns of C. □

Remark. It is worth noting that when viewing N as a set of vectors in (Z/nZ)k, there is a natural
group action of Ck

∼= H on N which is the cyclic permutation of the vector entries. That is, the
homomorphic image of H in Aut(N) is precisely the subgroup of cyclic permutations of vector
entries.

In order to determine the group structure of N, we will use row and column operations on the
matrix C.

4.1. Smith Normal Form. In previous sections we establish that the monodromy group G(a0, . . . ,ak−1)
can be expressed as the semidirect product of Ck and some finite abelian subgroup N, where N
has a natural Z/nZ-module structure. In this section we explore the explicit computation of N.
This can be done via the Smith Normal Form. See [3] or [15] for a reference.

Definition 3. The Smith Normal Form of a matrix A with entries from a ring R is a factorization
A =UDV where

• D =

d1
. . .

dk

 is a diagonal matrix

• di|di+1 for all i
• U and V are square matrices with determinant ±1

Consider the R-module M, which is a submodule of Rk, generated by the columns of A. Then
as a group, M is isomorphic to the direct product

d1R×·· ·×dkR.
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The elements d1 . . . ,dk are called the elementary divisors of M. In [10], Kaplansky defines an
elementary divisor ring R to be a ring over which all matrices have a Smith Normal Form. It is
well-known (see [10]) that all PID’s are elementary divisor rings. However, not all elementary
divisor rings are domains. Indeed, it follows from Corollary 2.3 of [13] that Z/nZ is an
elementary divisor ring. Hence, we can always compute the group structure of one of our
particular monodromy groups by computing the Smith Normal Form of the associated circulant
matrix.

In practice, algorithms exist for computing the Smith Normal Form of a matrix over Z.
Therefore, to compute the Smith Normal Form of a matrix over Z/nZ, it is convenient to
compute the Smith Normal Form of an associated matrix over Z and then apply the standard
ring homomorphism to reduce modulo n.

Since the matrices U and V in Definition 3 are invertible over Z, their reductions modulo
n (call them U , V ) are invertible over Z/nZ. Therefore, the transformation x 7→ U−1 · x is an
isomorphism from (Z/nZ)k 7→ (Z/nZ)k.

Hence, the Z/nZ submodule generated by v0V−1
, . . . ,vk−1V−1 is isomorphic to the Z/nZ

submodule generated by the columns of D which are

U−1v1V−1
=


d1
0
...
0

 , . . . , U−1vkV
−1

=


0
...
0
dk

 .
Hence, N is isomorphic to d1Z/nZ⊕·· ·⊕dkZ/nZ where di is the reduction of di modulo n.

And therefore,

N ∼=
k⊕

i=1

Z/δiZ

where δi =
n

gcd(di,n)
. We summarize these results with the following theorem, combining the

results from Theorem 1.

Theorem 2. Let C be the matrix defined in (4) and let d1, . . . ,dk be the elementary divisors of C
coming from its Smith Normal Form when viewing C as a matrix over Z. Then

G(a0, . . . ,ak−1) =

(
k⊕

i=1

Cδi

)
⋊Ck

where δi =
n

gcd(di,n)
.

Note that some of the δi may equal 1, in which case the group Cδi is trivial.

Example 1. Consider the quadrilateral with angles (2
5π, 2

5π, 2
5π, 4

5π). This gives the billiards
surface X(2,2,2,4) and dessin D(2,2,2,4). To calculate the monodromy group G(2,2,2,4) of
the dessin, we compute the smith normal form for the circulant matrix

C =


2 4 2 2
2 2 4 2
2 2 2 4
4 2 2 2

=UDV =


−11 −12 −14 −3
−11 −12 −13 −3
−7 −8 −9 −2
−11 −13 −14 −3




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 10




1 0 0 4
−1 1 0 0
0 −1 1 0
0 0 −1 −3


where U and V are unimodular. This gives us

δ1 = δ2 = δ3 =
5

gcd(2,5)
= 5, δ4 =

5
gcd(10,5)

= 1.

Then we have
G(2,2,2,4) = (C5 ×C5 ×C5)⋊C4.

As a consequence of Theorem 2, one can quickly compute the monodromy groups of any
rational triangular billiards surfaces.
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Corollary 1 (Theorem 1, [14]). Let [a0,a1,a2] represent a triangle modulo n. Let G(a0,a1,a2) =
⟨σ0,σ1⟩ be the monodromy group of the dessin D(a0,a1,a2) drawn on the triangular billiards
surface X(a0,a1,a2). Setting N = ⟨σ0σ1,σ

2
0 σ2

1 ⟩ and H = ⟨σ0⟩, we have G(a0,a1,a2) = N ⋊H.
Furthermore, if n = a0 +a1 +a2 and α = gcd(n,a0a1 −a2

2), then

G(a0,a1,a2)∼= (Cn ×C n
α
)⋊C3.

One can easily compute that gcd(n,a0a1 −a2
2) = gcd(n,a0a2 −a2

1) = gcd(n,a1a2 −a2
0) and

thus α in the above Corollary doees not depend on the order of a0, a1, and a2.

Proof. Consider the arbitrary rational triangle with angles
(a0π

n
,
a1π

n
,
a2π

n

)
, where the ai are

positive integers, a0 + a1 + a2 = n, and gcd(a0,a1,a2,n) = 1. Observe that it follows that
gcd(a0,a1,n) = 1 as well. The normal subgroup N of the associated monodromy group is

represented by the column span of C =

a0 a1 a2
a1 a2 a0
a2 a0 a1

 over Z/nZ.

Since gcd(a0,a1,n) = 1, there exist integers s, t, and u such that sa0+ ta1+un = 1, and hence
sa0 + ta1 ≡ 1 mod n.

Using elementary row and column operations modulo n, we obtain the following factorization:

C =

a0 a1 a2
a1 a2 a0
a2 a0 a1

=

 a0 −t 0
a1 s 0

−a0 −a1 −s+ t 1

1 0 0
0 −a2

1 +a0a2 0
0 0 0

1 sa1 + ta2 −sa1 − ta2 −1
0 1 −1
0 0 1

 .
One easily checks that the diagonalizing matrices are unimodular. It then follows from

Theorem 2 that the monodromy group of the (a0,a1,a2) triangle is

(Cn ×Cn/α)⋊C3,

where α = gcd(n,a0a2 −a2
1). □

The following corollary follows from Theorem 2 after a short computation.

Corollary 2 (Corollary to Theorem 2). The monodromy group of the dessin drawn on the
rational billiards surface of the regular k-gon is C k

gcd(k,2)
×Ck.

5. Algebraic Polygons

In this section, we introduce the notion of an algebraic polygon and develop the relevant theory
with the goal of proving results about actual polygons. We arrive at the concept of an algebraic
polygon by relaxing the constraints on polygons modulo n slightly:

Definition 4. If k,n∈N with k ≥ 2, then an ordered k-tuple of nonnegative integers [a0, . . . ,ak−1]
represents an algebraic polygon, or k-gon, modulo n if a0+· · ·+ak−1 ≡ 0 mod n and gcd(a0, . . . ,ak−1,n)=
1. Observe that [0, . . . ,0] is not an algebraic k-gon.

Every geometric polygon modulo n is also an algebraic polygon modulo n. We shall define
a “monodromy group” for any algebraic polygon in a natural way which coincides with the
monodromy groups associated to geometric polygons described in Section 4. It turns out that it
is relatively easy to classify the possible monodromy groups for all algebraic polygons modulo a
prime p (we do this in Theorem 3). The challenge is to determine when, for a given monodromy
group G of an algebraic polygon, there exists a geometric polygon with a monodromy group
isomorphic to G. Lemmas 5 and 6 show that this is always possible if none of the entries in the
algebraic polygon are zero modulo n. This motivates work in Section 8 to produce algebraic
polygons with nonzero entries.

Remark. Note that the definition of an algebraic polygon allows for an algebraic 2-gon even
though no geometric 2-gons exist. Despite this fact, algebraic 2-gons can be used to produce
geometric k-gons via Proposition 3.
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5.1. Results About Algebraic Polygons.

Definition 5. We say that two algebraic polygons, [a0, . . . ,ak−1] and [b0, . . . ,bk−1] modulo n are
associates if there exists c ∈ (Z/nZ)× such that bi ≡ cai (mod n) for all i.

Remark. Our definition of associate algebraic polygons coincides with the definition of associate
triangles from Aurell and Itzykson [4].

Observe that reflex angles lead to interesting associate polygons. For example, the (algebraic)
polygons [3,5,11,1] and [3,15,1,1] are associates modulo 10.

Proposition 2. Suppose that [a0, . . . ,ak−1] represents an algebraic polygon modulo n. Further
suppose that 0 < ai < 2n,ai ̸= n for all i and a0 + · · ·+ ak−1 ≤ (k − 2)n. Then there exists
an associate polygon [b0, . . . ,bk−1]. Consequently, there exists a polygon in the plane with
consecutive angles b0

n π, . . . ,
bk−1

n π and zero crossings.

Observe that Proposition 2 produces a geometric polygon, not simply an algebraic polygon.

Proof. If a0 + · · ·+ ak−1 = (k− 2)n, then, letting ai = bi, [a0, . . . ,ak−1] = [b0, . . . ,bk−1] repre-
sents an associate polygon modulo n. If a0+· · ·+ak−1 < (k−2)n, then let d =

(k−2)n−(a0+···+ak−1)
n .

We can find ai1 , . . . ,aid with i1, . . . , id distinct such that ai j < n. Add n to each of these ai j to
obtain bi j = ai j + n ≡ ai j mod n. Let bi = ai for all other indices i ̸= i j. Thus, [b0, . . . ,bk−1]
represents an associate k-gon modulo n. By Proposition 1, there exists a geometric polygon in
the plane with consecutive angles b0

n π, . . . ,
bk−1

n π and zero crossings. □

Example 2. Consider the algebraic polygon [1,2,2,7] modulo 12. Using the procedure in
Proposition 2, we produce the associate geometric polygon [13,2,2,7].

We will use the following lemma many times to verify that an algebraic k-gon satisfies the
hypotheses of Proposition 2.

Lemma 5. Suppose that [a0, . . . ,ak−1] is an algebraic polygon modulo n with ai ̸≡ 0 mod n for
all i. Then, [a0, . . . ,ak−1] has an associate k-gon [b0, . . . ,bk−1] that is a polygon modulo n. If
n = p is a prime and p ≥ k−1, then there exists an associate convex k-gon [b0, . . . ,bk−1] that is
a polygon modulo p.

Proof. Let ai denote the reduction of ai modulo n. Since ai ̸≡ 0 mod n for all i, we see
that 0 < ai < n for all i. Since a0 + · · ·+ ak−1 ≡ 0 mod n, we see that a0 + · · ·+ ak−1 ≡ 0
mod n. Combining this fact with the fact that a0 + · · ·+ ak−1 ≤ k · (n− 1), we conclude that
a0 + · · ·+ ak−1 ≤ (k − 1) · n. The case where a0 + · · ·+ ak−1 ≤ (k − 2) · n has already been
addressed in Proposition 2.

Consider the case where a0 + · · ·+ ak−1 = (k− 1)n. Let a′i = −ai for all i. Observe that
ai + a′i = n for all i. Therefore, a′0 + . . .a′k−1 = kn− (a0 + · · ·+ ak−1) = n ≤ (k− 2)n. Using
Proposition 2, we obtain the desired [b0, . . . ,bk−1].

Now consider the case where n = p is a prime and p ≥ k−1. Since ai ̸≡ 0 mod p for all i,
the reduction of ai modulo p can be chosen so that 0 < ai < p for all i. Since [a0, . . . ,ak−1] is an
algebraic polygon, we know that a0 + · · ·+ak−1 ≡ 0 mod p. Therefore, a0 + · · ·+ak−1 = cp
where 0 < c < k. Choose c′ ∈ Z/pZ so that c′ · c ≡ k−2 mod p. We see that c′ · a0+···+ak−1

p ≡
c′ ·c≡ k−2 mod p. Hence, c′a0+ . . .c′ak−2 = (k−2)p and thus, letting bi = c′ai, [b0, . . . ,bk−1]
is a k-gon modulo p. Since 0 < bi < p for all i, we see that [b0, . . . ,bk−1] represents a convex
polygon. □

5.2. Monodromy Groups of Algebraic Polygons. The purpose of introducing algebraic poly-
gons is to understand monodromy groups of actual polygons. Therefore, we must associate
to each algebraic polygon a monodromy group that coincides with the monodromy group in
Section 2 for geometric polygons.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

17 Jan 2024 13:08:05 PST
230811-MoyRichard Version 2 - Submitted to Rocky Mountain J. Math.



MONODROMY GROUPS OF DESSINS D’ENFANT ON RATIONAL POLYGONAL BILLIARDS SURFACES10

Definition 6. The monodromy group associated with an algebraic k-gon [a0, . . . ,ak−1] modulo n
is the group N ⋊Ck where N is the additive group generated by the columns of the matrix

C =


a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . . . . . ak−1

ak−1 ak−2 . . . a1 a0


in the Z/nZ module (Z/nZ)k. The group Ck acts on the columns of C by cyclicly permuting the
entries of a vector.

The monodromy groups that arose in Section 2 were monodromy groups of dessins d’enfant
drawn on rational billiards surfaces. Although these surfaces and dessins do not exist for
algebraic polygons, associating a monodromy group with them will still prove quite useful
theoretically.

Remark. If [a0, . . . ,ak−1] is a k-gon modulo n, then its monodromy group above is the same
as the monodromy group of D(a0, . . . ,ak−1) drawn on the rational polygonal billiards surface
X(a0, . . . ,ak−1). See Sections 2 and 4 for reference.

The following lemma illustrates that the monodromy group of associate algebraic polygons
are isomorphic.

Lemma 6. Fix n ∈ N. If [a0, . . . ,ak−1] and [b0, . . . ,bk−1] are associate algebraic polygons, then
their monodromy groups are the same.

Proof. Since [a0, . . . ,ak−1] and [b0, . . . ,bk−1] are associates, there exists c ∈ (Z/nZ)× such that
bi ≡ cai for all i. Let C′ and C′′ be the corresponding circulant matrices for [b0, . . . ,bk−1] and
[a0, . . . ,ak−1] respectively. Therefore, C′ ≡ c ·C′′ mod n. Since C′ and C′′, are scalar multiples
of each other by a unit, the spans of their columns are equal. The result follows. □

Proposition 3. Suppose that [a0, . . . ,ak−1] and [b0, . . . ,bk−1] represent algebraic k-gons modulo
n1 and n2 respectively where gcd(n1,n2) = 1. Suppose their respective monodromy groups
are N1 ⋊Ck and N2 ⋊Ck. Then there exists an algebraic k-gon [c0, . . . ,ck−1] modulo n1n2 with
monodromy group (N1 ×N2)⋊Ck. Furthermore, if ai ̸≡ 0 mod n1 or bi ̸≡ 0 mod n2 for every
i, then ci ̸≡ 0 mod n1n2 for all i.

Proof. By the Chinese Remainder Theorem, there exist unique integers ci with 0 < ci < n1n2
such that ci ≡ ai mod n1 and ci ≡ bi mod n2 for all i. Since ci ≡ ai mod n1, we see that
c0 + · · ·+ ck−1 ≡ 0 mod n1 and gcd(c0, . . . ,ck−1,n1) = 1. A similar argument shows that
c0+ · · ·+ck−1 ≡ 0 mod n2 and gcd(c0, . . . ,ck−1,n2) = 1. Hence, c0+ · · ·+ck−1 ≡ 0 mod n1n2
and gcd(c0, . . . ,ck−1,n1n2) = 1 since gcd(n1,n2) = 1.

Now, we will will compute the monodromy group of [c0, . . . ,ck−1] which is N ⋊Ck where
N is an abelian group and submodule of (Z/n1n2Z)k. Let C′ and C′′ be the circulant matrices
associated to [c0, . . . ,ck−1] and [a0, . . . ,ak−1] respectively. Since ci ≡ ai mod n1 for all i , we
see that C′ ≡C′′ mod n1.

Let d1, . . . ,dk be the elementary divisors of C′. They are the same modulo n1 as the elementary
divisors of C′′. By Theorem 2, we know the monodromy group of [c0, . . . ,ck−1] is

(5)
k⊕

i=1

Cδi =
k⊕

i=1

C n1n2
gcd(di,n1n2)

=
k⊕

i=1

C n1
gcd(di,n1)

⊕C n2
gcd(di,n2)

since gcd(n1,n2) = 1. Thus, the monodromy group of [a0, . . . ,ak−1] is N1 =
k⊕

i=1

C n1
gcd(di,n1)

.

Therefore, N1 ∼= n2N ∼= N/n1N. If N2 is the monodromy group of [b0, . . . ,bk−1], then a similar
argument shows that N2 ∼= n1N ∼= N/n2N. We conclude that N ∼= N1 ×N2 and the main result
follows. □
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Remark. In essence, Proposition 3 allows one to combine two algebraic k-gons [a0, . . . ,ak−1]
and [b0, . . . ,bk−1] with coprime moduli n1 and n2 and create a new algebraic k-gon [c0, . . . ,ck−1].
Suppose the monodromy groups of [a0, . . . ,ak−1] and [b0, . . . ,bk−1] are N1 ⋊Ck and N2 ⋊Ck
respectively. Then the monodromy group of [c0, . . . ,ck−1] is equal to (N1 ×N2)⋊Ck which is
a restricted product ∏

′
i (vi, ji) where the restriction requires j1 = j2. In other words, you can

combine two elements (v1, j1) ∈ N1 ⋊Ck and (v2, j2) ∈ N2 ⋊Ck if j1 = j2 to obtain (v3, j1) =
(v3, j2) where v3 is a vector in Z/n1n2Z that equals v1 when reduced modulo n1 and equals v2
when reduced modulo n2.

Example 3. One can actually combine two algebraic k-gons with no k-gon associates to create
an algebraic k-gon with a k-gon associate. Consider the algebraic 3-gon [0,1,1] modulo 2 with
monodromy group C2

2 ⋊C3 and the algebraic 3-gon [1,0,4] modulo 5 with monodromy group
C2

5 ⋊C3. Neither of these algebraic 3-gons have a polygonal associate. However, if we combine
them using Proposition 3, we obtain the algebraic 3-gon [6,5,9] modulo 10. This algebraic
3-gon has a 3-gon associate [4,5,1] modulo 10 obtained by scaling by 9 mod 10. The 3-gon
[4,5,1] has monodromy group (C2

2 ×C2
5)⋊C3 ∼=C2

10 ⋊C3.

Proposition 4. Suppose that [c0, . . . ,ck−1] is an algebraic k-gon modulo n1n2 with n1,n2 > 1
and with monodromy group N ⋊Ck. Then there exists an algebraic k-gon [a0, . . . ,ak−1] modulo
n1 with monodromy group (n2N)⋊Ck. Furthermore, if gcd(n1,n2) = 1, then the monodromy
group (n2N)⋊Ck

∼= (N/n1N)⋊Ck.

Proof. Observe that ci ̸≡ 0 mod n1 for some i. If n1|ci for all i, then gcd(c0, . . . ,ck−1,n1n2)> 1,
a contradiction with the definition of an algebraic polygon.

Choose ai ≡ ci mod n1 for all i. We see that a0 + · · ·+ ak−1 ≡ 0 mod n1 since c0 + · · ·+
ck−1 ≡ 0 mod n1n2. Suppose that the monodromy group of [a0, . . . ,ak−1] is N1 ⋊Ck. By basic
abelian group theory computations, we conclude that N1 ∼= n2N.

Now suppose gcd(n1,n2) = 1. Using (5), we see that the monodromy group of [c0, . . . ,ck−1]
has the form N ⋊Ck where

N =
k⊕

i=1

Cδi =
k⊕

i=1

C n1
gcd(di,n1)

⊕C n2
gcd(di,n2)

Observe that n2N ∼=
k⊕

i=1

C n1
gcd(di,n1)

and n1N ∼=
k⊕

i=1

C n2
gcd(di,n2)

. Thus, n2N ∼= N/n1N. □

Remark. If n1 and n2 are coprime in Proposition 4, then N1 ∼= N/n1N. However, this is not
the case when n1 and n2 have a non-trivial gcd. We illustrate this phenomenon in the following
example.

Example 4. Consider the 4-gon [1,2,24,23] modulo 25. The monodromy group is N ⋊C4
where N ∼= C25 ×C5. If we apply Proposition 4 when n1 = 5, we obtain the k-gon [1,2,4,3]
which has monodromy group N1 ⋊C4 where N1 ∼=C5 ∼= 5N ̸∼= N/5N.

The following proposition allows us to lift an algebraic k-gon modulo n to an algebraic ℓ-gon
modulo n if k|ℓ.

Proposition 5. Suppose that k, ℓ∈N and k|ℓ. Further suppose that [a0, . . . ,ak−1] is an algebraic k-
gon modulo n with monodromy group N⋊Ck. Then there exists an algebraic ℓ-gon [c0, . . . ,cℓ−1]
modulo n with monodromy group N ⋊Cℓ.

Proof. Let ci = a j where j is the least nonnegative integer satisfying i ≡ j mod k. In essence,

[c0, . . . ,cℓ−1] = [a0, . . . ,ak−1,a0, . . . ,ak−1,a0, . . . ,ak−1]

where the pattern a0, . . . ,ak−1 repeats itself ℓ
k times. Let C and C′ be circulant matrices associated

to [a0, . . . ,ak−1] and [c0, . . . ,cℓ−1] respectively. Observe that C′ is a ℓ
k ×

ℓ
k block matrix in which

the matrix C repeats ℓ
k times in each row and column. Therefore, the group generated by the
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columns of C′ is isomorphic to the group generated by the columns of C and thus the monodromy
group of [c0, . . . ,cℓ−1] is N ⋊Cℓ. □

The following example illustrates how Proposition 5 is used to lift an algebraic k-gon to an
algebraic ℓ-gon.

Example 5. Let k = 2, ℓ = 4 and consider the algebraic 2-gon [3,4] modulo n = 7. Using
Proposition 5, lift [3,4] to the algebraic 4-gon [3,4,3,4] modulo 7. The monodromy group of
[3,4] is C7 ⋊C2 and the monodromy group of [3,4,3,4] is C7 ⋊C4.

A quick lemma about semidirect products is needed to complete our series of results about
combining algebraic polygons to form new algebraic polygons. The following lemma follows
from an easy elementary group theory argument.

Lemma 7. Suppose that N1,H1,N2,H2 are finite groups. If G1 ∼= N1 ⋊H1 and G2 ∼= N2 ⋊H2
then G1 ×G2 ∼= (N1 ×N2)⋊ (H1 ×H2).

Now, let us combine the results from Propositions 3 and 5 to obtain the following corollary.

Corollary 3. Fix n1,n2,k, ℓ∈N with k, ℓ≥ 2. Suppose that gcd(n1,n2) = 1 and gcd(k, ℓ) = 1. If
[a0, . . . ,ak−1] is an algebraic k-gon modulo n1 with monodromy group N1⋊Ck and [b0, . . . ,bℓ−1]
is an algebraic ℓ-gon modulo n2 with monodromy group N2⋊Cℓ, then there exists an algebraic kℓ-
gon [c0, . . . ,ckℓ−1] modulo n1n2 with monodromy group (N1×N2)⋊Cℓk

∼= (N1⋊Ck)×(N2⋊Cℓ).

Proof. Combining Propositions 3 and 5 give us the desired algebraic kℓ-gon [c0, . . . ,ckℓ−1] with
monodromy group (N1 ⋊N2)⋊Ckℓ. Since gcd(k, ℓ) = 1, Ckℓ

∼= Ck ×Cℓ. Thus, by Lemma 7,
(N1 ⋊N2)⋊Ckℓ

∼= (N1 ⋊Ck)× (N2 ⋊Cℓ). □

The following example illustrates how to use Corollary 3.

Example 6. Let k = 3, ℓ= 4, n1 = 7 and n2 = 5. Let [1,2,4] be our algebraic 3-gon modulo 7
and let [2,3,3,2] be our algebraic 4-gon modulo 5. The monodromy group of group of [1,2,4] is
C7 ⋊C3 and the monodromy group of [2,3,3,2] is C2

5 ⋊C4. Using Proposition 5, we lift [1,2,4]
to [1,2,4,1,2,4,1,2,4,1,2,4] and we lift [2,3,3,2] to [2,3,3,2,2,3,3,2,2,3,3,2]. Using Propo-
sition 3, we combine these algebraic 12-gons to obtain [22,23,8,22,2,18,8,2,32,8,23,32]
modulo 35 which has monodromy group (C7 ×C2

5)⋊C12 ∼= (C7 ⋊C3)× (C2
5 ⋊C4).

6. Results about Circulant Matrices

The following results on circulant matrices will be needed to compute monodromy groups of
polygons modulo p when p is prime. The results are well known over C, and we provide the
proofs for the corresponding results over finite fields for completeness.

Definition 7. A k× k circulant matrix C has the following form

C =


a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . . . . . ak−1

ak−1 ak−2 . . . a1 a0

 .
For the purposes of this paper, the entries ci are integers or integers modulo n.

Definition 8. We call the polynomial f (x) = a0+a1x+ · · ·+ak−1xk−1 the associated polynomial
of the circulant matrix C.

The following result can be found in any introductory text about circulant matrices such as
[8].

Lemma 8. The rank of a k×k circulant matrix C over a field F which has an algebraic extension
with k distinct kth roots of unity is equal to k−d where d is the degree of gcd( f (x),xk −1).
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Lemma 9. Suppose p1 and p2 are distinct prime integers and p1 is a generator for the cyclic
group F×

p2
. Then xp2−1 + · · ·+ x+1 is irreducible over Fp1 .

Proof. Let ω be a primitive p2th root of unity of Fp1 . The group Gal(Fp1(ω)/Fp1) is generated
by the Frobenius automorphism φ : x 7→ xp1 [3, Proposition 5.8, page 445]. Since p1 generates
F×

p2
, we see that |φ |= p2−1. Thus, [Fp1(ω) : Fp1 ] = p2−1 and xp2−1+ · · ·+x+1 is irreducible

over Fp1 . □

Corollary 4. Let p1 and p2 be primes such that p1 is a generator for the cyclic group F×
p2

.
Suppose that C is a p2 × p2 circulant matrix with entries in Fp1 . Then rank(C) = 0, 1, p2 −1, or
p2.

Proof. By Lemma 9, we know that xp2−1 + · · ·+ x+1 is irreducible over Fp1 . Hence xp2 −1
factors as (x−1)(xp2−1 + · · ·+ x+1) over Fp1 . By Lemma 8, we see that d = 0, 1, p2 −1, or
p2 from which our result follows. □

7. Results for n = p Prime

In Section 4.1, we gave a description of the monodromy group in terms of the elementary
divisors of a particular circulant matrix. Although this result (Theorem 2) allows one to easily
compute the monodromy group, the result is not explicit. We will prove several results below
in the special case when n is equal to a prime p. In other words, [a0, . . . ,ak−1] represents an
algebraic k-gon modulo a prime p. In this case, the group N can be viewed as a Z/pZ = Fp
module and is thus a vector space. In this section, Fp will denote the finite field with p elements
and F×

p will denote its group of units.

Proposition 6. Suppose that [a0, . . . ,ak−1] represents an algebraic k-gon modulo a prime p.
Let f (x) = a0 + a1x+ · · ·+ ak−1xk−1 and let d be the degree of gcd( f (x),xk − 1). Then the
monodromy group of [a0, . . . ,ak−1] is G(a0, . . . ,ak−1) =Ck−d

p ⋊Ck.

Proof. Let C be the circulant matrix associated to [a0, . . . ,ak−1]. By Lemma 8, we know that the
rank of C is equal to k−d where d is the degree of gcd( f (x),xk −1). The rank of a subspace of
a vector space determines the group structure and the result follows. □

This allows us to translate the problem of finding the rank of a matrix to that of a degree of a
gcd. The following corollary shows how we can use this connection to compute the monodromy
groups of a large collection of dessins on rational billiards surfaces.

Corollary 5. Suppose p2 is a prime number and p1 is a prime number that generates the
cyclic group (Fp2)

×. Suppose that [a0, . . . ,ap2−1] represents an algebraic p2-gon modulo
p1 with monodromy group G(a0, . . . ,ap2−1). Let f (x) = a0 + a1x + · · ·+ ap2−1xp2−1, then
G(a0, . . . ,ap2−1)∼=Cp2−1

p1 ⋊Cp2 .

Proof. By Corollary 4, the rank of the appropriate matrix C is 0, 1, p2 − 1, or p2. Since
f (1)≡ 0 mod p1, we know x−1| f (x) and thus rank(C)≤ p2 −1. Since xp2−1 + · · ·+ x+1 is
irreducible over Fp1 by Lemma 9, the deg(gcd( f (x),xp2 −1)) = 1 or p2. If deg(gcd( f (x),xp2 −
1)) = p2 then a0 = · · · = ap2−1 = 0 since deg( f ) ≤ p2 − 1, which is a contradiction. Hence,
deg(gcd( f (x),xp2 −1)) = 1 and the result follows. □

Example 7. Choose p2 = 17. Observe that p1 = 41 generates the multiplicative group F×
17.

Hence, any algebraic 17-gon modulo 41 has monodromy group C16
41 ⋊C17.

7.1. Possible Monodromy Groups. Now, let’s prove a general theorem that lists all possible
monodromy groups for polygons [a0, . . . ,ak−1] modulo p.

Proposition 7. Suppose that [a0, . . . ,ak−1] represents an algebraic polygon modulo a prime
p. Let f (x) = a0 + a1x+ · · ·+ ak−1xk−1 and suppose xk − 1 = ∏gi(x) where the gi(x) are
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MONODROMY GROUPS OF DESSINS D’ENFANT ON RATIONAL POLYGONAL BILLIARDS SURFACES14

irreducible over Fp. Further suppose that gcd( f (x),xk −1) =
ℓ

∏
j=1

gi j(x). Then the monodromy

group of [a0, . . . ,ak−1] is G(a0, . . . ,ak−1) =Ck−d
p ⋊Ck where d =

m

∑
j=1

deg(gi j(x)).

In essence, Proposition 7 gives a list of all potential monodromy groups of algebraic k-gons
modulo p. If [a0, . . . ,ak−1] is an algebraic k-gon modulo p with monodromy group Ck−d

p ⋊Ck

then d must be equal to the sum of degrees of distinct irreducible factors of xk −1 in Fp. The
factor x−1 must be one of these factors. If there is no way to add up to d the degrees deg(gi j(x))
of a subset of the irreducible factors gi(x) of xk −1 in Fp, then such a monodromy group cannot
occur.

Example 8. Consider k = 3 and p = 5. We see that x3 −1 factors as (x−1)(x2 +x+1) modulo
5. Since x−1 is required to be a factor of gcd( f (x),xk −1), we see that this gcd cannot have
degree two. Therefore, the monodromy group C3−2

5 ⋊C3 is not achieved by any algebraic 3-gon
modulo 5.

Proof of Proposition 7. By Proposition 6, we know that d is the degree of gcd( f (x),xk − 1).
Since the gcd must be a product of some subset of {gi(x)}, we see that d is the sum of the
degrees of some subset of {gi(x)}. The theorem follows.

Observe that ℓ≥ 1 because f (1) = a0 + . . .ak−1 ≡ 0 mod p implies x−1 divides f (x). □

Theorem 3. Fix a prime p ∤ k. Suppose xk −1 = ∏gi(x) where the gi(x) are irreducible over

Fp. Let d =
ℓ

∑
j=1

deg(gi j(x)). Further suppose that gi j = x−1 for some i j. Then there exists an

algebraic k-gon [a0, . . . ,ak−1] modulo p with monodromy group G(a0, . . . ,ak−1)∼=Ck−d
p ⋊Ck.

Proof. Let f (x) = ∏gi j(x). We see that deg(gcd( f (x),xk − 1)) = d. If f (x) = a0 + · · ·+
ak−1xk−1 then a0 + · · ·+ak−1 ≡ 0 mod p since (x−1)| f (x).

Since f (x) is not the zero polynomial over Fp, we see that gcd(a0, . . . ,ak−1, p) = 1. Therefore,
[a0, . . . ,ak−1] is an algebraic k-gon with monodromy group G(a0, . . . ,ak−1) ∼= Ck−d

p ⋊Ck by
Proposition 6.

Since deg( f (x)) = d, then ak−1 = 0 when d < k− 1. This is allowed since the associated
polynomial f (x) for an algebraic k-gon may have degree d < k−1. □

Theorem 3 proves that all possible monodromy groups from Proposition 7 are achieved by
algebraic polygons modulo p for a fixed prime p. Therefore, it is natural to ask which groups
can occur for k-gons modulo p. The following theorem shows that for primes p > k, all possible
monodromy groups from Proposition 7 are achieved by k-gons modulo p.

Theorem 4. Fix a prime p > k ≥ 3. Suppose xk − 1 = g1(x) · · ·gℓ(x) where the gi(x) are

irreducible over Fp. Let d =
m

∑
j=1

deg(gi j(x)) where m is a positive integer less than ℓ and

1 ≤ i1 < · · ·< im ≤ ℓ. Further suppose that gi j = x−1 for some i j. Then there exists a k-gon
[a0, . . . ,ak−1] modulo p with monodromy group G(a0, . . . ,ak−1)∼=Ck−d

p ⋊Ck.

Remark. We only consider primes p > k in Theorem 4, because p ∤ k in this case. The
polynomial, xk −1, has no repeated factors over Fp when p ∤ k which implies that there is an
algebraic extension of Fp with k distinct kth roots of unity. Furthermore, Theorem 4 is not true
for primes p ≤ k in its current formulation. Consider k = 3 and p = 3. Since x3 −1 = (x−1)3

modulo 3, Theorem 4 would predict the existence of 3-gons with monodromy groups C2
3 ⋊C3

and C3 ⋊C3. However, the only 3-gon is [1,1,1], and thus the only possible monodromy group
of a 3-gon modulo 3 is C3 ⋊C3.
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8. Proving Theorem 4

Here we lay out the basic strategy and supporting lemmas we will use to prove Theorem 4.

8.1. Strategy for Proving Theorem 4. Recall that Lemmas 8 and 9 allow us to construct a
geometric polygon with monodromy group G if we can find an algebraic polygon with all
nonzero entries that has an isomorphic monodromy group. To control the number of nonzero
entries in an algebraic polygon, we define:

Definition 9. For a polynomial f (x) = anxn + · · ·+ a1x+ a0 with an ̸= 0, let w( f (x)) be the
maximum number of consecutive coefficients of f (x) that are zero. For example, if g(x) =
x7 − x3 +1, then w(g(x)) = 3 since a6 = a5 = a4 = 0 while a3,a7 ̸= 0.

Now, our strategy for proving Theorem 4 is the following:

(1) For a given monodromy group G ∼=Ck−d
p ⋊Ck described in Theorem 4, find an appropri-

ate polynomial g(x) satisfying g(x)|xk −1, x−1|g(x), and deg(g(x)) = d.
(2) Using Proposition 8, multiply g(x) by a series of linear polynomials to produce a poly-

nomial f (x), each of which reduces the value of the w function but leaves gcd( f (x),xk −
1) = g(x). Repeat until g(x) has been transformed into a polynomial f (x) = ∑bixi of
degree k−1 with w( f (x)) = 0 and gcd( f (x),xk −1) = g(x).

(3) Use Lemmas 5 and 6 to transform [b0, . . . ,bk−1] into a geometric polygon with mon-
odromy group G.

Remark. The proofs of Theorem 5 and Proposition 11 follow the above approach. However,
the proof of Proposition 12 differs slightly.

In the following proposition, we show that if we choose α appropriately, then w((x−α) ·
f (x)) = max(w( f (x))−1,0).

Proposition 8. Let F be a field. Suppose that f (x) = anxn +an−1xn−1 + · · ·+a1x+a0 ∈ F[x]
with a0,an ̸= 0. If {α0, . . . ,αn} are distinct non-zero elements of F, then there exists at least one
αi such that w( f (x) · (x−αi)) = max(w( f (x))−1,0).

Proof. Consider the coefficients of f (x) · (x−αi) = bn+1xn+1 +bnxn + · · ·+b1x+b0. Observe
that b0,bn+1 ̸= 0. Further observe that for 0 < j < n+1, b j = a j−1 −αia j. If b j = 0 then one
of three situations must arise:

(a) a j−1 = a j = 0
(b) a j−1 = αi = 0
(c) αi =

a j−1
a j

and a j ̸= 0

Situation (b) cannot arise, because αi is chosen from non-zero elements of F. By the pigeon hole
principle, there exists at least one αi in {α0, . . . ,αn} such that αi ̸=

a j−1
a j

for all 0 ≤ j ≤ n. Our
choice of αi prevents situation (c) from arising. Since situation (a) cannot occur if w( f (x)) = 0
then w( f (x) · (x−αi)) = 0 in this case.

Now we consider the case where w( f (x)) > 0. By our choice of αi, b j = 0 implies a j =
a j−1 = 0. Assume that w( f (x)) = d+1 which implies there exist aℓ, . . . ,aℓ+d , which are 0, with
aℓ−1 ̸= 0 and aℓ+d+1 ̸= 0. We see that bℓ ̸= 0 and bℓ+d+1 ̸= 0 and bℓ+1, . . . ,bℓ+d = 0. Hence,
we have shown that w( f (x) · (x−αi)) = w( f (x))−1. □

Now, we prove a useful result about the gcd of collections of polynomials with xk −1.

Lemma 10. Let F be a field and let f (x)= adxd + · · ·+a1x+a0 ∈F[x]. Then gcd( f (x),xk−1)=
gcd(x · f (x)−ak−1(xk−1),xk−1). Furthermore, gcd( f (x),xk−1) = gcd(xt · f (x)−(ak−1xt−1+
· · ·+ak−t+1x+ak−t) · (xk −1) for any positive integer t < k.

Proof. Observe that gcd( f (x),xk −1) = gcd(x · f (x),xk −1) since x does not divide xk −1. It
is clear that gcd(x · f (x),xk − 1) divides gcd(x · f (x)− ak−1(xk − 1),xk − 1). If h(x) = gcd(x ·
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f (x)−ak−1(xk −1),xk −1), then h(x) divides x · f (x)−ak−1(xk −1)+ak−1(xk −1) = x · f (x).
Hence, gcd( f (x),xk −1) = gcd(x · f (x)−ak−1(xk −1),xk −1).

The result gcd( f (x),xk −1) = gcd(xt · f (x)− (ak−1xt−1 + · · ·+ak−t+1x+ak−t) · (xk −1) fol-
lows directly from using this same approach t times. □

Example 9. Consider the field F2. Let f (x) = x5 + x2 + x+1. Using Lemma 10 with t = 2, we
deduce that

gcd(x5 + x2 + x+1,x7 −1) = gcd(x4 + x3 + x2 +1,x7 −1)

In the following proposition, we prove a result about the maximum value of w( f (x)) for
polynomials f (x) dividing xk −1.

Proposition 9. Let F be a field and let f (x) = adxd + . . .a1x+a0 ∈ F[x]. Suppose that f (x) is a
non-zero polynomial with deg( f (x)) = d and f (x)|xk −1. Then w( f (x))< k−d.

Proof. If k−d ≥ d = deg( f (x)), then the result is trivial. Otherwise, suppose that w( f (x))≥
k−d. This implies that f (x) has k−d consecutive coefficients equal to zero. For the purposes
of this proof, assume aℓ, . . . ,aℓ+k−d−1 = 0 for some ℓ < d.

Use Lemma 10 with t = k− (ℓ+ k−d −1) = d − ℓ. That is, consider

g(x) = xd−ℓ f (x)− (ak−1xd−ℓ−1 +ak−2xd−ℓ−2 + · · ·+ x ·aℓ+k−d+1 +aℓ+k−d)(xk −1)

which can be rewritten as

g(x) =
k−1

∑
i=d

ai−d+ℓxi +
d−1

∑
i=d−ℓ

ai−d+ℓxi +
d−ℓ−1

∑
i=0

ai+k−d+ℓxi.

Lemma 10 states that gcd(g(x),xk −1) = gcd( f (x),xk −1). Since the first summation above
is equal to zero, we see that deg(g(x)) ≤ d − 1. This implies that deg(gcd(g(x),xk − 1)) < d
which is a contradiction since gcd( f (x),xk −1) = f (x) and deg( f (x)) = d. □

8.2. Proving Theorem 4 for p > k+1. In this section, we prove Theorem 4 in the case where
p > k+1.

Proposition 10. Fix an integer k ≥ 3. Suppose that d|k and d < k. For primes p > k, there exists
a k-gon [a0, . . . ,ak−1] modulo p with monodromy group G(a0, . . . ,ak−1)∼=Ck−d

p ⋊Ck.

Proof. Consider f (x) = (xd − 1)
k
d −1(xd−1 + · · ·+ x+ 1) = b0 + b1x+ · · ·+ bk−1xk−1. Since

p > k, the binomial coefficients in the expansion of (xd − 1)
k
d −1 are nonzero modulo p, and

thus bi ̸≡ 0 mod p for 0 ≤ i ≤ k − 1. Further observe that xk − 1 has no repeated factors
since p ∤ k. Since xd−1 + · · ·+ x+ 1 divides xd − 1 and xd − 1 divides xk − 1, we deduce that
gcd( f (x),xk −1) = xd −1. Therefore, [b0, . . . ,bk−1] is an algebraic k-gon modulo p.

By Lemma 5, Lemma 6, Proposition 2, and Proposition 6, [b0, . . . ,bk−1] has a k-gon associate
[a0, . . . ,ak−1] modulo p with monodromy group G(a0, . . . ,ak−1)∼=Ck−d

p ⋊Ck. □

The following theorem is crucial in the proof of Theorem 4.

Theorem 5. Let k ≥ 3 be an integer, and let p > k be a prime. Suppose xk −1 = ∏gi(x) where

the gi(x) are irreducible over Fp. Let d =
ℓ

∑
j=1

deg(gi j(x)). Let M equal the number of roots of

xk−1
∏gi j

in Fp. Further suppose that gi j = x− 1 for some i j. If p > k+M, there exists a k-gon

[a0, . . . ,ak−1] modulo p with monodromy group G(a0, . . . ,ak−1) =Ck−d
p ⋊Ck.

Proof. Let g(x) = ∏gi j(x) which implies deg(g(x)) = d. By Proposition 9, w(g(x))< k−d. To
produce a degree k−1 polynomial f (x) with gcd( f (x),xk −1) = g(x), we will use Proposition
8 exactly k−d −1 times. The result of this process will be a new polynomial f (x) equal to g(x)
times k−d −1 linear polynomials, and f (x) will have the property that w( f (x)) = 0.
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To use Proposition 8, we must have at least k distinct nonzero α ∈ Fp. Furthermore, these
α cannot be roots of xk−1

g(x) . If α were a root of xk−1
g(x) , then gcd((x−α) ·g(x),xk −1) would have

degree greater than d. Since Fp has p−1 nonzero elements, we need p−1 ≥ k+M to satisfy
the assumptions of Proposition 8 and thus we need p > k+M.

The result of using Proposition 8 exactly k − d − 1 times is a degree k − 1 polynomial
f (x) = bk−1xk−1+ · · ·+b1x+b0 with bk−1, . . . ,b0 ̸≡ 0 mod p. Observe that b0+ · · ·+bk−1 ≡ 0
mod p since x − 1| f (x). By Lemma 5, Lemma 6, and Proposition 6, there exists a k-gon
[a0, . . . ,ak−1] modulo p with monodromy group G(a0, . . . ,ak−1)∼=Ck−d

p ⋊Ck. □

Theorem 5 proves Theorem 4 for most k and p as illustrated in the following corollary.

Corollary 6. Fix an integer k ≥ 3. Theorem 4 is true for primes p > k+1.

Proof. Fix p > k+ 1. Suppose that gcd(p− 1,k) = d. We claim that F×
p contains exactly d

distinct kth roots of unity. Observe that F×
p
∼=Cp−1 ∼= Z/(p−1)Z. Finding the number of kth

roots of unity in F×
p is equivalent to finding the number of solutions to kx ≡ 0 mod p−1 in

Z/(p−1)Z. Since gcd( k
d , p−1) = 1, we see that the number of solutions to kx = k

d (dx) ≡ 0
mod p−1 is the same as the number of solutions to dx ≡ 0 mod p−1. Since d|p−1, there are
d solutions to dx ≡ 0 mod p−1 and thus F×

p contains exactly d distinct kth roots of unity. The
remaining kth roots of unity lie in an algebraic extension of Fp.

In Theorem 5, M ≤ d − 1 since the factor gi j = x− 1 for some i j. Since p ̸= k + 1 and
gcd(p− 1,k) = d, we deduce that p > k + d > k +M. Thus, Theorem 4 is true when p >
k+1. □

Remark. To prove Theorem 4, one need only verify it for integers k ≥ 3 where p = k+1 is
prime.

8.3. Proving Theorem 4 for p = k+1. In this section, we prove Theorem 4 in the remaining
cases in which p = k+1.

Remark. If p = k+ 1 then xk − 1 splits completely into linear terms over Fp since xp − x =

x(xk −1) is the polynomial whose roots are the elements of Fp.

Lemma 11. Suppose p = k+1 is an odd prime. Let d|k with d > 1. There exists a polynomial
xd −a ∈ Fp[x] with no roots in Fp.

Proof. Since F×
p is a cyclic group under multiplication, let a be a generator of this cyclic

group. We claim xd − a has no roots in Fp. Suppose xd − a had a root in Fp. This would
imply that there exists an element b ∈ Fp satisfying bd = a. However, this would imply that
ak/d = (bd)k/d = bk = 1, a contradiction with the fact that the order of a under multiplication is
k. □

Proposition 11. Suppose p = k+1 is an odd prime. Further suppose 0 < d < k
2 . There exists a

k-gon [a0, . . . ,ak−1] modulo p with monodromy group G(a0, . . . ,ak−1) =Ck−d
p ⋊Ck.

Proof. By Lemma 11, there exists a polynomial xk/2 − a that has no linear factors in Fp.
Thus, gcd(xk/2 − a,xk − 1) = 1. We need to produce a polynomial g(x) of degree k

2 − 1 so
that w(g(x)) = 0 and the gcd(g(x),xk − 1) has degree d. If we can find such a g(x), then
h(x) = (xk/2 −a) ·g(x) has degree k−1, the gcd(h(x),xk −1) has degree d, and w(h(x)) = 0.

Consider (x−1)k/2−d whose coefficients are nonzero modulo p. We need to find a sequence

of distinct elements αi ∈ Fp so that if we set g(x) = (x−1)k/2−d
d−1

∏
i=1

(x−αi) then w(g(x)) = 0.

We proceed by induction. Suppose we have already found j distinct elements αi ∈ Fp so that

g̃(x) = (x− 1)k/2−d
j

∏
i=1

(x−αi) and w(g̃(x)) = 0. How many choices for α j+1 are there? By

Proposition 8, since deg(g̃) = k
2 −d + j, we need more than k

2 −d + j choices to select α j+1 so
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MONODROMY GROUPS OF DESSINS D’ENFANT ON RATIONAL POLYGONAL BILLIARDS SURFACES18

that w(g̃ ·(x−α j+1)) = 0. We also remove j possible nonzero elements of Fp from consideration
when we choose α j+1 to ensure all αi are distinct. Since j < d < k

2 , we see that k
2 −d+ j < k− j.

Thus, by the pigeon hole principle, there exists a nonzero α j+1 so that the αi are distinct for
1 ≤ i ≤ j+1 and w(g̃ · (x−α j+1)) = 0.

By induction, we have shown there exists a polynomial g(x) = (x − 1)k/2−d
d−1

∏
i=1

(x−αi)

where the αi are distinct and w(g(x)) = 0. Now, let h(x) = g(x) · (xk/2 − a). We see that
deg(h(x)) = k−1, the gcd(h(x),xk −1) has degree d, and w(h(x)) = 0.

By Lemma 5, Lemma 6, and Proposition 6, there exists a k-gon [a0, . . . ,ak−1] modulo p with
monodromy group G(a0, . . . ,ak−1)∼=Ck−d

p ⋊Ck. □

Proposition 12. Suppose k ≥ 3 and p = k+1 is prime. Further suppose k
2 < d < k. There exists

a k-gon [a0, . . . ,ak−1] modulo p with monodromy group G(a0, . . . ,ak−1) =Ck−d
p ⋊Ck.

Proof. Since k is even, observe that xk/2 +1 divides xk −1. Let S be the set of roots of xk/2 +1
in Fp. Choose a set T = {α1, . . . ,αd−k/2} ⊂ F×

p so that the αi are distinct, α1 = 1, and αi ̸∈ S
for all i.

Setting g̃(x) =
d−k/2

∏
i=1

(x−αi), observe that g̃(x) divides xk/2 − 1. By Proposition 9, we see

that w(g̃(x))< k
2 − (d − k

2) = k−d < k
2 . Now, we want to use Proposition 8 exactly k−d −1

times to find β j in Fp so that g(x) =
d−k/2

∏
i=1

(x−αi) ·
k−d−1

∏
j=1

(x−β j) and w(g(x)) = 0 and each

β j ∈ S∪T . If we have at least k
2 eligible distinct nonzero elements of Fp, we can use Proposition

8 exactly k−d −1 times. Since there are d nonzero elements in S∪T and d > k
2 , we can use

Proposition 8 to select our β j. The result of using Proposition 8 these k− d − 1 times is the

polynomial g(x) =
d−k/2

∏
i=1

(x−αi) ·
k−d−1

∏
j=1

(x−β j) which has the properties that w(g(x)) = 0 and

each β j ∈ S∪T .
Now, let h(x) = g(x) · (xk/2 +1). We see that deg(h(x)) = k−1, and that gcd(h(x),xk −1) =

g̃(x) · (xk/2 +1) has degree d, and that w(h(x)) = 0. By Lemma 5, Lemma 6, and Proposition 6,
there exists a k-gon [a0, . . . ,ak−1] modulo p with monodromy group G(a0, . . . ,ak−1)∼=Ck−d

p ⋊
Ck. □

Now, we proceed with the proof of Theorem 4.

Proof of Theorem 4. The case where p > k+1 was proven in Corollary 6. Now consider the
case when p = k+1 is an odd prime. If 1 ≤ d ≤ k−1, we claim there exists a k-gon modulo
p with monodromy group Ck−d

p ⋊Ck. The case where d < k
2 was proven in Proposition 11 and

the case where d > k
2 was proven in Proposition 12. The case where d = k

2 is a consequence of
Proposition 10 because k

2 divides k. Thus, the proof of Theorem 4 is complete. □

9. Results for Composite n

In this section, we will prove several results about monodromy groups when n is composite
relying heavily on the theory of algebraic polygons from Section 5. This first proposition
shows that you can combine k-gons with relatively prime moduli to create a new k-gon whose
monodromy group is closely related to the monodromy groups of the initial k-gons.

Proposition 13. Suppose that [a0, . . . ,ak−1] and [b0, . . . ,bk−1] represent k-gons modulo n1 and
n2 respectively where gcd(n1,n2) = 1. Suppose their respective monodromy groups are N1 ⋊Ck
and N2 ⋊Ck. Then there exists a k-gon [c0, . . . ,ck−1] modulo n1n2 with monodromy group
(N1 ×N2)⋊Ck.
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MONODROMY GROUPS OF DESSINS D’ENFANT ON RATIONAL POLYGONAL BILLIARDS SURFACES19

Proof. This proposition is an immediate consequence of Proposition 3, Lemma 5, and Lemma
6. □

Here is an example of the use of Proposition 13.

Example 10. Consider the quadrilateral [a0,a1,a2,a3] = [1,4,4,1] which has modulus n1 = 5.
The monodromy group of D(1,4,4,1) is C2

5 ⋊C4. Also consider the quadrilateral [b0,b1,b2,b3] =

[2,3,4,3] which has modulus n2 = 6. The monodromy group of D(2,3,4,3) is C2
6 ⋊C4. We can

solve a system of four congruences modulo 5 ·6 = 30. Observe that if we set [c0,c1,c2,c3] =
[26,9,4,21] then we have ci ≡ ai mod 5 and ci ≡ bi mod 6. We see that c0 + c1 + c2 + c3 =
2 ·30. If this had not been the case, we could have modified the coefficients using Lemma 5 and
Lemma 6 without changing the monodromy group. Finally, by Proposition 13, the monodromy
group of D(26,9,4,21) is C2

30 ⋊C4 ∼= (C2
5 ×C2

6)⋊C4.

You can use Proposition 4 to project a k-gon modulo n1n2 to an algebraic k-gon modulo n1.
However, this proposition does not guarantee that the new algebraic k-gon will have a k-gon
associate, as illustrated in the following example.

Example 11. Consider the polygon [c0,c1,c2] = [1,1,4] modulo 6 which has monodromy group
(C6 ×C2)⋊C3. Consider the reduction ci ≡ ai mod 2 to obtain [a0,a1,a2] = [1,1,0]. The
monodromy group of [1,1,0] modulo 2 is C2

2 ⋊C3. However, there do not exist any 3-gons
modulo 2.

The above example illustrates how we must understand monodromy groups of algebraic
polygons, and not polygons, in order to classify all possible monodromy groups for k-gons
modulo composite n.

Proposition 14. Fix an abelian group N and a positive integer n = ∏ p
x j
j where the p j are

distinct primes. There exists a k-gon [c0, . . . ,ck−1] modulo n with monodromy group N ⋊Ck

if and only if there exist algebraic k-gons [a( j)
0 , . . . ,a( j)

k−1] modulo p
x j
j with monodromy groups

(N/p
x j
j N)⋊Ck and for every 0 ≤ i ≤ k−1 there exists some j for which a( j)

i ̸≡ 0 mod p
x j
j .

Proof. If [c0, . . . ,ck−1] is a k-gon with the desired monodromy group N ⋊Ck, then the forward
direction of the proof follows immediately from Proposition 4 and the fact that ci ̸≡ 0 mod n
for all i.

Suppose there exist algebraic k-gons [a( j)
0 , . . . ,a( j)

k−1] modulo p
x j
j with monodromy groups

(N/p
x j
j N)⋊Ck and for every 0 ≤ i ≤ k−1 there exists some j for which a( j)

i ̸≡ 0 mod p
x j
j . The

reverse direction of the proof follows from Proposition 3, Lemma 5, and Lemma 6. □

Remark. The condition that a( j)
i ̸≡ 0 mod p

x j
j in Proposition 14 is satisfied if at least one of

the algebraic k-gons [a( j)
0 , . . . ,a( j)

k−1] is an actual k-gon. This is sufficient but not necessary.

Proposition 14 translates the problem of understanding the monodromy groups of all algebraic
k-gons to the problem of understanding monodromy groups for algebraic k-gons with prime
power moduli.

Example 12. There does not exist a 3-gon modulo 35 with monodromy group N ⋊C3 where
N ∼=C35 or where N ∼=C35 ×C7. Suppose there were such a 3-gon [c0,c1,c2] modulo 35. Then
the projection of [c0,c1,c2] modulo 5 (using Proposition 4) would have monodromy group
7N ⋊C3 ∼= (N/5N)⋊C3 which is isomorphic to C5 ⋊C3 in both the case where N ∼=C35 and
N ∼=C35 ×C7. However, C5 ⋊C3 is not a possible monodromy group for any algebraic 3-gon
modulo 5 by Proposition 7.

9.1. Triangular Billiards Surfaces. One well-known property of the Smith Normal Form for Z
is summarized in the following lemma.
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MONODROMY GROUPS OF DESSINS D’ENFANT ON RATIONAL POLYGONAL BILLIARDS SURFACES20

Lemma 12 (Proposition 8.1, [15]). If d1, . . . ,dk are the elementary divisors of the Smith Normal
Form of a matrix A over Z, then d1 · · ·d j is equal to the gcd of the determinants of all j× j
minors of the matrix A.

This property allows us to reprove Corollary 1 using a method that will extend to the higher
k-gons.

Proof of Corollary 1. Consider the arbitrary rational triangle with angles
(a0π

n
,
a1π

n
,
a2π

n

)
,

where the ai are positive integers, a0 + a1 + a2 = n, and gcd(a0,a1,a2,n) = 1. The normal
subgroup N of the associated monodromy group is represented by the column span of C =a0 a1 a2

a1 a2 a0
a2 a0 a1

 over Z/nZ. Observe that

C =

a0 a1 a2
a1 a2 a0
a2 a0 a1

=

 1 0 0
0 1 0
−1 −1 1

a0 a1 0
a1 a2 0
0 0 0

1 0 −1
0 1 −1
0 0 1

 .
The elementary divisors of C are the same as the elementary divisors of C′ =

a0 a1 0
a1 a2 0
0 0 0

.

Using Lemma 12, we deduce that d1 = gcd(a0,a1,a2,n) = 1. By looking at the 2×2 minors of
C′, we further deduce that d1d2 = d2 = gcd(a0a2 −a2

1,n). It then follows from Theorem 2 that
the monodromy group of the [a0,a1,a2] triangle is

(Cn ×Cn/α)⋊C3,

where d2 = α = gcd(n,a0a2 −a2
1). □

Although Corollary 1 gives a formula for computing the monodromy group of the dessin
drawn on a triangular billiards surface, it does not specify which monodromy groups can arise.
The following theorem classifies the monodromy groups of all rational triangular billiards
surfaces modulo n.

Theorem 6. Fix n ∈ N with n > 3. The set of possible monodromy groups for triangles modulo
n includes precisely those groups of the form (Cn ×Cn/α)⋊C3 where α|n and α = 3i

∏ j p
n j
j

where the p j are primes congruent to 1 modulo 3, i ∈ {0,1}, and n j ≥ 0. If n = 3, the only
possible monodromy group is C3 ⋊C3.

The proof of this theorem utilizes results from algebraic number theory. Use any introductory
graduate book on the topic, such as [12], as a reference.

Proof. Recall that the monodromy group associated to the triangle [a0,a1,a2] modulo n is
(Cn ×Cn/α)⋊C3 where α = gcd(a0a2 −a2

1,n). What values can a0a2 −a2
1 take modulo n?

Observe that a2 ≡ −a0 − a1 (mod n). Hence, a0a2 − a2
1 ≡ a0(−a0 − a1)− a2

1 ≡ −(a2
0 +

a0a1 +a2
1) mod n. Further observe that a2

0 +a0a1 +a2
1 = N(a0 −a1ζ3) where ζ3 is a third root

of unity and N is the norm map from Z[ζ3] to Z. So we can answer the question about the
possible values of α by asking what values are in the image of the norm map. However, there
are some restrictions on a0 and a1. Since gcd(a0,a1,a2,n) = 1 and a0 +a1 +a2 = n, we deduce
that gcd(a0,a1,n) = 1. Hence, if a0 and a1 have a common factor greater than 1, that factor does
not divide n. Therefore, to find a triangle modulo n with monodromy group (Cn ×Cn/α)⋊C3,
we must find an ideal (a0 − a1ζ3) in Z[ζ3] with the properties that gcd(N(a0 − a1ζ3),n) = α

and gcd(a0,a1,n) = 1. Note that every ideal has a generator since Z[ζ3] is a PID.
The fact that the norm map is multiplicative will allow us to answer the question by examining

ideals with norm of prime power order. Since ideals factor uniquely as products of prime ideals
in Z[ζ3], suppose the ideal (a0−a1ζ3) = ∏p

n j
j where the p j are distinct prime ideals in Z[ζ3]. If

p j = (b0−b1ζ3) then gcd(b0,b1,n) = 1. If gcd(b0,b1,n) ̸= 1, then gcd(a0,a1,n) ̸= 1. Secondly,
if pn j |gcd(N(a0 −a1ζ3),n) one of the following three situations must arise:
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(1) pn j/2 = (p)n j/2 is in the factorization of the ideal (a0 −a1ζ ) if p is an inert prime with
N(p) = p2.

(2) px
1p

n j−x
2 is in the factorization of the ideal (a0 −a1ζ3) if p1 and p2 are the two primes

above (p) in Z[ζ3]. In this case, N(p1) = N(p2) = p.
(3) pn j is in the factorization of the ideal (a0 −a1ζ ) if p is a ramified prime with N(p) = p.

To summarize, we want to know if, when p is a prime dividing n, does there exist an ideal
(b0 −b1ζ3) satisfying N(b0 −b1ζ3) = pn j with pn j |n and gcd(b0,b1,n) = 1?

First consider a prime p ≡ 2 mod 3. Observe that the ideal (p) ⊂ Z[ζ3] is an inert prime
ideal that has norm p2. Hence, p is not in the range of the norm map. If b0 −b1ζ3 ∈ Z[ζ3] has
norm pn j then the ideal generated by b0 − b1ζ3 has the property (b0 − b1ζ3) = (pn j/2) since
ideals factor uniquely as products of prime ideals in Z[ζ3]. Hence, p divides b0 and b1, which
implies p ∤ n. Hence, p ̸≡ 2 mod 3.

Now consider a prime p ≡ 1 mod 3. There is a prime ideal (y− zζ3) of norm p since
the ideal (p) splits in Z[ζ3]. Note that gcd(y,z) = 1 since N(y − zζ3) = y2 + yz + z2 = p.
Set (y− zζ3)

n j = (b0 − b1ζ3). Observe that the ideal (b0 − b1ζ3) is an ideal with norm pn j .
Now, we deduce gcd(b0,b1) = 1 from the fact that ideals factor uniquely in Z[ζ3]. Since
N(b0 −b1ζ3) = pn j , the only factor they could have in common is p. But if p|b0 and p|b1 then
the ideal (p) would divide (y− zζ3)

n j , which is a contradiction since the ideal (p) factors as a
product of two distinct prime ideals of norm p, namely (y−zζ3) and (y−zζ 2

3 ). Clearly, (y−zζ 2
3 )

is not in the unique factorization of (y− zζ3)
n j . Hence, gcd(b0,b1) = 1. Therefore, if p ≡ 1

mod 3 is a prime dividing n, then there exist b0,b1 with gcd(b0,b1) = 1 and N(b0−b1ζ3) = pn j .
Now consider the case when p = 3. The unique prime ideal of norm 3 in Z[ζ3] is (1−ζ3).

If N(b0 − b1ζ3) = 3i where i > 1 then the ideal (3) would divide (b0 − b1ζ3) since the ideal
(1−ζ3)

2 = (3). Since ideals have unique prime ideal factorizations in Z[ζ3], we would have
3|b0 and 3|b1, a contradiction. Hence, when p = 3, the only ideal (b0 − b1ζ3) satisfying
N(b0 −b1ζ3) = 3i with 3i|n and gcd(b0,b1,n) = 1 occurs when i ∈ {0,1}.

Using the multiplicative property of the norm map, if α = 3i
∏ j p

n j
j divides n where the p j

are primes congruent to 1 modulo 3, i ∈ {0,1}, and n j ≥ 0, then there exist positive integers
a0,a1 with gcd(a0,a1,n) = 1, and gcd(a0a2 −a2

1,n) = α if a2 = n−a0 −a1. To use Lemma 5,
we must verify that a0,a1,a2 ̸≡ 0 mod n.

Assume α ̸= 1. By way of contradiction, assume one of the ai ≡ 0 mod n. Without loss of
generality, assume a2 ≡ 0. In this case, a0 ≡ −a1 mod n. Thus, a2

0 +a0a1 +a2
1 ≡ a2

0 mod n.
Hence, gcd(N(a0 − a1ζ3),n) = gcd(a2

0 + a0a1 + a2
1,n) = gcd(a2

0,n). Since, gcd(a0,a1,n) =
gcd(a0,−a0,n) = 1, then gcd(N(a0 −a1ζ3),n) = gcd(a2

0,n) = 1, a contradiction.
Thus, if α ̸= 1, we can use Lemma 5 to adjust [a0,a1,a2] so that it is a geometric 3-gon

modulo n without altering the gcd’s above. Thus by Corollary 1, we have obtained the required
monodromy group when α ̸= 1.

Now consider the case when α = 1. Instead of showing ai ̸≡ 0 mod n in the above construc-
tion, we instead find explicit geometric triangles with monodromy group (Cn ×Cn)⋊C3. If
3 ∤ n, then consider the triangle [1,1,n−2]. Observe that gcd(a2

0+a0a1+a2
2,n) = gcd(3,n) = 1.

Thus, [1,1,n− 2] has monodromy group (Cn ×Cn)⋊C3 when 3 ∤ n. Now consider the case
when 3|n. Consider the triangle [n

3 − 1, n
3 ,

n
3 + 1]. This is a geometric triangle when n > 3.

Observe that a2
0 +a0a1 +a2

1 = (n
3 −1)2 +(n

3 −1)n
3 +(n

3)
2 = 1−n+ n2

3 . Since 3|n, we see that
a2

0 + a0a1 + a2
1 ≡ 1 mod n. Thus gcd(a2

0 + a0a1 + a2
1,n) = 1 and the monodromy group of

[n
3 −1, n

3 ,
n
3 +1] is (Cn ×Cn)⋊C3. In the case when n = 3, there is only one geometric triangle,

[1,1,1], which has monodromy group C3 ⋊C3. □

The following example illustrates how Theorem 6 can be used to classify the possible
monodromy groups modulo a composite number n.

Example 13. If n = 81, there are only two possible monodromy groups. The triangle [1,2,78]
has associated monodromy group (C81 ×C81)⋊C3 and the triangle [1,1,79] has associated
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MONODROMY GROUPS OF DESSINS D’ENFANT ON RATIONAL POLYGONAL BILLIARDS SURFACES22

monodromy group (C81 ×C27)⋊C3. However, there does not exist a triangle with associated
monodromy group (C81 ×C9)⋊C3 or (C81 ×C3)⋊C3 or (C81)⋊C3.

9.2. Quadrilateral Billiards Surfaces. One can also use Lemma 12 to produce an analogue of
Corollary 1 in the quadrilateral case.

Proposition 15. Suppose that [a0,a1,a2,a3] represents a 4-gon modulo n. Let G(a0,a1,a2,a3)
be the monodromy group of the dessin D(a0,a1,a2,a3) drawn on the quadrilateral billiards
surface X(a0,a1,a2,a3). Then

G(a0,a1,a2,a3)∼= (Cn ×C n
d2
×C n

d3
)⋊C4.

where

d2 = gcd(a0a2 −a2
3,a0a1 −a2a3,a2

0 −a2
2,a1a3 −a2

2,a0a3 −a1a2,a0a2 −a2
1,n)

and

d3 =

{
gcd( (a0+a2)((a0+a1)

2+(a1+a2)
2)

d2
,n) i f d2 ̸= n

n i f d2 = n.

Proof. The normal subgroup N of the associated monodromy group is represented by the

column span of C =


a0 a1 a2 a3
a1 a2 a3 a0
a2 a3 a0 a1
a3 a0 a1 a2

 over Z/nZ. Let ã3 = −a0 − a1 − a2. Consider the

matrix C′ =


a0 a1 a2 ã3
a1 a2 ã3 a0
a2 ã3 a0 a1
ã3 a0 a1 a2

 . Observe that C ≡ C′ mod n and thus they have the same

elementary divisors modulo n. We will proceed by finding the elementary divisors of C′ over
Z and then reducing them modulo n to get the elementary divisors of C′. Let d1,d2,d3,d4
be the elementary divisors of C and let d̃1, d̃2, d̃3, d̃4 be the elementary divisors of C′. Since
gcd(a0,a1,a2, ã3,n) = gcd(a0,a1,a2,a3,n) = 1, the gcd of the one by one minors is 1. Hence,
d1 = d̃1 = 1 by Lemma 12.

Observe that

C′ =


a0 a1 a2 ã3
a1 a2 ã3 a0
a2 ã3 a0 a1
ã3 a0 a1 a2

 =


1 0 0 0
0 1 0 0
0 0 1 0
−1 −1 −1 1




a0 a1 a2 0
a1 a2 ã3 0
a2 ã3 a0 0
0 0 0 0




1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 1

 .
Thus the elementary divisors of C′ are the same modulo n as the elementary divisors of

C′′ =


a0 a1 a2 0
a1 a2 ã3 0
a2 ã3 a0 0
0 0 0 0

 .
Hence, d4 = d̃4 = 0. To compute d2, we compute the gcd of the 2 by 2 minors of C′′ of which
there are only 9 that are nonzero. Three of the minors are duplicates, thus leaving us with
6. These minors are {a0a2 − ã2

3,a0a1 −a2ã3,a2
0 −a2

2,a1ã3 −a2
2,a0ã3 −a1a2,a0a2 −a2

1}. Using
Lemma 12, we obtain d2 = gcd(d̃2,n) = gcd(a0a2 −a2

3,a0a1 −a2a3,a2
0 −a2

2,a1a3 −a2
2,a0a3 −

a1a2,a0a2 −a2
1,n).

Lastly, d̃3 will be equal to the third elementary divisor of C′ which is the same as the third

elementary divisor of

a0 a1 a2
a1 a2 ã3
a2 ã3 a0

 . By Lemma 12, we know that d̃2d̃3 = det

a0 a1 a2
a1 a2 ã3
a2 ã3 a0

=

a2
0a2+2a1a2ã3−a3

2−a0ã2
3−a0a2

1 =−(a0+a2)((a0+a1)
2+(a1+a2)

2). Hence, d̃3 =
(a0+a2)((a0+a1)

2+(a1+a2)
2)

d̃2
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provided d̃2 ̸= 0. If d̃2 = 0 then d̃3 = 0. Therefore, d3 = gcd(d̃3,n)= gcd( (a0+a2)((a0+a1)
2+(a1+a2)

2)
d2

,n)
unless d2 = n in which case d3 = n. □

10. Future Directions

There are many questions that naturally arose in the study of monodromy groups of dessin drawn
on rational billiards surfaces. Here are some possible future questions to investigate.

Question 1. Throughout this paper, we used Proposition 2, Lemma 5, and Lemma 6 many times
to produce a polygon with the same monodromy group as a particular algebraic polygon. Using
Lemma 5, we can produce an associate convex polygon in the case where the modulus n = p is
prime and p ≥ k. It is natural to ask if G is the monodromy group of a k-gon modulo n, is it the
monodromy group of a convex k-gon modulo n?

Question 2. How can one generalize Theorem 4 to primes p ≤ k? For p ≤ k, a monodromy
group attained by an algebraic k-gon may not be attainable by a k-gon. For example, x6 −1 =
(x−1)2(x2 + x+1)2 modulo 2. Thus, there exist algebraic 6-gons modulo 2 with monodromy
groups C2 ⋊C6, C2

2 ⋊C6, C3
2 ⋊C6, C4

2 ⋊C6, and C5
2 ⋊C6. However, there is only one 6-gon

modulo 2, namely [3,1,1,1,1,1], which has monodromy group C2 ⋊C6.

Question 3. Can one generalize Proposition 15 to k-gons where k > 4?

Question 4. In Theorem 6, we classified which groups appear as the monodromy group of a
triangle. Can one prove an analogous result for the monodromy groups that arise for an arbitrary
k-gon?
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